WO2019059731A1 - 필름의 제조 방법 - Google Patents

필름의 제조 방법 Download PDF

Info

Publication number
WO2019059731A1
WO2019059731A1 PCT/KR2018/011303 KR2018011303W WO2019059731A1 WO 2019059731 A1 WO2019059731 A1 WO 2019059731A1 KR 2018011303 W KR2018011303 W KR 2018011303W WO 2019059731 A1 WO2019059731 A1 WO 2019059731A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
particles
weight
metal
parts
Prior art date
Application number
PCT/KR2018/011303
Other languages
English (en)
French (fr)
Inventor
김소진
신종민
유동우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18858501.2A priority Critical patent/EP3685929B1/en
Priority to CN201880060940.6A priority patent/CN111107945B/zh
Priority to US16/648,833 priority patent/US20200246873A1/en
Priority to JP2020516518A priority patent/JP7205974B2/ja
Publication of WO2019059731A1 publication Critical patent/WO2019059731A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/40Metallic substrate based on other transition elements
    • B05D2202/45Metallic substrate based on other transition elements based on Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/28Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F2003/1106Product comprising closed porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/058Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a method for producing a film.
  • the heat dissipation material can be used in various applications. For example, since batteries and various electronic devices generate heat during operation, a material capable of effectively controlling such heat is required.
  • a film in which a ceramic material having a high thermal conductivity is dispersed in a polymer matrix is known.
  • these films are generally unsatisfactory in thermal conductivity.
  • heat pipe As another heat dissipating material, a so-called heat pipe is also known. This material exhibits excellent heat dissipation efficiency, but is also inexpensive and has been used recently.
  • the present application aims to provide a method for producing a film which can be used for a heat-insulating material such as a heat pipe, for example.
  • the manufacturing method of the present application includes a step of directly coating and sintering a slurry containing thermally conductive metal particles on a metal substrate to form a porous metal layer.
  • the porous metal layer can have a thin thickness, high porosity and small pore size, and also have excellent adhesion with a metal substrate.
  • porous metal layer in the present application means a porous structure containing a metal as a main component.
  • the metal as a main component means that the proportion of the metal is 55 wt% or more, 60 wt% or more, 65 wt% or more, 70 wt% or more, 75 wt% or more, 80 wt% or more, 85% by weight or more, 90% by weight or more, or 95% by weight or more.
  • the upper limit of the ratio of the metal contained as the main component is not particularly limited, and may be, for example, 100% by weight.
  • porosity may mean a porosity of at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, or at least 80%.
  • the upper limit of the porosity is not particularly limited, and may be, for example, about 100%, about 99%, about 98%, about 95%, or about 90% or less.
  • the porosity can be calculated in a known manner by calculating the density of the metal layer.
  • the slurry basically comprises thermally conductive metal particles.
  • the metal particles may have a thermal conductivity of at least about 8 W / mK, at least about 10 W / mK, at least about 15 W / mK, at least about 20 W / mK, at least about 25 W / at least about 40 W / mK, at least about 45 W / mK, at least about 50 W / mK, at least about 55 W / mK, at least about 60 W / mK, at least about 65 W / mK or more, about 70 W / mK or more, about 75 W / mK or more, about 80 W / mK or more, about 85 W / mK or about 90 W / mK or more.
  • the higher the thermal conductivity of the metal particles the more excellent heat dissipation efficiency can be obtained.
  • the upper limit of the metal particles is not particularly limited, and may be, for example, about 1,000 W / mK or less.
  • the physical properties of the physical properties referred to herein are those measured at room temperature when the measured temperature affects the physical properties.
  • the term ambient temperature is a natural, non-warming or non-warming temperature, for example, any temperature within the range of about 10 ° C to 30 ° C, or about 23 ° C or about 25 ° C.
  • the specific kind of the metal particles is not particularly limited as long as it has the above-mentioned thermal conductivity.
  • the metal particles include copper, gold, silver, aluminum, silver, nickel, iron, cobalt, magnesium, molybdenum, tungsten, And zinc, or an alloy of two or more of the above, but the present invention is not limited thereto.
  • the shape of the metal particles may be appropriately selected in consideration of porosity, pore size or pore shape of the desired porous metal layer.
  • the metal particles may have various shapes such as a substantially spherical shape, a needle shape, a plate shape, a dendritic shape, or a star shape.
  • the average particle size of the metal particles may be in the range of about 100 nm to 200 [mu] m.
  • the average particle diameter can be appropriately selected in consideration of porosity, pore size, or pore shape of the desired porous metal layer within the above range.
  • the slurry may include at least a metal having an appropriate relative permeability and conductivity. According to one embodiment of the present application, when the induction heating method is applied when the slurry is sintered, the application of such a metal can smoothly perform the sintering according to the method.
  • the relative permeability ( r ) is the ratio ( ⁇ / ⁇ 0 ) of the permeability ( ⁇ ) of the material to the permeability ( ⁇ 0 ) in the vacuum.
  • the metal used in the present application has a relative permeability of 95 or more, 100 or more, 110 or more, 120 or more, 130 or more, 140 or more, 150 or more, 160 or more, 170 or more, 180 or more, 190 or more, 200 or more, 220 or more, 230 or more, 240 or more, 250 or more, 260 or more, 270 or more, 280 or more, 290 or more, 300 or more, 310 or more, 320 or more, 330 or more, 340 or more, 350 or more, 360 or more, , 390 or more, 400 or more, 410 or more, 420 or more, 430 or more, 440 or more, 450 or more, 460 or more, 470 or more, 480 or more, 490 or more, 500 or more, 510 or more, 520 or more, 530 or more, 560 or more, 570 or more, 580 or more, or 590 or more.
  • the upper limit of the relative permeability may be, for example, about 300,000 or less.
  • the metal preferably has a conductivity of at least 8 MS / m, at least 9 MS / m, at least 10 MS / m, at least 11 MS / m, at least 12 MS / m, at least 13 MS / Or an alloy thereof.
  • the upper limit of the conductivity is not particularly limited, and may be, for example, about 30 MS / m or less, 25 MS / m or less, or 20 MS / m or less.
  • the metal having the relative permeability and conductivity as described above may be simply referred to as a conductive magnetic metal.
  • conductive magnetic metal By applying the conductive magnetic metal, sintering can be more effectively performed when the induction heating process to be described later is performed.
  • conductive magnetic metal examples include, but are not limited to, nickel, iron or cobalt.
  • the slurry may further comprise a binder.
  • the kind of the applicable binder is not particularly limited and can be appropriately selected depending on the kinds of the metal particles and the dispersant used in the production of the slurry.
  • the binder includes a binder having 1 to 20 carbon atoms such as methyl cellulose, ethyl cellulose, hydroxypropylmethyl cellulose, hydroxyethyl cellulose, Polyalkylene carbonate or polyvinyl alcohol having an alkylene unit having 1 to 8 carbon atoms such as alkylcellulose having alkyl group having 8 to 8 carbon atoms or alkylcellulose ammonium, polypropylene carbonate or polyethylene carbonate or polyvinyl alcohol-based binder such as polyvinyl acetate etc. May be exemplified, but the present invention is not limited thereto.
  • the proportion of each component in the slurry is not particularly limited. Such a ratio can be adjusted in consideration of process efficiency such as coating property and moldability at the time of using the slurry.
  • the binder in the slurry, may be contained in a proportion of about 5 to 200 parts by weight based on 100 parts by weight of the metal particles.
  • the ratio may be from about 10 parts by weight to about 15 parts by weight, from about 20 parts by weight to about 25 parts by weight, from about 190 parts by weight to about 180 parts by weight, from about 170 parts by weight to about 160 parts by weight, Not more than 150 parts by weight, not more than 140 parts by weight, not more than 130 parts by weight, not more than 120 parts by weight, not more than 110 parts by weight, not more than 100 parts by weight, not more than 90 parts by weight, not more than 80 parts by weight, Not more than 50 parts by weight, or not more than 40 parts by weight.
  • the unit weight portion in the present specification means the weight ratio between the respective components.
  • the slurry may further comprise a dispersant.
  • a dispersing agent for example, alcohol may be applied.
  • the alcohol include alcohols such as methanol, ethanol, propanol, pentanol, octanol, ethylene glycol, propylene glycol, pentanols, 2- methoxyethanol, 2- ethoxyethanol, 2-butoxyethanol, glycerol, texanol, Or terpineol, or a dihydric alcohol having 1 to 20 carbon atoms, such as ethylene glycol, propylene glycol, hexane diol, octane diol or pentane diol, or a higher polyhydric alcohol, etc., may be used However, the kind is not limited to the above.
  • the dispersant may be contained in the slurry at a ratio of about 10 to 500 parts by weight based on 100 parts by weight of the metal particles.
  • the ratio is at least 20 parts by weight, at least 30 parts by weight, at least 40 parts by weight, at least 50 parts by weight, at least 60 parts by weight, at least 70 parts by weight, at least 80 parts by weight, at least 90 parts by weight, At least 110 parts by weight, at least 120 parts by weight, at least 130 parts by weight, at least 140 parts by weight, at least 150 parts by weight or at least 160 parts by weight, at least about 490 parts by weight, at least 480 parts by weight, 460 parts by weight or less, 450 parts by weight or less, 440 parts by weight or less, 430 parts by weight or less, 420 parts by weight or less, 410 parts by weight or less, 400 parts by weight or less, 390 parts by weight or less, 380 parts by weight or less, Up to 360 parts by weight, up to 350 parts by weight, up to 340 parts by weight, up to 330
  • the slurry may further comprise a solvent, if necessary.
  • a solvent an appropriate solvent may be used in consideration of the components of the slurry, for example, the solubility of the metal particles or the binder.
  • the solvent those having a dielectric constant within a range of about 10 to 120 can be used.
  • the dielectric constant may be at least about 20, at least about 30, at least about 40, at least about 50, at least about 60, at least about 70, at least about 110, at least about 100,
  • solvents include water, alcohols having 1 to 8 carbon atoms such as ethanol, butanol or methanol, dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) or N-methylpyrrolidinone (NMP) no.
  • DMSO dimethyl sulfoxide
  • DMF dimethyl formamide
  • NMP N-methylpyrrolidinone
  • a solvent When a solvent is applied, it may be present in the slurry at a ratio of about 50 to 400 parts by weight based on 100 parts by weight of the binder, but is not limited thereto.
  • the slurry may contain, in addition to the above-mentioned components, additionally known additives which are additionally required.
  • the present application includes a step of pattern printing the slurry on a metal substrate.
  • the pattern printing described above means that the slurry is formed in a predetermined pattern on the metal substrate.
  • the shape of the pattern to be applied at this time is not particularly limited, and may be selected in consideration of the application purpose of the film and the like.
  • the film can be applied to the manufacture of a heat pipe, in which case the porous metal layer can act as a so-called Wick of a heat pipe.
  • the wick can act as a passage through which the fluid or the like moves in the heat pipe, and the pattern can be determined so that the flow of the fluid can be smoothly performed.
  • a variety of patterns are known in the related art to allow fluid flow to be performed smoothly, and this application is entirely applicable in the present application.
  • the method of pattern printing the slurry on the substrate is not particularly limited and may be carried out by using suitable printing means such as various dispensers.
  • a thermally conductive substrate may also be used as the metal substrate.
  • the substrate has a thermal conductivity of at least about 8 W / mK, at least about 10 W / mK, at least about 15 W / mK, at least about 20 W / mK, at least about 25 W / mK or greater, about 35 W / mK or greater, about 40 W / mK or greater, about 45 W / mK or greater, about 50 W / MK or more, about 75 W / mK or more, about 80 W / mK or more, about 85 W / mK or more, or about 90 W / mK or more.
  • the higher the thermal conductivity of the metal substrate the more excellent heat dissipation efficiency can be obtained.
  • the upper limit is not particularly limited, and may be, for example, about 1,000 W / mK or less.
  • the specific type of the metal substrate is not particularly limited as long as it has the above-mentioned thermal conductivity, and examples thereof include stainless steel, copper, gold, silver, aluminum, silver, nickel, iron, cobalt, magnesium, molybdenum , Tungsten, platinum, magnesium, and zinc, or a substrate of two or more of the above alloys, but the present invention is not limited thereto.
  • the metal substrate may be the same material as the thermally conductive particles in the slurry, or may be a substrate of different material.
  • a porous metal layer is formed through pattern printing of a slurry on a metal substrate and then sintering the printed slurry.
  • 1 schematically shows a process of pattern printing a slurry 200 on a metal substrate 100 according to the above process and sintering the slurry 200 to form a metal layer 300.
  • a step of drying the slurry printed between the printing and sintering processes under appropriate conditions may be performed.
  • the condition is not particularly limited.
  • the drying may be carried out at a temperature in the range of about 20 to 150 DEG C for about 20 minutes to 5 hours, but is not limited thereto.
  • the method of performing sintering is not particularly limited, and a known sintering method in which appropriate heat is applied in consideration of the material composition and form of the printed slurry can be applied.
  • the sintering temperature and the sintering time applied at this time are not particularly limited and may be set in consideration of the material composition and shape of the slurry.
  • the sintering can also be performed by an induction heating method. That is, when the slurry includes the conductive magnetic metal as described above, the induction heating method can be applied. By such a method, it is possible to smoothly manufacture the metal layer including uniformly formed pores and having excellent mechanical properties and controlled porosity to a desired level.
  • induction heating is a phenomenon in which heat is generated in a specific metal when an electromagnetic field is applied.
  • an electromagnetic field is applied to a conductive magnetic metal having appropriate conductivity and permeability, eddy currents are generated in the metal, and joule heating occurs due to the resistance of the metal.
  • a sintering process through such a phenomenon can be performed.
  • the sintering of the metal foam can be performed within a short period of time by applying such a method, thereby ensuring the processability.
  • a metal foam having a small pore size and excellent adhesion with a metal substrate Can be manufactured.
  • the sintering process may include applying a heat or electromagnetic field to the pattern printed slurry.
  • the application of heat may be performed by treating the pattern printed slurry at a temperature in the range of about 300 DEG C to 2,000 DEG C for a time in the range of 30 minutes to 10 hours using an appropriate means such as an oven.
  • the induction heating can be performed using an induction heater formed in the form of a coil or the like.
  • the induction heating can be performed by applying a current of, for example, about 100 A to 1,000 A.
  • the magnitude of the applied current may be 900 A or less, 800 A or less, 700 A or less, 600 A or less, 500 A or less, or 400 A or less.
  • the magnitude of the current may be greater than about 150 A, greater than about 200 A, or greater than about 250 A in other examples.
  • the induction heating can be performed, for example, at a frequency of about 100 kHz to 1,000 kHz.
  • the frequency may be 900 kHz or less, 800 kHz or less, 700 kHz or less, 600 kHz or less, 500 kHz or less, or 450 kHz or less.
  • the frequency may, in another example, be at least about 150 kHz, at least about 200 kHz, or at least about 250 kHz.
  • the application of the electromagnetic field for the induction heating can be performed within a range of, for example, about 1 minute to 10 hours.
  • the application time may be at least about 10 minutes, at least about 20 minutes, or at least about 30 minutes in another example.
  • the duration of application may, in another example, be about 9 hours or less, about 8 hours or less, about 7 hours or less, about 6 hours or less, about 5 hours or less, about 4 hours or less, about 3 hours or less, 1 hour or less or about 30 minutes or less.
  • the above-mentioned induction heating conditions for example, the applied current, the frequency and the application time can be changed in consideration of the kind and the ratio of the conductive magnetic metal as described above.
  • the sintering may be performed by any one of the above-mentioned methods of applying heat or electromagnetic field, or by a method of applying both of them simultaneously, that is, a method of applying appropriate heat in conjunction with the application of an electromagnetic field.
  • the porous metal layer produced according to the method of the present application as described above has a thin thickness, high porosity and small pore size, and can have excellent adhesion with a metal substrate.
  • the metal layer may be porous and have an average pore size of 100 m or less.
  • the size of such pores can be confirmed by, for example, scanning electron microscope (SEM) image analysis or the like.
  • SEM scanning electron microscope
  • the lower limit of the pore size is not particularly limited, and may be, for example, about 1 nm to 1 ⁇ ⁇ .
  • the metal layer may have a porosity of about 30% or more.
  • the porosity can be calculated in a known manner by calculating the density of the metal layer.
  • the porosity is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 99%, at least 95% Or less, 80% or less, or 75% or less.
  • the metal layer may have a thickness of about 500 ⁇ or less.
  • the thickness may be about 450 ⁇ or less, 400 ⁇ or less, 350 ⁇ or less, 300 ⁇ or less, 250 ⁇ or less, 200 ⁇ or 150 ⁇ or less in other examples.
  • the lower limit of the thickness is not particularly limited and may be, for example, about 1 ⁇ ⁇ or more, about 5 ⁇ ⁇ or more, or about 10 ⁇ ⁇ or more.
  • the film of the present invention produced in the above-described manner can be applied to various applications, one example of which is application to the manufacture of heat pipes.
  • a process of attaching two films prepared in the above manner to each other is necessary, and this process is described, for example, in Fig. 2 schematically shows a process of attaching two films, each of which has a metal layer 300 formed on a metal substrate 100, to each other.
  • the present application may also include a step of bonding the edges of the metal substrate of the film while the two films produced by the above-described method are positioned so that the porous metal layers formed on the respective films face each other.
  • the method of joining the edges of the metal substrate is not particularly limited, and a well-known metal attaching method such as welding can be applied.
  • a method of manufacturing a film that can be applied, for example, to the production of a heat-radiating material such as a heat pipe can be provided.
  • Figs. 1 and 2 are diagrams schematically showing the steps disclosed in the present application. Fig.
  • Figures 3 and 4 are photographs showing the morphology of the films produced in the examples.
  • the slurry was prepared by blending a copper particle powder (thermal conductivity: 401 W / mK, form: dendrite type, average length: about 40 ⁇ m) with a binder (polyvinylacetate) and a dispersant (terpinol).
  • the weight of the copper particle powder is about 10 g
  • the weight of the polyvinylacetate is about 3 g
  • the weight of the dispersant (terpinol) is about 17 g.
  • the slurry thus prepared was pattern-printed as a substrate on a copper foil (Cu foil). Pattern printing forms are as shown in Figs. 3 and 4. Subsequently, the film was dried at a temperature of about 120 DEG C for about 1 hour to form a green film. Thereafter, the green film was heat-treated at a temperature of about 1000 ⁇ for about 2 hours in a hydrogen / argon gas atmosphere to remove organic components to form a porous copper layer. The thickness of the formed copper layer was about 21.5 mu m, and the porosity was about 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

본 출원은 필름의 제조 방법을 제공한다. 본 출원에서는, 예를 들면, 히트 파이프와 같은 방열 소재의 제조에 적용될 수 있는 필름의 제조 방법이 제공될 수 있다.

Description

필름의 제조 방법
본 출원은 2017년 9월 22일자 제출된 대한민국 특허출원 제10-2017-0122575호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은 필름의 제조 방법에 대한 것이다.
방열 소재는 다양한 용도에서 사용될 수 있다. 예를 들면, 배터리나 각종 전자 기기는 작동 과정에서 열이 발생하기 때문에, 이러한 열을 효과적으로 제어할 수 있는 소재가 요구된다.
대표적인 방열 소재로는, 열전도도가 높은 세라믹 소재 등을 고분자 매트릭스 내에 분산시킨 필름이 알려져 있다. 그렇지만, 이러한 필름들은 대체로 열전도도가 만족스럽지 않다.
다른 방열 소재로서, 소위 히트 파이프(Heat Pipe)도 알려져 있다. 이 소재는 우수한 방열 효율을 나타내면서도 가격도 저렴한 편이고, 따라서 최근 많이 활용되고 있다.
그렇지만, 상기 히트 파이프는 대부분 두께가 두껍고, 이에 따라서 적용 용도가 제한된다.
본 출원은, 필름, 예를 들면, 히트 파이프와 같은 방열 소재에 사용될 수 있는 필름의 제조 방법을 제공하는 것을 목적으로 한다.
본 출원의 제조 방법은, 금속 기판상에 열전도성 금속 입자를 포함하는 슬러리를 직접 코팅 및 소결하여 다공성 금속층을 형성하는 단계를 포함한다. 이러한 방식에 의해서 상기 다공성 금속층이 얇은 두께이면서 높은 기공도와 작은 기공 크기를 가지고, 또한 금속 기판과 우수한 밀착성을 가지도록 할 수 있다.
본 출원에서 용어 다공성 금속층은, 금속을 주성분으로 포함하는 다공성 구조체를 의미한다. 상기에서 금속을 주성분으로 한다는 것은, 금속층의 전체 중량을 기준으로 금속의 비율이 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상, 90 중량% 이상 또는 95 중량% 이상인 경우를 의미한다. 상기 주성분으로 포함되는 금속의 비율의 상한은 특별히 제한되지 않으며, 예를 들면, 100 중량%일 수 있다.
용어 다공성은, 기공도(porosity)가 적어도 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 75% 이상 또는 80% 이상인 경우를 의미할 수 있다. 상기 기공도의 상한은 특별히 제한되지 않으며, 예를 들면, 약 100% 미만, 약 99% 이하, 약 98% 이하, 약 95% 이하 또는 약 90% 이하 정도일 수 있다. 상기에서 기공도는 금속층의 밀도를 계산하여 공지의 방식으로 산출할 수 있다.
본 출원의 제조 방법에서 상기 슬러리는 열전도성 금속 입자를 기본적으로 포함한다.
상기 금속 입자는, 일 예시에서 열전도도가, 약 8 W/mK 이상, 약 10 W/mK 이상, 약 15 W/mK 이상, 약 20 W/mK 이상, 약 25 W/mK 이상, 약 30 W/mK 이상, 약 35 W/mK 이상, 약 40 W/mK 이상, 약 45 W/mK 이상, 약 50 W/mK 이상, 약 55 W/mK 이상, 약 60 W/mK 이상, 약 65 W/mK 이상, 약 70 W/mK 이상, 약 75 W/mK 이상, 약 80 W/mK 이상, 약 85 W/mK 이상 또는 약 90 W/mK 이상일 수 있다. 금속 입자는, 열전도도가 높을수록 우수한 방열 효율을 가지는 필름이 얻어질 수 있어서, 그 상한은 특별히 제한되는 것은 아니며, 예를 들면, 약 1,000 W/mK 이하 정도일 수 있다.
본 명세서에서 언급하는 물성 중에서 측정 온도가 해당 물성에 영향을 미치는 경우에는, 특별히 달리 규정하지 않는 한, 그 물성은 상온에서 측정한 것이다. 용어 상온은 가온 또는 감온되지 않은 자연 그대로의 온도이고, 예를 들면, 약 10℃ 내지 30℃의 범위 내의 어느 한 온도, 약 23℃ 또는 약 25℃ 정도의 온도를 의미할 수 있다.
상기 금속 입자의 구체적인 종류는, 상기 언급된 열전도도를 가진다면 특별히 제한되지 않으며, 예를 들면, 구리, 금, 은, 알루미늄, 은, 니켈, 철, 코발트, 마그네슘, 몰리브덴, 텅스텐, 백금, 마그네슘 및 아연으로 이루어진 군에서 선택된 어느 하나 또는 상기 중 2종 이상의 합금 등일 수 있으나, 이에 제한되는 것은 아니다.
상기 금속 입자의 형태는 목적하는 다공성 금속층의 기공도나 기공크기 또는 기공 형태 등을 고려하여 적절하게 선택될 수 있다. 예를 들면, 상기 금속 입자는, 대략 구형, 침상, 판형, 덴드라이트형 또는 성형(star shape) 등의 다양한 형태를 가질 수 있다.
하나의 예시에서 상기 금속 입자의 평균 입경은, 약 100 nm 내지 200 ㎛의 범위 내일 수 있다. 상기 범위 내에서 목적하는 다공성 금속층의 기공도나 기공크기 또는 기공 형태 등을 고려하여 평균 입경이 적절하게 선택될 수 있다.
일 예시에서 상기 슬러리는, 적정한 상대 투자율과 전도도를 가지는 금속을 적어도 포함할 수 있다. 이러한 금속의 적용은, 본 출원의 하나의 예시에 따라서 상기 슬러리를 소결할 때에 유도 가열 방식이 적용될 경우에 해당 방식에 따른 소결이 원활하게 수행되도록 할 수 있다.
예를 들면, 상기 금속으로는, 상대 투자율이 90 이상인 금속이 사용될 수 있다. 상기에서 상대 투자율(μr)은, 해당 물질의 투자율(μ)과 진공속의 투자율(μ0)의 비율(μ/μ0)이다. 본 출원에서 사용하는 상기 금속은 상대 투자율이 95 이상, 100 이상, 110 이상, 120 이상, 130 이상, 140 이상, 150 이상, 160 이상, 170 이상, 180 이상, 190 이상, 200 이상, 210 이상, 220 이상, 230 이상, 240 이상, 250 이상, 260 이상, 270 이상, 280 이상, 290 이상, 300 이상, 310 이상, 320 이상, 330 이상, 340 이상, 350 이상, 360 이상, 370 이상, 380 이상, 390 이상, 400 이상, 410 이상, 420 이상, 430 이상, 440 이상, 450 이상, 460 이상, 470 이상, 480 이상, 490 이상, 500 이상, 510 이상, 520 이상, 530 이상, 540 이상, 550 이상, 560 이상, 570 이상, 580 이상 또는 590 이상일 수 있다. 상기 상대 투자율은 그 수치가 높을 수록 후술하는 유도 가열을 위한 전자기장의 인가 시에 보다 높은 열을 발생하게 되므로 그 상한은 특별히 제한되지 않는다. 일 예시에서 상기 상대 투자율의 상한은 예를 들면, 약 300,000 이하일 수 있다.
상기 금속은 20℃에서의 전도도가 약 8 MS/m 이상, 9 MS/m 이상, 10 MS/m 이상, 11 MS/m 이상, 12 MS/m 이상, 13 MS/m 이상 또는 14.5 MS/m 이상인 금속 또는 그러한 합금일 수 있다. 상기 전도도의 상한은 특별히 제한되지 않으며, 예를 들면, 약 30 MS/m 이하, 25 MS/m 이하 또는 20 MS/m 이하일 수 있다.
본 출원에서 상기와 같은 상대 투자율과 전도도를 가지는 금속은 단순하게 전도성 자성 금속으로도 호칭될 수 있다.
상기 전도성 자성 금속을 적용함으로써, 후술하는 유도 가열 공정이 진행될 경우에 소결을 보다 효과적으로 진행할 수 있다. 이와 같은 금속으로는 니켈, 철 또는 코발트 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기 슬러리는 바인더를 추가로 포함할 수 있다. 적용 가능한 바인더의 종류는 특별히 제한되지 않으며, 슬러리의 제조 시에 적용된 금속 입자나 분산제 등의 종류에 따라 적절하게 선택할 수 있다. 예를 들면, 상기 바인더로는, 메틸 셀룰로오스, 에틸 셀룰로오스, 하이드록시프로필메틸 셀룰로오스, 하이드록시에틸셀룰로오스 또는 카복시메틸셀룰로오스 암모늄 등의 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12 또는 탄소수 1 내지 8의 알킬기를 가지는 알킬 셀룰로오스 또는 알킬 셀룰로오스 암모늄, 폴리프로필렌 카보네이트 또는 폴리에틸렌 카보네이트 등의 탄소수 1 내지 8의 알킬렌 단위를 가지는 폴리알킬렌 카보네이트 또는 폴리비닐알코올 또는 폴리비닐아세테이트 등의 폴리비닐알코올계 바인더 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
상기와 같은 슬러리 내에서 각 성분의 비율은 특별히 제한되지 않는다. 이러한 비율은 슬러리를 사용한 공정 시에 코팅성이나 성형성 등의 공정 효율을 고려하여 조절될 수 있다.
예를 들면, 슬러리 내에서 바인더는 전술한 금속 입자 100 중량부 대비 약 5 내지 200 중량부의 비율로 포함될 수 있다. 상기 비율은 다른 예시에서 약 10 중량부 이상, 약 15 중량부 이상, 약 20 중량부 이상 또는 약 25 중량부 이상일 수 있거나, 약 190 중량부 이하, 180 중량부 이하, 170 중량부 이하, 160 중량부 이하, 150 중량부 이하, 140 중량부 이하, 130 중량부 이하, 120 중량부 이하, 110 중량부 이하, 100 중량부 이하, 90 중량부 이하, 80 중량부 이하, 70 중량부 이하, 60 중량부 이하, 50 중량부 이하 또는 40 중량부 이하일 수 있다.
본 명세서에서 단위 중량부는 특별히 달리 규정하지 않는 한, 각 성분간의 중량의 비율을 의미한다.
상기 슬러리는 또한 분산제를 추가로 포함할 수 있다. 상기에서 분산제로는, 예를 들면, 알코올이 적용될 수 있다. 알코올로는, 메탄올, 에탄올, 프로판올, 펜탄올, 옥타놀, 에틸렌글리콜, 프로필렌글리콜, 펜탄놀, 2-메톡시에탄올, 2-에톡시에탄올, 2-부톡시에탄올, 글리세롤, 텍사놀(texanol) 또는 테르피네올(terpineol) 등과 같은 탄소수 1 내지 20의 1가 알코올 또는 에틸렌글리콜, 프로필렌글리콜, 헥산디올, 옥탄디올 또는 펜탄디올 등과 같은 탄소수 1 내지 20의 2가 알코올 또는 그 이상의 다가 알코올 등이 사용될 수 있으나, 그 종류가 상기에 제한되는 것은 아니다.
슬러리 내에서 분산제는, 상기 금속 입자 100 중량부 대비 약 10 내지 500 중량부의 비율로 포함될 수 있다. 상기 비율은 다른 예시에서 약 20 중량부 이상, 30 중량부 이상, 40 중량부 이상, 50 중량부 이상, 60 중량부 이상, 70 중량부 이상, 80 중량부 이상, 90 중량부 이상, 100 중량부 이상, 110 중량부 이상, 120 중량부 이상, 130 중량부 이상, 140 중량부 이상, 150 중량부 이상 또는 160 중량부 이상일 수 있고, 약 490 중량부 이하, 480 중량부 이하, 470 중량부 이하, 460 중량부 이하, 450 중량부 이하, 440 중량부 이하, 430 중량부 이하, 420 중량부 이하, 410 중량부 이하, 400 중량부 이하, 390 중량부 이하, 380 중량부 이하, 370 중량부 이하, 360 중량부 이하, 350 중량부 이하, 340 중량부 이하, 330 중량부 이하, 320 중량부 이하, 310 중량부 이하, 300 중량부 이하, 290 중량부 이하, 280 중량부 이하, 270 중량부 이하, 260 중량부 이하, 250 중량부 이하, 240 중량부 이하, 230 중량부 이하, 220 중량부 이하, 210 중량부 이하, 200 중량부 이하, 190 중량부 이하 또는 180 중량부 이하 정도일 수도 있다.
슬러리는 필요하다면, 용매를 추가로 포함할 수 있다. 용매로는 슬러리의 성분, 예를 들면, 상기 금속 입자나 바인더 등의 용해성을 고려하여 적절한 용매가 사용될 수 있다. 예를 들면, 용매로는, 유전 상수가 약 10 내지 120의 범위 내에 있는 것을 사용할 수 있다. 상기 유전 상수는 다른 예시에서 약 20 이상, 약 30 이상, 약 40 이상, 약 50 이상, 약 60 이상 또는 약 70 이상이거나, 약 110 이하, 약 100 이하 또는 약 90 이하일 수 있다. 이러한 용매로는, 물이나 에탄올, 부탄올 또는 메탄올 등의 탄소수 1 내지 8의 알코올, DMSO(dimethyl sulfoxide), DMF(dimethyl formamide) 또는 NMP(N-methylpyrrolidinone) 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
용매가 적용될 경우에 상기는 상기 바인더 100 중량부 대비 약 50 내지 400 중량부의 비율로 슬러리 내에 존재할 수 있지만, 이에 제한되는 것은 아니다.
슬러리는 상기 언급한 성분 외에 추가적으로 필요한 공지의 첨가제를 포함할 수도 있다.
본 출원에서는 상기와 같은 슬러리를 금속 기판상에 패턴 인쇄하는 단계를 포함한다. 상기에서 패턴 인쇄는 슬러리를 금속 기판상에 소정 패턴으로 형성하는 것을 의미한다. 이 때 적용되는 패턴의 형태는 특별히 제한되지 않고, 필름의 적용 용도 등을 고려하여 선택될 수 있다. 예를 들어, 상기 필름은 히트 파이프의 제조에 적용될 수 있고, 이 경우 상기 다공성 금속층은, 소위 히트 파이프의 Wick로서 작용할 수 있다. 상기 Wick은 히트 파이프에서 유체 등이 이동하는 통로로서 작용할 수 있는데, 상기 패턴은 상기 유체의 흐름이 원활하게 이루어질 수 있도록 정해질 수 있다. 관련 업계에서는 유체의 흐름이 원활하게 수행될 수 있도록 하는 다양한 패턴이 알려져 있고, 본 출원에서는 이러한 내용이 모두 적용될 수 있다.
슬러리를 기판에 패턴 인쇄하는 방법은 특별히 제한되지 않고, 적절한 인쇄 수단, 예를 들면, 각종 디스펜서 등을 사용하여 진행할 수 있다.
상기 금속 기판으로도 열전도성 기판을 사용할 수 있다. 일 예시에서 상기 기판은, 열전도도가, 약 8 W/mK 이상, 약 10 W/mK 이상, 약 15 W/mK 이상, 약 20 W/mK 이상, 약 25 W/mK 이상, 약 30 W/mK 이상, 약 35 W/mK 이상, 약 40 W/mK 이상, 약 45 W/mK 이상, 약 50 W/mK 이상, 약 55 W/mK 이상, 약 60 W/mK 이상, 약 65 W/mK 이상, 약 70 W/mK 이상, 약 75 W/mK 이상, 약 80 W/mK 이상, 약 85 W/mK 이상 또는 약 90 W/mK 이상일 수 있다. 금속 기판은, 열전도도가 높을수록 우수한 방열 효율을 가지는 필름이 얻어질 수 있어서, 그 상한은 특별히 제한되는 것은 아니며, 예를 들면, 약 1,000 W/mK 이하 정도일 수 있다.
상기 금속 기판의 구체적인 종류는, 상기 언급된 열전도도를 가진다면 특별히 제한되지 않으며, 예를 들면, SUS(Stainless Steel), 구리, 금, 은, 알루미늄, 은, 니켈, 철, 코발트, 마그네슘, 몰리브덴, 텅스텐, 백금, 마그네슘 및 아연으로 이루어진 군에서 선택된 어느 하나 또는 상기 중 2종 이상의 합금의 기판 등일 수 있으나, 이에 제한되는 것은 아니다.
일 예시에서 상기 금속 기판은 상기 슬러리 내의 열전도성 입자와 동일 재질이거나, 다른 재질의 기판일 수 있다.
본 출원에서는 상기와 같이 금속 기판상에 슬러리를 패턴 인쇄한 후, 그 인쇄된 슬러리를 소결하는 공정을 거쳐 다공성 금속층을 형성한다. 도 1은, 상기와 같은 과정에 따라서 금속 기판(100)상에 슬러리(200)를 패턴 인쇄하고, 이를 소결하여 금속층(300)을 형성하는 과정을 모식적으로 도시한 것이다.
필요한 경우에 상기 인쇄와 소결 공정의 사이에 인쇄된 슬러리를 적정 조건에서 건조하는 단계가 수행될 수도 있다. 건조 공정이 진행될 경우에 그 조건은 특별히 제한되지 않으며, 예를 들면, 약 20℃ 내지 150℃ 정도의 범위 내의 온도에서 약 20분 내지 5 시간 정도 동안 수행할 수 있지만, 이에 제한되는 것은 아니다.
상기에서 소결을 수행하는 방식은 특별히 제한되지 않으며, 인쇄된 슬러리의 재료 구성이나 형태 등을 감안하여 적정한 열을 인가하는 공지의 소결법을 적용할 수 있다. 이 때 적용되는 소결 온도와 소결 시간은 특별히 제한되지 않고, 슬러리의 재료 구성이나, 형태 등을 감안하여 설정될 수 있다.
상기 기존의 공지 방식과는 다른 방식으로서, 본 출원에서는 상기 소결을 유도 가열 방식으로도 수행할 수 있다. 즉, 전술한 바와 같이 슬러리가 전도성 자성 금속을 포함하는 경우에는 유도 가열 방식이 적용될 수 있다. 이러한 방식에 의해서 균일하게 형성된 기공을 포함하면서, 기계적 특성이 우수하며, 기공도도 목적하는 수준으로 조절된 금속층의 제조가 보다 원활하게 될 수 있다.
상기에서 유도 가열은, 전자기장이 인가되면 특정 금속에서 열이 발생하는 현상이다. 예를 들어, 적절한 전도성과 투자율을 가지는 전도성 자성 금속에 전자기장을 인가하면, 금속에 와전류(eddy currents)가 발생하고, 금속의 저항에 의해 줄열(Joule heating)이 발생한다. 본 출원에서는 이러한 현상을 통한 소결 공정을 수행할 수 있다. 본 출원에서는 이와 같은 방식을 적용하여 금속폼의 소결을 단시간 내에 수행할 수 있어서 공정성을 확보하고, 동시에 기공도가 높은 박막 형태이면서도, 작은 기공 크기를 가지고, 금속 기판과의 밀착성도 우수한 금속폼을 제조할 수 있다.
따라서, 상기 소결 공정은, 상기 패턴 인쇄된 슬러리에 열 또는 전자기장을 인가하는 단계를 포함할 수 있다. 상기에서 열의 인가는 오븐 등의 적절한 수단을 사용하여 패턴 인쇄된 슬러리를 약 300℃ 내지 2,000℃의 범위 내의 온도에서 30분 내지 10 시간의 범위 내의 시간 동안 처리하여 수행할 수 있다.
또한, 전자기장의 인가에 의해서도 상기 전도성 자성 금속에서 유도 가열 현상에 의해서 줄열이 발생하고, 이에 의해 구조체는 소결될 수 있다. 이 때 전자기장을 인가하는 조건은 슬러리 내의 전도성 자성 금속의 종류 및 비율 등에 따라서 결정되는 것으로 특별히 제한되지 않는다. 예를 들면, 상기 유도 가열은, 코일 등의 형태로 형성된 유도 가열기를 사용하여 진행할 수 있다. 또한, 유도 가열은, 예를 들면, 100A 내지 1,000A 정도의 전류를 인가하여 수행할 수 있다. 상기 가해지는 전류의 크기는 다른 예시에서, 900A 이하, 800 A 이하, 700 A 이하, 600 A 이하, 500 A 이하 또는 400 A 이하일 수 있다. 상기 전류의 크기는 다른 예시에서 약 150 A 이상, 약 200 A 이상 또는 약 250 A 이상일 수 있다.
유도 가열은, 예를 들면, 약 100kHz 내지 1,000kHz의 주파수로 수행할 수 있다. 상기 주파수는, 다른 예시에서, 900 kHz 이하, 800 kHz 이하, 700 kHz 이하, 600 kHz 이하, 500 kHz 이하 또는 450 kHz 이하일 수 있다. 상기 주파수는, 다른 예시에서 약 150 kHz 이상, 약 200 kHz 이상 또는 약 250 kHz 이상일 수 있다.
상기 유도 가열을 위한 전자기장의 인가는 예를 들면, 약 1분 내지 10시간의 범위 내에서 수행할 수 있다. 상기 인가 시간은 다른 예시에서 약 10분 이상, 약 20 분 이상 또는 약 30 분 이상일 수 있다. 상기 인가 시간은, 다른 예시에서, 약 9시간 이하, 약 8 시간 이하, 약 7 시간 이하, 약 6 시간 이하, 약 5 시간 이하, 약 4 시간 이하, 약 3 시간 이하, 약 2 시간 이하, 약 1 시간 이하 또는 약 30분 이하일 수 있다.
상기 언급한 유도 가열 조건, 예를 들면, 인가 전류, 주파수 및 인가 시간 등은 전술한 바와 같이 전도성 자성 금속의 종류 및 비율 등을 고려하여 변경될 수 있다.
상기 소결은, 상기 열 또는 전자기장의 인가 중 어느 하나의 수단에 의해서 수행하거나, 양자를 동시에 적용하는 방식, 즉 전자기장의 인가와 함께 적절한 열을 인가하는 방식으로도 수행할 수도 있다.
상기와 같은 본 출원의 방식에 따라 제조된 다공성 금속층은, 얇은 두께이면서 높은 기공도와 작은 기공 크기를 가지고, 또한 금속 기판과 우수한 밀착성을 가질 수 있다.
일 예시에서 상기 금속층은, 다공성이면서 평균 기공의 크기가 100 ㎛ 이하일 수 있다. 이러한 기공의 크기는 예를 들면, SEM(Scanning electron microscope) 이미지 분석 등의 방식으로 확인할 수 있다. 상기 기공 크기의 하한은 특별히 제한되지 않으며, 예를 들면, 약 1 nm 내지 1㎛ 정도일 수 있다.
일 예시에서 상기 금속층은, 기공도가 약 30% 이상일 수 있다. 상기에서 기공도는 금속층의 밀도를 계산하여 공지의 방식으로 산출할 수 있다. 상기 기공도는 다른 예시에서 35% 이상, 40% 이상, 45% 이상, 50% 이상, 55% 이상, 60% 이상 또는 65% 이상이거나, 99% 이하, 95% 이하, 90% 이하, 85% 이하, 80% 이하 또는 75% 이하 정도일 수 있다.
일 예시에서 상기 금속층은, 두께가 약 500㎛ 이하일 수 있다. 상기 두께는 다른 예시에서 약 450㎛ 이하, 400㎛ 이하, 350㎛ 이하, 300㎛ 이하, 250㎛ 이하, 200㎛ 이하 또는 150㎛ 이하일 수 있다. 상기 두께의 하한은 특별히 제한되지 않고, 예를 들면, 약 1㎛ 이상, 5㎛ 이상 또는 10㎛ 이상 정도일 수 있다.
상기와 같은 방식으로 제조된 본 출원의 필름은 다양한 용도에 적용될 수 있는데, 그 하나의 예시로는 히트 파이프의 제조로의 적용이 있다. 이러한 경우에는 상기 방식으로 제조된 필름 2장을 서로 부착하는 공정이 필요하며, 이러한 과정은 예를 들면, 도 2에 기재되어 있다. 도 2는 금속 기판(100)상에 금속층(300)이 각각 형성된 2개의 상기 필름을 서로 부착하는 과정을 모식적으로 보여준다.
즉, 본 출원은 또한 상기 방법으로 제조된 2장의 필름을 각 필름상에 형성된 다공성 금속층이 서로 마주하도록 위치시킨 상태에서 상기 필름의 금속 기판의 테두리를 접합하는 단계를 포함할 수 있다.
상기에서 금속 기판의 테두리를 접합하는 방식은 특별히 제한되지 않으며, 용접과 같은 공지의 금속의 부착 방식을 적용할 수 있다.
본 출원에서는, 예를 들면, 히트 파이프와 같은 방열 소재의 제조에 적용될 수 있는 필름의 제조 방법이 제공될 수 있다.
도 1 및 2는, 본 출원에서 개시하는 공정을 모식적으로 표현한 도면이다.
도 3 및 4는 실시예에서 제조된 필름의 형태를 보여주는 사진이다.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 제한되는 것은 아니다.
실시예 1.
슬러리의 제조
슬러리는, 구리 입자 파우더(열전도도: 401 W/mK, 형태: dendrite type, 평균 길이: 약 40μm)를 바인더(polyvinylacetate) 및 분산제(terpinol)와 배합하여 제조하였다. 상기에서 구리 입자 파우더의 중량은 약 10 g이고, 바인더(polyvinylacetate)의 중량은 약 3 g이며, 분산제(terpinol)의 중량은 약 17 g이다.
필름의 제조
상기 제조된 슬러리를 기판으로서 구리 포일(Cu foil)상에 패턴인쇄하였다. 패턴 인쇄 형태는 도 3 및 4에 나타난 바와 같다. 이어서, 약 120℃의 온도에서 약 1 시간 동안 건조하여 그린 필름을 형성하였다. 그 후, 그린 필름을 수소/아르곤 가스 분위기에서 약 1000℃의 온도에서 약 2 시간 동안 열처리하여 유기 성분을 제거하고, 다공성 구리층을 형성하였다. 형성된 구리층의 두께는 약 21.5μm이고, 기공도는 약 70% 정도였다.

Claims (14)

  1. 열전도성 금속 입자를 포함하는 슬러리를 금속 기판상에 패턴 코팅하고, 상기 패턴 코팅된 슬러리를 소결하여 상기 금속 기판상에 다공성 금속층을 형성하는 단계를 포함하는 필름의 제조 방법.
  2. 제 1 항에 있어서, 열전도성 금속 입자는 철 입자, 코발트 입자, 구리 입자, 금 입자, 알루미늄 입자, 은 입자, 니켈 입자, 몰리브덴 입자, 백금 입자 및 마그네슘 입자로 이루어진 군에서 선택된 어느 하나 또는 2개 이상의 혼합인 필름의 제조 방법.
  3. 제 1 항에 있어서, 금속 입자의 평균 입경은 100nm 내지 200㎛의 범위 내인 필름의 제조 방법.
  4. 제 1 항에 있어서, 슬러리는 바인더를 추가로 포함하는 필름의 제조 방법.
  5. 제 1 항에 있어서, 슬러리는 알킬 셀룰로오스, 폴리알킬렌 카보네이트, 폴리비닐알코올 및 폴리비닐아세테이트로 이루어진 군에서 선택된 하나 이상의 바인더를 추가로 포함하는 필름의 제조 방법.
  6. 제 4 항 또는 제 5 항에 있어서, 바인더는 금속 입자 100 중량부 대비 5 내지 200 중량부의 비율로 슬러리에 포함되는 필름의 제조 방법.
  7. 제 1 항에 있어서, 슬러리는 분산제를 추가로 포함하는 필름의 제조 방법.
  8. 제 7 항에 있어서, 분산제는 알코올인 필름의 제조 방법.
  9. 제 7 항에 있어서, 분산제는 금속 입자 100 중량부 대비 10 내지 500 중량부의 비율로 슬러리에 포함되는 필름의 제조 방법.
  10. 제 1 항에 있어서, 두께가 500㎛ 이하인 다공성 금속층을 형성하는 필름의 제조 방법.
  11. 제 1 항에 있어서, 평균 기공 크기가 100㎛ 이하인 다공성 금속층 을 형성하는 필름의 제조 방법.
  12. 제 1 항에 있어서, 기공율이 30% 이상인 다공성 금속층을 형성하는 필름의 제조 방법.
  13. 제 1 항에 있어서, 금속 기판은 철 기판, SUS 기판, 구리 기판, 금 기판, 알루미늄 기판, 은 기판, 니켈 기판, 몰리브덴 기판, 백금 기판 또는 마그네슘 기판인 필름의 제조 방법.
  14. 제 1 항의 방법으로 제조된 2장의 필름을 각 필름상에 형성된 다공성 금속층이 서로 마주하도록 위치시킨 상태에서 상기 필름의 금속 기판의 테두리를 접합하는 단계를 포함하는 히트 파이프의 제조 방법.
PCT/KR2018/011303 2017-09-22 2018-09-21 필름의 제조 방법 WO2019059731A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18858501.2A EP3685929B1 (en) 2017-09-22 2018-09-21 Film preparation method
CN201880060940.6A CN111107945B (zh) 2017-09-22 2018-09-21 用于生产膜的方法
US16/648,833 US20200246873A1 (en) 2017-09-22 2018-09-21 Method for producing film
JP2020516518A JP7205974B2 (ja) 2017-09-22 2018-09-21 フィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170122575A KR102316016B1 (ko) 2017-09-22 2017-09-22 필름 및 히트 파이프의 제조 방법
KR10-2017-0122575 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059731A1 true WO2019059731A1 (ko) 2019-03-28

Family

ID=65809836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011303 WO2019059731A1 (ko) 2017-09-22 2018-09-21 필름의 제조 방법

Country Status (6)

Country Link
US (1) US20200246873A1 (ko)
EP (1) EP3685929B1 (ko)
JP (1) JP7205974B2 (ko)
KR (1) KR102316016B1 (ko)
CN (1) CN111107945B (ko)
WO (1) WO2019059731A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210026441A (ko) 2019-08-30 2021-03-10 주식회사 엘지화학 패턴화 금속폼
KR102527272B1 (ko) * 2021-10-07 2023-05-02 전남대학교산학협력단 금속 그래핀 복합 구조 히트스프레더 제조 방법 및 이에 의해 제조된 히트스프레더
CN114777541A (zh) * 2021-11-04 2022-07-22 中南大学 一种孔隙率可调的多孔铝质材料的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290493A (ja) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology 高気孔率発泡焼結体の製造方法
JP2013145835A (ja) * 2012-01-16 2013-07-25 Awa Paper Mfg Co Ltd 放熱シートの製造方法
KR20140116074A (ko) * 2011-12-20 2014-10-01 트레오판 저머니 게엠베하 앤 코. 카게 코팅 및 셧다운 기능을 갖는 고다공성 세퍼레이터 필름
WO2016151916A1 (ja) * 2015-03-26 2016-09-29 株式会社村田製作所 シート型ヒートパイプ
JP2017028018A (ja) * 2015-07-17 2017-02-02 株式会社神戸製鋼所 放熱基板、デバイス及び放熱基板の製造方法
KR20170122575A (ko) 2016-04-27 2017-11-06 한국전자통신연구원 분산된 게이트웨이간 단말의 이동성 관리 장치 및 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1143766A (ko) * 1965-05-20
JPH09119789A (ja) * 1995-10-24 1997-05-06 Mitsubishi Materials Corp ヒートパイプの製造方法
US20060233692A1 (en) * 2004-04-26 2006-10-19 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
CN101298675B (zh) * 2007-04-30 2011-10-26 汉达精密电子(昆山)有限公司 绝缘导热金属基材的制造方法
JP2008286454A (ja) 2007-05-16 2008-11-27 Furukawa Electric Co Ltd:The 高性能薄型ヒートパイプ
WO2009142036A1 (ja) 2008-05-21 2009-11-26 ニホンハンダ株式会社 放熱性硬化塗膜、塗料組成物、放熱性硬化塗膜の製造方法及び放熱性硬化塗膜を有する電子機器
JP5410076B2 (ja) * 2008-11-17 2014-02-05 菊水化学工業株式会社 導電性積層体及び導電性積層体の製造方法
US8663506B2 (en) * 2009-05-04 2014-03-04 Laird Technologies, Inc. Process for uniform and higher loading of metallic fillers into a polymer matrix using a highly porous host material
JP5699452B2 (ja) * 2010-05-25 2015-04-08 富士通株式会社 ループ型ヒートパイプとループ型ヒートパイプの蒸発器製造方法
CN105073918A (zh) 2013-03-02 2015-11-18 朋诺股份有限公司 散热性粉体涂料组合物、散热性涂膜和被涂装物
CN103528410A (zh) * 2013-10-31 2014-01-22 中国石油大学(华东) 一种重力热管式金属泡沫平板换热器
JP2015090242A (ja) 2013-11-06 2015-05-11 住友電気工業株式会社 金属管、伝熱管、熱交換装置及び金属管の製造方法
CN104588651A (zh) 2014-10-31 2015-05-06 成都易态科技有限公司 柔性多孔金属箔及其制备方法
DE102015103324A1 (de) * 2015-03-06 2016-09-08 Atlas Elektronik Gmbh Sonarnetzantenne und Auswerteeinrichtung sowie Verfahren zum Bestimmen einer Sonarlageinformation
US10047880B2 (en) * 2015-10-15 2018-08-14 Praxair Technology, Inc. Porous coatings
KR102056098B1 (ko) * 2016-04-01 2019-12-17 주식회사 엘지화학 금속폼의 제조 방법
KR102218854B1 (ko) * 2016-11-30 2021-02-23 주식회사 엘지화학 금속폼의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290493A (ja) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology 高気孔率発泡焼結体の製造方法
KR20140116074A (ko) * 2011-12-20 2014-10-01 트레오판 저머니 게엠베하 앤 코. 카게 코팅 및 셧다운 기능을 갖는 고다공성 세퍼레이터 필름
JP2013145835A (ja) * 2012-01-16 2013-07-25 Awa Paper Mfg Co Ltd 放熱シートの製造方法
WO2016151916A1 (ja) * 2015-03-26 2016-09-29 株式会社村田製作所 シート型ヒートパイプ
JP2017028018A (ja) * 2015-07-17 2017-02-02 株式会社神戸製鋼所 放熱基板、デバイス及び放熱基板の製造方法
KR20170122575A (ko) 2016-04-27 2017-11-06 한국전자통신연구원 분산된 게이트웨이간 단말의 이동성 관리 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3685929A4

Also Published As

Publication number Publication date
EP3685929A1 (en) 2020-07-29
EP3685929B1 (en) 2023-02-22
CN111107945A (zh) 2020-05-05
JP7205974B2 (ja) 2023-01-17
KR102316016B1 (ko) 2021-10-22
JP2020534188A (ja) 2020-11-26
CN111107945B (zh) 2022-12-27
US20200246873A1 (en) 2020-08-06
KR20190033876A (ko) 2019-04-01
EP3685929A4 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
WO2018101712A1 (ko) 금속폼의 제조 방법
WO2018212555A1 (ko) 히트파이프의 제조 방법
WO2018212554A1 (ko) 금속폼의 제조 방법
WO2019059731A1 (ko) 필름의 제조 방법
WO2018101715A1 (ko) 금속폼의 제조 방법
WO2018101714A1 (ko) 금속폼의 제조 방법
WO2018070796A1 (ko) 금속폼의 제조 방법
WO2019009672A1 (ko) 금속폼의 제조 방법
WO2020067837A1 (ko) 복합재
WO2020005013A1 (ko) 전자파 차폐 필름
KR20200002456A (ko) 금속폼의 제조 방법
WO2018070795A1 (ko) 금속합금폼의 제조 방법
WO2019009668A1 (ko) 금속폼의 제조방법
KR102136551B1 (ko) 금속합금폼의 제조 방법
WO2017171510A1 (ko) 금속폼의 제조 방법
WO2020005015A1 (ko) 복합재
WO2017171511A1 (ko) 금속폼의 제조 방법
KR20210026441A (ko) 패턴화 금속폼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516518

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018858501

Country of ref document: EP

Effective date: 20200422