WO2019059169A1 - Transparent photosensitive resin composition, photospacer, liquid crystal display device, method for producing photospacer, method for producing liquid crystal display device, and use of transparent photosensitive resin composition for lens scan exposure - Google Patents

Transparent photosensitive resin composition, photospacer, liquid crystal display device, method for producing photospacer, method for producing liquid crystal display device, and use of transparent photosensitive resin composition for lens scan exposure Download PDF

Info

Publication number
WO2019059169A1
WO2019059169A1 PCT/JP2018/034421 JP2018034421W WO2019059169A1 WO 2019059169 A1 WO2019059169 A1 WO 2019059169A1 JP 2018034421 W JP2018034421 W JP 2018034421W WO 2019059169 A1 WO2019059169 A1 WO 2019059169A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
general formula
alkali
transparent photosensitive
Prior art date
Application number
PCT/JP2018/034421
Other languages
French (fr)
Japanese (ja)
Inventor
橋本昇太
國富瑠美子
西山雅仁
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201880060412.0A priority Critical patent/CN111149058B/en
Priority to JP2018550620A priority patent/JPWO2019059169A1/en
Publication of WO2019059169A1 publication Critical patent/WO2019059169A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a transparent photosensitive resin composition, a photospacer, a liquid crystal display, a method of manufacturing a photospacer, a method of manufacturing a liquid crystal display, and use of the transparent photosensitive resin composition for lens scan exposure.
  • Liquid crystal display devices are used in various applications such as laptop computers, personal digital assistants, smart phones, digital cameras and desktop monitors, taking advantage of characteristics such as light weight, thinness and low power consumption.
  • the liquid crystal display device includes a liquid crystal layer capable of displaying an image according to a predetermined orientation between a color filter substrate and a TFT (Thin Film Transistor) substrate, and the distance (cell gap) between these substrates is made uniform. Maintaining is one of the important factors affecting image quality.
  • spacer particles such as glass or alumina having a predetermined particle diameter have been used. Since these spacer particles are randomly scattered on the substrate, there is a problem such as display unevenness due to film thickness variation.
  • Patent Document 1 a photosensitive film for resin spacer formation, which is used to form a resin spacer for liquid crystal display comprising a support film and a photosensitive resin layer having a thickness of 1 to 10 ⁇ m, has been proposed (for example, , Patent Document 1).
  • Patent Document 1 a photosensitive film for resin spacer formation, which is used to form a resin spacer for liquid crystal display comprising a support film and a photosensitive resin layer having a thickness of 1 to 10 ⁇ m.
  • a photosensitive resin composition for a spacer comprising, as a main component, a liquid crystal panel substrate (see, for example, Patent Document 2), an alkali-soluble resin, a photopolymerization initiator, and a polymerizable monomer, which is 60% or more.
  • a photosensitive resin composition for spacers see, for example, Patent Document 3) or the like, which is characterized in that the acrylic equivalent of the whole of these photosensitive resin compositions is 200 or less has been proposed.
  • the mother glass substrate is increasing in size, and a constant speed is provided by the substrate transfer means as a technique for exposing a substrate having a wide exposure area using a small mask.
  • the exposure light from the continuous light source is irradiated through the opening of the mask provided on the light path of the exposure optical system in the exposure unit to the substrate being transported in a predetermined direction.
  • a scan exposure method for transferring an image has been proposed (see, for example, Patent Document 4).
  • Methods of increasing the elastic deformation rate of the columnar spacers described in Patent Documents 2 and 3 include a method in which a large amount of a monomer having a large number of functional groups is contained in the photosensitive resin composition.
  • the coating film of the base resin composition has high fluidity even after drying, and unevenness in film thickness easily occurs in the production process, so that the height of the photospacer tends to vary.
  • proximity type exposure which is a conventional exposure type
  • the photo spacers tend to be connected due to the influence of diffracted light.
  • multipatterning in which one plate is shifted to perform multiple exposure has been proposed.
  • the film thickness of the next exposed portion becomes thinner due to the flow of the pre-baking film after the first exposure, and there is a problem that the dispersion of the height of the photo spacer becomes large.
  • the present invention is directed to a transparent photosensitive resin composition which can suppress the variation of the height of the photospacer and can form a photospacer which is resistant to plastic deformation, that is, having a high elastic recovery ratio. It is an object of the present invention to provide a photo spacer, a liquid crystal display device, a method of manufacturing the photo spacer, a method of manufacturing the liquid crystal display device, and use of the transparent photosensitive resin composition for lens scan exposure.
  • the present invention mainly has the following composition.
  • a transparent photosensitive resin composition comprising at least an alkali soluble resin, a photopolymerization initiator and a polymerizable monomer, wherein the alkali soluble resin is A) a structural unit represented by the following general formula (1): B) Structural units represented by the following general formula (2): C) having a structural unit represented by the following general formula (3),
  • the transparent photosensitive resin composition whose ethylenically unsaturated group equivalent of the said alkali-soluble resin is 400 g / mol or less.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 and R 3 each independently represent a hydrogen atom or a methyl group.
  • m and n each independently represent an integer of 1 to 4.
  • Y has an aryl group having 6 to 11 carbon atoms which may have a substituent, an aralkyl group having 7 to 10 carbon atoms which may have a substituent, or a substituent. And an optionally substituted C 3-10 cycloalkyl group.
  • the transparent photosensitive resin composition of the present invention even when exposure is performed by a lens scan method or a proximity method in which the variation in height of the photo spacer tends to be large, the high elastic recovery rate suppressed the variation in height. Can be formed.
  • the transparent photosensitive resin composition of the present invention contains at least an alkali-soluble resin, a photopolymerization initiator and a polymerizable monomer.
  • photosensitive resin composition contains at least an alkali-soluble resin, a photopolymerization initiator and a polymerizable monomer.
  • the exposed portion can be photocured to be insolubilized in an alkali developer, and by containing an alkali-soluble resin, it is not exposed using an alkali developer. Since the part can be removed, the desired pattern can be formed by exposure and development.
  • the "transparent" in the present invention means that the light transmittance at a wavelength of 400 to 700 nm is 80% or more when the photosensitive resin composition is photocured to form a cured film having a thickness of 3 ⁇ m.
  • the photosensitive resin composition of the present invention is preferably substantially free of a colorant such as a pigment or a dye in order to increase the light transmittance at a wavelength of 400 to 700 nm.
  • the alkali-soluble resin in the present invention means a resin having a structural unit represented by the general formula (1) described later. By having a carboxyl group, the solubility in an alkali developer can be enhanced.
  • the alkali-soluble resin in the present invention is represented by A) a structural unit represented by the following general formula (1), B) a structural unit represented by the following general formula (2), and C) the following general formula (3)
  • A) a structural unit represented by the following general formula (1) the solubility of the resin in an alkali developer can be improved.
  • B) a structural unit represented by the following general formula (2) By introducing an ethylenically unsaturated group into the side chain of the alkali-soluble resin by having a structural unit represented by the following general formula (2), the sensitivity in exposure and development and the elastic recovery of the photospacer are improved.
  • Can. By having a structural unit represented by the following general formula (3), variation in height of the photo spacer can be suppressed.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 is preferably a methyl group, which can increase the viscosity of the pre-baked film and can further suppress variations in height.
  • R 2 and R 3 each independently represent a hydrogen atom or a methyl group.
  • m and n each independently represent an integer of 1 to 4.
  • Y has an aryl group having 6 to 11 carbon atoms which may have a substituent, an aralkyl group having 7 to 10 carbon atoms which may have a substituent, or a substituent. And an optionally substituted C 3-10 cycloalkyl group.
  • Y is preferably a cycloalkyl group having a carbon number of 3 to 10 which may have a substituent, more preferably a cyclohexyl group, which can further increase the viscosity of the pre-baked film and can further suppress the variation in height.
  • the alkali-soluble resin in the present invention is, for example, a copolymer component constituting the structural unit represented by the general formula (1), a copolymer component constituting the structural unit represented by the general formula (2), and the general It can obtain by copolymerizing the copolymerization component which comprises the structural unit represented by Formula (3). Furthermore, other copolymerizable components may be copolymerized.
  • An ethylenically unsaturated compound having a glycidyl group is subjected to an addition reaction with the carboxyl group of the acrylic polymer having the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3)
  • the structural unit represented by the general formula (2) can be introduced.
  • the structural unit represented by the general formula (2) can be introduced also by the addition reaction of an ethylenically unsaturated compound, an ethylenically unsaturated compound having an isocyanate group, and an ethylenically unsaturated compound having a hydroxyl group. it can.
  • (meth) acrylic acid etc. are mentioned, for example. Two or more of these may be used. Among these, methacrylic acid is preferable, and the viscosity of the pre-baked film can be further increased, and the variation in height can be further suppressed.
  • (meth) acrylic acid As a copolymerization component which comprises the structural unit represented by said General formula (2), (meth) acrylic acid; glycidyl (meth) acrylate, 2-isocyanatoethyl methacrylate, 2-hydroxyethyl (meth) acrylate, for example Etc. Two or more of these may be used. Among these, it is preferable to add glycidyl (meth) acrylate to (meth) acrylic acid.
  • N-benzyl maleimide N- phenyl maleimide, N- cyclohexyl maleimide etc. are mentioned, for example. Two or more of these may be used. Among these, N-cyclohexyl maleimide is preferable, and the viscosity of the pre-baked film can be further increased, and the variation in height can be further suppressed.
  • copolymerization components include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate ( (Meth) acrylic acid sec-butyl, (meth) acrylic acid isobutyl, (meth) acrylic acid tert-butyl, (meth) acrylic acid n-pentyl, 2-hydroxyethyl (meth) acrylate, benzyl (meth) acrylate, benzyl ( Unsaturated carboxylic acid alkyl ester such as meta) acrylate and isobornyl (meth) acrylate; Unsaturated carboxylic acid amino alkyl ester such as aminoethyl acrylate, Polyvalent carboxylic acid such as mono (2- (meth) acryloyloxyethyl) phthalate Acid monoester; st
  • the amount of the structural unit represented by the general formula (3) is preferably 10 to 23 mol%.
  • the dry viscosity can be further increased when the amount of the structural unit represented by the general formula (3) is 10 mol% or more, and the viscosity of the pre-baked film can be further increased when the amount is 15 mol% or more.
  • the ethylenic unsaturated bond equivalent and an acid value can be easily adjusted to the preferable range mentioned later as the structural unit quantity represented by the said General formula (3) is 23 mol% or less.
  • the ethylenically unsaturated group equivalent of the alkali-soluble resin in the present invention is 400 g / mol or less.
  • the ethylenically unsaturated group equivalent exceeds 400 g / mol, the crosslink density of the photo spacer decreases and the elastic recovery rate decreases.
  • 360 g / mol or less is preferable and 300 g / mol or less of the ethylenically unsaturated group equivalent of alkali-soluble resin is more preferable.
  • the ethylenically unsaturated group equivalent refers to the number of grams per mole of the ethylenically unsaturated group, and the smaller the value, the larger the amount of the ethylenically unsaturated group contained.
  • the higher the content ratio of the structural unit represented by the general formula (2) B having an ethylenically unsaturated group the smaller the equivalent amount of the ethylenically unsaturated group.
  • the ethylenically unsaturated group equivalent of the alkali-soluble resin can be adjusted to a desired range by the copolymerization ratio of the compound having the ethylenically unsaturated group.
  • the ethylenically unsaturated group equivalent can be calculated by measuring the iodine value by the method described in paragraph 6.0 of the test method of JIS K 0070: 1992.
  • the weight average molecular weight ("Mw") of the alkali-soluble resin in the present invention is preferably 10,000 to 100,000. By setting Mw to 10,000 or more, the viscosity of the pre-baked film can be increased, and the variation in height can be further suppressed. Mw is more preferably 20,000 or more. On the other hand, by setting Mw to 100,000 or less, unevenness of the pattern surface can be suppressed, and the surface shape of the pattern can be improved. Mw is more preferably 80,000 or less.
  • Mw of the alkali-soluble resin in the present invention is a value converted by standard polystyrene, and can be measured using gel permeation chromatography.
  • the acid value of the alkali-soluble resin in the present invention is preferably 60 to 100 mg KOH / g. By setting the acid value to 60 mg KOH / g or more, the height variation can be further reduced.
  • the acid value is more preferably 65 mg KOH / g or more.
  • the acid value is more preferably 95 mg KOH / g or less.
  • the acid value of the alkali-soluble resin can be adjusted to a desired range by the copolymerization ratio of the compound having a carboxyl group.
  • the acid value of the alkali-soluble resin in the present invention can be determined by the neutralization titration method of test method section 3.1 of JIS K 0070: 1992.
  • an alkali-soluble resin solution with a solid content concentration of about 30% by mass 5 g of the alkali-soluble resin solution is put in an aluminum cup ( ⁇ 45 mm) and heated at 130 ° C. for 1 hour to remove the solvent.
  • an alkali-soluble resin solid content in an amount necessary for measuring the acid value.
  • the alkali-soluble resin When the alkali-soluble resin is obtained by adding glycidyl (meth) acrylate to (meth) acrylic acid, unreacted glycidyl (meth) acrylate may remain together with the alkali-soluble resin.
  • the residual amount of glycidyl (meth) acrylate is preferably 0.001 to 0.500% by mass per solid content in the method determined above. By setting the residual amount of glycidyl (meth) acrylate to 0.001% by mass or more, the heating time for removing glycidyl (meth) acrylate does not need to be long, and the gelation of the alkali-soluble resin due to heating is suppressed be able to.
  • the remaining amount of glycidyl (meth) acrylate of the alkali-soluble resin can be determined from the amount of glycidyl (meth) acrylate measured from the alkali-soluble resin solution using gas chromatography and the solid content concentration of the alkali resin solution .
  • the content of the alkali-soluble resin in the photosensitive resin composition of the present invention is preferably 25 to 82 parts by mass with respect to 100 parts by mass of a polymerizable monomer described later.
  • the content of the alkali-soluble resin is more preferably 34 parts by mass or more.
  • the elastic recovery rate can be further improved. 66 mass parts or less are more preferable, 62 mass parts or less are more preferable, 55 mass parts or less are more preferable, and 40 mass parts or less are more preferable as content of alkali-soluble resin.
  • the photopolymerization initiator in the present invention refers to a compound which is decomposed and / or reacted by light (including ultraviolet light or electron beam) to generate a radical.
  • the photosensitive resin composition of the present invention can improve sensitivity by containing a photopolymerization initiator.
  • the photopolymerization initiator include oxime ester compounds, alkylphenone compounds, benzophenone compounds, thioxanthone compounds, imidazole compounds, benzothiazole compounds, benzoxazole compounds, acylphosphine oxide compounds, and titanocene compounds.
  • a compound etc. are mentioned. Two or more of these may be contained.
  • oxime ester compounds include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-) Methyl benzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), ethanone, 1- [9-ethyl-6- (2-methyl-4-tetrahydrofuranylmethoxybenzoyl) -9H-carbazole -3-yl]-, 1- (O-acetyloxime), ethanone, 1- [9-ethyl-6- ⁇ 2-methyl-4- (2,2-dimethyl-1,3-dioxolanyl) methoxybenzoyl ⁇ -9H-Carbazol-3-yl]-, 1- (O-acetyloxime), “Optomer” (registered trademark) N-1919, NCI-831, NCI-930 (
  • alkylphenone compounds examples include 2,2-diethoxyacetophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 2- (dimethylamino) -2-[(4) -Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, ⁇ -hydroxyisobutylphenone, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1- Examples thereof include phenyl-propan-1-one, “IRGACURE” (registered trademark) 907 (manufactured by BASF Japan Ltd.), and the like.
  • benzophenone compounds include benzophenone, N, N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone and the like.
  • thioxanthone compounds include thioxanthone, 2-chlorothioxanthone, 2-methyl thioxanthone, 2-isopropyl thioxanthone, 4-isopropyl thioxanthone, 2,4-dimethyl thioxanthone, 2,4-diethyl thioxanthone, 2,4-diiso.
  • Pirthioxanthone, 1-chloro-4-propylthioxanthone, 1-hydroxycyclohexyl phenyl ketone and the like can be mentioned.
  • imidazole compounds examples include 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer and the like.
  • benzothiazole compound examples include 2-mercaptobenzothiazole and the like.
  • benzoxazole compounds examples include 2-mercaptobenzoxazole and the like.
  • acyl phosphine oxide compound examples include 2,4,6-trimethyl benzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide and the like.
  • titanocene compounds examples include bis ( ⁇ 5-2, 4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium and the like.
  • oxime ester compounds and alkylphenone compounds are preferable.
  • oxime ester compounds “Adekaqules” (registered trademark) N-1919 is more preferable, and among the alkylphenone compounds, “IRGACURE” (registered trademark) 907 is more preferable.
  • the content of the photopolymerization initiator in the photosensitive resin composition of the present invention is preferably 2 to 30 parts by mass, more preferably 5 to 25 parts by mass with respect to 100 parts by mass of the total content of the alkali-soluble resin and the polymerizable monomer. preferable.
  • the polymerizable monomer in the present invention refers to a monomer having at least one ethylenically unsaturated bond.
  • examples of the polymerizable monomer include monofunctional or polyfunctional monomers and oligomers. Two or more of these may be contained.
  • polyfunctional monomers are preferable.
  • polyfunctional polymerizable monomer for example, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol octa (meth) acrylate, tri Pentaerythritol octa (meth) acrylate, 9,9-bis [4- (3-acryloxy-2-hydroxypropoxy) phenyl] fluorene, 9,9-bis 3-Methyl-4- (3-acryl
  • the photosensitive resin composition of the present invention comprises a filler, a sensitizer, a UV absorber, an adhesion improver, a surfactant, a polymerization inhibitor, a polymer compound other than the above-mentioned alkali-soluble compound, an organic acid, an organic amino compound, You may contain additives and solvents, such as a hardening agent.
  • the photosensitive resin composition of the present invention can further increase the viscosity after drying of the pre-baked film, and can further suppress the height variation.
  • the filler include inorganic oxide particles such as silica, alumina, titania and barium sulfate; metal particles; and resin particles such as acrylic, styrene, silicone and fluorine-containing polymer. Two or more of these may be contained. Among these, silica particles are preferable from the viewpoint of particle diameter and dispersibility.
  • the average particle diameter in terms of specific surface area of the filler is preferably 4 to 120 nm. When the average particle diameter of the filler is 4 nm or more, the height variation can be further suppressed. On the other hand, when the particle diameter is 120 nm or less, unevenness of the pattern surface can be suppressed, and the surface shape of the pattern can be improved.
  • the photosensitive resin composition of the present invention can improve sensitivity by containing a sensitization auxiliary.
  • the sensitization assistant include aromatic or aliphatic tertiary amines and the like.
  • the photosensitive resin composition of the present invention can easily form a fine, short, tapered photospacer by containing an ultraviolet light absorber.
  • an ultraviolet light absorber organic compound UV absorbers such as benzotriazole compounds, benzophenone compounds, and triazine compounds are preferable from the viewpoint of transparency and non-coloring property. Two or more of these may be contained. Among these, benzotriazole compounds are preferable.
  • benzotriazole compounds include 2- (2H-benzotriazol-2-yl) -p-cresol and 2- (2H-benzotriazol-2-yl) -4--6-bis (1-methyl-1). -Phenylethyl) phenol, 2- [5 chloro (2H) -benzotriazol-2-yl] -4-methyl-6- (tert-butylphenol), 2,4-di-tert-butyl-6- (5-chloro) Benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-tert-pentylphenol, 2- (2H- Benzotriazol-2-yl-4- (1,1,3,3-tetramethylbutyl) phenol, 2 (2H-benzotriazol-2-yl) ) -6-dodecyl-4-methylphenol, 2 [2-hydroxy-3- (3,4,5,
  • benzophenone compounds include octabenzone, 2-hydroxy-4-n-octoxybenzophenone and the like.
  • triazine compounds examples include 2- (4,6-diphenyl-1,3,5 triazin-2-yl) -5-[(hexyl) oxy] -phenol.
  • the content of the ultraviolet light absorber in the photosensitive resin composition of the present invention is preferably 0.3 to 10% by mass in the solid content.
  • the tapered portion can be further shortened.
  • content of a ultraviolet absorber 2 mass% or more is more preferable.
  • the sensitivity can be maintained high by setting the content of the ultraviolet absorber to 10% by mass or less.
  • content of a ultraviolet absorber 8 mass% or less is more preferable.
  • solid content means the component except the solvent contained in the photosensitive resin composition.
  • adhesion improver for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-amino) Ethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl Trimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane,
  • the content of the adhesion improver in the photosensitive resin composition of the present invention is preferably 0.1 to 20% by mass in the solid content.
  • the content of the adhesion improver is more preferably 0.5% by mass or more.
  • aggregation of the alkali-soluble resin and the polymerizable monomer can be suppressed by setting the content of the adhesion improver to 20% by mass or less.
  • the content of the adhesion improver is more preferably 10% by mass or less.
  • anionic surfactants such as ammonium lauryl sulfate, polyoxyethylene alkyl ether triethanolamine and the like; cationic surfactants such as stearyl amine acetate, lauryl trimethyl ammonium chloride and the like; lauryl dimethyl amine oxide, lauryl Amphoteric surfactants such as carboxymethyl hydroxyethyl imidazolium betaine; nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, sorbitan monostearate; perfluorobutyl sulfonate, perfluoroalkyl group-containing Carboxylic acid salt, perfluoroalkyl group-containing trimethyl ammonium salt, perfluoroalkyl group-containing phosphoric acid ester, or perfluoroalkyl ether Fluorine-based surfactants such as lenoxide adducts; polyether-modified polymethylalkyls
  • the content of the surfactant in the photosensitive resin composition of the present invention is preferably 0.001 to 10% by mass in the solid content.
  • the coatability of the photosensitive resin composition can be improved by setting the content of the surfactant to 0.001% by mass or more.
  • the content of the surfactant is more preferably 0.01% by mass or more.
  • by setting the content of the surfactant to 10% by mass or less unevenness of the pattern surface can be suppressed, and the surface shape of the pattern can be improved.
  • content of surfactant 1 mass% or less is more preferable.
  • polymerization inhibitor examples include hydroquinone, tert-butyl hydroquinone, 2,5-bis (1,1,3,3-tetramethylbutyl) hydroquinone, 2,5-bis (1,1-dimethylbutyl) and the like.
  • the content of the polymerization inhibitor in the photosensitive resin composition of the present invention is preferably 0.01 to 0.5% by mass in the solid content.
  • the content of the polymerization inhibitor is preferably 0.01 to 0.5% by mass in the solid content.
  • polymer compound other than the alkali-soluble resin examples include acrylic resins having no structural unit represented by the general formulas (1) to (3), alkyd resin, melamine resin, polyvinyl alcohol, polyester, polyether, polyamide , Polyamide imide, polyimide, polyimide precursor and the like. Two or more of these may be contained.
  • solvent examples include ether solvents, ester solvents, alcohol solvents, ketone solvents, xylene, ethylbenzene, solvent naphtha and the like. Two or more of these may be contained.
  • ether solvents examples include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol tertiary butyl ether, diethylene glycol methyl ethyl ether, dipropylene glycol monomethyl ether and the like.
  • propylene glycol monomethyl ether, propylene glycol monoethyl ether, and diethylene glycol methyl ethyl ether are preferable.
  • ester solvent for example, benzyl acetate, ethyl benzoate, ⁇ -butyrolactone, methyl benzoate, diethyl malonate, 2-ethylhexyl acetate, 2-butoxyethyl acetate, 3-methoxy-butyl acetate, 3-methoxy-3-methyl ester -Butyl acetate, diethyl oxalate, ethyl acetoacetate, 3-methoxy-butyl acetate, methyl acetoacetate, ethyl 3-ethoxy propionate, 2-ethyl butyl acetate, isopentyl propionate, propylene glycol monomethyl ether propio Nitrate, propylene glycol monoethyl ether acetate, pentyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol Coulter tert
  • alcohol solvents examples include butanol, 3-methyl-2-butanol and 3-methyl-3-methoxybutanol.
  • ketone solvents examples include cyclopentanone and cyclohexanone.
  • the photosensitive resin composition of the present invention is coated to a film thickness of 3 ⁇ m after curing, dried under reduced pressure for 200 seconds under conditions of 25 ° C. and 45 Pa, and then heat dried in an oven at 105 ° C. for 10 minutes at 23 ° C. It is preferable that the viscosity in the above becomes 1 ⁇ 10 3 to 1 ⁇ 10 8 Pa ⁇ s. By having such viscosity, it can be used suitably for the manufacturing method of the photo spacer mentioned later. Here, with the viscosity at 23 ° C.
  • the photosensitive resin composition of the present invention forms a truncated cone-shaped photospacer having a diameter of 6 ⁇ m at the top and a diameter of 9 ⁇ m at the bottom, and a height of 3 ⁇ m at the bottom, and the elastic recovery rate when a load of 50 mN is applied. It is preferably 70% or more.
  • variation in the height of the spacer at the time of cell pressure bonding is more suppressed as an elastic restoration rate is 70% or more, and the display nonuniformity by the plastic deformation of a photo spacer can be reduced more.
  • the elastic recovery rate is more preferably 73% or more.
  • the above shape is a typical shape of the photo spacer, and the above load is an example of the load that the photo spacer receives during manufacture or use. According to this method, the degree of plastic deformation of the photosensitive resin composition used to form the photospacer can be relatively evaluated.
  • FIG. 1 shows a schematic view of an example of a hysteresis curve that represents the elastic properties of the photo spacer.
  • a hysteresis curve of the load applied to the photo spacer and the deformation amount D of the photo spacer as shown in FIG. 1 is obtained.
  • the elastic recovery rate of the photospacer (((Ha-Hb) / Ha) ⁇ 100) is obtained. It can be calculated.
  • photosensitive resin composition of the present invention it is preferable to use the photosensitive resin composition of the present invention described above in order to make the elastic recovery rate when forming a photo spacer into the above range, and in particular, the ethylenically unsaturated group equivalent is in the above-mentioned preferred range Photosensitive resin compositions are more preferred.
  • the photosensitive resin composition of the present invention comprises an alkali-soluble resin, a photopolymerization initiator and a polymerizable monomer, and, if necessary, other additives such as a surfactant, a polymerization inhibitor, a solvent, a UV absorber and the like, as desired. It can be obtained by mixing in
  • the photosensitive resin composition of the present invention can be preferably used for exposure of a lens scan method because height variations can be suppressed, and can be more preferably used for formation of a photo spacer by lens scan exposure.
  • the shape of the photo spacer is preferably a frusto-conical shape for high definition of the color filter, and the diameter of the upper base is preferably 15 ⁇ m or less.
  • the ratio of the diameter of the upper base to the diameter of the lower (upper base / lower lower) is preferably 0.3 to 2.0.
  • the photosensitive resin composition of the present invention described above is preferably coated on a substrate and dried to obtain a pre-baked film, and the pre-baked film is preferably subjected to lens scan exposure and development to form a photospacer. Furthermore, it is preferable to heat-process and harden the coating film pattern after image development.
  • the substrate examples include transparent substrates such as glass and polymer films.
  • Examples of the method for applying the photosensitive resin composition include a dip method, a roll coater method, a spinner method, a die coating method, a wire bar coating method, and the like.
  • drying under reduced pressure heating drying using an oven or a hot plate (pre-baking), etc.
  • the heating temperature is preferably 100 ° C. or less from the viewpoint of suppressing re-condensation of the drying solvent on the inner wall of the reduced pressure chamber.
  • the reduced pressure drying pressure is preferably equal to or less than the vapor pressure of the solvent contained in the photosensitive resin composition, and is preferably 1 to 1000 Pa.
  • the reduced pressure drying time is preferably 10 to 600 seconds.
  • pre-baking the heating temperature is generally 60 to 200 ° C., and the heating time is generally 1 to 60 minutes.
  • the viscosity at 23 ° C. of the pre-baked film is preferably 1 ⁇ 10 3 to 1 ⁇ 10 8 Pa ⁇ s.
  • the flowability of the pre-baked film is appropriately suppressed, and the process of transporting the pre-baked film, the exposure process, and the heating and drying (post-baking) process is performed.
  • the occurrence of unevenness can be further suppressed.
  • the viscosity at 23 ° C. is more preferably 1 ⁇ 10 5 Pa ⁇ s or more.
  • the developability can be improved by exposing the pre-baked film having a viscosity of 1 ⁇ 10 8 Pa ⁇ s or less at 23 ° C.
  • the viscosity at 23 ° C. of the pre-baked film is determined by collecting 90 mm 3 or more of the pre-baked film and using a rheometer (MCR-302; Anton Paar Co., Ltd.) and a plate with a diameter of 15 mm.
  • the viscosity at 23 ° C when measured while raising the temperature from 20 ° C to 110 ° C at a temperature rising rate of 0.083 ° C / sec under the condition of frequency: 1 Hz, strain: 0.5%.
  • the temperature of the pre-baked film is heated to about 100 ° C. in the drying step in the process of producing the photospacer on the color filter substrate, it is general that it becomes about room temperature (about 23 ° C.) by cooling before exposure. It is. Therefore, in the present invention, attention was paid to the viscosity at 23 ° C. as the pre-baked film temperature during general exposure.
  • the obtained pre-baked film is preferably exposed to light through a mask to cure the exposed portion, and developed with an alkaline developer to remove the unexposed portion and to form a pattern.
  • Examples of the exposure method include proximity exposure, lens scan exposure, mirror projection exposure, stepper exposure and the like.
  • lens scan exposure excellent in high definition pattern processing on a large substrate is preferably used. Since the photosensitive resin composition of the present invention can suppress height variations, it can be suitably used for lens scan exposure in which height variations are likely to occur.
  • Examples of the lens scan exposure apparatus include FX-65S (manufactured by Nikon Corporation).
  • development with an alkaline developer is preferred.
  • an alkali developing solution an organic alkali developing solution, an inorganic alkali developing solution, etc. are mentioned.
  • an aqueous solution of sodium carbonate, sodium hydroxide, potassium hydroxide and the like is preferable.
  • an aqueous tetramethyl ammonium hydroxide aqueous solution and an aqueous amine solution such as methanolamine are preferable.
  • the content of the alkaline substance in the alkaline developer is preferably 0.02% by mass or more from the viewpoint of the development solubility of the unexposed area.
  • the developer preferably contains a surfactant to enhance the uniformity of development.
  • the developing solution temperature is preferably selected in the range of 18 to 40 ° C. because the developing speed changes depending on the temperature of the developing solution.
  • Examples of the development method include dip development, shower development, and paddle development. It is preferable to appropriately select the temperature and flow rate of the developer and the shower injection pressure, the water washing temperature after development, the flow rate and the shower injection pressure conditions. In order to remove the residue on the substrate, it is preferable to jet the developer or the washing water under high pressure, and the jetting pressure is preferably 0.01 MPa to 20 MPa.
  • Examples of the heat treatment apparatus for the coating film pattern after development include a hot air oven, a hot plate and the like.
  • the heating temperature is preferably 180 to 300 ° C., and the heating time is preferably 5 to 90 minutes.
  • the color filter substrate has the above-mentioned photo spacer and pixel of the present invention on the substrate. If necessary, it may have a black matrix, a planarizing film, a transparent electrode, an alignment film, and the like.
  • color filter substrate examples include those exemplified as a substrate for forming a photo spacer.
  • the pixel may contain a colorant, a resin, a polymerizable monomer, a photopolymerization initiator, other additives, and the like, and may be formed of a cured product of a composition including one or more of them.
  • the colorant include organic pigments, inorganic pigments, and dyes.
  • a resin, a polymerizable monomer, a photoinitiator, and other additives what was illustrated as a component of the transparent photosensitive resin composition of this invention is mentioned, for example.
  • Examples of the shape of the pixel include a rectangle, a stripe, a square, a polygon, and a wave.
  • the pixel width is preferably 1 ⁇ m or more from the viewpoint of increasing the area of the opening and improving the transmittance. On the other hand, from the viewpoint of displaying a more precise image, the pixel width is preferably 100 ⁇ m or less.
  • the film thickness of the pixel is preferably about 1 to 5 ⁇ m.
  • the BM has an effect of improving the contrast of a display image by blocking light between pixels.
  • the BM may be a color overlap BM formed by overlapping a part of pixels adjacent to each other, but in order to improve the display image by suppressing the level difference of the pixels and obtain high light shielding property, the resin and It is preferable to contain a light shielding material.
  • a resin a polyimide resin or an acrylic resin is preferable.
  • a light shielding agent titanium black, titanium nitride, titanium carbide, carbon black etc. are mentioned, for example. Further, it may contain an adhesion improver, a polymer dispersant, a polymerization initiator, an acid generator, a base generator, a surfactant and the like.
  • the film thickness of the BM is preferably 0.5 ⁇ m or more, and more preferably 0.8 ⁇ m or more, from the viewpoint of improving the light shielding property and the resistance value.
  • the thickness of the BM is preferably 2.5 ⁇ m or less, and more preferably 2.0 ⁇ m or less, from the viewpoint of improving the flatness.
  • the planarizing film may be formed on the entire surface of the pixel or the BM, or may be selectively formed on a portion to be planarized.
  • the planarizing film is preferably made of a cured product of a thermosetting resin composition, and when the planarizing film is selectively formed, the planarizing film Is preferably made of a cured product of the photosensitive resin composition.
  • the planarizing film preferably contains a resin, and may further contain an adhesion improver, a polymer dispersant, a polymerization initiator, an acid generator, a base generator, a surfactant, and the like.
  • the thickness of the planarizing film is preferably 0.5 ⁇ m or more, and more preferably 1.0 ⁇ m or more from the viewpoint of flatness and suppression of the elution of impurities from the pixels.
  • the thickness of the planarizing film is preferably 3.0 ⁇ m or less, more preferably 2.0 ⁇ m or less, from the viewpoint of improving the transparency.
  • the color filter substrate of the present invention can be obtained by forming the photo spacer and the pixel of the present invention, as necessary, a black matrix, a planarizing film, etc. on the substrate.
  • Examples of the method of forming the pixel, the black matrix, and the planarizing film include a photolithography method, a printing method, and an electrodeposition method.
  • the liquid crystal display device of the present invention comprises the color filter substrate described above, a drive element side substrate disposed opposite to the color filter, a color filter substrate, and a liquid crystal alignment film provided on the drive element side substrate, respectively. It is preferable to have the photo spacer which keeps the cell gap between these liquid crystal aligning films uniform, and the liquid crystal with which it was filled in space. For example, when using a color filter substrate having a black matrix, it is preferable to have a photo spacer above the non-display area, ie, the black matrix.
  • the driving element side substrate may have a photo spacer, and in this case as well, it is preferable to have the photo spacer above the non-display area on the driving element side substrate.
  • resin films such as a polyimide, are preferable.
  • a method of manufacturing a liquid crystal display device using the color filter substrate described above It is preferable to have a step of manufacturing a photo spacer on the color filter substrate and / or the driving element side substrate by the above-mentioned manufacturing method. Specifically, the above-mentioned color filter substrate and the drive element side substrate are made to face each other, they are pasted together via a photo spacer, liquid crystal is injected from the injection port provided in the seal portion, and then the injection port is sealed. Finally, it is preferable to mount an IC driver or the like.
  • the liquid crystal display device has a liquid crystal alignment film, it is preferable to apply a polyimide liquid and heat-treat it, and then to carry out surface treatment by rubbing treatment or ultraviolet light treatment. From the viewpoint of suppressing the generation of fine dust and static electricity and orienting liquid crystal molecules uniformly in high definition, it is preferable to perform surface treatment by ultraviolet treatment.
  • the properties of the alkali-soluble resin were evaluated by the following method.
  • the solutions of alkali-soluble resins 1 to 13 obtained in Production Examples 1 to 13 are heated at 130 ° C. for 1 hour, the solid content concentration is calculated from the mass before and after heating, and the glycidyl (meth) acrylate amount and alkali soluble resin are obtained.
  • the amount of residual glycidyl (meth) acrylate was calculated from the solid content concentration of the solution.
  • Alkali-soluble Resin 1 72 g of methacrylic acid (MA), 40 g of N-cyclohexylmaleimide (CHMI), 30 g of methyl methacrylate (MMA), 3 g of 2,2'-azobis (2-methylbutyronitrile), 0.5 g of lauryl mercaptan And 220 g of propylene glycol monomethyl ether (PGME) were charged in a polymerization vessel and stirred at 90 ° C. for 2 hours under a nitrogen atmosphere, then the liquid temperature was raised to 100 ° C., and reaction was carried out by heating for 5 hours.
  • MA methacrylic acid
  • CHMI N-cyclohexylmaleimide
  • MMA methyl methacrylate
  • PGME propylene glycol monomethyl ether
  • the inside of the polymerization vessel is replaced with air, and 97 g of glycidyl methacrylate (GMA), 1.2 g of dimethylbenzylamine and 0.2 g of p-methoxyphenol are added to the obtained reaction solution, and the reaction is carried out at 110 ° C.
  • PGME was added to obtain a solution of alkali-soluble resin 1 having a solid concentration of 29.5% by mass.
  • Mw of the obtained alkali-soluble resin 1 was 40,000, the ethylenically unsaturated group equivalent was 350 g / mol, the acid value was 85 mg KOH / g, and the amount of remaining GMA was 0.05% by mass.
  • MA constitutes the structural unit represented by the general formula (1)
  • GMA constitutes the structural unit represented by the general formula (2)
  • CHMI is represented by the general formula (3) Construct a structural unit to be represented.
  • Production Example 2 (Alkali-Soluble Resin 2) Solid content concentration 28.3 mass% in the same manner as in Production Example 1 except that the blending amount of MA is 69 g, the blending amount of CHMI is 25 g, the blending amount of MMA is 18 g, and the blending amount of GMA is 98 g.
  • a solution of alkali soluble resin 2 was obtained.
  • the Mw of the obtained alkali-soluble resin 2 was 43,000, the equivalent weight of the ethylenically unsaturated group was 300 g / mol, the acid value was 63 mg KOH / g, and the amount of residual GMA was 0.05 mass%.
  • Production Example 3 (Alkali Soluble Resin 3) A solution of alkali soluble resin 3 having a solid content concentration of 28.5% by mass was obtained in the same manner as in Production Example 1 except that the blending amount of MA was changed to 32 g and the blending amount of GMA to 31 g.
  • the Mw of the obtained alkali-soluble resin 3 was 39,000, the equivalent weight of the ethylenically unsaturated group was 600 g / mol, the acid value was 85 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
  • Alkali Soluble Resin 4 A solution of alkali soluble resin 4 having a solid concentration of 31.8% by mass was obtained in the same manner as in Production Example 1 except that the blending amount of lauryl mercaptan was changed to 2.2 g.
  • the Mw of the obtained alkali-soluble resin 4 was 9,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 85 mg KOH / g, and the residual GMA ratio was 0.05% by mass.
  • Production Example 5 (Alkali Soluble Resin 5) A solution of alkali-soluble resin 5 having a solid content concentration of 31.0 mass% in the same manner as in Production Example 1 except that the blending amount of MA is 66 g, the blending amount of CHMI is 50 g, and the blending amount of GMA is 96 g. I got The Mw of the obtained alkali-soluble resin 5 was 38,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 50 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
  • Production Example 6 (Alkali-soluble Resin 6) The solid content concentration is 30.4 mass% in the same manner as in Production Example 1 except that the blending amount of MA is 59 g, the blending amount of CHMI is 28 g, the blending amount of MMA is 19 g, and the blending amount of GMA is 70 g.
  • a solution of alkali soluble resin 6 was obtained.
  • the Mw of the obtained alkali-soluble resin 6 was 35,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 110 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
  • Production Example 7 (Alkali-soluble Resin 7) 13 g of methacrylic acid (MA), 15 g of N-cyclohexylmaleimide (CHMI), 72 g of methyl methacrylate (MMA), 3 g of 2,2'-azobis (2-methylbutyronitrile), 0.5 g of lauryl mercaptan And 220 g of propylene glycol monomethyl ether (PGME) were charged in a polymerization vessel and stirred at 90 ° C. for 2 hours under a nitrogen atmosphere, then the liquid temperature was raised to 100 ° C., and reaction was carried out by heating for 5 hours.
  • MA methacrylic acid
  • CHMI N-cyclohexylmaleimide
  • MMA methyl methacrylate
  • PGME propylene glycol monomethyl ether
  • alkali-soluble resin 7 After 0.2 g of p-methoxyphenol was added and cooled to room temperature, PGME was added to obtain a solution of alkali-soluble resin 7 having a solid concentration of 29.1% by mass. Mw of the obtained alkali-soluble resin 7 was 37,000, and the acid value was 85 mg KOH / g.
  • Production Example 8 (Production of Alkali-Soluble Resin 8) Solid content as in Production Example 1 except that 70 g of MA, 12 g of MMA and 98 g of GMA were changed to 15 g of styrene (St) instead of CHMI. A solution of alkali soluble resin 8 having a concentration of 29.2% by mass was obtained. The Mw of the obtained alkali-soluble resin 8 was 35,000, the equivalent weight of the ethylenically unsaturated group was 285 g / mol, the acid value was 67 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
  • Alkali-soluble Resin 9 A solution of alkali-soluble resin 9 having a solid concentration of 29.5% by mass was obtained in the same manner as in Production Example 1 except that 40 g of N-benzylmaleimide (BzMI) was used instead of CHMI. Mw of the obtained alkali-soluble resin 9 was 40,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 64 mg KOH / g, and the amount of remaining GMA was 0.05% by mass.
  • BzMI N-benzylmaleimide
  • Production Example 10 (Production of Alkali-Soluble Resin 10) A solution of alkali-soluble resin 10 having a solid concentration of 29.5% by mass was obtained in the same manner as in Production Example 1 except that 60 g of acrylic acid (AA) was used instead of MA.
  • the Mw of the obtained alkali-soluble resin 10 was 40,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 62 mg KOH / g, and the amount of remaining GMA was 0.05% by mass.
  • Alkali-soluble Resin 11 A solution of alkali soluble resin 11 having a solid concentration of 29.5% by mass was obtained in the same manner as in Production Example 1 except that the stirring time at 110 ° C. was changed to 8 hours. Mw of the obtained alkali-soluble resin 1 was 40,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 64 mg KOH / g, and the residual GMA ratio was 0.02 mass%.
  • Production Example 12 (Alkali-soluble Resin 12) A solution of an alkali-soluble resin 12 was obtained in the same manner as in Production Example 1 except that the stirring time at 110 ° C. was changed to 5 hours. Mw of the obtained alkali-soluble resin 12 was 40,000, the ethylenically unsaturated group equivalent was 350 g / mol, the acid value was 64 mg KOH / g, and the residual GMA rate was 0.30 mass%.
  • Production Example 13 (Alkali-soluble Resin 13) The solid content concentration is 28.5 mass% in the same manner as in Production Example 1 except that the blending amount of MA is 50 g, the blending amount of CHMI is 30 g, the blending amount of MMA is 0 g, and the blending amount of GMA is 65 g.
  • the solution of alkali-soluble resin 13 was obtained. Mw of the obtained alkali-soluble resin 13 was 36,000, the equivalent weight of the ethylenically unsaturated group was 278 g / mol, the acid value was 93 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
  • a 1.0 ⁇ m-thick black matrix consisting of a composition containing a polyimide resin and carbon black on the surface of an alkali-free glass substrate (OA-10; manufactured by Nippon Electric Glass Co., Ltd .; 50 mm ⁇ 70 mm, thickness 0.7 mm) To form a black matrix-attached substrate.
  • OA-10 alkali-free glass substrate
  • the black matrix-coated substrate produced by the above method is cleaned by exposure to light for 60 seconds using a UV / ozone apparatus (SSP 16-110; manufactured by Sen Special Light Source Co., Ltd.) and then planarized by spin coating.
  • a coating film material (NN 901; manufactured by JSR Corp.) was applied and dried to form a transparent flattening film having a thickness of 1.5 ⁇ m. This was dried by heating (prebaked) at 90 ° C. for 10 minutes, and irradiated with ultraviolet light until the saturated exposure amount was reached.
  • TMAH tetramethylammonium hydroxide
  • A-60 tetramethylammonium hydroxide
  • Kao aqueous solution
  • the substrate was heat-dried (post-baked) at 230 ° C. for 30 minutes to prepare a substrate with a planarized film.
  • a substrate with a flattened film on which a pre-baked film has been formed is cooled to room temperature, and an ultraviolet ray exposure machine (PEM-6M; made by Union Optical Co., Ltd.) equipped with a glass UV filter (UV-35; made by Asahi Techno Glass Co., Ltd.) , Collimation angle ⁇ : 2 °, i-line (365 nm) illuminance: 30 mW / cm 2 ), without using a negative photomask, each wavelength of i-line: 365 nm, h-line: 405 nm and g-line: 436 nm It exposed by the exposure amount (i-line conversion) of 24 mJ / cm ⁇ 2 > by using the ultraviolet-ray containing as an irradiation light.
  • PEM-6M made by Union Optical Co., Ltd.
  • an automatic developing apparatus (AD-2000; manufactured by Mikasa Co., Ltd.) is used. It was shower developed, further washed with water and air dried. Next, it was heat-dried (post-baked) in an oven at 230 ° C. for 30 minutes to prepare a substrate with a 3.00 ⁇ m thick photo-spacer film.
  • the light transmittance at a wavelength of 400 to 700 nm is measured with a C light source using a microspectrometer (LCF-100MA: manufactured by Otsuka Electronics Co., Ltd.) for the central portion of the substrate with a photospacer solid film, and the following criteria
  • the transparency of the photosensitive resin composition was evaluated by the following. I passed A.
  • B Light transmittance at wavelengths of 400 to 700 nm is less than 80%.
  • Viscosity of pre-baked film As a sample reproducing the viscosity characteristics of the pre-baked films obtained in Examples 1 to 13 and Comparative Examples 1 to 3, alkali-free glass substrates (OA-10; manufactured by Nippon Electric Glass Co., Ltd .; 50 mm ⁇ 70 mm, thickness 0) On the .7 mm), a pre-baked film was produced under the conditions of each example and comparative example.
  • the obtained pre-baked film is collected 90 mm 3 or more using a spatula, measured using a rheometer (MCR-302; Anton Paar Co., Ltd.
  • the total deformation amount Ha [ ⁇ m] and the plastic deformation amount Hb [ ⁇ m] were obtained from the obtained hysteresis curve, and the elastic recovery factor ((Ha ⁇ Hb / Ha) ⁇ 100) of the photo spacer was calculated.
  • the number average value measured about five places was computed, and the following standard evaluated. Passed AA, A and B C: elastic recovery rate less than 70%
  • B elastic recovery rate 70% or more and less than 72%
  • A elastic recovery rate 72% or more and less than 73%
  • AA elastic recovery rate 73% or more.
  • Example 1 (Preparation of Photosensitive Resin Composition 1) Solution of alkali-soluble resin 1 having a solid content concentration of 29.5% by mass obtained by Production Example 1: 21.13 parts by mass, dipentaerythritol pentaacrylate ("KAYARAD” (registered trademark) DPHA; Nippon Kayaku; below, “DPHA”) (ethylenically unsaturated group equivalent 100): 11.58 parts by mass, photopolymerization initiator “Adeka Acrulus” (trademark registered) N-1919; hereinafter, “N1919”: 0.36 parts by mass, “ IRGACURE “(registered trademark) 907 (manufactured by BASF Japan Ltd.); hereinafter," IC 907 “: 0.89 parts by mass, 2,4-diethylthioxanthone (" KAYACURE "(registered trademark) DETX-S; Nippon Kayaku ( Co., Ltd .; hereafter, "DETX”): 0.89 parts by mass, surfact
  • the substrate with a planarizing film obtained by the above-mentioned method is subjected to a cleaning treatment by exposure for 60 seconds using a UV / ozone apparatus (SSP 16-110; manufactured by Sen Special Light Source Co., Ltd.), and then a spin coater
  • SSP 16-110 manufactured by Sen Special Light Source Co., Ltd.
  • the photosensitive resin composition 1 was applied using (type 1HD2; manufactured by Mikasa Co., Ltd.). After drying under reduced pressure for 200 seconds under the conditions of temperature: 25 ° C., pressure: 45 Pa, heat drying (pre-baking) in an oven (PERFECTOVEN PV-210; Tabai Espec Corp.) for 10 minutes set at 105 ° C. It was cooled to form a pre-baked film.
  • the i-line 365 nm through a circular photomask with a diameter of 7 ⁇ m, using the planarizing film-attached substrate on which the pre-baked film has been formed. It exposed by the exposure amount (i-line conversion) of 30 mJ / cm ⁇ 2 > by making the ultraviolet-ray containing each wavelength of h line
  • an automatic developing apparatus (AD-2000; manufactured by Mikasa Co., Ltd.) is used. It was shower developed, further washed with water and air dried. Finally, it was heat-dried (post-baked) in an oven at 230 ° C. for 30 minutes to produce a photospacer with an upper bottom 6 ⁇ m, a lower bottom 9 ⁇ m, and a height 3 ⁇ m.
  • the ultraviolet exposure machine (PEM-6M; Union Optical Co., Ltd. product) which attached the glass-made UV filter (UV-35; Asahi Techno Glass Co., Ltd. product) to the substrate with a planarization film which formed the above-mentioned pre-baking film
  • the first exposure was performed using ultraviolet light including 405 nm and g-line: 436 nm wavelengths.
  • the negative photomask was shifted by a half pitch to perform subsequent exposure (proximity exposure multi-patterning).
  • an automatic developing apparatus (AD-2000; manufactured by Mikasa Co., Ltd.) is used. It was shower developed, further washed with water and air dried. Finally, it was heat-dried (post-baked) in an oven at 230 ° C. for 30 minutes to produce a photospacer with an upper bottom 6 ⁇ m, a lower bottom 9 ⁇ m, and a height 3 ⁇ m.
  • Examples 2 to 13, Comparative Examples 1 to 3 A photosensitive resin composition, a pre-baked film and a photo spacer were produced in the same manner as in Example 1 except that the composition of the photosensitive resin composition was changed as shown in Table 2. The results evaluated in the same manner as in Example 1 are shown in Tables 3 to 5.
  • M520 in Tables 3 to 5 means the reaction product of a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate with succinic anhydride (M520; manufactured by Toagosei Co., Ltd .; ethylenic unsaturated equivalent 104 g / Mol) is represented.
  • the transparent photosensitive resin composition of the present invention is suitably used as a material for forming a photo spacer of a liquid crystal display by lens scan exposure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials For Photolithography (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The purpose of the present invention is to provide: a transparent photosensitive resin composition that enables the formation of photospacers which are suppressed in height variation, while being not susceptible to plastic deformation, in other words, having high elastic recovery rate at the same time; a photospacer which is obtained using this transparent photosensitive resin composition; a liquid crystal display device; a method for producing a photospacer; a method for producing a liquid crystal display device; and use of this transparent photosensitive resin composition for lens scan exposure. The present invention is a transparent photosensitive resin composition which contains at least an alkali-soluble resin, a photopolymerization initiator and a polymerizable monomer, and wherein: the alkali-soluble resin has (A) a structural unit represented by general formula (1), (B) a structural unit represented by general formula (2), and (C) a structural unit represented by general formula (3); and the ethylenically unsaturated group equivalent of the alkali-soluble resin is 400 g/mol or less. (In general formula (1), R1 represents a hydrogen atom or a methyl group.) (In general formula (2), each of R2 and R3 independently represents a hydrogen atom or a methyl group; and X represents -CH2CH(OH)CH2O(C=O)-, -CH2CH2NH(C=O)O(CH2)mO(C=O)- or -(CH2)nO(C=O)NHCH2CH2O(C=O)-, wherein each of m and n independently represents an integer of 1-4.) (In general formula (3), Y represents an optionally substituted aryl group having 6-11 carbon atoms, an optionally substituted aralkyl group having 7-10 carbon atoms or an optionally substituted cycloalkyl group having 3-10 carbon atoms.)

Description

透明感光性樹脂組成物、フォトスペーサー、液晶表示装置、フォトスペーサーの製造方法、液晶表示装置の製造方法および透明感光性樹脂組成物のレンズスキャン露光への使用Transparent photosensitive resin composition, photo spacer, liquid crystal display device, method of manufacturing photo spacer, method of manufacturing liquid crystal display device, and use of transparent photosensitive resin composition for lens scan exposure
 本発明は、透明感光性樹脂組成物、フォトスペーサー、液晶表示装置、フォトスペーサーの製造方法、液晶表示装置の製造方法および透明感光性樹脂組成物のレンズスキャン露光への使用に関する。 The present invention relates to a transparent photosensitive resin composition, a photospacer, a liquid crystal display, a method of manufacturing a photospacer, a method of manufacturing a liquid crystal display, and use of the transparent photosensitive resin composition for lens scan exposure.
 液晶表示装置は、軽量、薄型、低消費電力等の特性を活かし、ノートパソコン、携帯情報端末、スマートフォン、デジタルカメラおよびデスクトップモニタ等の様々な用途で使用されている。 Liquid crystal display devices are used in various applications such as laptop computers, personal digital assistants, smart phones, digital cameras and desktop monitors, taking advantage of characteristics such as light weight, thinness and low power consumption.
 液晶表示装置は、カラーフィルター基板とTFT(Thin Film Transistor)基板との間に、所定の配向により画像表示を可能とする液晶層を備えており、これらの基板の間隔(セルギャップ)を均一に保つことは、画質を左右する重要な要素の一つである。 The liquid crystal display device includes a liquid crystal layer capable of displaying an image according to a predetermined orientation between a color filter substrate and a TFT (Thin Film Transistor) substrate, and the distance (cell gap) between these substrates is made uniform. Maintaining is one of the important factors affecting image quality.
 従来は、セルギャップを均一に保つために、所定の粒子径を有するガラスやアルミナ等のスペーサー粒子が使用されていた。これらスペーサー粒子は基板上にランダムに散布されるため、膜厚ばらつきによる表示ムラなどの課題があった。 Conventionally, in order to keep the cell gap uniform, spacer particles such as glass or alumina having a predetermined particle diameter have been used. Since these spacer particles are randomly scattered on the substrate, there is a problem such as display unevenness due to film thickness variation.
 かかる課題に対して、支持体フィルムと膜厚が1~10μmである感光性樹脂層とからなる液晶ディスプレー用の樹脂スペーサーの形成に用いられる樹脂スペーサー形成用感光性フィルムが提案されている(例えば、特許文献1参照)。しかしながら、特許文献1に記載された樹脂スペーサーを用いても、カラーフィルターとTFTアレイ基板との組み立て(セル圧着)時に塑性変形するため、スペーサーの高さばらつきにより、なお表示ムラが生じやすい課題があった。 To solve this problem, a photosensitive film for resin spacer formation, which is used to form a resin spacer for liquid crystal display comprising a support film and a photosensitive resin layer having a thickness of 1 to 10 μm, has been proposed (for example, , Patent Document 1). However, even if the resin spacer described in Patent Document 1 is used, plastic deformation occurs at the time of assembling (cell pressure bonding) between the color filter and the TFT array substrate, and thus the display unevenness is apt to occur due to spacer height variations. there were.
 スペーサーの塑性変形を抑制する技術として、これまでに、基板上の非表示部領域に複数の柱状スペーサーを設けてなり、当該柱状スペーサーは室温において2.0GPaの圧縮荷重に対して弾性変形率が60%以上であることを特徴とする、液晶パネル用基板(例えば、特許文献2参照)や、アルカリ可溶性樹脂、光重合開始剤、及び重合性モノマーを主成分とするスペーサー用感光性樹脂組成物であって、これら感光性樹脂組成物全体のアクリル当量が200以下であることを特徴とするスペーサー用感光性樹脂組成物(例えば、特許文献3参照)などが提案されている。 As a technique for suppressing the plastic deformation of the spacer, a plurality of columnar spacers are provided in the non-display area on the substrate so far, and the columnar spacer has an elastic deformation ratio to a compressive load of 2.0 GPa at room temperature. A photosensitive resin composition for a spacer comprising, as a main component, a liquid crystal panel substrate (see, for example, Patent Document 2), an alkali-soluble resin, a photopolymerization initiator, and a polymerizable monomer, which is 60% or more. A photosensitive resin composition for spacers (see, for example, Patent Document 3) or the like, which is characterized in that the acrylic equivalent of the whole of these photosensitive resin compositions is 200 or less has been proposed.
 一方で、面取り数を増やして歩留まりを向上させるために、マザーガラス基板の大型化が進んでおり、小さなマスクを使用して広い露光領域を有する基板を露光する技術として、基板搬送手段によって一定速度で一定方向に搬送されている状態の基板に対して、露光部で連続光源からの露光光を露光光学系の光路上に設けたマスクの開口部を通して照射し、前記基板上に前記開口部の像を転写するスキャン露光方法が提案されている(例えば、特許文献4参照)。 On the other hand, in order to increase the number of chamfers and improve the yield, the mother glass substrate is increasing in size, and a constant speed is provided by the substrate transfer means as a technique for exposing a substrate having a wide exposure area using a small mask. The exposure light from the continuous light source is irradiated through the opening of the mask provided on the light path of the exposure optical system in the exposure unit to the substrate being transported in a predetermined direction. A scan exposure method for transferring an image has been proposed (see, for example, Patent Document 4).
特開平11-174464号公報Japanese Patent Application Laid-Open No. 11-174464 特開2003-241199号公報Unexamined-Japanese-Patent No. 2003-241199 特開2005-292269号公報JP, 2005-292269, A 特開2006-292955号公報Unexamined-Japanese-Patent No. 2006-292955
 特許文献2、3に記載の柱状スペーサーの弾性変形率を高くする手段としては、感光性樹脂組成物に官能基数の多いモノマーを多量に含有する方法が挙げられるが、モノマーを多量に含有する感光性樹脂組成物の塗布膜は、乾燥後であっても流動性が高く、生産工程において膜厚ムラが生じやすいことから、フォトスペーサーの高さにばらつきが生じやすい課題があった。 Methods of increasing the elastic deformation rate of the columnar spacers described in Patent Documents 2 and 3 include a method in which a large amount of a monomer having a large number of functional groups is contained in the photosensitive resin composition. The coating film of the base resin composition has high fluidity even after drying, and unevenness in film thickness easily occurs in the production process, so that the height of the photospacer tends to vary.
 一方、特許文献4のスキャン露光方法において、特に複数のレンズを二列に並べるレンズスキャン方式の露光においては、通常部よりも露光量が低くなるレンズとレンズとの継目の部分において、2回の露光で通常部と同一露光量になるように設計されており、広範囲の焼付けが可能となっている。 On the other hand, in the scan exposure method of Patent Document 4, particularly in the case of lens scan type exposure in which a plurality of lenses are arranged in two rows, twice at the joint portion between the lens and the lens where the exposure amount is lower than that of the normal portion. It is designed to have the same exposure amount as that of a normal part in exposure, and a wide range of printing is possible.
 しかしながら、特許文献2、3に記載されるようなモノマーを多量に含有する感光性樹脂組成物をレンズスキャン方式により露光すると、レンズとレンズとの継目の部分で形成されるフォトスペーサーの高さのばらつきが大きくなる課題があった。フォトスペーサーの高さのばらつきは液晶表示装置の表示ムラの原因となるため、フォトスペーサーを均一な高さに形成することが求められている。 However, when a photosensitive resin composition containing a large amount of monomers as described in Patent Documents 2 and 3 is exposed by a lens scan method, the height of the photo spacer formed at the joint portion between the lens and the lens There was a problem that the variation became large. Since variations in the height of the photo spacers cause the display unevenness of the liquid crystal display device, it is required to form the photo spacers at a uniform height.
 また、従来の露光方式であるプロキシミティ方式の露光の場合、フォトスペーサー間の距離が15μm程度以下になると、回折光の影響により、フォトスペーサー同士が連結しやすい傾向にある。かかる連結を回避するために、一つの版をずらして多重露光するマルチパターニングが提案されている。しかしながら、マルチパターニングにおいても、最初の露光後のプリベイク膜の流動により、次の露光部分の膜厚が薄くなり、フォトスペーサーの高さのばらつきが大きくなる課題があった。 Further, in the case of proximity type exposure, which is a conventional exposure type, when the distance between the photo spacers is about 15 μm or less, the photo spacers tend to be connected due to the influence of diffracted light. In order to avoid such connection, multipatterning in which one plate is shifted to perform multiple exposure has been proposed. However, even in multi-patterning, the film thickness of the next exposed portion becomes thinner due to the flow of the pre-baking film after the first exposure, and there is a problem that the dispersion of the height of the photo spacer becomes large.
 そこで本発明は、フォトスペーサーの高さのばらつきを抑制した、塑性変形しにくい、すなわち高弾性復元率のフォトスペーサーを両立して形成することができる、透明感光性樹脂組成物と、これを用いたフォトスペーサー、液晶表示装置、フォトスペーサーの製造方法、液晶表示装置の製造方法および透明感光性樹脂組成物のレンズスキャン露光への使用を提供することを目的とする。 Therefore, the present invention is directed to a transparent photosensitive resin composition which can suppress the variation of the height of the photospacer and can form a photospacer which is resistant to plastic deformation, that is, having a high elastic recovery ratio. It is an object of the present invention to provide a photo spacer, a liquid crystal display device, a method of manufacturing the photo spacer, a method of manufacturing the liquid crystal display device, and use of the transparent photosensitive resin composition for lens scan exposure.
 上記課題を解決するため、本発明は主として以下の構成を有する。
少なくともアルカリ可溶性樹脂、光重合開始剤および重合性モノマーを含有する透明感光性樹脂組成物であって、前記アルカリ可溶性樹脂が
A)下記一般式(1)で表される構造単位と、
B)下記一般式(2)で表される構造単位と、
C)下記一般式(3)で表される構造単位を有し、
前記アルカリ可溶性樹脂のエチレン性不飽和基当量が400g/mol以下である透明感光性樹脂組成物。
In order to solve the above-mentioned subject, the present invention mainly has the following composition.
A transparent photosensitive resin composition comprising at least an alkali soluble resin, a photopolymerization initiator and a polymerizable monomer, wherein the alkali soluble resin is A) a structural unit represented by the following general formula (1):
B) Structural units represented by the following general formula (2):
C) having a structural unit represented by the following general formula (3),
The transparent photosensitive resin composition whose ethylenically unsaturated group equivalent of the said alkali-soluble resin is 400 g / mol or less.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1)中、Rは水素原子またはメチル基を示す。 In the above general formula (1), R 1 represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
上記一般式(2)中、RおよびRはそれぞれ独立に水素原子またはメチル基を示す。Xは-CHCH(OH)CHO(C=O)-、-CHCHNH(C=O)O(CHO(C=O)-または-(CHO(C=O)NHCHCHO(C=O)-を示す。ただし、mおよびnはそれぞれ独立に1~4の整数を示す。 In the above general formula (2), R 2 and R 3 each independently represent a hydrogen atom or a methyl group. X is -CH 2 CH (OH) CH 2 O (C = O) -, - CH 2 CH 2 NH (C = O) O (CH 2) m O (C = O) - or - (CH 2) n O (C = O) NHCH 2 CH 2 O (C = O) - shows the. However, m and n each independently represent an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
上記一般式(3)中、Yは置換基を有していてもよい炭素数6~11のアリール基、置換基を有していてもよい炭素数7~10のアラルキル基または置換基を有していてもよい炭素数3~10のシクロアルキル基を示す。 In the above general formula (3), Y has an aryl group having 6 to 11 carbon atoms which may have a substituent, an aralkyl group having 7 to 10 carbon atoms which may have a substituent, or a substituent. And an optionally substituted C 3-10 cycloalkyl group.
 本発明の透明感光性樹脂組成物によれば、フォトスペーサーの高さのばらつきが大きくなりやすいレンズスキャン方式やプロキシミティ方式で露光した場合においても、高さのばらつきを抑制した、高弾性復元率のフォトスペーサーを形成することができる。 According to the transparent photosensitive resin composition of the present invention, even when exposure is performed by a lens scan method or a proximity method in which the variation in height of the photo spacer tends to be large, the high elastic recovery rate suppressed the variation in height. Can be formed.
フォトスペーサーの弾性特性を表すヒステリシス曲線の一例を示す概略図である。It is the schematic which shows an example of the hysteresis curve showing the elastic characteristic of a photo spacer.
 本発明の透明感光性樹脂組成物(以下、「感光性樹脂組成物」と記載する場合がある)は、少なくともアルカリ可溶性樹脂、光重合開始剤および重合性モノマーを含有する。光重合開始剤および重合性モノマーを含有することにより、露光部を光硬化し、アルカリ現像液に対して不溶化させることができ、アルカリ可溶性樹脂を含有することにより、アルカリ現像液を用いて未露光部を除去することができることから、露光および現像により所望のパターンを形成することができる。 The transparent photosensitive resin composition of the present invention (hereinafter sometimes referred to as "photosensitive resin composition") contains at least an alkali-soluble resin, a photopolymerization initiator and a polymerizable monomer. By containing a photopolymerization initiator and a polymerizable monomer, the exposed portion can be photocured to be insolubilized in an alkali developer, and by containing an alkali-soluble resin, it is not exposed using an alkali developer. Since the part can be removed, the desired pattern can be formed by exposure and development.
 本発明における「透明」とは、感光性樹脂組成物を光硬化させて厚さ3μmの硬化膜としたときの、波長400~700nmにおける光線透過率が80%以上であることを言う。本発明の感光性樹脂組成物は、波長400~700nmにおける光線透過率を高くするために、顔料や染料などの着色剤を実質的に含まないことが好ましい。 The "transparent" in the present invention means that the light transmittance at a wavelength of 400 to 700 nm is 80% or more when the photosensitive resin composition is photocured to form a cured film having a thickness of 3 μm. The photosensitive resin composition of the present invention is preferably substantially free of a colorant such as a pigment or a dye in order to increase the light transmittance at a wavelength of 400 to 700 nm.
 本発明におけるアルカリ可溶性樹脂とは、後述する一般式(1)で表される構造単位を有する樹脂を言う。カルボキシル基を有することにより、アルカリ現像液に対する溶解性を高めることができる。 The alkali-soluble resin in the present invention means a resin having a structural unit represented by the general formula (1) described later. By having a carboxyl group, the solubility in an alkali developer can be enhanced.
 本発明におけるアルカリ可溶性樹脂は、A)下記一般式(1)で表される構造単位と、B)下記一般式(2)で表される構造単位と、C)下記一般式(3)で表される構造単位を有する。下記一般式(1)で表される構造単位を有することにより、アルカリ現像液に対する樹脂の溶解性を向上させることができる。下記一般式(2)で表される構造単位を有することにより、アルカリ可溶性樹脂の側鎖にエチレン性不飽和基を導入して、露光および現像における感度とフォトスペーサーの弾性復元率を向上させることができる。下記一般式(3)で表される構造単位を有することにより、フォトスペーサーの高さのばらつきを抑制することができる。 The alkali-soluble resin in the present invention is represented by A) a structural unit represented by the following general formula (1), B) a structural unit represented by the following general formula (2), and C) the following general formula (3) Have structural units. By having a structural unit represented by the following general formula (1), the solubility of the resin in an alkali developer can be improved. By introducing an ethylenically unsaturated group into the side chain of the alkali-soluble resin by having a structural unit represented by the following general formula (2), the sensitivity in exposure and development and the elastic recovery of the photospacer are improved. Can. By having a structural unit represented by the following general formula (3), variation in height of the photo spacer can be suppressed.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記一般式(1)中、Rは水素原子またはメチル基を示す。Rはメチル基が好ましく、プリベイク膜の粘度を高め、高さのばらつきをより抑制することができる。 In the above general formula (1), R 1 represents a hydrogen atom or a methyl group. R 1 is preferably a methyl group, which can increase the viscosity of the pre-baked film and can further suppress variations in height.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(2)中、RおよびRはそれぞれ独立に水素原子またはメチル基を示す。Xは-CHCH(OH)CHO(C=O)-、-CHCHNH(C=O)O(CHO(C=O)-または-(CHO(C=O)NHCHCHO(C=O)-を示す。ただし、mおよびnはそれぞれ独立に1~4の整数を示す。 In the above general formula (2), R 2 and R 3 each independently represent a hydrogen atom or a methyl group. X is -CH 2 CH (OH) CH 2 O (C = O) -, - CH 2 CH 2 NH (C = O) O (CH 2) m O (C = O) - or - (CH 2) n O (C = O) NHCH 2 CH 2 O (C = O) - shows the. However, m and n each independently represent an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記一般式(3)中、Yは置換基を有していてもよい炭素数6~11のアリール基、置換基を有していてもよい炭素数7~10のアラルキル基または置換基を有していてもよい炭素数3~10のシクロアルキル基を示す。Yは置換基を有していてもよい炭素数3~10のシクロアルキル基が好ましく、シクロヘキシル基がより好ましく、プリベイク膜の粘度をより高め、高さのばらつきをより抑制することができる。 In the above general formula (3), Y has an aryl group having 6 to 11 carbon atoms which may have a substituent, an aralkyl group having 7 to 10 carbon atoms which may have a substituent, or a substituent. And an optionally substituted C 3-10 cycloalkyl group. Y is preferably a cycloalkyl group having a carbon number of 3 to 10 which may have a substituent, more preferably a cyclohexyl group, which can further increase the viscosity of the pre-baked film and can further suppress the variation in height.
 本発明におけるアルカリ可溶性樹脂は、例えば、前記一般式(1)で表される構造単位を構成する共重合成分、前記一般式(2)で表される構造単位を構成する共重合成分および前記一般式(3)で表される構造単位を構成する共重合成分を共重合することにより得ることができる。さらに他の共重合成分を共重合してもよい。 The alkali-soluble resin in the present invention is, for example, a copolymer component constituting the structural unit represented by the general formula (1), a copolymer component constituting the structural unit represented by the general formula (2), and the general It can obtain by copolymerizing the copolymerization component which comprises the structural unit represented by Formula (3). Furthermore, other copolymerizable components may be copolymerized.
 前記一般式(1)で表される構造単位と前記一般式(3)で表される構造単位を有するアクリル重合体のカルボキシル基に対して、グリシジル基を有するエチレン性不飽和化合物を付加反応させることにより、前記一般式(2)で表される構造単位を導入することができる。同様にして、前記一般式(1)で表される構造単位と前記一般式(3)で表される構造単位を有するアクリル重合体のグリシジル基、水酸基、イソシアネート基に対して、カルボキシル基を有するエチレン性不飽和化合物、イソシアネート基を有するエチレン性不飽和化合物、水酸基を有するエチレン性不飽和化合物をそれぞれ付加反応させることによっても、前記一般式(2)で表される構造単位を導入することができる。 An ethylenically unsaturated compound having a glycidyl group is subjected to an addition reaction with the carboxyl group of the acrylic polymer having the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) Thus, the structural unit represented by the general formula (2) can be introduced. Similarly, it has a carboxyl group to the glycidyl group, the hydroxyl group, and the isocyanate group of the acrylic polymer having the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) The structural unit represented by the general formula (2) can be introduced also by the addition reaction of an ethylenically unsaturated compound, an ethylenically unsaturated compound having an isocyanate group, and an ethylenically unsaturated compound having a hydroxyl group. it can.
 前記一般式(1)で表される構造単位を構成する共重合成分としては、例えば、(メタ)アクリル酸などが挙げられる。これらを2種以上用いてもよい。これらの中でも、メタクリル酸が好ましく、プリベイク膜の粘度をより高め、高さのばらつきをより抑制することができる。 As a copolymerization component which comprises the structural unit represented by the said General formula (1), (meth) acrylic acid etc. are mentioned, for example. Two or more of these may be used. Among these, methacrylic acid is preferable, and the viscosity of the pre-baked film can be further increased, and the variation in height can be further suppressed.
 前記一般式(2)で表される構造単位を構成する共重合成分としては、例えば、(メタ)アクリル酸;グリシジル(メタ)アクリレート、2-イソシアナトエチルメタクリレートや2-ヒドロキシエチル(メタ)クリレートなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、(メタ)アクリル酸にグリシジル(メタ)アクリレートを付加することが好ましい。 As a copolymerization component which comprises the structural unit represented by said General formula (2), (meth) acrylic acid; glycidyl (meth) acrylate, 2-isocyanatoethyl methacrylate, 2-hydroxyethyl (meth) acrylate, for example Etc. Two or more of these may be used. Among these, it is preferable to add glycidyl (meth) acrylate to (meth) acrylic acid.
 前記一般式(3)で表される構造単位を構成する共重合成分としては、例えば、N-ベンジルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミドなどが挙げられる。これらを2種以上用いてもよい。これらの中でもN-シクロヘキシルマレイミドが好ましく、プリベイク膜の粘度をより高め、高さのばらつきをより抑制することができる。 As a copolymerization component which comprises the structural unit represented by said General formula (3), N- benzyl maleimide, N- phenyl maleimide, N- cyclohexyl maleimide etc. are mentioned, for example. Two or more of these may be used. Among these, N-cyclohexyl maleimide is preferable, and the viscosity of the pre-baked film can be further increased, and the variation in height can be further suppressed.
 他の共重合成分としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の不飽和カルボン酸アルキルエステル;アミノエチルアクリレート等の不飽和カルボン酸アミノアルキルエステル、フタル酸モノ(2-(メタ)アクリロイロキシエチル)等の多価カルボン酸モノエステル;スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン等の芳香族ビニル化合物;酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル;(メタ)アクリロニトリル、α-クロル(メタ)アクリロニトリル等のシアン化ビニル化合物;1,3-ブタジエン、イソプレン等の脂肪族共役ジエン;ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレートなどのトリシクロデカン骨格またはジシクロペンタジエン骨格を有するエチレン性不飽和化合物;クロトン酸、ビニル酢酸などのモノカルボン酸またはその酸無水物;イタコン酸、マレイン酸、フマル酸などのジカルボン酸またはその酸無水物などが挙げられる。 Other copolymerization components include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate ( (Meth) acrylic acid sec-butyl, (meth) acrylic acid isobutyl, (meth) acrylic acid tert-butyl, (meth) acrylic acid n-pentyl, 2-hydroxyethyl (meth) acrylate, benzyl (meth) acrylate, benzyl ( Unsaturated carboxylic acid alkyl ester such as meta) acrylate and isobornyl (meth) acrylate; Unsaturated carboxylic acid amino alkyl ester such as aminoethyl acrylate, Polyvalent carboxylic acid such as mono (2- (meth) acryloyloxyethyl) phthalate Acid monoester; styrene, p-methylstyrene, o Aromatic vinyl compounds such as methylstyrene, m-methylstyrene and α-methylstyrene; Vinyl esters of carboxylic acids such as vinyl acetate and vinyl propionate; Vinyl cyanide compounds such as (meth) acrylonitrile and α-chloro (meth) acrylonitrile Aliphatic conjugated dienes such as 1,3-butadiene and isoprene; dicyclopentenyl (meth) acrylate, dicyclopentenyl oxyethyl (meth) acrylate, tricyclodecanyl (meth) acrylate, tricyclodecane dimethanol di (meth); ) Ethylenic unsaturated compounds having a tricyclodecane skeleton or dicyclopentadiene skeleton such as acrylates; monocarboxylic acids such as crotonic acid and vinyl acetic acid or acid anhydrides thereof; dicarboxylic acids such as itaconic acid, maleic acid, fumaric acid or the like That Acid anhydride and the like.
 アルカリ可溶性樹脂の構造単位の総和を100mol%としたとき、前記一般式(3)で表される構造単位量は、10~23mol%が好ましい。前記一般式(3)で表される構造単位量が10mol%以上であると、乾燥粘度をより高めることができ、15mol%以上であるとプリベイク膜の粘度をより高めることができ好ましい。一方、前記一般式(3)で表される構造単位量が23mol%以下であると、エチレン性不飽和結合当量と酸価を、後述する好ましい範囲に容易に調整することができる。 When the total amount of structural units of the alkali-soluble resin is 100 mol%, the amount of the structural unit represented by the general formula (3) is preferably 10 to 23 mol%. The dry viscosity can be further increased when the amount of the structural unit represented by the general formula (3) is 10 mol% or more, and the viscosity of the pre-baked film can be further increased when the amount is 15 mol% or more. On the other hand, the ethylenic unsaturated bond equivalent and an acid value can be easily adjusted to the preferable range mentioned later as the structural unit quantity represented by the said General formula (3) is 23 mol% or less.
 本発明におけるアルカリ可溶性樹脂のエチレン性不飽和基当量は、400g/mol以下である。エチレン性不飽和基当量が400g/molを超えると、フォトスペーサーの架橋密度が低下し、弾性復元率が低下する。アルカリ可溶性樹脂のエチレン性不飽和基当量は、360g/mol以下が好ましく、300g/mol以下がより好ましい。 The ethylenically unsaturated group equivalent of the alkali-soluble resin in the present invention is 400 g / mol or less. When the ethylenically unsaturated group equivalent exceeds 400 g / mol, the crosslink density of the photo spacer decreases and the elastic recovery rate decreases. 360 g / mol or less is preferable and 300 g / mol or less of the ethylenically unsaturated group equivalent of alkali-soluble resin is more preferable.
 ここで、エチレン性不飽和基当量とは、エチレン性不飽和基1モルに対するグラム数のことをいい、その値が小さい方が、含まれるエチレン性不飽和基の量が多くなる。例えば、エチレン性不飽和基を有するB)前記一般式(2)で表される構造単位の含有比率が高いほど、エチレン性不飽和基当量は小さくなる。アルカリ可溶性樹脂のエチレン性不飽和基当量は、エチレン性不飽和基を有する化合物の共重合比により所望の範囲に調整することができる。なお、エチレン性不飽和基当量は、JIS K 0070:1992の試験方法第6.0項に記載の方法によりヨウ素価を測定することによって算出することができる。 Here, the ethylenically unsaturated group equivalent refers to the number of grams per mole of the ethylenically unsaturated group, and the smaller the value, the larger the amount of the ethylenically unsaturated group contained. For example, the higher the content ratio of the structural unit represented by the general formula (2) B having an ethylenically unsaturated group, the smaller the equivalent amount of the ethylenically unsaturated group. The ethylenically unsaturated group equivalent of the alkali-soluble resin can be adjusted to a desired range by the copolymerization ratio of the compound having the ethylenically unsaturated group. The ethylenically unsaturated group equivalent can be calculated by measuring the iodine value by the method described in paragraph 6.0 of the test method of JIS K 0070: 1992.
 本発明におけるアルカリ可溶性樹脂の重量平均分子量(「Mw」)は、10,000~100,000が好ましい。Mwを10,000以上とすることにより、プリベイク膜の粘度を高め、高さのばらつきをより抑制することができる。Mwは20,000以上がより好ましい。一方、Mwを100,000以下とすることにより、パターン表面の凹凸を抑制し、パターンの表面形状を向上させることができる。Mwは80,000以下がより好ましい。ここで、本発明におけるアルカリ可溶性樹脂のMwは、標準ポリスチレンによる換算値であり、ゲルパーミエーションクロマトグラフィーを用いて測定することができる。 The weight average molecular weight ("Mw") of the alkali-soluble resin in the present invention is preferably 10,000 to 100,000. By setting Mw to 10,000 or more, the viscosity of the pre-baked film can be increased, and the variation in height can be further suppressed. Mw is more preferably 20,000 or more. On the other hand, by setting Mw to 100,000 or less, unevenness of the pattern surface can be suppressed, and the surface shape of the pattern can be improved. Mw is more preferably 80,000 or less. Here, Mw of the alkali-soluble resin in the present invention is a value converted by standard polystyrene, and can be measured using gel permeation chromatography.
 本発明におけるアルカリ可溶性樹脂の酸価は、60~100mgKOH/gが好ましい。酸価を60mgKOH/g以上とすることにより、高さばらつきをより低減することができる。酸価は65mgKOH/g以上がより好ましい。一方、酸価を100mgKOH/g以下とすることにより、パターン表面の凹凸を抑制し、パターンの表面形状を向上させることができる。酸価は95mgKOH/g以下がより好ましい。アルカリ可溶性樹脂の酸価は、カルボキシル基を有する化合物の共重合比により所望の範囲に調整することができる。ここで、本発明におけるアルカリ可溶性樹脂の酸価は、JIS K 0070:1992の試験方法第3.1項の中和滴定法により求めることができる。なお、固形分濃度30質量%程度のアルカリ可溶性樹脂溶液を用いて測定する場合には、アルカリ可溶性樹脂溶液5gをアルミ製カップ(φ45mm)に入れ、130℃で1時間加熱して溶剤を除去することにより、酸価の測定に必要な量のアルカリ可溶性樹脂固形分を得ることができる。 The acid value of the alkali-soluble resin in the present invention is preferably 60 to 100 mg KOH / g. By setting the acid value to 60 mg KOH / g or more, the height variation can be further reduced. The acid value is more preferably 65 mg KOH / g or more. On the other hand, by setting the acid value to 100 mgKOH / g or less, unevenness on the surface of the pattern can be suppressed, and the surface shape of the pattern can be improved. The acid value is more preferably 95 mg KOH / g or less. The acid value of the alkali-soluble resin can be adjusted to a desired range by the copolymerization ratio of the compound having a carboxyl group. Here, the acid value of the alkali-soluble resin in the present invention can be determined by the neutralization titration method of test method section 3.1 of JIS K 0070: 1992. When using an alkali-soluble resin solution with a solid content concentration of about 30% by mass, 5 g of the alkali-soluble resin solution is put in an aluminum cup (φ 45 mm) and heated at 130 ° C. for 1 hour to remove the solvent. As a result, it is possible to obtain an alkali-soluble resin solid content in an amount necessary for measuring the acid value.
 アルカリ可溶性樹脂が(メタ)アクリル酸にグリシジル(メタ)アクリレートを付加して得られるものである場合、アルカリ可溶性樹脂とともに、未反応のグリシジル(メタ)アクリレートが残存する場合がある。グリシジル(メタ)アクリレートの残存量は、上記で求めた方法での固形分あたり0.001~0.500質量%が好ましい。グリシジル(メタ)アクリレートの残存量を0.001質量%以上とすることにより、グリシジル(メタ)アクリレートの除去のための加熱時間が長くならずに済み、加熱によるアルカリ可溶性樹脂のゲル化を抑制することができる。一方、グリシジル(メタ)アクリレートの残存量を0.500質量%以下とすることにより、現像時の欠落を抑制することができる。0.2%以下がより好ましく、0.03%以下がさらにより好ましい。ここで、アルカリ可溶性樹脂のグリシジル(メタ)アクリレートの残存量は、アルカリ可溶性樹脂溶液からガスクロマトグラフィーを用いて測定したグリシジル(メタ)アクリレート量とアルカリ樹脂溶液の固形分濃度とから求めることができる。 When the alkali-soluble resin is obtained by adding glycidyl (meth) acrylate to (meth) acrylic acid, unreacted glycidyl (meth) acrylate may remain together with the alkali-soluble resin. The residual amount of glycidyl (meth) acrylate is preferably 0.001 to 0.500% by mass per solid content in the method determined above. By setting the residual amount of glycidyl (meth) acrylate to 0.001% by mass or more, the heating time for removing glycidyl (meth) acrylate does not need to be long, and the gelation of the alkali-soluble resin due to heating is suppressed be able to. On the other hand, by setting the residual amount of glycidyl (meth) acrylate to 0.500% by mass or less, it is possible to suppress the loss during development. 0.2% or less is more preferable, and 0.03% or less is even more preferable. Here, the remaining amount of glycidyl (meth) acrylate of the alkali-soluble resin can be determined from the amount of glycidyl (meth) acrylate measured from the alkali-soluble resin solution using gas chromatography and the solid content concentration of the alkali resin solution .
 本発明の感光性樹脂組成物におけるアルカリ可溶性樹脂の含有量は、後述する重合性モノマー100質量部に対して25~82質量部が好ましい。アルカリ可溶性樹脂の含有量を25質量部以上とすることにより、高さばらつきをより抑制することができる。アルカリ可溶性樹脂の含有量は、34質量部以上がより好ましい。一方、アルカリ可溶性樹脂の含有量を82質量部以下とすることにより、弾性復元率をより向上させることができる。アルカリ可溶性樹脂の含有量は、66質量部以下がより好ましく、62質量部以下がより好ましく、55質量部以下がさらに好ましく、40質量部以下がさらに好ましい。 The content of the alkali-soluble resin in the photosensitive resin composition of the present invention is preferably 25 to 82 parts by mass with respect to 100 parts by mass of a polymerizable monomer described later. By setting the content of the alkali-soluble resin to 25 parts by mass or more, the height variation can be further suppressed. The content of the alkali-soluble resin is more preferably 34 parts by mass or more. On the other hand, by setting the content of the alkali-soluble resin to 82 parts by mass or less, the elastic recovery rate can be further improved. 66 mass parts or less are more preferable, 62 mass parts or less are more preferable, 55 mass parts or less are more preferable, and 40 mass parts or less are more preferable as content of alkali-soluble resin.
 本発明における光重合開始剤とは、光(紫外線または電子線を含む)により分解および/または反応し、ラジカルを発生させる化合物を言う。本発明の感光性樹脂組成物は、光重合開始剤を含有することにより、感度を向上させることができる。光重合開始剤としては、例えば、オキシムエステル系化合物、アルキルフェノン系化合物、ベンゾフェノン系化合物、チオキサントン系化合物、イミダゾール系化合物、ベンゾチアゾール系化合物、ベンゾオキサゾール系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物などが挙げられる。これらを2種以上含有してもよい。 The photopolymerization initiator in the present invention refers to a compound which is decomposed and / or reacted by light (including ultraviolet light or electron beam) to generate a radical. The photosensitive resin composition of the present invention can improve sensitivity by containing a photopolymerization initiator. Examples of the photopolymerization initiator include oxime ester compounds, alkylphenone compounds, benzophenone compounds, thioxanthone compounds, imidazole compounds, benzothiazole compounds, benzoxazole compounds, acylphosphine oxide compounds, and titanocene compounds. A compound etc. are mentioned. Two or more of these may be contained.
 オキシムエステル系化合物としては、例えば、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)、エタノン,1-〔9-エチル-6-(2-メチル-4-テトラヒドロフラニルメトキシベンゾイル)-9H-カルバゾール-3-イル〕-,1-(O-アセチルオキシム)、エタノン,1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)メトキシベンゾイル}-9H-カルバゾール-3-イル〕-,1-(O-アセチルオキシム)、“オプトマー”(商標登録)N-1919、NCI-831、NCI-930(以上、いずれも(株)ADEKA製)、“IRGACURE”(商標登録)OXE01、OXE02、OXE03(以上、いずれもBASFジャパン(株)製)などが挙げられる。 Examples of oxime ester compounds include 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethyl-6- (2-) Methyl benzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), ethanone, 1- [9-ethyl-6- (2-methyl-4-tetrahydrofuranylmethoxybenzoyl) -9H-carbazole -3-yl]-, 1- (O-acetyloxime), ethanone, 1- [9-ethyl-6- {2-methyl-4- (2,2-dimethyl-1,3-dioxolanyl) methoxybenzoyl} -9H-Carbazol-3-yl]-, 1- (O-acetyloxime), “Optomer” (registered trademark) N-1919, NCI-831, NCI-930 (or more) Both Co., Ltd. ADEKA), "IRGACURE" (registered trademark) OXE01, OXE02, OXE03 (or more, both BASF Japan Co., Ltd.), and the like.
 アルキルフェノン系化合物としては、例えば、2,2-ジエトキシアセトフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、α-ヒドロキシイソブチルフェノン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、“IRGACURE”(商標登録)907(BASFジャパン(株)製)などが挙げられる。 Examples of the alkylphenone compounds include 2,2-diethoxyacetophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 2- (dimethylamino) -2-[(4) -Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, α-hydroxyisobutylphenone, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1- Examples thereof include phenyl-propan-1-one, “IRGACURE” (registered trademark) 907 (manufactured by BASF Japan Ltd.), and the like.
 ベンゾフェノン系化合物としては、例えば、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノンなどが挙げられる。 Examples of benzophenone compounds include benzophenone, N, N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone and the like.
 チオキサントン系化合物としては、例えば、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソピルチオキサントン、1-クロロ-4-プロピルチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトンなどが挙げられる。 Examples of thioxanthone compounds include thioxanthone, 2-chlorothioxanthone, 2-methyl thioxanthone, 2-isopropyl thioxanthone, 4-isopropyl thioxanthone, 2,4-dimethyl thioxanthone, 2,4-diethyl thioxanthone, 2,4-diiso. Pirthioxanthone, 1-chloro-4-propylthioxanthone, 1-hydroxycyclohexyl phenyl ketone and the like can be mentioned.
 イミダゾール系化合物としては、例えば、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール2量体などが挙げられる。 Examples of the imidazole compounds include 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer and the like.
 ベンゾチアゾール系化合物としては、例えば、2-メルカプトベンゾチアゾールなどが挙げられる。 Examples of the benzothiazole compound include 2-mercaptobenzothiazole and the like.
 ベンゾオキサゾール系化合物としては、例えば、2-メルカプトベンゾオキサゾールなどが挙げられる。 Examples of the benzoxazole compounds include 2-mercaptobenzoxazole and the like.
 アシルフォスフィンオキサイド系化合物としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドなどが挙げられる。 Examples of the acyl phosphine oxide compound include 2,4,6-trimethyl benzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide and the like.
 チタノセン系化合物としては、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウムなどが挙げられる。 Examples of the titanocene compounds include bis (η5-2, 4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium and the like. Be
 これらの中でも、感度をより向上させる観点から、オキシムエステル系化合物、アルキルフェノン系化合物が好ましい。オキシムエステル系化合物の中でも“アデカアークルズ”(商標登録)N-1919がより好ましく、アルキルフェノン系化合物の中でも“IRGACURE”(商標登録)907がより好ましい。 Among these, from the viewpoint of further improving sensitivity, oxime ester compounds and alkylphenone compounds are preferable. Among the oxime ester compounds, “Adekaqules” (registered trademark) N-1919 is more preferable, and among the alkylphenone compounds, “IRGACURE” (registered trademark) 907 is more preferable.
 本発明の感光性樹脂組成物における光重合開始剤の含有量は、アルカリ可溶性樹脂および重合性モノマーの合計含有量100質量部に対して2~30質量部が好ましく、5~25質量部がさらに好ましい。 The content of the photopolymerization initiator in the photosensitive resin composition of the present invention is preferably 2 to 30 parts by mass, more preferably 5 to 25 parts by mass with respect to 100 parts by mass of the total content of the alkali-soluble resin and the polymerizable monomer. preferable.
 本発明における重合性モノマーとは、少なくとも一つのエチレン性不飽和結合を有するモノマーを言う。重合性モノマーとしては、例えば、単官能または多官能のモノマーやオリゴマーなどが挙げられる。これらを2種以上含有してもよい。なお架橋密度が高まり弾性復元率が向上することから、多官能モノマーが好ましい。 The polymerizable monomer in the present invention refers to a monomer having at least one ethylenically unsaturated bond. Examples of the polymerizable monomer include monofunctional or polyfunctional monomers and oligomers. Two or more of these may be contained. In addition, since the crosslink density is increased and the elastic recovery rate is improved, polyfunctional monomers are preferable.
 多官能の重合性モノマーとしては、例えば、トリプロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、9,9-ビス[4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]フルオレン、9,9-ビス[3-メチル-4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]フルオレン、9,9-ビス[3-クロロ-4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]フルオレン、ビスフェノキシエタノールフルオレンジアクリレート、ビスフェノキシエタノールフルオレンジメタアクリレート、ジペンタエリスリトールペンタアクリレートと無水コハク酸との反応物などが挙げられる。これらを2種以上含有してもよい。 As a polyfunctional polymerizable monomer, for example, tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol octa (meth) acrylate, tri Pentaerythritol octa (meth) acrylate, 9,9-bis [4- (3-acryloxy-2-hydroxypropoxy) phenyl] fluorene, 9,9-bis 3-Methyl-4- (3-acryloxy-2-hydroxypropoxy) phenyl] fluorene, 9,9-bis [3-chloro-4- (3-acryloxy-2-hydroxypropoxy) phenyl] fluorene, bisphenoxyethanolfluorene Acrylate, bisphenoxyethanolfluorene methacrylate, a reaction product of dipentaerythritol pentaacrylate and succinic anhydride, and the like. Two or more of these may be contained.
 これらの中でも、プリベイク膜の粘度、露光感度および加工性を所望の範囲に調整しやすくする観点から、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートとの組み合わせや、これらと無水コハク酸との反応物が好ましい。 Among these, from the viewpoint of facilitating adjustment of the viscosity, exposure sensitivity and processability of the pre-baked film into desired ranges, combinations of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, and reactions of these with succinic anhydride Are preferred.
 本発明の感光性樹脂組成物は、フィラー、増感助剤、紫外線吸収剤、密着改良剤、界面活性剤、重合禁止剤、前述のアルカリ可溶性以外の高分子化合物、有機酸、有機アミノ化合物、硬化剤などの添加剤や溶剤を含有してもよい。 The photosensitive resin composition of the present invention comprises a filler, a sensitizer, a UV absorber, an adhesion improver, a surfactant, a polymerization inhibitor, a polymer compound other than the above-mentioned alkali-soluble compound, an organic acid, an organic amino compound, You may contain additives and solvents, such as a hardening agent.
 本発明の感光性樹脂組成物は、フィラーを含有することにより、プリベイク膜の乾燥後の粘度をより高めて、高さばらつきをより抑制することができる。フィラーとしては、例えば、シリカ、アルミナ、チタニア、硫酸バリウム等の無機酸化物粒子;金属粒子;アクリル、スチレン、シリコーン、フッ素含有ポリマー等の樹脂粒子などが挙げられる。これらを2種以上含有してもよい。これらの中でも、粒子径と分散性の観点から、シリカ粒子が好ましい。フィラーの比表面積換算の平均粒子径は、4~120nmが好ましい。フィラーの平均粒子径が4nm以上であると、高さばらつきをより抑制ことができる。一方、粒子径が120nm以下であると、パターン表面の凹凸を抑制し、パターンの表面形状を向上させることができる。 By containing the filler, the photosensitive resin composition of the present invention can further increase the viscosity after drying of the pre-baked film, and can further suppress the height variation. Examples of the filler include inorganic oxide particles such as silica, alumina, titania and barium sulfate; metal particles; and resin particles such as acrylic, styrene, silicone and fluorine-containing polymer. Two or more of these may be contained. Among these, silica particles are preferable from the viewpoint of particle diameter and dispersibility. The average particle diameter in terms of specific surface area of the filler is preferably 4 to 120 nm. When the average particle diameter of the filler is 4 nm or more, the height variation can be further suppressed. On the other hand, when the particle diameter is 120 nm or less, unevenness of the pattern surface can be suppressed, and the surface shape of the pattern can be improved.
 本発明の感光性樹脂組成物は、増感助剤を含有することにより、感度を向上させることができる。増感助剤としては、例えば、芳香族または脂肪族の第3級アミン等が挙げられる。 The photosensitive resin composition of the present invention can improve sensitivity by containing a sensitization auxiliary. Examples of the sensitization assistant include aromatic or aliphatic tertiary amines and the like.
 本発明の感光性樹脂組成物は、紫外線吸収剤を含有することにより、透明性が高く、微細でテーパーの短いフォトスペーサーを容易に形成することができる。紫外線吸収剤としては、透明性および非着色性の観点から、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物などの有機化合物系紫外線吸収剤が好ましい。これらを2種以上含有してもよい。これらの中でも、ベンゾトリアゾール系化合物が好ましい。 The photosensitive resin composition of the present invention can easily form a fine, short, tapered photospacer by containing an ultraviolet light absorber. As the UV absorber, organic compound UV absorbers such as benzotriazole compounds, benzophenone compounds, and triazine compounds are preferable from the viewpoint of transparency and non-coloring property. Two or more of these may be contained. Among these, benzotriazole compounds are preferable.
 ベンゾトリアゾール系化合物としては、例えば、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノール、2-[5クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチルフェノール)、2,4ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-tert-ペンチルフェノール、2-(2H-ベンゾトリアゾール-2-イル-4-(1,1,3,3-テトラメチルブチル)フェノール、2(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール、2[2-ヒドロキシ-3-(3,4,5,6テトラヒドロフタルイミド-メチル)-5-メチルフェニル]ベンゾトリアゾールなどが挙げられる。 Examples of benzotriazole compounds include 2- (2H-benzotriazol-2-yl) -p-cresol and 2- (2H-benzotriazol-2-yl) -4--6-bis (1-methyl-1). -Phenylethyl) phenol, 2- [5 chloro (2H) -benzotriazol-2-yl] -4-methyl-6- (tert-butylphenol), 2,4-di-tert-butyl-6- (5-chloro) Benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-tert-pentylphenol, 2- (2H- Benzotriazol-2-yl-4- (1,1,3,3-tetramethylbutyl) phenol, 2 (2H-benzotriazol-2-yl) ) -6-dodecyl-4-methylphenol, 2 [2-hydroxy-3- (3,4,5,6 tetrahydrophthalimide - methyl) -5-methylphenyl] benzotriazole and the like.
 ベンゾフェノン系化合物としては、例えば、オクタベンゾン、2-ヒドロキシ-4-n-オクトキシベンゾフェノンなどが挙げられる。 Examples of benzophenone compounds include octabenzone, 2-hydroxy-4-n-octoxybenzophenone and the like.
 トリアジン系化合物としては、例えば、2-(4,6-ジフェニル-1,3,5トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノールが挙げられる。 Examples of triazine compounds include 2- (4,6-diphenyl-1,3,5 triazin-2-yl) -5-[(hexyl) oxy] -phenol.
 本発明の感光性樹脂組成物における紫外線吸収剤の含有量は、固形分中0.3~10質量%が好ましい。紫外線吸収剤の含有量を0.3質量%以上とすることにより、テーパー部をより短くすることができる。紫外線吸収剤の含有量は、2質量%以上がより好ましい。一方、紫外線吸収剤の含有量を10質量%以下とすることにより、感度を高く維持することができる。紫外線吸収剤の含有量は、8質量%以下がより好ましい。なお、固形分とは、感光性樹脂組成物に含まれる溶媒を除く成分をいう。 The content of the ultraviolet light absorber in the photosensitive resin composition of the present invention is preferably 0.3 to 10% by mass in the solid content. By setting the content of the ultraviolet absorber to 0.3% by mass or more, the tapered portion can be further shortened. As for content of a ultraviolet absorber, 2 mass% or more is more preferable. On the other hand, the sensitivity can be maintained high by setting the content of the ultraviolet absorber to 10% by mass or less. As for content of a ultraviolet absorber, 8 mass% or less is more preferable. In addition, solid content means the component except the solvent contained in the photosensitive resin composition.
 密着改良剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のシランカップリング剤などが挙げられる。これらを2種以上含有してもよい。 As the adhesion improver, for example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-amino) Ethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl Trimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane Silane coupling agents such as 3-mercaptopropyl trimethoxysilane. Two or more of these may be contained.
 本発明の感光性樹脂組成物における密着改良剤の含有量は、固形分中0.1~20質量%が好ましい。密着改良剤の含有量を0.1質量%以上とすることにより、現像密着性を向上させることができる。密着改良剤の含有量は、0.5質量%以上がより好ましい。一方、密着改良剤の含有量を20質量%以下とすることにより、アルカリ可溶性樹脂や重合性モノマーの凝集を抑制することができる。密着改良剤の含有量は、10質量%以下がより好ましい。 The content of the adhesion improver in the photosensitive resin composition of the present invention is preferably 0.1 to 20% by mass in the solid content. By making the content of the adhesion improver 0.1% by mass or more, the development adhesion can be improved. The content of the adhesion improver is more preferably 0.5% by mass or more. On the other hand, aggregation of the alkali-soluble resin and the polymerizable monomer can be suppressed by setting the content of the adhesion improver to 20% by mass or less. The content of the adhesion improver is more preferably 10% by mass or less.
 界面活性剤としては、例えば、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等の陰イオン界面活性剤;ステアリルアミンアセテート、ラウリルトリメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルアミンオキサイド、ラウリルカルボキシメチルヒドロキシエチルイミダゾリウムベタイン等の両性界面活性剤;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ソルビタンモノステアレート等の非イオン界面活性剤;パーフルオロブチルスルホン酸塩、パーフルオロアルキル基含有カルボン酸塩、パーフルオロアルキル基含有トリメチルアンモニウム塩、パーフルオロアルキル基含有リン酸エステル、若しくはパーフルオロアルキルエチレンオキシド付加物等のフッ素系界面活性剤;ポリエーテル変性ポリメチルアルキルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリエステル変性メチルアルキルポリシロキサン、アラルキル変性ポリメチルアルキルシロキサン、ポリエーテル変性水酸基含有ポリジメチルシロキサン、ポリエステル変性水酸基含有ポリジメチルシロキサン等のシリコーン系界面活性剤などが挙げられる。これらを2種以上含有してもよい。これらの中でも、ポリエーテル変性ポリジメチルシロキサン“BYK”(登録商標)333(ビックケミー社製)が好ましい。 As the surfactant, for example, anionic surfactants such as ammonium lauryl sulfate, polyoxyethylene alkyl ether triethanolamine and the like; cationic surfactants such as stearyl amine acetate, lauryl trimethyl ammonium chloride and the like; lauryl dimethyl amine oxide, lauryl Amphoteric surfactants such as carboxymethyl hydroxyethyl imidazolium betaine; nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, sorbitan monostearate; perfluorobutyl sulfonate, perfluoroalkyl group-containing Carboxylic acid salt, perfluoroalkyl group-containing trimethyl ammonium salt, perfluoroalkyl group-containing phosphoric acid ester, or perfluoroalkyl ether Fluorine-based surfactants such as lenoxide adducts; polyether-modified polymethylalkylsiloxane, polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, polyester-modified methylalkylpolysiloxane, aralkyl-modified polymethylalkylsiloxane, polyether-modified hydroxyl group Examples thereof include silicone surfactants such as contained polydimethylsiloxane and polyester modified hydroxyl group-containing polydimethylsiloxane. Two or more of these may be contained. Among these, polyether modified polydimethylsiloxane "BYK" (registered trademark) 333 (manufactured by Bick Chemie) is preferable.
 本発明の感光性樹脂組成物における界面活性剤の含有量は、固形分中0.001~10質量%が好ましい。界面活性剤の含有量を0.001質量%以上とすることにより、感光性樹脂組成物の塗布性を向上させることができる。界面活性剤の含有量は、0.01質量%以上がより好ましい。一方、界面活性材の含有量を10質量%以下とすることにより、パターン表面の凹凸を抑制し、パターンの表面形状を向上させることができる。界面活性剤の含有量は、1質量%以下がより好ましい。 The content of the surfactant in the photosensitive resin composition of the present invention is preferably 0.001 to 10% by mass in the solid content. The coatability of the photosensitive resin composition can be improved by setting the content of the surfactant to 0.001% by mass or more. The content of the surfactant is more preferably 0.01% by mass or more. On the other hand, by setting the content of the surfactant to 10% by mass or less, unevenness of the pattern surface can be suppressed, and the surface shape of the pattern can be improved. As for content of surfactant, 1 mass% or less is more preferable.
 重合禁止剤としては、例えば、ヒドロキノン、tert-ブチルヒドロキノン、2,5-ビス(1,1,3,3-テトラメチルブチル)ヒドロキノン、2,5-ビス(1,1-ジメチルブチル)などのヒドロキノンヒドロキノン系重合禁止剤;カテコール、tert-ブチルカテコールなどのカテコール系重合禁止剤などが挙げられる。これらを2種以上含有してもよい。 Examples of the polymerization inhibitor include hydroquinone, tert-butyl hydroquinone, 2,5-bis (1,1,3,3-tetramethylbutyl) hydroquinone, 2,5-bis (1,1-dimethylbutyl) and the like. Hydroquinone hydroquinone polymerization inhibitors; catechol polymerization inhibitors such as catechol and tert-butyl catechol, and the like. Two or more of these may be contained.
 本発明の感光性樹脂組成物における重合禁止剤の含有量は、固形分中0.01~0.5質量%が好ましい。重合禁止剤の含有量を0.01質量%以上とすることにより、感光性樹脂組成物の経時保存安定性を向上することができる。一方、重合禁止剤の含有量を0.5質量%以下とすることにより、極性溶媒浸漬時の感度低下による膜表面の浸食やシミの発生を抑制することができる。 The content of the polymerization inhibitor in the photosensitive resin composition of the present invention is preferably 0.01 to 0.5% by mass in the solid content. By setting the content of the polymerization inhibitor to 0.01% by mass or more, the storage stability over time of the photosensitive resin composition can be improved. On the other hand, by setting the content of the polymerization inhibitor to 0.5% by mass or less, it is possible to suppress the occurrence of erosion and stains on the film surface due to the decrease in sensitivity when immersed in a polar solvent.
 前記アルカリ可溶性樹脂以外の高分子化合物としては、例えば、一般式(1)~(3)で表される構造単位を有しないアクリル樹脂、アルキド樹脂、メラミン樹脂、ポリビニルアルコール、ポリエステル、ポリエーテル、ポリアミド、ポリアミドイミド、ポリイミド、ポリイミド前駆体などが挙げられる。これらを2種以上含有してもよい。 Examples of the polymer compound other than the alkali-soluble resin include acrylic resins having no structural unit represented by the general formulas (1) to (3), alkyd resin, melamine resin, polyvinyl alcohol, polyester, polyether, polyamide , Polyamide imide, polyimide, polyimide precursor and the like. Two or more of these may be contained.
 溶剤としては、エーテル系溶剤、エステル系溶剤、アルコール系溶剤、ケトン系溶剤、キシレン、エチルベンゼン、ソルベントナフサなどが挙げられる。これらを2種以上含有してもよい。 Examples of the solvent include ether solvents, ester solvents, alcohol solvents, ketone solvents, xylene, ethylbenzene, solvent naphtha and the like. Two or more of these may be contained.
 エーテル系溶剤としては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールターシャリーブチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールモノメチルエーテルなどが挙げられる。これらの中でも、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールメチルエチルエーテルが好ましい。 Examples of the ether solvents include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol tertiary butyl ether, diethylene glycol methyl ethyl ether, dipropylene glycol monomethyl ether and the like. Among these, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and diethylene glycol methyl ethyl ether are preferable.
 エステル系溶剤としては、例えば、ベンジルアセテート、エチルベンゾエート、γ-ブチロラクトン、メチルベンゾエート、マロン酸ジエチル、2-エチルヘキシルアセテート、2-ブトキシエチルアセテート、3-メトキシ-ブチルアセテート、3-メトキシ-3-メチル-ブチルアセテート、シュウ酸ジエチル、アセト酢酸エチル、3-メトキシ-ブチルアセテート、アセト酢酸メチル、エチル-3-エトキシプロピオネート、2-エチルブチルアセテート、イソペンチルプロピオネート、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルアセテート、酢酸ペンチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールターシャリーブチルエーテル、ジプロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸ブチル、酢酸イソペンチルなどが挙げられる。これらの中でも、3-メトキシ-ブチルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネートなどが好ましい。 As an ester solvent, for example, benzyl acetate, ethyl benzoate, γ-butyrolactone, methyl benzoate, diethyl malonate, 2-ethylhexyl acetate, 2-butoxyethyl acetate, 3-methoxy-butyl acetate, 3-methoxy-3-methyl ester -Butyl acetate, diethyl oxalate, ethyl acetoacetate, 3-methoxy-butyl acetate, methyl acetoacetate, ethyl 3-ethoxy propionate, 2-ethyl butyl acetate, isopentyl propionate, propylene glycol monomethyl ether propio Nitrate, propylene glycol monoethyl ether acetate, pentyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether, propylene glycol Coulter tertiary butyl ether, dipropylene glycol monomethyl ether acetate, ethyl acetate, butyl acetate, acetic acid isopentyl and the like. Among these, 3-methoxy-butyl acetate, propylene glycol monoethyl ether acetate, propylene glycol monomethyl ether propionate and the like are preferable.
 アルコール系溶剤としては、例えば、ブタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノールが挙げられる。 Examples of alcohol solvents include butanol, 3-methyl-2-butanol and 3-methyl-3-methoxybutanol.
 ケトン系溶剤としては、例えば、シクロペンタノン、シクロヘキサノンが挙げられる。 Examples of ketone solvents include cyclopentanone and cyclohexanone.
 本発明の感光性樹脂組成物は、硬化後膜厚3μmになるように塗布し、25℃、45Paの条件で200秒間減圧乾燥した後、105℃のオーブンで10分間加熱乾燥した後の23℃における粘度が1×10~1×10Pa・sとなることが好ましい。かかる粘度を有することにより、後述するフォトスペーサーの製造方法に好適に用いることができる。ここで、乾燥した後の23℃における粘度とは、乾燥した後の感光性樹脂組成物90mm以上を採取し、レオメーター(MCR-302;アントンパール(株)製)とφ15mmのプレートを用いて、測定厚み:0.5mm、周波数:1Hz、歪み:0.5%の条件で、20℃から110℃まで0.083℃/secの昇温速度で昇温しながら測定したときの23℃における粘度を言う。 The photosensitive resin composition of the present invention is coated to a film thickness of 3 μm after curing, dried under reduced pressure for 200 seconds under conditions of 25 ° C. and 45 Pa, and then heat dried in an oven at 105 ° C. for 10 minutes at 23 ° C. It is preferable that the viscosity in the above becomes 1 × 10 3 to 1 × 10 8 Pa · s. By having such viscosity, it can be used suitably for the manufacturing method of the photo spacer mentioned later. Here, with the viscosity at 23 ° C. after drying, 90 mm 3 or more of the photosensitive resin composition after drying is collected, and a rheometer (MCR-302; manufactured by Anton Paar Co., Ltd.) and a plate of φ 15 mm are used. Measured thickness: 0.5 mm, frequency: 1 Hz, strain: 0.5%, measured from 20 ° C to 110 ° C at a heating rate of 0.083 ° C / sec at 23 ° C. Say the viscosity at
 本発明の感光性樹脂組成物は、上底面の直径が6μm、下底面の直径が9μm、高さが3μmの円錐台状フォトスペーサーを形成し、50mNの荷重をかけたときの弾性復元率が70%以上となることが好ましい。弾性復元率が70%以上であると、セル圧着時のスペーサーの高さのばらつきがより抑制され、フォトスペーサーの塑性変形による表示ムラをより低減することができる。弾性復元率は73%以上がより好ましい。弾性復元率が100%に近いほど、フォトスペーサーの変形によるセルギャップへの影響と、それによる表示ムラをより抑制することができる。上記形状は、フォトスペーサーの代表的な形状であり、上記荷重は、フォトスペーサーが製造または使用時に受ける荷重の一例である。かかる方法により、フォトスペーサーを形成するために用いた感光性樹脂組成物の塑性変形のしにくさを相対的に評価することができる。 The photosensitive resin composition of the present invention forms a truncated cone-shaped photospacer having a diameter of 6 μm at the top and a diameter of 9 μm at the bottom, and a height of 3 μm at the bottom, and the elastic recovery rate when a load of 50 mN is applied. It is preferably 70% or more. The dispersion | variation in the height of the spacer at the time of cell pressure bonding is more suppressed as an elastic restoration rate is 70% or more, and the display nonuniformity by the plastic deformation of a photo spacer can be reduced more. The elastic recovery rate is more preferably 73% or more. As the elastic recovery rate approaches 100%, it is possible to further suppress the influence of the deformation of the photo spacer on the cell gap and the display unevenness due to it. The above shape is a typical shape of the photo spacer, and the above load is an example of the load that the photo spacer receives during manufacture or use. According to this method, the degree of plastic deformation of the photosensitive resin composition used to form the photospacer can be relatively evaluated.
 図1に、フォトスペーサーの弾性特性を表すヒステリシス曲線の一例の概略図を示す。フォトスペーサーに荷重をかけると、図1に示すような、フォトスペーサーに加えた荷重と、フォトスペーサーの変形量Dとのヒステリシス曲線が得られる。ヒステリシス曲線からフォトスペーサーの総変形量Ha[μm]、塑性変形量Hb[μm]および弾性変形量を求めることにより、フォトスペーサーの弾性復元率(((Ha-Hb)/Ha)×100)を算出することができる。ここで、ヒステリシス曲線は、硬度計フィッシャー(Fischerscope H100;Helmut Fischer GmbH & Co社製)とφ50μmの平型圧子を用いて、速度2.5mN/secで荷重50mNに到達するまで圧力を加えた後、速度2.5mN/secで開放することにより得られる。 FIG. 1 shows a schematic view of an example of a hysteresis curve that represents the elastic properties of the photo spacer. When a load is applied to the photo spacer, a hysteresis curve of the load applied to the photo spacer and the deformation amount D of the photo spacer as shown in FIG. 1 is obtained. By determining the total deformation amount Ha [μm], the plastic deformation amount Hb [μm] and the elastic deformation amount of the photospacer from the hysteresis curve, the elastic recovery rate of the photospacer (((Ha-Hb) / Ha) × 100) is obtained. It can be calculated. Here, after applying a pressure until a load of 50 mN is reached at a speed of 2.5 mN / sec using a hardness tester Fischer (Fischerscope H100; Helmut Fischer GmbH & Co) and a flat indenter with a diameter of 50 μm. , Speed of 2.5 mN / sec.
 フォトスペーサーを形成したときの弾性復元率を上記範囲にするためには、前述の本発明の感光性樹脂組成物を用いることが好ましく、特に、エチレン性不飽和基当量が前述の好ましい範囲にある感光性樹脂組成物がより好ましい。 It is preferable to use the photosensitive resin composition of the present invention described above in order to make the elastic recovery rate when forming a photo spacer into the above range, and in particular, the ethylenically unsaturated group equivalent is in the above-mentioned preferred range Photosensitive resin compositions are more preferred.
 本発明の感光性樹脂組成物は、アルカリ可溶性樹脂、光重合開始剤および重合性モノマーと、必要に応じて界面活性剤、重合禁止剤、溶剤、紫外線吸収剤等その他の添加剤を任意の割合で混合することにより得ることができる。 The photosensitive resin composition of the present invention comprises an alkali-soluble resin, a photopolymerization initiator and a polymerizable monomer, and, if necessary, other additives such as a surfactant, a polymerization inhibitor, a solvent, a UV absorber and the like, as desired. It can be obtained by mixing in
 本発明の感光性樹脂組成物は、高さばらつきを抑制することができることから、レンズスキャン方式の露光に好ましく用いることができ、レンズスキャン露光によるフォトスペーサーの形成に、より好ましく用いることができる。 The photosensitive resin composition of the present invention can be preferably used for exposure of a lens scan method because height variations can be suppressed, and can be more preferably used for formation of a photo spacer by lens scan exposure.
 フォトスペーサーの形状は、カラーフィルターの高精細化のため、円錐台形状が好ましく、上底の直径は15μm以下が好ましい。また、下低の直径に対する上底の直径の比(上底/下低)は、0.3~2.0が好ましい。 The shape of the photo spacer is preferably a frusto-conical shape for high definition of the color filter, and the diameter of the upper base is preferably 15 μm or less. The ratio of the diameter of the upper base to the diameter of the lower (upper base / lower lower) is preferably 0.3 to 2.0.
 次に、本発明のフォトスペーサーの製造方法について、基板上に形成する場合を例に説明する。前述の本発明の感光性樹脂組成物を基板上に塗布し、乾燥してプリベイク膜を得て、プリベイク膜をレンズスキャン露光および現像することによりフォトスペーサーを形成することが好ましい。さらに、現像後の塗布膜パターンを加熱処理して硬化させることが好ましい。 Next, the method of manufacturing the photo spacer of the present invention will be described by taking the case of forming it on a substrate as an example. The photosensitive resin composition of the present invention described above is preferably coated on a substrate and dried to obtain a pre-baked film, and the pre-baked film is preferably subjected to lens scan exposure and development to form a photospacer. Furthermore, it is preferable to heat-process and harden the coating film pattern after image development.
 基板としては、ガラス、高分子フィルム等の透明基板が挙げられる。 Examples of the substrate include transparent substrates such as glass and polymer films.
 感光性樹脂組成物の塗布方法としては、例えば、ディップ法、ロールコーター法、スピナー法、ダイコーティング法、ワイヤーバーコーティング法などが挙げられる。 Examples of the method for applying the photosensitive resin composition include a dip method, a roll coater method, a spinner method, a die coating method, a wire bar coating method, and the like.
 乾燥方法としては、減圧乾燥、オーブンやホットプレートを用いた加熱乾燥(プリベイク)などが挙げられる。減圧乾燥の場合、加熱温度は、乾燥溶媒の減圧チャンバー内壁への再凝縮を抑制する観点から、100℃以下が好ましい。減圧乾燥圧力は、感光性樹脂組成物に含まれる溶剤の蒸気圧以下が好ましく、1~1000Paが好ましい。減圧乾燥時間は、10~600秒間が好ましい。プリベイクの場合、加熱温度は60~200℃、加熱時間は1~60分間が一般的である。 As a drying method, drying under reduced pressure, heating drying using an oven or a hot plate (pre-baking), etc. may be mentioned. In the case of drying under reduced pressure, the heating temperature is preferably 100 ° C. or less from the viewpoint of suppressing re-condensation of the drying solvent on the inner wall of the reduced pressure chamber. The reduced pressure drying pressure is preferably equal to or less than the vapor pressure of the solvent contained in the photosensitive resin composition, and is preferably 1 to 1000 Pa. The reduced pressure drying time is preferably 10 to 600 seconds. In the case of pre-baking, the heating temperature is generally 60 to 200 ° C., and the heating time is generally 1 to 60 minutes.
 本発明においては、プリベイク膜の23℃における粘度が1×10~1×10Pa・sであることが好ましい。23℃における粘度が1×10Pa・s以上であるプリベイク膜に露光することにより、プリベイク膜の流動性を適度に抑え、プリベイク膜の搬送工程や、露光工程、加熱乾燥(ポストベイク)工程におけるムラの発生をより抑制することができる。23℃における粘度が1×10Pa・s以上がより好ましい。一方、23℃における粘度が1×10Pa・s以下であるプリベイク膜に露光することにより、現像性を向上させることができる。ここで、プリベイク膜の23℃における粘度とは、プリベイク膜90mm以上を採取し、レオメーター(MCR-302;アントンパール(株)製)とφ15mmのプレートを用いて、測定厚み:0.5mm、周波数:1Hz、歪み:0.5%の条件で、20℃から110℃まで0.083℃/secの昇温速度で昇温しながら測定したときの23℃における粘度を言う。なお、カラーフィルター基板上へのフォトスペーサーの製造工程において、プリベイク膜の温度は乾燥工程で100℃程度まで加熱されるが、露光前の冷却により室温(約23℃)程度となることが一般的である。このため、本発明においては、一般的な露光時のプリベイク膜温度として、23℃における粘度に着目した。 In the present invention, the viscosity at 23 ° C. of the pre-baked film is preferably 1 × 10 3 to 1 × 10 8 Pa · s. By exposing the pre-baked film having a viscosity of 1 × 10 3 Pa · s or more at 23 ° C., the flowability of the pre-baked film is appropriately suppressed, and the process of transporting the pre-baked film, the exposure process, and the heating and drying (post-baking) process is performed. The occurrence of unevenness can be further suppressed. The viscosity at 23 ° C. is more preferably 1 × 10 5 Pa · s or more. On the other hand, the developability can be improved by exposing the pre-baked film having a viscosity of 1 × 10 8 Pa · s or less at 23 ° C. Here, the viscosity at 23 ° C. of the pre-baked film is determined by collecting 90 mm 3 or more of the pre-baked film and using a rheometer (MCR-302; Anton Paar Co., Ltd.) and a plate with a diameter of 15 mm. The viscosity at 23 ° C when measured while raising the temperature from 20 ° C to 110 ° C at a temperature rising rate of 0.083 ° C / sec under the condition of frequency: 1 Hz, strain: 0.5%. Although the temperature of the pre-baked film is heated to about 100 ° C. in the drying step in the process of producing the photospacer on the color filter substrate, it is general that it becomes about room temperature (about 23 ° C.) by cooling before exposure. It is. Therefore, in the present invention, attention was paid to the viscosity at 23 ° C. as the pre-baked film temperature during general exposure.
 得られたプリベイク膜に、マスクを介して露光することにより露光部分を硬化させ、アルカリ現像液により現像することにより未露光部分を除去し、パターン形成することが好ましい。 The obtained pre-baked film is preferably exposed to light through a mask to cure the exposed portion, and developed with an alkaline developer to remove the unexposed portion and to form a pattern.
 露光方式としては、例えば、プロキシミティ露光、レンズスキャン露光、ミラープロジェクション露光、ステッパー露光などが挙げられる。本発明においては、大型基板への高精細パターン加工に優れたレンズスキャン露光が好ましく用いられる。本発明の感光性樹脂組成物は高さのばらつきを抑制することができることから、高さのばらつきが生じやすいレンズスキャン露光に好適に用いることができる。レンズスキャン露光装置としては、例えば、FX-65S((株)ニコン製)が挙げられる。 Examples of the exposure method include proximity exposure, lens scan exposure, mirror projection exposure, stepper exposure and the like. In the present invention, lens scan exposure excellent in high definition pattern processing on a large substrate is preferably used. Since the photosensitive resin composition of the present invention can suppress height variations, it can be suitably used for lens scan exposure in which height variations are likely to occur. Examples of the lens scan exposure apparatus include FX-65S (manufactured by Nikon Corporation).
 現像工程としては、アルカリ現像液による現像が好ましい。アルカリ現像液としては、有機アルカリ現像液、無機アルカリ現像液などが挙げられる。無機アルカリ現像液としては、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウムの水溶液などが好ましい。有機アルカリ現像液としては、テトラメチルアンモニウムヒドロキシド水溶液、メタノールアミンなどのアミン系水溶液が好ましい。アルカリ現像液中におけるアルカリ性物質の含有量は、未露光部の現像溶解性の観点から、0.02質量%以上が好ましい。一方、露光部のパターン加工性をより向上させる観点から、2.0質量%以下が好ましい。現像液は、現像の均一性を高めるために、界面活性剤を含有することが好ましい。現像液の温度により現像速度が変化するため、現像液温度は18~40℃の範囲で適宜選択することが好ましい。 As the development step, development with an alkaline developer is preferred. As an alkali developing solution, an organic alkali developing solution, an inorganic alkali developing solution, etc. are mentioned. As the inorganic alkaline developer, an aqueous solution of sodium carbonate, sodium hydroxide, potassium hydroxide and the like is preferable. As the organic alkali developing solution, an aqueous tetramethyl ammonium hydroxide aqueous solution and an aqueous amine solution such as methanolamine are preferable. The content of the alkaline substance in the alkaline developer is preferably 0.02% by mass or more from the viewpoint of the development solubility of the unexposed area. On the other hand, from the viewpoint of further improving the pattern processability of the exposed portion, 2.0 mass% or less is preferable. The developer preferably contains a surfactant to enhance the uniformity of development. The developing solution temperature is preferably selected in the range of 18 to 40 ° C. because the developing speed changes depending on the temperature of the developing solution.
 現像方法としては、例えば、ディップ現像、シャワー現像、パドル現像などが挙げられる。現像液の温度、流量およびシャワー噴射圧力、現像後の水洗温度、流量およびシャワー噴射圧力条件を適宜選択することが好ましい。基板上の残渣を除去するためには、現像液または水洗水を高圧で噴射することが好ましく、噴出圧力は0.01MPa~20MPaが好ましい。 Examples of the development method include dip development, shower development, and paddle development. It is preferable to appropriately select the temperature and flow rate of the developer and the shower injection pressure, the water washing temperature after development, the flow rate and the shower injection pressure conditions. In order to remove the residue on the substrate, it is preferable to jet the developer or the washing water under high pressure, and the jetting pressure is preferably 0.01 MPa to 20 MPa.
 現像後の塗布膜パターンの加熱処理装置としては、熱風オーブン、ホットプレートなどが挙げられる。加熱温度は180~300℃が好ましく、加熱時間は5~90分間が好ましい。 Examples of the heat treatment apparatus for the coating film pattern after development include a hot air oven, a hot plate and the like. The heating temperature is preferably 180 to 300 ° C., and the heating time is preferably 5 to 90 minutes.
 次に、本発明のフォトスペーサーを有するカラーフィルター基板と液晶表示装置について説明する。 Next, a color filter substrate having a photo spacer of the present invention and a liquid crystal display device will be described.
 カラーフィルター基板は、基板上に、前述の本発明のフォトスペーサーおよび画素を有する。必要に応じて、ブラックマトリックス、平坦化膜、透明電極、配向膜などを有してもよい。 The color filter substrate has the above-mentioned photo spacer and pixel of the present invention on the substrate. If necessary, it may have a black matrix, a planarizing film, a transparent electrode, an alignment film, and the like.
 カラーフィルター基板としては、フォトスペーサーを形成する基板として例示したものが挙げられる。 Examples of the color filter substrate include those exemplified as a substrate for forming a photo spacer.
 画素としては、例えば、赤色画素、緑色画素、青色画素などが挙げられる。画素は、着色剤、樹脂、重合性モノマー、光重合開始剤、その他の添加剤などを含有してもよく、それらの1種以上を含む組成物の硬化物から形成されていてもよい。着色剤としては、例えば、有機顔料、無機顔料、染料が挙げられる。樹脂、重合性モノマー、光重合開始剤、その他の添加剤としては、例えば、本発明の透明感光性樹脂組成物の成分として例示したものが挙げられる。 As a pixel, a red pixel, a green pixel, a blue pixel etc. are mentioned, for example. The pixel may contain a colorant, a resin, a polymerizable monomer, a photopolymerization initiator, other additives, and the like, and may be formed of a cured product of a composition including one or more of them. Examples of the colorant include organic pigments, inorganic pigments, and dyes. As a resin, a polymerizable monomer, a photoinitiator, and other additives, what was illustrated as a component of the transparent photosensitive resin composition of this invention is mentioned, for example.
 画素の形状としては、例えば、矩形、ストライプ、正方形、多角形、波型などが挙げられる。開口部面積を大きくして透過率を向上させる観点から、画素幅は、1μm以上が好ましい。一方、より緻密な画像を表示する観点から、画素幅は、100μm以下が好ましい。画素の膜厚は、1~5μm程度が好ましい。 Examples of the shape of the pixel include a rectangle, a stripe, a square, a polygon, and a wave. The pixel width is preferably 1 μm or more from the viewpoint of increasing the area of the opening and improving the transmittance. On the other hand, from the viewpoint of displaying a more precise image, the pixel width is preferably 100 μm or less. The film thickness of the pixel is preferably about 1 to 5 μm.
 隣接画素間には、ブラックマトリックス(以下、「BM」)を有することが好ましい。BMは、画素間を遮光することにより、表示画像のコントラストを向上させる作用を有する。BMは、互いに隣接する画素の一部を重ねることにより形成された色重ねBMであってもよいが、画素の段差を抑制して表示画像をより向上させ、高い遮光性を得るため、樹脂および遮光材を含有することが好ましい。樹脂としては、ポリイミド系樹脂またはアクリル系樹脂が好ましい。遮光剤としては、例えば、チタンブラック、窒化チタン、炭化チタン、カーボンブラックなどが挙げられる。さらに、密着改良剤、高分子分散剤、重合開始剤、酸発生剤、塩基発生剤、界面活性剤等を含有してもよい。 It is preferable to have a black matrix (hereinafter, "BM") between adjacent pixels. The BM has an effect of improving the contrast of a display image by blocking light between pixels. The BM may be a color overlap BM formed by overlapping a part of pixels adjacent to each other, but in order to improve the display image by suppressing the level difference of the pixels and obtain high light shielding property, the resin and It is preferable to contain a light shielding material. As a resin, a polyimide resin or an acrylic resin is preferable. As a light shielding agent, titanium black, titanium nitride, titanium carbide, carbon black etc. are mentioned, for example. Further, it may contain an adhesion improver, a polymer dispersant, a polymerization initiator, an acid generator, a base generator, a surfactant and the like.
 BMの膜厚は、遮光性と抵抗値を向上させる観点から、0.5μm以上が好ましく、0.8μm以上がより好ましい。一方、BMの膜厚は、平坦性を向上させる観点から、2.5μm以下が好ましく、2.0μm以下がより好ましい。 The film thickness of the BM is preferably 0.5 μm or more, and more preferably 0.8 μm or more, from the viewpoint of improving the light shielding property and the resistance value. On the other hand, the thickness of the BM is preferably 2.5 μm or less, and more preferably 2.0 μm or less, from the viewpoint of improving the flatness.
 画素やBMを有するカラーフィルター基板が段差を有する場合、平坦化膜を有することが好ましい。平坦化膜は、画素やBM上の全面に形成されていてもよいし、平坦化したい部分に選択的に形成されていてもよい。平坦化膜が画素やBM上の全面に形成される場合、平坦化膜は熱硬化性樹脂組成物の硬化物からなることが好ましく、平坦化膜が選択的に形成される場合、平坦化膜は感光性樹脂組成物の硬化物からなることが好ましい。 When the color filter substrate having pixels or BM has a step, it is preferable to have a planarization film. The planarizing film may be formed on the entire surface of the pixel or the BM, or may be selectively formed on a portion to be planarized. When the planarizing film is formed on the entire surface of the pixel or BM, the planarizing film is preferably made of a cured product of a thermosetting resin composition, and when the planarizing film is selectively formed, the planarizing film Is preferably made of a cured product of the photosensitive resin composition.
 平坦化膜は、樹脂を含有することが好ましく、さらに、密着改良剤、高分子分散剤、重合開始剤、酸発生剤、塩基発生剤、界面活性剤等を含有してもよい。 The planarizing film preferably contains a resin, and may further contain an adhesion improver, a polymer dispersant, a polymerization initiator, an acid generator, a base generator, a surfactant, and the like.
 平坦化膜の膜厚は、平坦性と画素からの不純物の溶出を抑制する観点から、0.5μm以上が好ましく、1.0μm以上がより好ましい。一方、平坦化膜の膜厚は、透明性を向上させる観点から、3.0μm以下が好ましく、2.0μm以下がより好ましい。 The thickness of the planarizing film is preferably 0.5 μm or more, and more preferably 1.0 μm or more from the viewpoint of flatness and suppression of the elution of impurities from the pixels. On the other hand, the thickness of the planarizing film is preferably 3.0 μm or less, more preferably 2.0 μm or less, from the viewpoint of improving the transparency.
 本発明のカラーフィルター基板は、基板上に、本発明のフォトスペーサーおよび画素、必要に応じてブラックマトリックスや平坦化膜などを形成することにより得ることができる。画素やブラックマトリックス、平坦化膜の形成方法としては、例えば、フォトリソグラフィー法、印刷法、電着法などが挙げられる。 The color filter substrate of the present invention can be obtained by forming the photo spacer and the pixel of the present invention, as necessary, a black matrix, a planarizing film, etc. on the substrate. Examples of the method of forming the pixel, the black matrix, and the planarizing film include a photolithography method, a printing method, and an electrodeposition method.
 本発明の液晶表示装置は、前述のカラーフィルター基板と、カラーフィルターに対向して配置される駆動素子側基板と、カラーフィルター基板および該駆動素子側基板上にそれぞれ設けられた液晶配向膜と、これらの液晶配向膜間のセルギャップを均一に保つフォトスペーサーと、空間内に充填された液晶とを有することが好ましい。例えば、ブラックマトリックスを有するカラーフィルター基板を用いる場合、フォトスペーサーを、非表示領域すなわちブラックマトリックスの上方に有することが好ましい。なお、駆動素子側基板にフォトスペーサーを有してもよく、この場合も、駆動素子側基板上の非表示領域の上方にフォトスペーサーを有することが好ましい。液晶配向膜としては、ポリイミド等の樹脂膜が好ましい。 The liquid crystal display device of the present invention comprises the color filter substrate described above, a drive element side substrate disposed opposite to the color filter, a color filter substrate, and a liquid crystal alignment film provided on the drive element side substrate, respectively. It is preferable to have the photo spacer which keeps the cell gap between these liquid crystal aligning films uniform, and the liquid crystal with which it was filled in space. For example, when using a color filter substrate having a black matrix, it is preferable to have a photo spacer above the non-display area, ie, the black matrix. Note that the driving element side substrate may have a photo spacer, and in this case as well, it is preferable to have the photo spacer above the non-display area on the driving element side substrate. As a liquid crystal aligning film, resin films, such as a polyimide, are preferable.
 次に、前述のカラーフィルター基板を用いた液晶表示装置の製造方法について説明する。カラーフィルター基板および/または駆動素子側基板上に前述の製造方法によりフォトスペーサーを製造する工程を有することが好ましい。具体的には、前述のカラーフィルター基板と駆動素子側基板とを対向させて、フォトスペーサーを介して貼り合わせ、シール部に設けられた注入口から液晶を注入してから注入口を封止し、最後にICドライバー等を実装することが好ましい。液晶表示装置が液晶配向膜を有する場合、ポリイミド液を塗布・熱処理した後、ラビング処理や紫外線処理により表面処理することが好ましい。微細な粉塵や静電気の発生を抑制し、液晶分子を均一に高精細に配向させる観点から、紫外線処理により表面処理することが好ましい。 Next, a method of manufacturing a liquid crystal display device using the color filter substrate described above will be described. It is preferable to have a step of manufacturing a photo spacer on the color filter substrate and / or the driving element side substrate by the above-mentioned manufacturing method. Specifically, the above-mentioned color filter substrate and the drive element side substrate are made to face each other, they are pasted together via a photo spacer, liquid crystal is injected from the injection port provided in the seal portion, and then the injection port is sealed. Finally, it is preferable to mount an IC driver or the like. When the liquid crystal display device has a liquid crystal alignment film, it is preferable to apply a polyimide liquid and heat-treat it, and then to carry out surface treatment by rubbing treatment or ultraviolet light treatment. From the viewpoint of suppressing the generation of fine dust and static electricity and orienting liquid crystal molecules uniformly in high definition, it is preferable to perform surface treatment by ultraviolet treatment.
 以下に本発明をその実施例および比較例を挙げて詳細に説明するが、本発明の態様はこれらに限定されるものではない。 The present invention will be described in detail by way of examples and comparative examples below, but the embodiments of the present invention are not limited thereto.
 アルカリ可溶性樹脂の特性は、以下の方法により評価した。 The properties of the alkali-soluble resin were evaluated by the following method.
 (重量平均分子量)
 製造例1~13により得られたアルカリ可溶性樹脂1~13について、ゲルパーミエーションクロマトグラフィーを用いて、標準ポリスチレンによる換算値を求めた。
(Weight average molecular weight)
For the alkali-soluble resins 1 to 13 obtained in Production Examples 1 to 13, gel permeation chromatography was used to determine converted values using standard polystyrene.
 (エチレン性不飽和基当量)
 製造例1~13により得られたアルカリ可溶性樹脂1~13について、JIS K 0070:1992の試験方法第6.0項に記載の方法により、ヨウ素価を測定し、エチレン性不飽和基当量を算出した。
(Ethylenically unsaturated group equivalent)
The iodine value of the alkali-soluble resins 1 to 13 obtained in Production Examples 1 to 13 is measured by the method described in section 6.0 of JIS K 0070: 1992, and the ethylenically unsaturated group equivalent is calculated. did.
 (酸価)
 製造例1~13により得られたアルカリ可溶性樹脂1~13の溶液5gをアルミ製カップ(φ45mm)に入れ、130℃で1時間加熱して溶剤を除去した。得られたアルカリ可溶性樹脂について、JIS K 0070:1992の試験方法第3.1項の中和滴定法により、酸価を測定した。
(Acid number)
5 g of the solution of the alkali-soluble resin 1 to 13 obtained in Production Examples 1 to 13 was placed in an aluminum cup (φ 45 mm) and heated at 130 ° C. for 1 hour to remove the solvent. The acid value of the obtained alkali-soluble resin was measured by the neutralization titration method of JIS K 0070: 1992, test method section 3.1.
 (グリシジル(メタ)アクリレートの残存量)
 製造例1~13により得られたアルカリ可溶性樹脂1~13の溶液について、ガスクロマトグラフィーとして(株)島津製作所製GCMS-GP2010を用い、カラムとしてDM-5MSを用い、Heをキャリアガスとして、カラム温度を80℃で4分間保持した後、16分間かけて320℃まで昇温し、320℃で5分間保持し、グリシジル(メタ)アクリレート量を測定した。
(Remaining amount of glycidyl (meth) acrylate)
With respect to the solutions of alkali-soluble resins 1 to 13 obtained in Production Examples 1 to 13, as a gas chromatography using GCMS-GP2010 manufactured by Shimadzu Corporation, using DM-5MS as a column, He as a carrier gas, a column After holding the temperature at 80 ° C. for 4 minutes, the temperature was raised to 320 ° C. over 16 minutes, held at 320 ° C. for 5 minutes, and the amount of glycidyl (meth) acrylate was measured.
 製造例1~13により得られたアルカリ可溶性樹脂1~13の溶液を130℃で1時間加熱し、加熱前後の質量から固形分濃度を算出し、グリシジル(メタ)アクリレート量と、アルカリ可溶性樹脂の溶液の固形分濃度から、グリシジル(メタ)アクリレートの残存量(残存GMA量(質量%))を算出した。 The solutions of alkali-soluble resins 1 to 13 obtained in Production Examples 1 to 13 are heated at 130 ° C. for 1 hour, the solid content concentration is calculated from the mass before and after heating, and the glycidyl (meth) acrylate amount and alkali soluble resin are obtained. The amount of residual glycidyl (meth) acrylate (the amount of residual GMA (mass%)) was calculated from the solid content concentration of the solution.
 製造例1(アルカリ可溶性樹脂1)
 72gのメタクリル酸(MA)、40gのN-シクロヘキシルマレイミド(CHMI)、30gのメタクリル酸メチル(MMA)、3gの2,2’-アゾビス(2-メチルブチロニトリル)、0.5gのラウリルメルカプタンおよび220gのプロピレングリコールモノメチルエーテル(PGME)を重合容器中に仕込み、窒素雰囲気下で90℃にて2時間撹拌した後、液温を100℃に上げ、さらに5時間加熱撹拌して反応させた。次に、重合容器内を空気置換し、得られた反応溶液に97gのメタクリル酸グリシジル(GMA)、1.2gのジメチルベンジルアミンおよび0.2gのp-メトキシフェノールを添加して、110℃で6時間撹拌した後、PGMEを追加して固形分濃度29.5質量%のアルカリ可溶性樹脂1の溶液を得た。得られたアルカリ可溶性樹脂1のMwは40,000、エチレン性不飽和基当量は350g/mol、酸価は85mgKOH/g、残存GMA量は0.05質量%であった。なお、アルカリ可溶性樹脂1において、MAが一般式(1)で表される構造単位を構成し、GMAが一般式(2)で表される構造単位を構成し、CHMIが一般式(3)で表される構造単位を構成する。
Production Example 1 (Alkali-soluble Resin 1)
72 g of methacrylic acid (MA), 40 g of N-cyclohexylmaleimide (CHMI), 30 g of methyl methacrylate (MMA), 3 g of 2,2'-azobis (2-methylbutyronitrile), 0.5 g of lauryl mercaptan And 220 g of propylene glycol monomethyl ether (PGME) were charged in a polymerization vessel and stirred at 90 ° C. for 2 hours under a nitrogen atmosphere, then the liquid temperature was raised to 100 ° C., and reaction was carried out by heating for 5 hours. Next, the inside of the polymerization vessel is replaced with air, and 97 g of glycidyl methacrylate (GMA), 1.2 g of dimethylbenzylamine and 0.2 g of p-methoxyphenol are added to the obtained reaction solution, and the reaction is carried out at 110 ° C. After stirring for 6 hours, PGME was added to obtain a solution of alkali-soluble resin 1 having a solid concentration of 29.5% by mass. Mw of the obtained alkali-soluble resin 1 was 40,000, the ethylenically unsaturated group equivalent was 350 g / mol, the acid value was 85 mg KOH / g, and the amount of remaining GMA was 0.05% by mass. In the alkali-soluble resin 1, MA constitutes the structural unit represented by the general formula (1), GMA constitutes the structural unit represented by the general formula (2), and CHMI is represented by the general formula (3) Construct a structural unit to be represented.
 製造例2(アルカリ可溶性樹脂2)
 MAの配合量を69g、CHMIの配合量を25g、MMAの配合量を18g、GMAの配合量を98gにそれぞれ変更したこと以外は製造例1と同様にして、固形分濃度28.3質量%のアルカリ可溶性樹脂2の溶液を得た。得られたアルカリ可溶性樹脂2のMwは43,000、エチレン性不飽和基当量は300g/mol、酸価は63mgKOH/g、残存GMA量は0.05質量%であった。
Production Example 2 (Alkali-Soluble Resin 2)
Solid content concentration 28.3 mass% in the same manner as in Production Example 1 except that the blending amount of MA is 69 g, the blending amount of CHMI is 25 g, the blending amount of MMA is 18 g, and the blending amount of GMA is 98 g. A solution of alkali soluble resin 2 was obtained. The Mw of the obtained alkali-soluble resin 2 was 43,000, the equivalent weight of the ethylenically unsaturated group was 300 g / mol, the acid value was 63 mg KOH / g, and the amount of residual GMA was 0.05 mass%.
 製造例3(アルカリ可溶性樹脂3)
 MAの配合量を32g、GMAの配合量を31gにそれぞれ変更したこと以外は製造例1と同様にして、固形分濃度28.5質量%のアルカリ可溶性樹脂3の溶液を得た。得られたアルカリ可溶性樹脂3のMwは39,000、エチレン性不飽和基当量は600g/mol、酸価は85mgKOH/g、残存GMA量は0.05質量%であった。
Production Example 3 (Alkali Soluble Resin 3)
A solution of alkali soluble resin 3 having a solid content concentration of 28.5% by mass was obtained in the same manner as in Production Example 1 except that the blending amount of MA was changed to 32 g and the blending amount of GMA to 31 g. The Mw of the obtained alkali-soluble resin 3 was 39,000, the equivalent weight of the ethylenically unsaturated group was 600 g / mol, the acid value was 85 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
 製造例4(アルカリ可溶性樹脂4)
 ラウリルメルカプタンの配合量を2.2gに変更したこと以外は製造例1と同様にして、固形分濃度31.8質量%のアルカリ可溶性樹脂4の溶液を得た。得られたアルカリ可溶性樹脂4のMwは9,000、エチレン性不飽和基当量は350g/mol、酸価は85mgKOH/g、残存GMA率は0.05質量%であった。
Production Example 4 (Alkali Soluble Resin 4)
A solution of alkali soluble resin 4 having a solid concentration of 31.8% by mass was obtained in the same manner as in Production Example 1 except that the blending amount of lauryl mercaptan was changed to 2.2 g. The Mw of the obtained alkali-soluble resin 4 was 9,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 85 mg KOH / g, and the residual GMA ratio was 0.05% by mass.
 製造例5(アルカリ可溶性樹脂5)
 MAの配合量を66g、CHMIの配合量を50g、GMAの配合量を96gにそれぞれ変更したこと以外は製造例1と同様にして、固形分濃度31.0質量%のアルカリ可溶性樹脂5の溶液を得た。得られたアルカリ可溶性樹脂5のMwは38,000、エチレン性不飽和基当量は350g/mol、酸価は50mgKOH/g、残存GMA量は0.05質量%であった。
Production Example 5 (Alkali Soluble Resin 5)
A solution of alkali-soluble resin 5 having a solid content concentration of 31.0 mass% in the same manner as in Production Example 1 except that the blending amount of MA is 66 g, the blending amount of CHMI is 50 g, and the blending amount of GMA is 96 g. I got The Mw of the obtained alkali-soluble resin 5 was 38,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 50 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
 製造例6(アルカリ可溶性樹脂6)
 MAの配合量を59g、CHMIの配合量を28g、MMAの配合量を19g、GMAの配合量を70gにそれぞれ変更したこと以外は製造例1と同様にして、固形分濃度30.4質量%のアルカリ可溶性樹脂6の溶液を得た。得られたアルカリ可溶性樹脂6のMwは35,000、エチレン性不飽和基当量は350g/mol、酸価は110mgKOH/g、残存GMA量は0.05質量%であった。
Production Example 6 (Alkali-soluble Resin 6)
The solid content concentration is 30.4 mass% in the same manner as in Production Example 1 except that the blending amount of MA is 59 g, the blending amount of CHMI is 28 g, the blending amount of MMA is 19 g, and the blending amount of GMA is 70 g. A solution of alkali soluble resin 6 was obtained. The Mw of the obtained alkali-soluble resin 6 was 35,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 110 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
 製造例7(アルカリ可溶性樹脂7)
 13gのメタクリル酸(MA)、15gのN-シクロヘキシルマレイミド(CHMI)、72gのメタクリル酸メチル(MMA)、3gの2,2’-アゾビス(2-メチルブチロニトリル)、0.5gのラウリルメルカプタンおよび220gのプロピレングリコールモノメチルエーテル(PGME)を重合容器中に仕込み、窒素雰囲気下で90℃にて2時間撹拌した後、液温を100℃に上げ、さらに5時間加熱撹拌して反応させた。0.2gのp-メトキシフェノールを添加して、室温まで冷却した後、PGMEを追加して固形分濃度29.1質量%のアルカリ可溶性樹脂7の溶液を得た。得られたアルカリ可溶性樹脂7のMwは37,000、酸価は85mgKOH/gであった。
Production Example 7 (Alkali-soluble Resin 7)
13 g of methacrylic acid (MA), 15 g of N-cyclohexylmaleimide (CHMI), 72 g of methyl methacrylate (MMA), 3 g of 2,2'-azobis (2-methylbutyronitrile), 0.5 g of lauryl mercaptan And 220 g of propylene glycol monomethyl ether (PGME) were charged in a polymerization vessel and stirred at 90 ° C. for 2 hours under a nitrogen atmosphere, then the liquid temperature was raised to 100 ° C., and reaction was carried out by heating for 5 hours. After 0.2 g of p-methoxyphenol was added and cooled to room temperature, PGME was added to obtain a solution of alkali-soluble resin 7 having a solid concentration of 29.1% by mass. Mw of the obtained alkali-soluble resin 7 was 37,000, and the acid value was 85 mg KOH / g.
 製造例8(アルカリ可溶性樹脂8の製造)
 MAの配合量を70g、MMAの配合量を12g、GMAの配合量を98gにそれぞれ変更し、CHMIの代わりにスチレン(St)を15g用いたこと以外は製造例1と同様にして、固形分濃度29.2質量%のアルカリ可溶性樹脂8の溶液を得た。得られたアルカリ可溶性樹脂8のMwは35,000、エチレン性不飽和基当量は285g/mol、酸価は67mgKOH/g、残存GMA量は0.05質量%であった。
Production Example 8 (Production of Alkali-Soluble Resin 8)
Solid content as in Production Example 1 except that 70 g of MA, 12 g of MMA and 98 g of GMA were changed to 15 g of styrene (St) instead of CHMI. A solution of alkali soluble resin 8 having a concentration of 29.2% by mass was obtained. The Mw of the obtained alkali-soluble resin 8 was 35,000, the equivalent weight of the ethylenically unsaturated group was 285 g / mol, the acid value was 67 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
 製造例9(アルカリ可溶性樹脂9)
 CHMIの代わりにN-ベンジルマレイミド(BzMI)を40g用いたこと以外は製造例1と同様にして、固形分濃度29.5質量%のアルカリ可溶性樹脂9の溶液を得た。得られたアルカリ可溶性樹脂9のMwは40,000、エチレン性不飽和基当量は350g/mol、酸価は64mgKOH/g、残存GMA量は0.05質量%であった。
Production Example 9 (Alkali-soluble Resin 9)
A solution of alkali-soluble resin 9 having a solid concentration of 29.5% by mass was obtained in the same manner as in Production Example 1 except that 40 g of N-benzylmaleimide (BzMI) was used instead of CHMI. Mw of the obtained alkali-soluble resin 9 was 40,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 64 mg KOH / g, and the amount of remaining GMA was 0.05% by mass.
 製造例10(アルカリ可溶性樹脂10の製造)
 MAの代わりにアクリル酸(AA)を60g用いたこと以外は製造例1と同様にして、固形分濃度29.5質量%のアルカリ可溶性樹脂10の溶液を得た。得られたアルカリ可溶性樹脂10のMwは40,000、エチレン性不飽和基当量は350g/mol、酸価は62mgKOH/g、残存GMA量は0.05質量%であった。
Production Example 10 (Production of Alkali-Soluble Resin 10)
A solution of alkali-soluble resin 10 having a solid concentration of 29.5% by mass was obtained in the same manner as in Production Example 1 except that 60 g of acrylic acid (AA) was used instead of MA. The Mw of the obtained alkali-soluble resin 10 was 40,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 62 mg KOH / g, and the amount of remaining GMA was 0.05% by mass.
 製造例11(アルカリ可溶性樹脂11)
 110℃での撹拌時間を8時間に変更したこと以外は製造例1と同様にして、固形分濃度29.5質量%のアルカリ可溶性樹脂11の溶液を得た。得られたアルカリ可溶性樹脂1のMwは40,000、エチレン性不飽和基当量は350g/mol、酸価は64mgKOH/g、残存GMA率は0.02質量%であった。
Production Example 11 (Alkali-soluble Resin 11)
A solution of alkali soluble resin 11 having a solid concentration of 29.5% by mass was obtained in the same manner as in Production Example 1 except that the stirring time at 110 ° C. was changed to 8 hours. Mw of the obtained alkali-soluble resin 1 was 40,000, the equivalent weight of the ethylenically unsaturated group was 350 g / mol, the acid value was 64 mg KOH / g, and the residual GMA ratio was 0.02 mass%.
 製造例12(アルカリ可溶性樹脂12)
 110℃での撹拌時間を5時間に変更したこと以外は製造例1と同様にしてアルカリ可溶性樹脂12の溶液を得た。得られたアルカリ可溶性樹脂12のMwは40,000、エチレン性不飽和基当量は350g/mol、酸価は64mgKOH/g、残存GMA率は0.30質量%であった。
Production Example 12 (Alkali-soluble Resin 12)
A solution of an alkali-soluble resin 12 was obtained in the same manner as in Production Example 1 except that the stirring time at 110 ° C. was changed to 5 hours. Mw of the obtained alkali-soluble resin 12 was 40,000, the ethylenically unsaturated group equivalent was 350 g / mol, the acid value was 64 mg KOH / g, and the residual GMA rate was 0.30 mass%.
 製造例13(アルカリ可溶性樹脂13)
 MAの配合量を50g、CHMIの配合量を30g、MMAの配合量を0g、GMAの配合量を65gにそれぞれ変更したこと以外は製造例1と同様にして、固形分濃度28.5質量%のアルカリ可溶性樹脂13の溶液を得た。得られたアルカリ可溶性樹脂13のMwは36,000、エチレン性不飽和基当量は278g/mol、酸価は93mgKOH/g、残存GMA量は0.05質量%であった。
Production Example 13 (Alkali-soluble Resin 13)
The solid content concentration is 28.5 mass% in the same manner as in Production Example 1 except that the blending amount of MA is 50 g, the blending amount of CHMI is 30 g, the blending amount of MMA is 0 g, and the blending amount of GMA is 65 g. The solution of alkali-soluble resin 13 was obtained. Mw of the obtained alkali-soluble resin 13 was 36,000, the equivalent weight of the ethylenically unsaturated group was 278 g / mol, the acid value was 93 mg KOH / g, and the amount of residual GMA was 0.05% by mass.
 製造例1~13の組成と評価結果を表1~2に示す。 The compositions and evaluation results of Production Examples 1 to 13 are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 (ブラックマトリックス付基板の作製)
 無アルカリガラス基板(OA-10;日本電気硝子(株)製;50mm×70mm、厚さ0.7mm)の表面上に、ポリイミド樹脂およびカーボンブラックを含む組成物からなる1.0μm厚のブラックマトリクスを形成し、ブラックマトリックス付基板を作製した。
(Preparation of a substrate with black matrix)
A 1.0 μm-thick black matrix consisting of a composition containing a polyimide resin and carbon black on the surface of an alkali-free glass substrate (OA-10; manufactured by Nippon Electric Glass Co., Ltd .; 50 mm × 70 mm, thickness 0.7 mm) To form a black matrix-attached substrate.
 (平坦化膜付基板の作製)
 前記方法により作製したブラックマトリックス付基板に対して、UV/オゾン装置(SSP16-110;セン特殊光源(株)製)を用いて、60秒間露光することにより洗浄処理した後、スピンコート法により平坦化膜材(NN901;JSR(株)製)を塗布および乾燥して、1.5μm厚の透明平坦化膜を形成した。これを90℃で10分間加熱乾燥(プリベイク)し、飽和露光量に達するまで紫外線を照射した。次に、0.1質量%の水酸化テトラメチルアンモニウム(以下、「TMAH」)と、0.3質量%の“エマルゲン”(登録商標)A-60(以下、「A-60」;花王(株)製)とをそれぞれ含む23℃の水溶液を用いてシャワー現像し、さらに水洗して未露光部の平坦化膜を洗い流した。その後、230℃で30分間加熱乾燥(ポストベイク)して、平坦化膜付基板を作製した。
(Fabrication of a substrate with a flattening film)
The black matrix-coated substrate produced by the above method is cleaned by exposure to light for 60 seconds using a UV / ozone apparatus (SSP 16-110; manufactured by Sen Special Light Source Co., Ltd.) and then planarized by spin coating. A coating film material (NN 901; manufactured by JSR Corp.) was applied and dried to form a transparent flattening film having a thickness of 1.5 μm. This was dried by heating (prebaked) at 90 ° C. for 10 minutes, and irradiated with ultraviolet light until the saturated exposure amount was reached. Next, 0.1% by mass of tetramethylammonium hydroxide (hereinafter, "TMAH") and 0.3% by mass of "Emulgen" (registered trademark) A-60 (hereinafter, "A-60"; Kao ( ) And using the aqueous solution at 23 ° C., and further washed with water to wash away the unexposed area of the planarized film. Then, the substrate was heat-dried (post-baked) at 230 ° C. for 30 minutes to prepare a substrate with a planarized film.
 実施例および比較例における評価は以下の方法により行った。 Evaluation in the examples and comparative examples was performed by the following method.
 (感光性樹脂組成物の透明性)
 無アルカリガラス基板(OA-10;日本電気硝子(株)製;50mm×70mm、厚さ0.7mm)の表面上に、ミカサ(株)製スピンコーター(1HD2型)を用いて、各実施例および比較例において作製した感光性樹脂組成物を塗布した。温度:25℃、圧力:45Paの条件で200秒間減圧乾燥した後、これを、105℃に設定したオーブン(PERFECTOVEN PV-210;タバイエスペック(株)製)内で10分間加熱乾燥(プリベイク)し、プリベイク膜を作製した。プリベイク膜を形成した平坦化膜付基板を室温まで冷却し、ガラス製UVフィルター(UV-35;旭テクノガラス(株)製)を取り付けた紫外線露光機(PEM-6M;ユニオン光学(株)製、コリメーションアングルθ:2°、i線(365nm)照度:30mW/cm)を用いて、ネガフォトマスクを使用せずに、i線:365nm、h線:405nmおよびg線:436nmの各波長を含む紫外線を照射光として、24mJ/cmの露光量(i線換算)で露光した。
(Transparency of photosensitive resin composition)
Each example using a spin coater (type 1HD2) manufactured by Mikasa Co., Ltd. on the surface of an alkali-free glass substrate (OA-10; manufactured by Nippon Electric Glass Co., Ltd .; 50 mm × 70 mm, thickness 0.7 mm) And the photosensitive resin composition produced in the comparative example was apply | coated. After drying under reduced pressure for 200 seconds under the conditions of temperature: 25 ° C., pressure: 45 Pa, this is heat dried (prebaked) for 10 minutes in an oven (PERFECTOVEN PV-210; Tabai Espec Corp. product) set at 105 ° C. , And a pre-baked film. A substrate with a flattened film on which a pre-baked film has been formed is cooled to room temperature, and an ultraviolet ray exposure machine (PEM-6M; made by Union Optical Co., Ltd.) equipped with a glass UV filter (UV-35; made by Asahi Techno Glass Co., Ltd.) , Collimation angle θ: 2 °, i-line (365 nm) illuminance: 30 mW / cm 2 ), without using a negative photomask, each wavelength of i-line: 365 nm, h-line: 405 nm and g-line: 436 nm It exposed by the exposure amount (i-line conversion) of 24 mJ / cm < 2 > by using the ultraviolet-ray containing as an irradiation light.
 次に、0.3質量%のTMAHと、0.3質量%のA-60とをそれぞれ含む23℃の水溶液を現像液として、自動現像装置(AD-2000;ミカサ(株)製)を用いてシャワー現像し、さらに水洗して風乾した。次に、230℃のオーブン内で30分間加熱乾燥(ポストベイク)して、3.00μm厚のフォトスペーサーベタ膜つき基板を作製した。 Next, using an aqueous solution of 0.3% by mass of TMAH and 0.3% by mass of A-60 as a developing solution at 23 ° C., an automatic developing apparatus (AD-2000; manufactured by Mikasa Co., Ltd.) is used. It was shower developed, further washed with water and air dried. Next, it was heat-dried (post-baked) in an oven at 230 ° C. for 30 minutes to prepare a substrate with a 3.00 μm thick photo-spacer film.
 フォトスペーサーベタ膜つき基板の中央部について、顕微分光測定器(LCF-100MA:大塚電子(株)製)を用いて、C光源で、波長400~700nmにおける光線透過率を測定し、以下の基準により感光性樹脂組成物の透明性を評価した。Aを合格とした。
A:波長400~700nmにおける光線透過率が80%以上。
B:波長400~700nmにおける光線透過率が80%未満。
The light transmittance at a wavelength of 400 to 700 nm is measured with a C light source using a microspectrometer (LCF-100MA: manufactured by Otsuka Electronics Co., Ltd.) for the central portion of the substrate with a photospacer solid film, and the following criteria The transparency of the photosensitive resin composition was evaluated by the following. I passed A.
A: Light transmittance at a wavelength of 400 to 700 nm is 80% or more.
B: Light transmittance at wavelengths of 400 to 700 nm is less than 80%.
 (プリベイク膜の粘度)
 実施例1~13および比較例1~3により得られたプリベイク膜の粘度特性を再現するサンプルとして、無アルカリガラス基板(OA-10;日本電気硝子(株)製;50mm×70mm、厚さ0.7mm)上に、各実施例および比較例の条件によりプリベイク膜を作製した。得られたプリベイク膜を、スパーテルを用いて90mm以上集め、レオメーター(MCR-302;アントンパール(株)製)とφ15mmのプレートを用いて、測定厚み:0.5mm、周波数:1Hz、歪み:0.5%の条件で、20℃から110℃まで0.083℃/secの昇温速度で昇温しながら、23℃における粘度を測定した。
(Viscosity of pre-baked film)
As a sample reproducing the viscosity characteristics of the pre-baked films obtained in Examples 1 to 13 and Comparative Examples 1 to 3, alkali-free glass substrates (OA-10; manufactured by Nippon Electric Glass Co., Ltd .; 50 mm × 70 mm, thickness 0) On the .7 mm), a pre-baked film was produced under the conditions of each example and comparative example. The obtained pre-baked film is collected 90 mm 3 or more using a spatula, measured using a rheometer (MCR-302; Anton Paar Co., Ltd. product) and a plate of φ 15 mm, measurement thickness: 0.5 mm, frequency: 1 Hz, strain The viscosity at 23 ° C. was measured while raising the temperature from 20 ° C. to 110 ° C. at a temperature rising rate of 0.083 ° C./sec under a condition of 0.5%.
 (フォトスペーサーの表面形状)
 実施例1~13および比較例1~3において形成した円錐台状パターンフォトスペーサーを、FE-SEM(S-4800;(株)日立ハイテクノロジーズ製)を用いて倍率7,000倍に拡大して観察し、以下の基準によりフォトスペーサーの表面形状を評価した。Aを合格とした。
B:凹凸が認められる。
A:凹凸が認められない。
(Surface shape of photo spacer)
The truncated cone shaped pattern photo spacers formed in Examples 1 to 13 and Comparative Examples 1 to 3 are magnified by 7,000 times using FE-SEM (S-4800; manufactured by Hitachi High-Technologies Corporation). It observed and the surface shape of the photo spacer was evaluated by the following references | standards. I passed A.
B: Irregularities are observed.
A: No unevenness is observed.
 (フォトスペーサーの弾性復元率)
 実施例1~13および比較例1~3において形成した円錐台状パターンフォトスペーサーに、硬度計フィッシャー(Fischerscope H100;Helmut Fischer GmbH & Co社製)とφ50μmの平型圧子を用いて、速度2.5mN/secで荷重50mNに到達するまで圧力を加え5秒間保持した後、速度2.5mN/secで開放し0mNに到達してから5秒間保持したときのヒステリシス曲線を作成した。得られたヒステリシス曲線から、総変形量Ha[μm]、塑性変形量Hb[μm]を求め、フォトスペーサーの弾性復元率((Ha-Hb/Ha)×100)を算出した。5箇所について測定した数平均値を算出し、下記基準により評価した。AAとAとBを合格とした。
C:弾性復元率が70%未満
B:弾性復元率が70%以上72%未満
A:弾性復元率が72%以上73%未満
AA:弾性復元率が73%以上。
(Elastic recovery of photo spacer)
Using a hardness scale Fischer (Fischerscope H100; Helmut Fischer GmbH & Co.) and a flat indenter with a diameter of 50 μm for the frustoconical pattern photospacers formed in Examples 1 to 13 and Comparative Examples 1 to 3, the speed 2. A pressure was applied until the load reached 50 mN at 5 mN / sec and held for 5 seconds, and then a hysteresis curve was created when held at a speed of 2.5 mN / sec and held for 5 seconds after reaching 0 mN. The total deformation amount Ha [μm] and the plastic deformation amount Hb [μm] were obtained from the obtained hysteresis curve, and the elastic recovery factor ((Ha−Hb / Ha) × 100) of the photo spacer was calculated. The number average value measured about five places was computed, and the following standard evaluated. Passed AA, A and B
C: elastic recovery rate less than 70% B: elastic recovery rate 70% or more and less than 72% A: elastic recovery rate 72% or more and less than 73% AA: elastic recovery rate 73% or more.
 (レンズスキャン露光でのフォトスペーサーの高さばらつき評価)
 実施例1~13および比較例1~3において、レンズスキャン露光により形成した円錐台状パターンフォトスペーサーのうち、レンズとレンズとの継目部分に該当する基板面内20mm角の範囲において、基板面内で複数のレンズが二列に並ぶ方向と直行する方向に一定の間隔で20個のフォトスペーサーを選択して、段差測定器を用いて高さのばらつき(最大高さ-最小高さ)を測定し、以下の基準によりフォトスペーサーの高さばらつきを評価した。AとBを合格とした。
C:高さのばらつきが0.04μm以上
B:高さのばらつきが0.02μm以上0.04μm未満
A:高さのばらつきが0.02μm未満。
(Evaluation of height variation of photo spacer in lens scan exposure)
In Examples 1 to 13 and Comparative Examples 1 to 3, in the range of 20 mm square in the substrate plane corresponding to the joint portion of the lens and the lens among the truncated cone shaped photo spacer formed by the lens scan exposure, the in-plane plane Select 20 photo spacers at regular intervals in the direction orthogonal to the direction in which multiple lenses are arranged in two rows, and measure the height variation (maximum height-minimum height) using the step measuring instrument The height variation of the photo spacer was evaluated according to the following criteria. I passed A and B.
C: variation in height is 0.04 μm or more B: variation in height is 0.02 μm or more and less than 0.04 μm A: variation in height is less than 0.02 μm.
 (レンズスキャン露光でのフォトスペーサーの欠け評価)
 実施例1~13および比較例1~3において形成した円錐台状パターンフォトスペーサーのうち、10,000個を顕微鏡で拡大観察し、欠けの有無を判断した。欠けが認められた円錐台状パターンフォトスペーサー個数から、下記基準により評価した。AAとAとBを合格とした。
C:フォトスペーサーの欠けが11個以上
B:フォトスペーサーの欠けが6~10個
A:フォトスペーサーの欠けが1~5個
AA:フォトスペーサーの欠けが0個。
(Evaluation of missing photo spacer in lens scan exposure)
Among the frustoconical pattern photo spacers formed in Examples 1 to 13 and Comparative Examples 1 to 3, 10,000 were observed with a microscope to determine the presence or absence of chipping. From the number of truncated conical pattern photo spacers in which chipping was recognized, evaluation was made according to the following criteria. Passed AA, A and B
C: 11 or more chips of photo spacer B: 6 to 10 chips of photo spacer A: 1 to 5 chips of photo spacer AA: 0 chips of photo spacer.
 (プロキシミティ露光マルチパターニングでのフォトスペーサーの高さばらつき評価)
 実施例1~13および比較例1~3において、プロキシミティ露光マルチパターニングにより形成した円錐台状パターンフォトスペーサーのうち、最初の露光で形成したフォトスペーサーの高さと、続いての露光で形成したフォトスペーサーの高さとの差について、段差測定器を用いて高さのばらつき(最大高さ-最小高さ)を測定し、以下の基準によりフォトスペーサーの高さばらつきを評価した。AとBを合格とした。
C:高さのばらつきが0.20μm以上
B:高さのばらつきが0.10μm以上0.20μm未満
A:高さのばらつきが0.10μm未満。
(Evaluation of height variation of photo spacer in proximity exposure multi-patterning)
In Examples 1 to 13 and Comparative Examples 1 to 3, among the truncated cone-shaped pattern photo spacers formed by proximity exposure multi-patterning, the height of the photo spacer formed in the first exposure and the photo spacer formed in the subsequent exposure About the difference with the height of a spacer, the height variation (maximum height-minimum height) was measured using the level difference measuring device, and the height variation of the photo spacer was evaluated by the following criteria. I passed A and B.
C: variation in height is 0.20 μm or more B: variation in height is 0.10 μm or more and less than 0.20 μm A: variation in height is less than 0.10 μm.
 (実施例1)
 (感光性樹脂組成物1の調製)
 製造例1により得られた固形分濃度29.5質量%のアルカリ可溶性樹脂1の溶液:21.13質量部、ジペンタエリスリトールペンタアクリレート(“KAYARAD”(登録商標)DPHA;日本化薬;以下、「DPHA」)(エチレン性不飽和基当量100):11.58質量部、光重合開始剤“アデカアークルズ”(商標登録)N-1919;以下、「N1919」:0.36質量部、“IRGACURE”(商標登録)907(BASFジャパン(株)製);以下、「IC907」:0.89質量部、2,4-ジエチルチオキサントン(“KAYACURE”(登録商標)DETX-S;日本化薬(株)製;以下、「DETX」):0.89質量部、界面活性剤“BYK”(登録商標)-333(ビックケミージャパン(株)製):以下「BYK-333」)0.03質量部、重合禁止剤2,5-ビス(1,1,3,3-テトラメチルブチル)ヒドロキノン(和光純薬工業(株)製;以下、「DOHQ」):0.02質量部およびプロピレングリコールモノメチルエーテル(PGME):65.10質量部を室温で撹拌し、感光性樹脂組成物1を得た。
Example 1
(Preparation of Photosensitive Resin Composition 1)
Solution of alkali-soluble resin 1 having a solid content concentration of 29.5% by mass obtained by Production Example 1: 21.13 parts by mass, dipentaerythritol pentaacrylate ("KAYARAD" (registered trademark) DPHA; Nippon Kayaku; below, “DPHA”) (ethylenically unsaturated group equivalent 100): 11.58 parts by mass, photopolymerization initiator “Adeka Acrulus” (trademark registered) N-1919; hereinafter, “N1919”: 0.36 parts by mass, “ IRGACURE "(registered trademark) 907 (manufactured by BASF Japan Ltd.); hereinafter," IC 907 ": 0.89 parts by mass, 2,4-diethylthioxanthone (" KAYACURE "(registered trademark) DETX-S; Nippon Kayaku ( Co., Ltd .; hereafter, "DETX"): 0.89 parts by mass, surfactant "BYK" (registered trademark)-333 (manufactured by Bick Chemie Japan Co., Ltd.) The following "BYK-333") 0.03 parts by mass, polymerization inhibitor 2, 5-bis (1, 1, 3, 3- tetramethylbutyl) hydroquinone (Wako Pure Chemical Industries, Ltd.); ): 0.02 parts by mass and 65.10 parts by mass of propylene glycol monomethyl ether (PGME) were stirred at room temperature to obtain a photosensitive resin composition 1.
 前述の方法により得られた平坦化膜付基板に対して、UV/オゾン装置(SSP16-110;セン特殊光源(株)製)を用いて、60秒間露光することにより洗浄処理した後、スピンコーター(1HD2型;ミカサ(株)製)を用いて、感光性樹脂組成物1を塗布した。温度:25℃、圧力:45Paの条件で200秒間減圧乾燥した後、105℃に設定したオーブン(PERFECTOVEN PV-210;タバイエスペック(株)製)内で10分間加熱乾燥(プリベイク)した後、室温まで冷却し、プリベイク膜を形成した。 The substrate with a planarizing film obtained by the above-mentioned method is subjected to a cleaning treatment by exposure for 60 seconds using a UV / ozone apparatus (SSP 16-110; manufactured by Sen Special Light Source Co., Ltd.), and then a spin coater The photosensitive resin composition 1 was applied using (type 1HD2; manufactured by Mikasa Co., Ltd.). After drying under reduced pressure for 200 seconds under the conditions of temperature: 25 ° C., pressure: 45 Pa, heat drying (pre-baking) in an oven (PERFECTOVEN PV-210; Tabai Espec Corp.) for 10 minutes set at 105 ° C. It was cooled to form a pre-baked film.
 次に、プリベイク膜を形成した平坦化膜付基板を、レンズスキャン露光装置として、FX-65S((株)ニコン製)を用いて、直径7μmの円形フォトマスクを介して、i線:365nm、h線:405nmおよびg線:436nmの各波長を含む紫外線を照射光として、30mJ/cmの露光量(i線換算)で露光した。 Next, using the FX-65S (manufactured by Nikon Corporation) as a lens scan exposure apparatus, the i-line: 365 nm through a circular photomask with a diameter of 7 μm, using the planarizing film-attached substrate on which the pre-baked film has been formed. It exposed by the exposure amount (i-line conversion) of 30 mJ / cm < 2 > by making the ultraviolet-ray containing each wavelength of h line | wire: 405 nm and g line | wire 436 nm into irradiation light.
 次に、0.3質量%のTMAHと、0.3質量%のA-60とをそれぞれ含む23℃の水溶液を現像液として、自動現像装置(AD-2000;ミカサ(株)製)を用いてシャワー現像し、さらに水洗して風乾した。最後に、230℃のオーブン内で30分間加熱乾燥(ポストベイク)して、上底6μm、下底9μm、高さ3μmのフォトスペーサーを作製した。 Next, using an aqueous solution of 0.3% by mass of TMAH and 0.3% by mass of A-60 as a developing solution at 23 ° C., an automatic developing apparatus (AD-2000; manufactured by Mikasa Co., Ltd.) is used. It was shower developed, further washed with water and air dried. Finally, it was heat-dried (post-baked) in an oven at 230 ° C. for 30 minutes to produce a photospacer with an upper bottom 6 μm, a lower bottom 9 μm, and a height 3 μm.
 また、前述のプリベイク膜を形成した平坦化膜付基板を、ガラス製UVフィルター(UV-35;旭テクノガラス(株)製)を取り付けた紫外線露光機(PEM-6M;ユニオン光学(株)製;コリメーションアングルθ=2°、i線(365nm)照度=30mW/cm2)を用いて、直径10μmの円形パターンがピッチ15μmで配置されたネガフォトマスクを介して、i線:365nm、h線:405nmおよびg線:436nmの各波長を含む紫外線を照射光として最初の露光を行った。続いて、ネガフォトマスクを半ピッチだけずらして続いての露光(プロキシミティ露光マルチパターニング)を行った。 Moreover, the ultraviolet exposure machine (PEM-6M; Union Optical Co., Ltd. product) which attached the glass-made UV filter (UV-35; Asahi Techno Glass Co., Ltd. product) to the substrate with a planarization film which formed the above-mentioned pre-baking film Using a negative photomask in which a circular pattern with a diameter of 10 μm is arranged at a pitch of 15 μm using a collimation angle θ = 2 °, i-line (365 nm) illuminance = 30 mW / cm 2); The first exposure was performed using ultraviolet light including 405 nm and g-line: 436 nm wavelengths. Subsequently, the negative photomask was shifted by a half pitch to perform subsequent exposure (proximity exposure multi-patterning).
 次に、0.3質量%のTMAHと、0.3質量%のA-60とをそれぞれ含む23℃の水溶液を現像液として、自動現像装置(AD-2000;ミカサ(株)製)を用いてシャワー現像し、さらに水洗して風乾した。最後に、230℃のオーブン内で30分間加熱乾燥(ポストベイク)して、上底6μm、下底9μm、高さ3μmのフォトスペーサーを作製した。 Next, using an aqueous solution of 0.3% by mass of TMAH and 0.3% by mass of A-60 as a developing solution at 23 ° C., an automatic developing apparatus (AD-2000; manufactured by Mikasa Co., Ltd.) is used. It was shower developed, further washed with water and air dried. Finally, it was heat-dried (post-baked) in an oven at 230 ° C. for 30 minutes to produce a photospacer with an upper bottom 6 μm, a lower bottom 9 μm, and a height 3 μm.
 (実施例2~13、比較例1~3)
 感光性樹脂組成物の組成を表2に示すとおりに変更したこと以外は実施例1と同様に、感光性樹脂組成物、プリベイク膜およびフォトスペーサーを作製した。実施例1と同様に評価した結果を表3~5に示す。
(Examples 2 to 13, Comparative Examples 1 to 3)
A photosensitive resin composition, a pre-baked film and a photo spacer were produced in the same manner as in Example 1 except that the composition of the photosensitive resin composition was changed as shown in Table 2. The results evaluated in the same manner as in Example 1 are shown in Tables 3 to 5.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 なお、表3~5における「M520」とは、ジペンタエリスリトールヘキサアクリレート及びジペンタエリスリトールペンタアクリレートの混合物と無水コハク酸との反応物(M520;東亞合成(株)製;エチレン性不飽和当量104g/mol)を表す。 Here, “M520” in Tables 3 to 5 means the reaction product of a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate with succinic anhydride (M520; manufactured by Toagosei Co., Ltd .; ethylenic unsaturated equivalent 104 g / Mol) is represented.
 本発明の透明感光性樹脂組成物は、レンズスキャン露光により液晶表示装置のフォトスペーサーを形成するための材料として好適に用いられる。 The transparent photosensitive resin composition of the present invention is suitably used as a material for forming a photo spacer of a liquid crystal display by lens scan exposure.

Claims (17)

  1. 少なくともアルカリ可溶性樹脂、光重合開始剤および重合性モノマーを含有する透明感光性樹脂組成物であって、前記アルカリ可溶性樹脂が
    A)下記一般式(1)で表される構造単位と、
    B)下記一般式(2)で表される構造単位と、
    C)下記一般式(3)で表される構造単位を有し、
    前記アルカリ可溶性樹脂のエチレン性不飽和基当量が400g/mol以下である透明感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、Rは水素原子またはメチル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)中、RおよびRはそれぞれ独立に水素原子またはメチル基を示す。Xは-CHCH(OH)CHO(C=O)-、-CHCHNH(C=O)O(CHO(C=O)-または-(CHO(C=O)NHCHCHO(C=O)-を示す。ただし、mおよびnはそれぞれ独立に1~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(3)中、Yは置換基を有していてもよい炭素数6~11のアリール基、置換基を有していてもよい炭素数7~10のアラルキル基または置換基を有していてもよい炭素数3~10のシクロアルキル基を示す。)
    A transparent photosensitive resin composition comprising at least an alkali soluble resin, a photopolymerization initiator and a polymerizable monomer, wherein the alkali soluble resin is A) a structural unit represented by the following general formula (1):
    B) Structural units represented by the following general formula (2):
    C) having a structural unit represented by the following general formula (3),
    The transparent photosensitive resin composition whose ethylenically unsaturated group equivalent of the said alkali-soluble resin is 400 g / mol or less.
    Figure JPOXMLDOC01-appb-C000001
    (In the above general formula (1), R 1 represents a hydrogen atom or a methyl group.)
    Figure JPOXMLDOC01-appb-C000002
    (In the above general formula (2), R 2 and R 3 each independently represent a hydrogen atom or a methyl group. X represents —CH 2 CH (OH) CH 2 O (C = O) —, —CH 2 CH 2 NH (C = O) O ( CH 2) m O (C = O) - or - (CH 2) n O ( C = O) NHCH 2 CH 2 O (C = O) -. shows the proviso, m and each n independently represents an integer of 1 to 4)
    Figure JPOXMLDOC01-appb-C000003
    (In the above general formula (3), Y represents an aryl group having 6 to 11 carbon atoms which may have a substituent, an aralkyl group having 7 to 10 carbon atoms which may have a substituent, or a substituent Indicates an optionally substituted cycloalkyl group having 3 to 10 carbon atoms.)
  2.  前記一般式(3)中、Yが置換基を有していてもよい炭素数3~10のシクロアルキル基である請求項1記載の透明感光性樹脂組成物。 The transparent photosensitive resin composition according to claim 1, wherein in the general formula (3), Y is a cycloalkyl group having 3 to 10 carbon atoms which may have a substituent.
  3.  前記一般式(3)中、Yがシクロヘキシル基である請求項1または2記載の透明感光性樹脂組成物。 The transparent photosensitive resin composition according to claim 1 or 2, wherein in the general formula (3), Y is a cyclohexyl group.
  4.  前記一般式(1)中、Rがメチル基である請求項1~3のいずれか一項記載の透明感光性樹脂組成物。 The transparent photosensitive resin composition according to any one of claims 1 to 3, wherein in the general formula (1), R 1 is a methyl group.
  5.  前記アルカリ可溶性樹脂の構造単位の総和を100mol%としたときの一般式(3)で表される構造単位量が10~23mol%である請求項1~4のいずれか一項に記載の透明感光性樹脂組成物。 The transparent photosensitive material according to any one of claims 1 to 4, wherein the amount of structural unit represented by the general formula (3) is 10 to 23 mol% when the total amount of structural units of the alkali-soluble resin is 100 mol%. Resin composition.
  6. 前記アルカリ可溶性樹脂の重量平均分子量が10,000~100,000である、請求項1~5のいずれか一項に記載の透明感光性樹脂組成物。 The transparent photosensitive resin composition according to any one of claims 1 to 5, wherein the weight average molecular weight of the alkali-soluble resin is 10,000 to 100,000.
  7. 前記アルカリ可溶性樹脂の酸価が60~100mgKOH/gである、請求項1~6のいずれか一項に記載の透明感光性樹脂組成物。 The transparent photosensitive resin composition according to any one of claims 1 to 6, wherein the acid value of the alkali-soluble resin is 60 to 100 mg KOH / g.
  8. 前記重合性モノマー100質量部に対して、前記アルカリ可溶性樹脂を34~66質量部含有する、請求項1~7のいずれか一項に記載の透明感光性樹脂組成物。 The transparent photosensitive resin composition according to any one of claims 1 to 7, which contains 34 to 66 parts by mass of the alkali-soluble resin relative to 100 parts by mass of the polymerizable monomer.
  9.  硬化後膜厚3μmになるように塗布し、25℃、45Paの条件で200秒間減圧乾燥した後、105℃のオーブンで10分間加熱乾燥した後の23℃における粘度が1×10~1×10Pa・sとなる、請求項1~8のいずれか一項に記載の透明感光性樹脂組成物。 After curing, it is applied to a film thickness of 3 μm, dried under reduced pressure at 25 ° C and 45Pa for 200 seconds, and dried by heating in an oven at 105 ° C for 10 minutes. The viscosity at 23 ° C is 1 × 10 3 to 1 × The transparent photosensitive resin composition according to any one of claims 1 to 8, which is 10 8 Pa · s.
  10. 上底面の直径が6μm、下底面の直径が9μm、高さが3μmの円錐台状フォトスペーサーを形成し、50mNの荷重をかけたときの弾性復元率が70%以上となる、請求項1~9のいずれか一項に記載の透明感光性樹脂組成物。 A frustum-shaped photospacer having a diameter of 6 μm at the upper base and a diameter of 9 μm at the lower base and a height of 3 μm is formed, and the elastic recovery rate when a load of 50 mN is applied is 70% or more. The transparent photosensitive resin composition as described in any one of 9.
  11.  レンズスキャン露光用である請求項1~10のいずれか一項に記載の透明感光性樹脂組成物。 The transparent photosensitive resin composition according to any one of claims 1 to 10 for lens scan exposure.
  12.  請求項1~11のいずれか一項に記載の透明感光性樹脂組成物の硬化物を用いたフォトスペーサー。 A photo spacer using a cured product of the transparent photosensitive resin composition according to any one of claims 1 to 11.
  13.  請求項12記載のフォトスペーサーを用いた液晶表示装置。 A liquid crystal display device using the photo spacer according to claim 12.
  14. 請求項1~11のいずれか一項に記載の透明感光性樹脂組成物を基板上に塗布し、乾燥してプリベイク膜を得て、プリベイク膜をレンズスキャン露光および現像することによりフォトスペーサーを形成する、フォトスペーサーの製造方法。 A transparent photosensitive resin composition according to any one of claims 1 to 11 is coated on a substrate and dried to obtain a pre-baked film, and the pre-baked film is subjected to lens scan exposure and development to form a photo spacer. How to make a photo spacer.
  15. 前記プリベイク膜の23℃における粘度が1×10~1×10Pa・sである、請求項14に記載のフォトスペーサーの製造方法。 The method for producing a photo spacer according to claim 14, wherein the viscosity at 23 ° C of the pre-baked film is 1 × 10 3 to 1 × 10 8 Pa · s.
  16. カラーフィルター基板と、駆動素子側基板とを対向させて、両者の間に液晶化合物を封入する、液晶表示装置の製造方法であって、カラーフィルター基板および/または駆動素子側基板上に請求項14または15記載の製造方法によりフォトスペーサーを製造する工程を有する、液晶表示装置の製造方法。 A method of manufacturing a liquid crystal display device, wherein a color filter substrate and a drive element side substrate are opposed to each other and a liquid crystal compound is sealed between the two, and the method is applied to the color filter substrate and / or the drive element side substrate. Or the manufacturing method of a liquid crystal display device which has the process of manufacturing a photo spacer by the manufacturing method of 15 statement.
  17. 少なくともアルカリ可溶性樹脂、光重合開始剤および重合性モノマーを含有する透明感光性樹脂組成物であって、前記アルカリ可溶性樹脂が
    A)下記一般式(1)で表される構造単位と、
    B)下記一般式(2)で表される構造単位と、
    C)下記一般式(3)で表される構造単位を有し、
    前記アルカリ可溶性樹脂のエチレン性不飽和基当量が400g/mol以下である透明感光性樹脂組成物のレンズスキャン露光への使用。
    Figure JPOXMLDOC01-appb-C000004
    (上記一般式(1)中、Rは水素原子またはメチル基を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (上記一般式(2)中、RおよびRはそれぞれ独立に水素原子またはメチル基を示す。Xは-CHCH(OH)CHO(C=O)-、-CHCHNH(C=O)O(CHO(C=O)-または-(CHO(C=O)NHCHCHO(C=O)-を示す。ただし、mおよびnはそれぞれ独立に1~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (上記一般式(3)中、Yは置換基を有していてもよい炭素数6~11のアリール基、置換基を有していてもよい炭素数7~10のアラルキル基または置換基を有していてもよい炭素数3~10のシクロアルキル基を示す。)
    A transparent photosensitive resin composition comprising at least an alkali soluble resin, a photopolymerization initiator and a polymerizable monomer, wherein the alkali soluble resin is A) a structural unit represented by the following general formula (1):
    B) Structural units represented by the following general formula (2):
    C) having a structural unit represented by the following general formula (3),
    Use of a transparent photosensitive resin composition in which the ethylenically unsaturated group equivalent of the alkali-soluble resin is 400 g / mol or less for lens scan exposure.
    Figure JPOXMLDOC01-appb-C000004
    (In the above general formula (1), R 1 represents a hydrogen atom or a methyl group.)
    Figure JPOXMLDOC01-appb-C000005
    (In the above general formula (2), R 2 and R 3 each independently represent a hydrogen atom or a methyl group. X represents —CH 2 CH (OH) CH 2 O (C = O) —, —CH 2 CH 2 NH (C = O) O ( CH 2) m O (C = O) - or - (CH 2) n O ( C = O) NHCH 2 CH 2 O (C = O) -. shows the proviso, m and each n independently represents an integer of 1 to 4)
    Figure JPOXMLDOC01-appb-C000006
    (In the above general formula (3), Y represents an aryl group having 6 to 11 carbon atoms which may have a substituent, an aralkyl group having 7 to 10 carbon atoms which may have a substituent, or a substituent Indicates an optionally substituted cycloalkyl group having 3 to 10 carbon atoms.)
PCT/JP2018/034421 2017-09-22 2018-09-18 Transparent photosensitive resin composition, photospacer, liquid crystal display device, method for producing photospacer, method for producing liquid crystal display device, and use of transparent photosensitive resin composition for lens scan exposure WO2019059169A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880060412.0A CN111149058B (en) 2017-09-22 2018-09-18 Transparent photosensitive resin composition and application thereof, photoetching spacer, liquid crystal display device and manufacturing method thereof
JP2018550620A JPWO2019059169A1 (en) 2017-09-22 2018-09-18 Transparent photosensitive resin composition, photo spacer, liquid crystal display device, method for manufacturing photo spacer, manufacturing method for liquid crystal display device, and use of transparent photosensitive resin composition for lens scan exposure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182044 2017-09-22
JP2017-182044 2017-09-22

Publications (1)

Publication Number Publication Date
WO2019059169A1 true WO2019059169A1 (en) 2019-03-28

Family

ID=65809828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034421 WO2019059169A1 (en) 2017-09-22 2018-09-18 Transparent photosensitive resin composition, photospacer, liquid crystal display device, method for producing photospacer, method for producing liquid crystal display device, and use of transparent photosensitive resin composition for lens scan exposure

Country Status (3)

Country Link
JP (1) JPWO2019059169A1 (en)
CN (1) CN111149058B (en)
WO (1) WO2019059169A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027010A1 (en) * 2021-08-23 2023-03-02 大阪有機化学工業株式会社 Photosensitive resin composition, cured product, and image display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128275A (en) * 2008-11-28 2010-06-10 Hitachi Chem Co Ltd Photosensitive resin composition, and photosensitive film and permanent resist using the same
WO2014125884A1 (en) * 2013-02-12 2014-08-21 東レ株式会社 Photosensitive resin composition, protective film or insulation film obtained by heat curing said composition, touch panel using said film, and production method for said touch panel
JP2016184072A (en) * 2015-03-26 2016-10-20 東レ株式会社 Photosensitive resin composition, method for producing photospacer, color filter and liquid crystal display device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001008639A1 (en) * 1999-07-28 2001-02-08 Dentsply International Inc. Siloxane containing macromonomers and dental composites thereof
JP4514011B2 (en) * 2001-09-13 2010-07-28 日本化薬株式会社 Resin composition, solder resist resin composition, and cured products thereof
JP2004177498A (en) * 2002-11-25 2004-06-24 Nippon Shokubai Co Ltd Photosetting resin composition and its use
JP4332354B2 (en) * 2003-01-10 2009-09-16 株式会社日本触媒 Acid group-containing polymer and use thereof
US7098525B2 (en) * 2003-05-08 2006-08-29 3M Innovative Properties Company Organic polymers, electronic devices, and methods
JP2005240000A (en) * 2003-06-23 2005-09-08 Nippon Shokubai Co Ltd Pigment dispersion composition and photosensitive resin composition
US20050261391A1 (en) * 2004-04-21 2005-11-24 Sridevi Narayan-Sarathy Radiation-curable high gloss overprint varnish compositions
WO2006118094A1 (en) * 2005-04-27 2006-11-09 Mitsubishi Chemical Corporation Curable composition, cured product, and liquid crystal display device using the same
CN100573324C (en) * 2005-12-20 2009-12-23 财团法人工业技术研究院 Negative light resistance agent composition
JP2007271987A (en) * 2006-03-31 2007-10-18 Nippon Steel Chem Co Ltd Photosensitive resin composition for black resist
JP4918299B2 (en) * 2006-07-13 2012-04-18 凸版印刷株式会社 Photospacer-forming photosensitive resin composition and color filter having photospacer using the same
JP6038498B2 (en) * 2011-06-28 2016-12-07 株式会社日本触媒 Curable resin composition for photospacer, columnar spacer, and liquid crystal display
JP5898502B2 (en) * 2012-01-17 2016-04-06 株式会社日本触媒 Photosensitive resin composition
KR101998449B1 (en) * 2012-03-26 2019-07-09 도레이 카부시키가이샤 Photosensitive black resin composition and resin black matrix substrate
WO2014038576A1 (en) * 2012-09-05 2014-03-13 株式会社日本触媒 Photosensitive resin composition for photo spacer, and photo spacer
JP2014177533A (en) * 2013-03-14 2014-09-25 Nippon Shokubai Co Ltd Novel polymer and photosensitive resin composition
WO2014156520A1 (en) * 2013-03-28 2014-10-02 東レ株式会社 Photosensitive resin composition, protection film or insulation film, touch panel and method for manufacturing same
JP2015038607A (en) * 2013-07-16 2015-02-26 三菱化学株式会社 Photosensitive composition, cured product, spacer, and image display device
JP2015063623A (en) * 2013-09-25 2015-04-09 東レ・ファインケミカル株式会社 (meth)acrylic acid-based copolymer, negative photosensitive resin composition, and cured product of the same
TWI533083B (en) * 2014-06-20 2016-05-11 Chi Mei Corp Photosensitive resin composition for color filter and its application
JP6431324B2 (en) * 2014-09-19 2018-11-28 株式会社日本触媒 Alkali-soluble resin and curable resin composition containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010128275A (en) * 2008-11-28 2010-06-10 Hitachi Chem Co Ltd Photosensitive resin composition, and photosensitive film and permanent resist using the same
WO2014125884A1 (en) * 2013-02-12 2014-08-21 東レ株式会社 Photosensitive resin composition, protective film or insulation film obtained by heat curing said composition, touch panel using said film, and production method for said touch panel
JP2016184072A (en) * 2015-03-26 2016-10-20 東レ株式会社 Photosensitive resin composition, method for producing photospacer, color filter and liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027010A1 (en) * 2021-08-23 2023-03-02 大阪有機化学工業株式会社 Photosensitive resin composition, cured product, and image display device

Also Published As

Publication number Publication date
CN111149058B (en) 2024-03-08
TW201921113A (en) 2019-06-01
CN111149058A (en) 2020-05-12
JPWO2019059169A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP5092326B2 (en) Color material dispersion, colored resin composition, color filter, and liquid crystal display device
JP5924089B2 (en) Radiation-sensitive coloring composition, color filter, and display element
JP4998906B2 (en) Colored photosensitive resin composition, color filter produced using the same, and liquid crystal display device
JP2013114249A (en) Black photosensitive resin composition and color filter
US20110117498A1 (en) Photosensitive resin composition
WO2006064873A1 (en) Resin composition for liquid crystal panel, and color filter and liquid crystal panel using the same
JP5343260B2 (en) Colored photosensitive resin composition, color filter, and liquid crystal display device comprising the same
JP6183044B2 (en) Curable composition, cured film and display element
JP2010096846A (en) Negative resist
JP2018004841A (en) Radiation-sensitive resin composition, pattern, method for forming pattern, and display element
JP2018169607A (en) Black photosensitive resin composition and display device manufactured by using the same
WO2019059169A1 (en) Transparent photosensitive resin composition, photospacer, liquid crystal display device, method for producing photospacer, method for producing liquid crystal display device, and use of transparent photosensitive resin composition for lens scan exposure
JP2016184072A (en) Photosensitive resin composition, method for producing photospacer, color filter and liquid crystal display device
KR101594187B1 (en) Composition of pigment dispersed liquid colored resin composition color filter and display device having the same
JP2018002962A (en) Photopolymerizable composition, cured product, image display device and oxime ester compound
JP5250888B2 (en) Colored photosensitive resin composition, color filter obtained by using the colored photosensitive resin composition, and liquid crystal display device including the color filter
JP2012058498A (en) Photosensitive colored composition for color filter and color filter
JP2014157204A (en) Photosensitive resin composition, photospacer, color filter substrate and liquid crystal display device
KR20120034835A (en) Composition of pigment dispersed liquid, method of the same, colored resin composition, color filter and display device having the same
TWI848918B (en) Transparent photosensitive resin composition, optical spacer, liquid crystal display device, method for manufacturing optical spacer, method for manufacturing liquid crystal display device, and use of transparent photosensitive resin composition in lens scanning exposure
JP2008181016A (en) Composition for forming protrusion for liquid crystal alignment control
JP7035504B2 (en) Colored resin composition, color filter substrate and liquid crystal display device
JP7272264B2 (en) Photosensitive resin composition, photospacer and liquid crystal display device
JP6878847B2 (en) Colored resin composition, color filter substrate and display device
JP2020071483A (en) Negative photosensitive resin composition, and photospacer and image display device using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550620

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18859363

Country of ref document: EP

Kind code of ref document: A1