WO2019058430A1 - 極端紫外光生成装置及び極端紫外光生成装置の制御方法 - Google Patents

極端紫外光生成装置及び極端紫外光生成装置の制御方法 Download PDF

Info

Publication number
WO2019058430A1
WO2019058430A1 PCT/JP2017/033747 JP2017033747W WO2019058430A1 WO 2019058430 A1 WO2019058430 A1 WO 2019058430A1 JP 2017033747 W JP2017033747 W JP 2017033747W WO 2019058430 A1 WO2019058430 A1 WO 2019058430A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ultraviolet light
extreme ultraviolet
light generator
chamber
Prior art date
Application number
PCT/JP2017/033747
Other languages
English (en)
French (fr)
Inventor
篤 植田
隆志 斎藤
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2017/033747 priority Critical patent/WO2019058430A1/ja
Priority to JP2019542843A priority patent/JP6977047B2/ja
Publication of WO2019058430A1 publication Critical patent/WO2019058430A1/ja
Priority to US16/786,542 priority patent/US11211239B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/28Means for producing, introducing, or replenishing gas or vapour during operation of the lamp
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
    • H05G2/005Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state containing a metal as principal radiation generating component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/025Associated optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature

Definitions

  • the present disclosure relates to an extreme ultraviolet light generation device and a control method of the extreme ultraviolet light generation device.
  • an LPP Laser Produced Plasma
  • DPP discharge Produced Plasma
  • An extreme ultraviolet light generation device includes a chamber, a reflective surface located inside the chamber, defining a first focal point and a second focal point, the first focal point and the second focal point
  • An EUV collector mirror configured such that the reflective surface and the second focal point are located across a first plane perpendicular to a first straight line passing through the focal point and passing through the first focal point;
  • a gas supply configured to exhaust gas within the chamber, the first focus and at least one magnet
  • a exhaust device that opens at a position between the.
  • a control method of an extreme ultraviolet light generation device includes a chamber, a reflective surface located inside the chamber, and defining a first focus and a second focus, the first focus
  • An EUV collector mirror configured such that the reflective surface and the second focal point are located on a first plane perpendicular to the first straight line passing through the second focal point and the second focal point and passing the first focal point
  • a control method of an extreme ultraviolet light generation apparatus comprising: generating a magnetic field around a first focal point and a first focal point; Supplying a first gas, supplying a second gas into the interior of the chamber from a position between the first surface and the second focal point, and a position where a magnetic field passes through the gas inside the chamber And exhausting from.
  • FIG. 1 schematically shows the configuration of an exemplary LPP-type EUV light generation system.
  • FIG. 2A schematically shows the configuration of an EUV light generation apparatus according to a comparative example.
  • FIG. 2B is a cross-sectional view taken along line IIB-IIB of FIG. 2A.
  • FIG. 2C is a cross-sectional view taken along line IIC-IIC of FIG. 2A.
  • FIG. 2D is a cross-sectional view taken along line IID-IID in FIG. 2A.
  • FIG. 3A schematically shows the configuration of an EUV light generation system according to the first embodiment of the present disclosure.
  • FIG. 3A schematically shows the configuration of an EUV light generation system according to the first embodiment of the present disclosure.
  • FIG. 3B is a cross-sectional view taken along line IIIB-IIIB of FIG. 3A.
  • FIG. 4A schematically shows the configuration of an EUV light generation system according to a first modification.
  • FIG. 4B is a cross-sectional view taken along line IVB-IVB of FIG. 4A.
  • FIG. 5A schematically shows the configuration of an EUV light generation system according to a second modification.
  • FIG. 5B is a cross-sectional view taken along line VB-VB of FIG. 5A.
  • FIG. 6A schematically shows the configuration of an EUV light generation system according to a third modification. 6B is a cross-sectional view taken along the line VIB-VIB of FIG. 6A.
  • FIG. 7A schematically shows the configuration of an EUV light generation system according to a fourth modification.
  • FIG. 7B is a cross-sectional view taken along the line VIIB-VIIB of FIG. 7A.
  • FIG. 8A schematically illustrates the configuration of an EUV light generation system according to a fifth modification.
  • FIG. 8B is a cross-sectional view taken along line VIIIB-VIIIB of FIG. 8A.
  • FIG. 9A schematically illustrates the configuration of an EUV light generation system according to a sixth modification.
  • FIG. 9B is a cross-sectional view taken along line IXB-IXB of FIG. 9A.
  • FIG. 10A schematically shows the configuration of an EUV light generation system according to a seventh modification.
  • FIG. 10B is a cross-sectional view taken along line XB-XB of FIG. 10A.
  • FIG. 11A schematically illustrates the configuration of an EUV light generation system according to an eighth modification.
  • 11B is a cross-sectional view taken along line XIB-XIB of FIG. 11A.
  • FIG. 1 schematically illustrates the configuration of an exemplary LPP-type EUV light generation system.
  • the EUV light generation device 1 is used with at least one laser device 3.
  • a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11.
  • the EUV light generation system 1 includes a chamber 2 and a target supply unit 26.
  • the chamber 2 is configured to be sealable.
  • the target supply unit 26 is attached, for example, to penetrate the wall of the chamber 2.
  • the material of the target material output from the target supply unit 26 contains tin.
  • the material of the target material can also include a combination of tin and terbium, gadolinium, lithium or xenon.
  • the wall of the chamber 2 is provided with at least one through hole.
  • a window 21 is provided in the through hole. Pulsed laser light 32 output from the laser device 3 passes through the window 21.
  • an EUV collector mirror 23 having a spheroidal reflecting surface is disposed inside the chamber 2, for example.
  • the EUV collector mirror 23 has first and second focal points.
  • the EUV collector mirror 23 is disposed, for example, such that its first focal point is located at the plasma generation region 25 and its second focal point is located at the intermediate focusing point (IF) 292.
  • a through hole 24 is provided at the center of the EUV collector mirror 23.
  • the pulse laser beam 33 passes through the through hole 24.
  • the EUV light generation apparatus 1 includes an EUV light generation controller 5, a target sensor 4 and the like.
  • the target sensor 4 has an imaging function, and is configured to detect the presence, trajectory, position, velocity, and the like of the target 27.
  • the EUV light generation apparatus 1 includes a connection part 29 that brings the inside of the chamber 2 into communication with the inside of the exposure apparatus 6. Inside the connection portion 29, a wall 291 in which an aperture is formed is provided. The wall 291 is arranged such that its aperture is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 includes a laser beam traveling direction control unit 34, a laser beam focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like.
  • the laser light traveling direction control unit 34 includes an optical element for defining the traveling direction of the laser light, and an actuator for adjusting the position, attitude, and the like of the optical element.
  • the pulsed laser beam 31 output from the laser device 3 passes through the laser beam traveling direction control unit 34, passes through the window 21 as the pulsed laser beam 32, and enters the chamber 2. .
  • the pulsed laser beam 32 travels in the chamber 2 along at least one laser beam path, is reflected by the laser beam focusing mirror 22, and is irradiated to the at least one target 27 as the pulsed laser beam 33.
  • the target supply unit 26 outputs the target 27 toward the plasma generation region 25 inside the chamber 2.
  • the target 27 is irradiated with at least one pulse included in the pulsed laser light 33.
  • the target 27 irradiated with the pulsed laser light is turned into a plasma, and radiation 251 is emitted from the plasma.
  • the EUV collector mirror 23 reflects the EUV light contained in the radiation 251 at a higher reflectance than light in other wavelength ranges.
  • the reflected light 252 including the EUV light reflected by the EUV collector mirror 23 is collected at the intermediate focus point 292 and output to the exposure device 6. Note that a plurality of pulses included in the pulsed laser light 33 may be irradiated to one target 27.
  • the EUV light generation controller 5 controls the overall control of the EUV light generation system 11.
  • the EUV light generation controller 5 processes image data and the like of the target 27 captured by the target sensor 4.
  • the EUV light generation controller 5 controls, for example, the timing at which the target 27 is output, the output direction of the target 27, and the like.
  • the EUV light generation controller 5 controls, for example, the oscillation timing of the laser device 3, the traveling direction of the pulse laser beam 32, the focusing position of the pulse laser beam 33, and the like.
  • the various controls described above are merely exemplary, and other controls may be added as needed.
  • FIG. 2A schematically shows the configuration of an EUV light generation apparatus according to a comparative example.
  • FIG. 2B is a cross-sectional view taken along line IIB-IIB of FIG. 2A.
  • FIG. 2C is a cross-sectional view taken along line IIC-IIC of FIG. 2A.
  • FIG. 2D is a cross-sectional view taken along line IID-IID in FIG. 2A.
  • the chamber 2a has a substantially conical shape.
  • the large diameter end of the chamber 2a is sealed and fixed to the reference member 2b.
  • An aperture 291a is formed at the small diameter end of the chamber 2a.
  • the EUV collector mirror 23 is supported by the EUV collector mirror holder 23a on the reference member 2b.
  • the EUV collector mirror 23 has a reflecting surface in the shape of a spheroidal surface, and a multilayer reflecting film 231 is formed on this reflecting surface.
  • the multilayer reflective film 231 defines a first focus and a second focus.
  • the first focal point is located at the plasma generation region 25 and the second focal point is located at the intermediate focusing point 292.
  • a straight line passing through the plasma generation region 25 and the intermediate focusing point 292 is taken as a first straight line L1.
  • a plane perpendicular to the first straight line L1 and passing through the plasma generation region 25 is taken as a first plane P1.
  • the multilayer reflective film 231 and the intermediate focusing point 292 are positioned to sandwich the first surface P1.
  • the central axis of the output direction of the EUV light traveling from the multilayer reflective film 231 to the intermediate focusing point 292 substantially coincides with the first straight line L1 and the + Z direction.
  • the output direction of the target 27 output from the target supply unit 26 substantially coincides with the + Y direction.
  • a cylindrical laser light path wall 35 is disposed in the through hole 24 of the EUV collector mirror 23 and the through hole of the reference member 2 b.
  • the pulse laser beam 33 reflected by the laser beam focusing mirror 22 described with reference to FIG. 1 passes through the inside of the laser beam path wall 35.
  • the pulsed laser light 33 is emitted to the target 27 supplied to the plasma generation region 25.
  • the target material is turned into plasma, and radiation 251 is emitted from the plasma.
  • the radiation light 251 is emitted, ions of the target material contained in the plasma diffuse as debris within the chamber 2a. Ions of the target material may be neutralized and attached to the surface of the multilayer reflective film 231.
  • magnets 7a and 7b are disposed outside the chamber 2a.
  • Each of the magnets 7a and 7b is composed of an electromagnet having a superconducting coil.
  • the magnets 7 a and 7 b are located across the plasma generation region 25.
  • the magnets 7 a and 7 b are arranged such that the central axes of the respective superconducting coils are substantially coaxial with one another, and the central axes thereof pass through the plasma generation region 25.
  • a magnetic field 70 is generated around the central axis of the superconducting coils.
  • the central axis of the magnetic field 70 substantially coincides with the central axis of the superconducting coil and the + X direction.
  • the magnetic flux density in the plasma generation region 25 is preferably 0.4 T or more and 3.0 T or less. More preferably, it may be 0.5T or more and 1.5T or less.
  • a part of the ions of the target material to be diffused inside the chamber 2a is trapped by the magnetic field 70. Therefore, it is considered that a large amount of target material is distributed around the dashed line shown as magnetic field 70 in FIGS. 2A and 2C.
  • the exhaust system includes an exhaust pump 30a and an exhaust pipe 30b. One end of the exhaust pipe 30b is connected to the exhaust pump 30a, and the other end is connected to the inside of the chamber 2a at the opening 30c.
  • the openings 30 c are respectively disposed between the plasma generation region 25 and the magnet 7 a and between the plasma generation region 25 and the magnet 7 b. Alternatively, the openings 30c are disposed near the magnet 7a and the magnet 7b, respectively, or at positions where the magnetic field 70 passes.
  • the exhaust system further includes a particulate trap and an abatement device (not shown).
  • the exhaust pump 30a exhausts the inside of the chamber 2a to a predetermined pressure less than the atmospheric pressure. Since the opening 30c is located in the vicinity of the magnetic field 70 in which a large amount of target material is distributed, the exhaust device can efficiently discharge the target material inside the chamber 2a.
  • the first gas supply unit includes an etching gas supply source 10a and a gas supply pipe 10b.
  • the etching gas supply source 10a includes a gas cylinder (not shown) and a pressure controller or a flow controller.
  • the gas supply pipe 10b penetrates the reference member 2b.
  • One end of the gas supply pipe 10b is connected to the etching gas supply source 10a outside the chamber 2a, and the other end is located inside the chamber 2a.
  • the gas supply tube 10 b has a plurality of first openings 10 c near the outer peripheral portion of the reflection surface of the EUV collector mirror 23.
  • the plurality of first openings 10 c are disposed along the outer periphery of the reflective surface.
  • the first gas supply unit is configured to flow the first gas supplied from the etching gas supply source 10a along the surface of the multilayer reflective film 231. It is done. The first gas flows from the outer peripheral portion of the reflective surface in the direction approaching the first straight line L1.
  • the EUV collector mirror 23 is cooled by the cooling device (not shown) so as to have a predetermined temperature or less.
  • the predetermined temperature is preferably equal to or lower than normal temperature. More preferably, for example, 5 ° C. may be used.
  • FIG. 2D the cross section of the optical path of the reflected light 252 from the EUV collector mirror 23 toward the intermediate focusing point 292 is shown.
  • the EUV collector mirror 23 When the EUV collector mirror 23 is viewed along the first straight line L1, the EUV collector mirror 23 has a substantially circular outer shape. Therefore, the cross section of the optical path of the reflected light 252 including the EUV light also has a substantially circular outline.
  • the first gas containing the target material is then folded in front of the aperture 291a and turned in the -Z direction. Since there is a strong flow in the + Z direction near the first straight line L1, the first gas can not flow in the ⁇ Z direction near the first straight line L1. Therefore, the first gas flows in the ⁇ Z direction along the wall surface of the chamber 2a at a position separated from the first straight line L1 as indicated by the arrows F3 and F4.
  • FIG. 3A schematically shows the configuration of an EUV light generation device according to the first embodiment of the present disclosure.
  • FIG. 3B is a cross-sectional view taken along line IIIB-IIIB of FIG. 3A.
  • FIG. 3A shows a portion corresponding to FIG. 2A in the comparative example described above, and
  • FIG. 3B shows a portion corresponding to FIG. 2B.
  • the EUV light generation system according to the first embodiment differs from the EUV light generation system according to the comparative example in that the EUV light generation system according to the first embodiment includes the second gas supply unit.
  • the other points are the same as in the comparative example.
  • the second gas supply unit includes an etching gas supply source 20a and a gas supply pipe 20b.
  • the etching gas supply source 20a includes a gas cylinder (not shown) and a pressure controller or a flow controller.
  • the etching gas supply source 20a may be prepared separately from the etching gas supply source 10a, or a gas cylinder common to the etching gas supply source 10a may be used.
  • One end of the gas supply pipe 20b is connected to the etching gas supply source 20a outside the chamber 2a, and the other end is connected to the gas supply pipe 203 inside the chamber 2a.
  • a part of the gas supply pipe 20b may be common to a part of the gas supply pipe 10b.
  • the gas supply pipe 20b and the gas supply pipe 203 may be constituted by a single pipe penetrating the wall of the chamber 2a.
  • the gas supply pipe 203 has a second opening 20c. The second opening 20 c is located between the first surface P 1 and the intermediate focusing point 292.
  • the second gas supply unit is configured to supply the second gas supplied from the etching gas supply source 20a to the inside of the chamber 2a.
  • the second gas contains an etching gas.
  • the etching gas contains hydrogen gas.
  • the first gas that has passed through or around the plasma generation region 25 contains a large amount of target material, whereas the second gas contains almost no target material.
  • the supply amount of the second gas to the inside of the chamber 2a is preferably 0.6 times or more and 4 times or less the supply amount of the first gas to the inside of the chamber 2a. It is preferable that the supply amount of the second gas to the inside of the chamber 2a is larger than the supply amount of the first gas to the inside of the chamber 2a.
  • the supply amount of the second gas to the inside of the chamber 2a is preferably 20 slm or more and 200 slm or less. For example, 60 slm may be used.
  • the supply amount of the first gas to the inside of the chamber 2a is preferably 10 slm or more and 120 slm or less. For example, 40 slm may be used.
  • "Xslm" means that it is X liter per minute when converted to 1 atm.
  • the temperature of the first gas and the second gas supplied to the inside of the chamber 2a is preferably 16 ° C. or less.
  • the exhaust device is controlled such that the pressure inside the chamber 2a is 50 Pa or more and 150 Pa or less.
  • the pressure in the chamber 2a may be 60 Pa or more and 90 Pa or less.
  • the pressure inside the chamber 2a may be 75 Pa.
  • the first gas In the vicinity of the first straight line L1, as indicated by the arrow F2, the first gas is strongly flowing in the + Z direction. Further, outside the arrow F2, as indicated by arrows F3 and F4, the first gas folded in the -Z direction is flowing.
  • the second gas flow indicated by the arrow F7 pushes the first gas flow indicated by the arrows F3 and F4 in a direction away from the wall of the chamber 2a and approaching the first straight line L1.
  • the first gas flow indicated by the arrow F4 corresponds to that of the multilayer reflective film 231. Reaching the surroundings is suppressed.
  • Another part of the second gas flows along the wall of the chamber 2a in the -Z direction at a position further outside the arrows F3 and F4, as shown by the arrow F8 in FIG. 3A. Therefore, the wall surface of the chamber 2a is prevented from being contaminated with the target material. If the second gas flow indicated by arrow F8 crosses the magnetic field 70 and reaches the multilayer reflective film 231, the second gas causes the target material, which is more distributed in the magnetic field 70, to reach the multilayer reflective film 231. There is a possibility of However, in the present embodiment, since the opening 30 c of the exhaust system is disposed in the vicinity of the magnetic field 70 in which a large amount of target material is distributed, most of the second gas indicated by the arrow F 8 does not reach the multilayer reflective film 231. The air is exhausted from the opening 30c. Accordingly, the contamination of the multilayer reflective film 231 with the target material is suppressed.
  • FIG. 4A schematically shows a configuration of an EUV light generation apparatus according to a first modified example.
  • FIG. 4A shows a portion corresponding to FIG. 3A or 3B in the first embodiment described above.
  • FIG. 4B is a cross-sectional view taken along line IVB-IVB of FIG. 4A. 4A and 4B, etching gas supply source 10a, gas supply pipe 10b, exhaust pump 30a, exhaust pipe 30b, magnets 7a and 7b, target supply unit 26, target recovery unit 28, arrow F2 indicating the flow of gas, Illustration of F3, F4, F6, F7, F8, etc. is omitted. These are similar to those described with reference to FIGS. 3A and 3B.
  • only one second opening 20d is formed in the gas supply pipe 204 connected to the gas supply pipe 20b.
  • the second gas supply unit discharges the second gas in a direction substantially parallel to the first surface P1 toward the first straight line L1. Also in this configuration, a second gas flow is formed in the ⁇ Z direction along the wall surface of the chamber 2a.
  • the other points are the same as those described with reference to FIGS. 3A and 3B.
  • FIG. 5A schematically shows a configuration of an EUV light generation system according to a second modified example.
  • FIG. 5A shows a portion corresponding to FIG. 3A or 3B in the first embodiment described above.
  • FIG. 5B is a cross-sectional view taken along line VB-VB of FIG. 5A. 5A and 5B, etching gas supply source 10a, gas supply pipe 10b, exhaust pump 30a, exhaust pipe 30b, magnets 7a and 7b, target supply unit 26, target recovery unit 28, arrow F2 indicating the flow of gas, Illustration of F3, F4, F6, F7, F8, etc. is omitted. These are similar to those described with reference to FIGS. 3A and 3B.
  • FIG. 6A schematically illustrates the configuration of an EUV light generation system according to a third modified example.
  • FIG. 6A shows a portion corresponding to FIG. 3A or 3B in the first embodiment described above.
  • 6B is a cross-sectional view taken along the line VIB-VIB of FIG. 6A.
  • 6A and 6B the etching gas supply source 10a, the gas supply pipe 10b, the exhaust pump 30a, the exhaust pipe 30b, the magnets 7a and 7b, the target supply unit 26, the target recovery unit 28, an arrow F2 indicating the flow of gas, Illustration of F3, F4, F6, F7, F8, etc. is omitted. These are similar to those described with reference to FIGS. 3A and 3B.
  • an annular gas supply pipe 201 is connected to the gas supply pipe 20b.
  • the gas supply pipe 201 is disposed outside the chamber 2a so as to surround the chamber 2a.
  • a plurality of gas supply pipes 206 are connected to the gas supply pipe 201.
  • Each of the plurality of gas supply pipes 206 penetrates the wall of the chamber 2a and has an opening 20f located inside the chamber 2a.
  • the second gas supply unit discharges the second gas toward the first straight line L1 from a plurality of positions surrounding the first straight line L1. Also in this configuration, a second gas flow is formed in the ⁇ Z direction along the wall surface of the chamber 2a.
  • FIG. 7A schematically shows a configuration of an EUV light generation system according to a fourth modification example.
  • FIG. 7A shows a portion corresponding to FIG. 3A or 3B in the first embodiment described above.
  • FIG. 7B is a cross-sectional view taken along the line VIIB-VIIB of FIG. 7A. 7A and 7B, etching gas supply source 10a, gas supply pipe 10b, exhaust pump 30a, exhaust pipe 30b, magnets 7a and 7b, target supply unit 26, target recovery unit 28, arrow F2 indicating the flow of gas, Illustration of F3, F4, F6, F7, F8, etc. is omitted. These are similar to those described with reference to FIGS. 3A and 3B.
  • an annular gas supply pipe 207 is connected to the gas supply pipe 20b.
  • the gas supply pipe 207 is disposed to surround the first straight line L1.
  • the gas supply pipe 207 has a slit-like opening 20 g.
  • the opening 20 g may have, for example, an opening width of 7.5 mm.
  • the second gas supply unit discharges the second gas from the periphery of the first straight line L1 toward the first straight line L1. Also in this configuration, a second gas flow is formed in the ⁇ Z direction along the wall surface of the chamber 2a.
  • the shape of the opening 20g may be a mesh other than the slit.
  • FIG. 8A schematically illustrates the configuration of an EUV light generation system according to a fifth modification example.
  • FIG. 8A shows a portion corresponding to FIG. 3A or FIG. 3B in the first embodiment described above.
  • FIG. 8B is a cross-sectional view taken along line VIIIB-VIIIB of FIG. 8A. 8A and 8B, etching gas supply source 10a, gas supply pipe 10b, exhaust pump 30a, exhaust pipe 30b, magnets 7a and 7b, target supply unit 26, target recovery unit 28, arrow F2 indicating the flow of gas, Illustration of F3, F4, F6, F7, F8, etc. is omitted. These are similar to those described with reference to FIGS. 3A and 3B.
  • a plurality of gas supply pipes 208 are connected to the gas supply pipe 20b.
  • Each of the plurality of gas supply pipes 208 penetrates the wall of the chamber 2a and has an opening 20h located inside the chamber 2a.
  • the second gas supply unit discharges the second gas in the ⁇ Z direction along the wall surface of the chamber 2a from a plurality of positions surrounding the first straight line L1. Also in this configuration, a second gas flow is formed in the ⁇ Z direction along the wall surface of the chamber 2a. By discharging the second gas at a plurality of positions surrounding the first straight line L1, the second gas flow in the -Z direction along the wall surface of the chamber 2a is prevented from being biased, and a uniform flow can be achieved. can do.
  • the other points are the same as those described with reference to FIGS. 3A and 3B.
  • the gas supply pipe 209 connected to the gas supply pipe 20b is disposed in the obscuration region described with reference to FIG. 2D.
  • the gas supply pipe 209 is formed with a plurality of second openings 20i. Instead of the plurality of second openings 20i, slit-like or mesh-like openings may be formed.
  • the second gas supply unit discharges the second gas toward the wall of the chamber 2a in a direction substantially parallel to the first surface P1. Also in this configuration, a second gas flow is formed in the ⁇ Z direction along the wall surface of the chamber 2a.
  • FIG. 10A schematically shows the configuration of an EUV light generation system according to a seventh modification.
  • FIG. 10A shows a portion corresponding to FIG. 3A or FIG. 3B in the first embodiment described above.
  • FIG. 10B is a cross-sectional view taken along line XB-XB of FIG. 10A. 10A and 10B, etching gas supply source 10a, gas supply pipe 10b, exhaust pump 30a, exhaust pipe 30b, magnets 7a and 7b, target supply unit 26, target recovery unit 28, arrow F2 indicating the flow of gas, Illustration of F3, F4, F6, F7, F8, etc. is omitted. These are similar to those described with reference to FIGS. 3A and 3B.
  • the gas supply pipe 210 connected to the gas supply pipe 20b is disposed in the obscuration region described with reference to FIG. 2D.
  • the gas supply pipe 210 is formed with a plurality of second openings 20 j.
  • the second gas supply unit discharges the second gas in a direction away from the first surface P1. Also in this configuration, since the second gas is folded back in the ⁇ Z direction before the aperture 291a, a second gas flow is formed in the ⁇ Z direction along the wall surface of the chamber 2a. By turning back the second gas in front of the aperture 291a, it is possible to suppress the deviation of the flow of the second gas in the ⁇ Z direction along the wall surface of the chamber 2a, and to make the flow uniform.
  • the other points are the same as in the sixth modification.
  • FIG. 11A schematically illustrates the configuration of an EUV light generation system according to an eighth modification example.
  • FIG. 11A shows a portion corresponding to FIG. 3A or 3B in the first embodiment described above.
  • 11B is a cross-sectional view taken along line XIB-XIB of FIG. 11A.
  • 11A and 11B etching gas supply source 10a, gas supply pipe 10b, exhaust pump 30a, exhaust pipe 30b, magnets 7a and 7b, target supply unit 26, target recovery unit 28, arrow F2 indicating the flow of gas, Illustration of F3, F4, F6, F7, F8, etc. is omitted. These are similar to those described with reference to FIGS. 3A and 3B.
  • the gas supply pipe 211 connected to the gas supply pipe 20b is disposed in the obscuration region described with reference to FIG. 2D.
  • the gas supply pipe 211 only one second opening 20k is formed at a position through which the first straight line L1 passes.
  • the second gas supply unit discharges the second gas in a direction away from the first surface P1. Also in this configuration, since the second gas is folded back in the ⁇ Z direction before the aperture 291a, a second gas flow is formed in the ⁇ Z direction along the wall surface of the chamber 2a.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

極端紫外光生成装置は、チャンバと、チャンバの内部に位置し、第1の焦点と第2の焦点とを定める反射面を有し、第1の焦点と第2の焦点とを通る第1の直線に垂直で第1の焦点を通る第1の面を挟んで、反射面と第2の焦点とが位置するように構成されたEUV集光ミラーと、第1の焦点及び第1の焦点の周辺に磁場を発生させる少なくとも1つの磁石と、チャンバの内部に第1のガスを供給するように構成され、反射面の外周部の近傍に開口し、反射面に第1のガスを流す第1のガス供給部と、チャンバの内部に第2のガスを供給するように構成され、第1の面と第2の焦点との間の位置に開口した第2のガス供給部と、チャンバの内部のガスを排気するように構成され、第1の焦点と少なくとも1つの磁石との間の位置に開口した排気装置と、を備える。

Description

極端紫外光生成装置及び極端紫外光生成装置の制御方法
 本開示は、極端紫外光生成装置及び極端紫外光生成装置の制御方法に関する。
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成する極端紫外光生成装置と縮小投影反射光学系(reduced projection reflection optics)とを組み合わせた露光装置の開発が期待されている。
 EUV光生成装置としては、ターゲット物質にパルスレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、シンクロトロン放射光が用いられるSR(Synchrotron Radiation)式の装置との3種類の装置が提案されている。
米国特許出願公開第2009/0057567号明細書 国際公開第2017/084872号
概要
 本開示の1つの観点に係る極端紫外光生成装置は、チャンバと、チャンバの内部に位置し、第1の焦点と第2の焦点とを定める反射面を有し、第1の焦点と第2の焦点とを通る第1の直線に垂直で第1の焦点を通る第1の面を挟んで、反射面と第2の焦点とが位置するように構成されたEUV集光ミラーと、第1の焦点及び第1の焦点の周辺に磁場を発生させる少なくとも1つの磁石と、チャンバの内部に第1のガスを供給するように構成され、反射面の外周部の近傍に開口し、反射面に第1のガスを流す第1のガス供給部と、チャンバの内部に第2のガスを供給するように構成され、第1の面と第2の焦点との間の位置に開口した第2のガス供給部と、チャンバの内部のガスを排気するように構成され、第1の焦点と少なくとも1つの磁石との間の位置に開口した排気装置と、を備える。
 本開示の1つの観点に係る極端紫外光生成装置の制御方法は、チャンバと、チャンバの内部に位置し、第1の焦点と第2の焦点とを定める反射面を有し、第1の焦点と第2の焦点とを通る第1の直線に垂直で第1の焦点を通る第1の面を挟んで、反射面と第2の焦点とが位置するように構成されたEUV集光ミラーと、を備える極端紫外光生成装置の制御方法であって、第1の焦点及び第1の焦点の周辺に磁場を発生させることと、チャンバの内部に、反射面の外周部の近傍から反射面に第1のガスを供給することと、チャンバの内部に、第1の面と第2の焦点との間の位置から第2のガスを供給することと、チャンバの内部のガスを磁場が通る位置から排気することと、を含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP式のEUV光生成システムの構成を概略的に示す。 図2Aは、比較例に係るEUV光生成装置の構成を概略的に示す。 図2Bは、図2AのIIB-IIB線における断面図である。 図2Cは、図2AのIIC-IIC線における断面図である。 図2Dは、図2AのIID-IID線における断面図である。 図3Aは、本開示の第1の実施形態に係るEUV光生成装置の構成を概略的に示す。 図3Bは、図3AのIIIB-IIIB線における断面図である。 図4Aは、第1の変形例に係るEUV光生成装置の構成を概略的に示す。 図4Bは、図4AのIVB-IVB線における断面図である。 図5Aは、第2の変形例に係るEUV光生成装置の構成を概略的に示す。 図5Bは、図5AのVB-VB線における断面図である。 図6Aは、第3の変形例に係るEUV光生成装置の構成を概略的に示す。 図6Bは、図6AのVIB-VIB線における断面図である。 図7Aは、第4の変形例に係るEUV光生成装置の構成を概略的に示す。 図7Bは、図7AのVIIB-VIIB線における断面図である。 図8Aは、第5の変形例に係るEUV光生成装置の構成を概略的に示す。 図8Bは、図8AのVIIIB-VIIIB線における断面図である。 図9Aは、第6の変形例に係るEUV光生成装置の構成を概略的に示す。 図9Bは、図9AのIXB-IXB線における断面図である。 図10Aは、第7の変形例に係るEUV光生成装置の構成を概略的に示す。 図10Bは、図10AのXB-XB線における断面図である。 図11Aは、第8の変形例に係るEUV光生成装置の構成を概略的に示す。 図11Bは、図11AのXIB-XIB線における断面図である。
実施形態
<内容>
1.極端紫外光生成システムの全体説明
 1.1 構成
 1.2 動作
2.比較例に係るEUV光生成装置
 2.1 チャンバ
 2.2 EUV集光ミラー
 2.3 磁石
 2.4 排気装置
 2.5 第1のガス供給部
 2.6 オブスキュレーション領域
 2.7 第1のガスの流れ
 2.8 課題
3.第2のガス供給部を備えたEUV光生成装置
 3.1 構成
 3.2 動作及び作用
4.第2のガス供給部のバリエーション
 4.1 第1の変形例
 4.2 第2の変形例
 4.3 第3の変形例
 4.4 第4の変形例
 4.5 第5の変形例
 4.6 第6の変形例
 4.7 第7の変形例
 4.8 第8の変形例
5.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.極端紫外光生成システムの全体説明
 1.1 構成
 図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられる。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含む。チャンバ2は、密閉可能に構成されている。ターゲット供給部26は、例えば、チャンバ2の壁を貫通するように取り付けられている。ターゲット供給部26から出力されるターゲット物質の材料は、スズを含む。ターゲット物質の材料は、スズと、テルビウム、ガドリニウム、リチウム、又はキセノンとの組合せを含むこともできる。
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられている。その貫通孔には、ウインドウ21が設けられている。ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過する。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されている。EUV集光ミラー23は、第1及び第2の焦点を有する。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されている。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2の焦点が中間集光点(IF)292に位置するように配置されている。EUV集光ミラー23の中央部には貫通孔24が設けられている。貫通孔24をパルスレーザ光33が通過する。
 EUV光生成装置1は、EUV光生成制御部5、ターゲットセンサ4等を含む。ターゲットセンサ4は、撮像機能を有し、ターゲット27の存在、軌跡、位置、速度等を検出するよう構成されている。
 また、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含む。接続部29内部には、アパーチャが形成された壁291が設けられている。壁291は、そのアパーチャがEUV集光ミラー23の第2の焦点位置に位置するように配置されている。
 さらに、EUV光生成装置1は、レーザ光進行方向制御部34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含む。レーザ光進行方向制御部34は、レーザ光の進行方向を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備えている。
 1.2 動作
 図1を参照に、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御部34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射する。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射される。
 ターゲット供給部26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力する。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射される。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマから放射光251が放射される。EUV集光ミラー23は、放射光251に含まれるEUV光を、他の波長域の光に比べて高い反射率で反射する。EUV集光ミラー23によって反射されたEUV光を含む反射光252は、中間集光点292で集光され、露光装置6に出力される。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
 EUV光生成制御部5は、EUV光生成システム11全体の制御を統括する。EUV光生成制御部5は、ターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理する。また、EUV光生成制御部5は、例えば、ターゲット27が出力されるタイミング、ターゲット27の出力方向等を制御する。さらに、EUV光生成制御部5は、例えば、レーザ装置3の発振タイミング、パルスレーザ光32の進行方向、パルスレーザ光33の集光位置等を制御する。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
2.比較例に係るEUV光生成装置
 図2Aは、比較例に係るEUV光生成装置の構成を概略的に示す。図2Bは、図2AのIIB-IIB線における断面図である。図2Cは、図2AのIIC-IIC線における断面図である。図2Dは、図2AのIID-IID線における断面図である。
 2.1 チャンバ
 図2A及び図2Bに示されるように、チャンバ2aは、略円錐状の形状を有している。チャンバ2aの大径側の端部は基準部材2bにシールされて固定されている。チャンバ2aの小径側の端部にはアパーチャ291aが形成されている。
 2.2 EUV集光ミラー
 チャンバ2aの内部において、EUV集光ミラー23がEUV集光ミラーホルダ23aによって基準部材2bに支持されている。EUV集光ミラー23は回転楕円面形状の反射面を有し、この反射面には多層反射膜231が形成されている。この多層反射膜231によって第1の焦点と第2の焦点とが規定される。上述のように、第1の焦点はプラズマ生成領域25に位置し、第2の焦点は中間集光点292に位置する。プラズマ生成領域25と中間集光点292とを通る直線を、第1の直線L1とする。第1の直線L1に垂直でプラズマ生成領域25を通る面を、第1の面P1とする。多層反射膜231と中間集光点292が、第1の面P1を挟んで位置している。多層反射膜231から中間集光点292へと向かうEUV光の出力方向の中心軸が、第1の直線L1及び+Z方向とほぼ一致する。ターゲット供給部26から出力されるターゲット27の出力方向は+Y方向とほぼ一致する。
 EUV集光ミラー23の貫通孔24及び基準部材2bの貫通孔に、筒状のレーザ光路壁35が配置されている。図1を参照しながら説明したレーザ光集光ミラー22によって反射されたパルスレーザ光33が、レーザ光路壁35の内側を通過する。このパルスレーザ光33は、プラズマ生成領域25に供給されたターゲット27に照射される。パルスレーザ光33がターゲット27に照射されることにより、ターゲット物質がプラズマ化し、プラズマから放射光251が放射される。放射光251が放射された後、プラズマに含まれるターゲット物質のイオンはデブリとしてチャンバ2aの内部で拡散する。ターゲット物質のイオンは中性化して多層反射膜231の表面に付着することがある。
 図示しない外部装置から供給される少量のガスが、レーザ光路壁35の内側を通ってチャンバ2aの内部に流れる。この少量のガスの流れにより、ターゲット物質のデブリがレーザ光路壁35の内側を逆流することが抑制され、レーザ光集光ミラー22等が汚染されることが抑制される。
 2.3 磁石
 図2A及び図2Cに示されるように、チャンバ2aの外側に、磁石7a及び7bが配置されている。磁石7a及び7bの各々は、超伝導コイルを有する電磁石で構成される。磁石7a及び7bは、プラズマ生成領域25を挟んで位置している。また、磁石7a及び7bは、それぞれの超伝導コイルの中心軸が互いにほぼ同軸で、これらの中心軸がプラズマ生成領域25を通るように配置されている。これらの超伝導コイルに互いに同じ方向の電流を流すことにより、超伝導コイルの中心軸及びその周りに磁場70が発生する。磁場70の中心軸は、超伝導コイルの中心軸及び+X方向とほぼ一致する。
 プラズマ生成領域25における磁束密度は、0.4T以上、3.0T以下が好ましい。より好ましくは、0.5T以上、1.5T以下でもよい。
 チャンバ2aの内部で拡散しようとするターゲット物質のイオンの一部は、磁場70によってトラップされる。従って、図2A及び図2Cにおいて磁場70として示される破線の周辺に、ターゲット物質が多く分布すると考えられる。
 2.4 排気装置
 チャンバ2aには排気装置が取り付けられている。排気装置は、排気ポンプ30aと、排気管30bとを含む。排気管30bは、一端が排気ポンプ30aに接続され、別の一端が開口部30cにおいてチャンバ2aの内部に接続されている。開口部30cは、プラズマ生成領域25と磁石7aとの間、及び、プラズマ生成領域25と磁石7bとの間にそれぞれ配置されている。あるいは、開口部30cは、それぞれ磁石7aの近傍及び磁石7bの近傍、又は、磁場70が通る位置に配置されている。排気装置は、さらに、図示しない微粒子トラップや除害装置を含む。
 排気ポンプ30aは、チャンバ2aの内部を大気圧未満の所定の圧力となるように排気する。ターゲット物質が多く分布する磁場70の近傍に開口部30cが位置しているので、排気装置は、チャンバ2aの内部のターゲット物質を効率的に排出することができる。
 2.5 第1のガス供給部
 チャンバ2aには第1のガス供給部が取り付けられている。第1のガス供給部は、エッチングガス供給源10aと、ガス供給管10bとを含む。エッチングガス供給源10aは、図示しないガスボンベと、圧力制御装置又は流量制御装置と、を含む。ガス供給管10bは基準部材2bを貫通している。ガス供給管10bは、一端がチャンバ2aの外側でエッチングガス供給源10aに接続され、別の一端がチャンバ2aの内部に位置している。ガス供給管10bは、EUV集光ミラー23の反射面の外周部の近傍に、複数の第1の開口部10cを有する。複数の第1の開口部10cは、反射面の外周部に沿って配置されている。
 図2A~図2Cに矢印F1で示されるように、第1のガス供給部は、エッチングガス供給源10aから供給される第1のガスを、多層反射膜231の表面に沿って流すように構成されている。第1のガスは、反射面の外周部から第1の直線L1に近づく方向に流れる。
 第1のガスは、エッチングガスを含む。エッチングガスは、水素ガスを含む。水素ガスの一部は、EUV光によって励起されて水素ラジカルとなる。ターゲット物質としてスズが用いられる場合、水素ラジカルとスズとが反応して、常温で気体であるスタナンが生成される。これにより、多層反射膜231の表面に付着したスズがエッチングされる。あるいは、多層反射膜231の表面にスズが付着することが抑制される。スタナンガスは、開口部30cを介して排気装置によってチャンバ2aの外に排気される。
 なお、スタナンは高温になると水素とスズに分離しやすくなるので、EUV集光ミラー23は図示しない冷却装置によって所定温度以下となるように冷却される。所定温度は、常温以下が好ましい。さらに好ましくは、例えば、5℃でもよい。
 2.6 オブスキュレーション領域
 図2Dに、EUV集光ミラー23から中間集光点292に向かう反射光252の光路の断面が示されている。第1の直線L1に沿ってEUV集光ミラー23を見たときに、EUV集光ミラー23はほぼ円形の外形を有している。従って、EUV光を含む反射光252の光路の断面も、ほぼ円形の外形を有している。
 しかしながら、EUV光の光路の断面がこのような円形の外形を有していても、図1を参照しながら説明した露光装置6の仕様により、露光に利用されない領域が設定されることがある。そのような領域に対応するチャンバ2aの内部の空間領域を、オブスキュレーション領域という。図2Dに、オブスキュレーション領域の断面を符号OAで示す。オブスキュレーション領域においてはEUV光が遮蔽されてもよいので、オブスキュレーション領域には、EUV光を透過しない部材を設置することも可能である。オブスキュレーション領域については後述する。
 2.7 第1のガスの流れ
  図2A~図2Cに矢印F1で示されるように、第1のガスは、EUV集光ミラー23の反射面の外周部からEUV集光ミラー23の中心付近に集まる。EUV集光ミラー23の中心付近において、-Z方向にはガスの逃げ場がないので、図2A及び図2Bに示されるように、第1のガスは+Z方向に向きを変える。EUV集光ミラー23の中心付近から+Z方向への第1のガスの流れは、反射面の外周部から集まったガスで構成されるので、強い流れとなる可能性がある。この強い流れは、プラズマ生成領域25の周辺に多く分布するターゲット物質を巻き込んで、矢印F2で示されるように第1の直線L1に沿って+Z方向に進む。
 ターゲット物質を巻き込んだ第1のガスは、その後、アパーチャ291aの手前で折り返し、-Z方向に向きを変える。第1の直線L1の付近には+Z方向の強い流れがあるので、第1のガスは、第1の直線L1の付近で-Z方向に流れることはできない。そこで、第1のガスは、矢印F3及びF4で示されるように第1の直線L1から離れた位置で、チャンバ2aの壁面に沿って-Z方向に流れる。
 なお、露光装置6から、少量のガスがアパーチャ291aを通ってチャンバ2aの内部に流れるようになっている。この少量のガスの流れにより、ターゲット物質のデブリが露光装置6の内部の光学素子を汚染することが抑制される。すなわち、第1のガスはアパーチャ291aを通ってチャンバ2aの外に流れることはないようになっている。
 2.8 課題
 アパーチャ291aの手前で折り返した第1のガスのうちの一部は、矢印F3で示されるように、開口部30cの付近に到達し、排気装置によって排気される。しかしながら、アパーチャ291aの手前で折り返した第1のガスのうちの別の一部は、矢印F4で示されるように、多層反射膜231の周辺に到達する可能性がある。多層反射膜231の周辺に到達した第1のガスには、ターゲット物質が多く含まれ、このターゲット物質が多層反射膜231を汚染する可能性がある。
 以下に説明する実施形態においては、第1の面P1と中間集光点292との間から第2のガスを供給することにより、第1のガスに含まれるターゲット物質が多層反射膜231を汚染することを抑制する。
3.第2のガス供給部を備えたEUV光生成装置
 3.1 構成
 図3Aは、本開示の第1の実施形態に係るEUV光生成装置の構成を概略的に示す。図3Bは、図3AのIIIB-IIIB線における断面図である。図3Aは、上述の比較例における図2Aに相当する部分を示し、図3Bは、図2Bに相当する部分を示す。図3A及び図3Bに示されるように、第1の実施形態に係るEUV光生成装置は、第2のガス供給部を備えている点で、比較例に係るEUV光生成装置と異なる。他の点については比較例と同様である。
 第2のガス供給部は、エッチングガス供給源20aと、ガス供給管20bとを含む。エッチングガス供給源20aは、図示しないガスボンベと、圧力制御装置又は流量制御装置と、を含む。エッチングガス供給源20aは、エッチングガス供給源10aと別に用意されていてもよいし、エッチングガス供給源10aと共通のガスボンベを用いるものでもよい。
 ガス供給管20bは、一端がチャンバ2aの外のエッチングガス供給源20aに接続され、別の一端がチャンバ2aの内部のガス供給管203に接続されている。ガス供給管20bの一部は、ガス供給管10bの一部と共通であってもよい。ガス供給管20bとガス供給管203とは、チャンバ2aの壁を貫通した1本の管で構成されていてもよい。ガス供給管203は、第2の開口部20cを有する。第2の開口部20cは、第1の面P1と中間集光点292との間に位置する。
 矢印F5で示されるように、第2のガス供給部は、エッチングガス供給源20aから供給される第2のガスを、チャンバ2aの内部に供給するように構成されている。第2のガスは、エッチングガスを含む。エッチングガスは、水素ガスを含む。プラズマ生成領域25又はその周辺を通過した第1のガスはターゲット物質を多く含むのに対し、第2のガスは、ターゲット物質をほとんど含まない。
 チャンバ2aの内部への第2のガスの供給量は、チャンバ2aの内部への第1のガスの供給量の0.6倍以上、4倍以下が好ましい。チャンバ2aの内部への第2のガスの供給量は、チャンバ2aの内部への第1のガスの供給量より大きいことが好ましい。
 チャンバ2aの内部への第2のガスの供給量は、20slm以上、200slm以下が好ましい。例えば、60slmでもよい。
 チャンバ2aの内部への第1のガスの供給量は、10slm以上、120slm以下が好ましい。例えば、40slmでもよい。
 なお、「Xslm」は、1気圧に換算した場合に毎分Xリットルであることを意味する。
 チャンバ2aの内部へ供給される第1のガス及び第2のガスの温度は、16℃以下が好ましい。
 排気装置は、チャンバ2aの内部の圧力が50Pa以上、150Pa以下となるように制御される。好ましくは、チャンバ2aの内部の圧力は60Pa以上、90Pa以下でもよい。例えば、チャンバ2aの内部の圧力は75Paでもよい。
 3.2 動作及び作用
 チャンバ2aの内部に供給された第2のガスは、矢印F6で示されるように、第1のガスを排気装置の開口部30cに向けて押し出すように、-Z方向に流れる。
 第1の直線L1の付近においては、矢印F2で示されるように、第1のガスが+Z方向に強く流れている。さらに、矢印F2より外側においては、矢印F3及びF4で示されるように、-Z方向に折り返した第1のガスが流れている。
 このため、第2のガスの一部は、図3Bに矢印F7で示されるように、矢印F3及びF4よりもさらに外側の位置で、チャンバ2aの壁面に沿って-Z方向に流れる。言い換えると、矢印F7で示される第2のガスの流れは、矢印F3及びF4で示される第1のガスの流れを、チャンバ2aの壁面から離れて第1の直線L1に近づく方向へ押しのけようとする。さらに、矢印F7で示される第2のガスの流れは、チャンバ2aの壁面に沿って多層反射膜231の周辺に到達するので、矢印F4で示される第1のガスの流れが多層反射膜231の周辺に到達することが抑制される。こうして、第1のガスの多くの部分は、チャンバ2aの壁面及び多層反射膜231の周辺には到達せずに、第2のガスに押されて排気装置によって排気される。従って、チャンバ2aの壁面及び多層反射膜231がターゲット物質で汚染されることが抑制される。
 第2のガスの別の一部は、図3Aに矢印F8で示されるように、矢印F3及びF4よりもさらに外側の位置で、チャンバ2aの壁面に沿って-Z方向に流れる。従って、チャンバ2aの壁面がターゲット物質で汚染されることが抑制される。仮に、矢印F8で示される第2のガスの流れが磁場70を横切って多層反射膜231に到達すると、第2のガスが、磁場70に多く分布するターゲット物質を多層反射膜231に到達させてしまう可能性がある。しかし、本実施形態においては、ターゲット物質が多く分布する磁場70の近傍に排気装置の開口部30cを配置したので、矢印F8で示される第2のガスの多くは多層反射膜231に到達せずに開口部30cから排気される。従って、多層反射膜231がターゲット物質で汚染されることが抑制される。
4.第2のガス供給部のバリエーション
 4.1 第1の変形例
 図4Aは、第1の変形例に係るEUV光生成装置の構成を概略的に示す。図4Aは、上述の第1の実施形態における図3A又は図3Bに相当する部分を示す。図4Bは、図4AのIVB-IVB線における断面図である。図4A及び図4Bにおいては、エッチングガス供給源10a、ガス供給管10b、排気ポンプ30a、排気管30b、磁石7a及び7b、ターゲット供給部26、ターゲット回収部28、ガスの流れを示す矢印F2、F3、F4、F6、F7、F8等の図示は省略されている。これらは図3A及び図3Bを参照しながら説明したものと同様である。
 第1の変形例に係るEUV光生成装置において、ガス供給管20bに接続されたガス供給管204には、第2の開口部20dが1つだけ形成されている。第2のガス供給部は、第1の直線L1に向けて、第1の面P1とほぼ平行な方向に第2のガスを吐出する。この構成においても、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが形成される。
 他の点については、図3A及び図3Bを参照しながら説明したものと同様である。
 4.2 第2の変形例
 図5Aは、第2の変形例に係るEUV光生成装置の構成を概略的に示す。図5Aは、上述の第1の実施形態における図3A又は図3Bに相当する部分を示す。図5Bは、図5AのVB-VB線における断面図である。図5A及び図5Bにおいては、エッチングガス供給源10a、ガス供給管10b、排気ポンプ30a、排気管30b、磁石7a及び7b、ターゲット供給部26、ターゲット回収部28、ガスの流れを示す矢印F2、F3、F4、F6、F7、F8等の図示は省略されている。これらは図3A及び図3Bを参照しながら説明したものと同様である。
 第2の変形例に係るEUV光生成装置において、ガス供給管20bに接続されたガス供給管205には、第2の開口部20eが1つだけ形成されている。第2のガス供給部は、第1の直線L1に向けて、第1の面P1から離れるように傾いた方向に第2のガスを吐出する。この構成においても、第2のガスはアパーチャ291aの手前で-Z方向に折り返すので、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが形成される。第2のガスをアパーチャ291aの手前で折り返させることにより、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが偏ることを抑制し、均一な流れにすることができる。
 他の点については、図3A及び図3Bを参照しながら説明したものと同様である。
 4.3 第3の変形例
 図6Aは、第3の変形例に係るEUV光生成装置の構成を概略的に示す。図6Aは、上述の第1の実施形態における図3A又は図3Bに相当する部分を示す。図6Bは、図6AのVIB-VIB線における断面図である。図6A及び図6Bにおいては、エッチングガス供給源10a、ガス供給管10b、排気ポンプ30a、排気管30b、磁石7a及び7b、ターゲット供給部26、ターゲット回収部28、ガスの流れを示す矢印F2、F3、F4、F6、F7、F8等の図示は省略されている。これらは図3A及び図3Bを参照しながら説明したものと同様である。
 第3の変形例に係るEUV光生成装置において、ガス供給管20bには環状のガス供給管201が接続されている。ガス供給管201はチャンバ2aの外側で、チャンバ2aを囲むように配置されている。ガス供給管201には複数のガス供給管206が接続されている。複数のガス供給管206の各々は、チャンバ2aの壁を貫通しており、チャンバ2aの内部に位置する開口部20fを有している。第2のガス供給部は、第1の直線L1を囲む複数の位置から、第1の直線L1に向けて第2のガスを吐出する。この構成においても、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが形成される。第1の直線L1を囲む複数の位置から第2のガスを吐出することにより、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが偏ることを抑制し、均一な流れにすることができる。
 他の点については、図3A及び図3Bを参照しながら説明したものと同様である。
 4.4 第4の変形例
 図7Aは、第4の変形例に係るEUV光生成装置の構成を概略的に示す。図7Aは、上述の第1の実施形態における図3A又は図3Bに相当する部分を示す。図7Bは、図7AのVIIB-VIIB線における断面図である。図7A及び図7Bにおいては、エッチングガス供給源10a、ガス供給管10b、排気ポンプ30a、排気管30b、磁石7a及び7b、ターゲット供給部26、ターゲット回収部28、ガスの流れを示す矢印F2、F3、F4、F6、F7、F8等の図示は省略されている。これらは図3A及び図3Bを参照しながら説明したものと同様である。
 第4の変形例に係るEUV光生成装置において、ガス供給管20bには環状のガス供給管207が接続されている。ガス供給管207は、第1の直線L1を囲むように配置されている。ガス供給管207はスリット状の開口部20gを有している。開口部20gは、例えば、7.5mmの開口幅を有していてもよい。第2のガス供給部は、第1の直線L1の周囲から、第1の直線L1に向けて第2のガスを吐出する。この構成においても、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが形成される。第1の直線L1の周囲から第2のガスを吐出することにより、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが偏ることを抑制し、均一な流れにすることができる。
 他の点については、図3A及び図3Bを参照しながら説明したものと同様である。
 開口部20gの形状は、スリット状である場合の他、メッシュ状であってもよい。
 4.5 第5の変形例
 図8Aは、第5の変形例に係るEUV光生成装置の構成を概略的に示す。図8Aは、上述の第1の実施形態における図3A又は図3Bに相当する部分を示す。図8Bは、図8AのVIIIB-VIIIB線における断面図である。図8A及び図8Bにおいては、エッチングガス供給源10a、ガス供給管10b、排気ポンプ30a、排気管30b、磁石7a及び7b、ターゲット供給部26、ターゲット回収部28、ガスの流れを示す矢印F2、F3、F4、F6、F7、F8等の図示は省略されている。これらは図3A及び図3Bを参照しながら説明したものと同様である。
 第5の変形例に係るEUV光生成装置において、ガス供給管20bには複数のガス供給管208が接続されている。複数のガス供給管208の各々は、チャンバ2aの壁を貫通しており、チャンバ2aの内部に位置する開口部20hを有している。第2のガス供給部は、第1の直線L1を囲む複数の位置から、チャンバ2aの壁面に沿って、-Z方向に第2のガスを吐出する。この構成においても、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが形成される。第1の直線L1を囲む複数の位置で第2のガスを吐出することにより、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが偏ることを抑制し、均一な流れにすることができる。
 他の点については、図3A及び図3Bを参照しながら説明したものと同様である。
 4.6 第6の変形例
 図9Aは、第6の変形例に係るEUV光生成装置の構成を概略的に示す。図9Aは、上述の第1の実施形態における図3A又は図3Bに相当する部分を示す。図9Bは、図9AのIXB-IXB線における断面図である。図9A及び図9Bにおいては、エッチングガス供給源10a、ガス供給管10b、排気ポンプ30a、排気管30b、磁石7a及び7b、ターゲット供給部26、ターゲット回収部28、ガスの流れを示す矢印F2、F3、F4、F6、F7、F8等の図示は省略されている。これらは図3A及び図3Bを参照しながら説明したものと同様である。
 第6の変形例に係るEUV光生成装置において、ガス供給管20bに接続されたガス供給管209は、図2Dを参照しながら説明したオブスキュレーション領域に配置されている。ガス供給管209には、複数の第2の開口部20iが形成されている。複数の第2の開口部20iの代わりに、スリット状又はメッシュ状の開口部が形成されていてもよい。第2のガス供給部は、チャンバ2aの壁に向けて、第1の面P1とほぼ平行な方向に第2のガスを吐出する。この構成においても、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが形成される。オブスキュレーション領域にガス供給管209を配置することにより、露光装置6における露光性能に影響することなく第2のガスを供給することができる。
 他の点については、図3A及び図3Bを参照しながら説明したものと同様である。
 4.7 第7の変形例
 図10Aは、第7の変形例に係るEUV光生成装置の構成を概略的に示す。図10Aは、上述の第1の実施形態における図3A又は図3Bに相当する部分を示す。図10Bは、図10AのXB-XB線における断面図である。図10A及び図10Bにおいては、エッチングガス供給源10a、ガス供給管10b、排気ポンプ30a、排気管30b、磁石7a及び7b、ターゲット供給部26、ターゲット回収部28、ガスの流れを示す矢印F2、F3、F4、F6、F7、F8等の図示は省略されている。これらは図3A及び図3Bを参照しながら説明したものと同様である。
 第7の変形例に係るEUV光生成装置において、ガス供給管20bに接続されたガス供給管210は、図2Dを参照しながら説明したオブスキュレーション領域に配置されている。ガス供給管210には、複数の第2の開口部20jが形成されている。第2のガス供給部は、第1の面P1から離れる方向に第2のガスを吐出する。この構成においても、第2のガスはアパーチャ291aの手前で-Z方向に折り返すので、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが形成される。第2のガスをアパーチャ291aの手前で折り返させることにより、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが偏ることを抑制し、均一な流れにすることができる。
 他の点については、第6の変形例と同様である。
 4.8 第8の変形例
 図11Aは、第8の変形例に係るEUV光生成装置の構成を概略的に示す。図11Aは、上述の第1の実施形態における図3A又は図3Bに相当する部分を示す。図11Bは、図11AのXIB-XIB線における断面図である。図11A及び図11Bにおいては、エッチングガス供給源10a、ガス供給管10b、排気ポンプ30a、排気管30b、磁石7a及び7b、ターゲット供給部26、ターゲット回収部28、ガスの流れを示す矢印F2、F3、F4、F6、F7、F8等の図示は省略されている。これらは図3A及び図3Bを参照しながら説明したものと同様である。
 第8の変形例に係るEUV光生成装置において、ガス供給管20bに接続されたガス供給管211は、図2Dを参照しながら説明したオブスキュレーション領域に配置されている。ガス供給管211には、第1の直線L1が通る位置に第2の開口部20kが1つだけ形成されている。第2のガス供給部は、第1の面P1から離れる方向に第2のガスを吐出する。この構成においても、第2のガスはアパーチャ291aの手前で-Z方向に折り返すので、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが形成される。第1の直線L1が通る位置に第2の開口部20kが形成されているので、チャンバ2aの壁面に沿った-Z方向への第2のガスの流れが偏ることを抑制し、均一な流れにすることができる。
 他の点については、第6の変形例と同様である。
5.その他
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (20)

  1.  チャンバと、
     前記チャンバの内部に位置し、第1の焦点と第2の焦点とを定める反射面を有し、前記第1の焦点と前記第2の焦点とを通る第1の直線に垂直で前記第1の焦点を通る第1の面を挟んで、前記反射面と前記第2の焦点とが位置するように構成されたEUV集光ミラーと、
     前記第1の焦点及び前記第1の焦点の周辺に磁場を発生させる少なくとも1つの磁石と、
     前記チャンバの内部に第1のガスを供給するように構成され、前記反射面の外周部の近傍に開口し、前記反射面に前記第1のガスを流す第1のガス供給部と、
     前記チャンバの内部に第2のガスを供給するように構成され、前記第1の面と前記第2の焦点との間の位置に開口した第2のガス供給部と、
     前記チャンバの内部のガスを排気するように構成され、前記第1の焦点と前記少なくとも1つの磁石との間の位置に開口した排気装置と、
    を備える極端紫外光生成装置。
  2.  請求項1に記載の極端紫外光生成装置であって、
     前記少なくとも1つの磁石は、前記第1の焦点を挟んで配置された第1の磁石及び第2の磁石を含み、
     前記排気装置は、前記第1の磁石の近傍及び前記第2の磁石の近傍にそれぞれ開口している、
    極端紫外光生成装置。
  3.  請求項1に記載の極端紫外光生成装置であって、
     前記第1のガス供給部は、前記第1の直線へ近づく方向に前記第1のガスを流すように構成された、
    極端紫外光生成装置。
  4.  請求項1に記載の極端紫外光生成装置であって、
     前記第1のガス供給部は、前記EUV集光ミラーの前記外周部に沿って配置された複数の第1の開口部を有する、
    極端紫外光生成装置。
  5.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガス供給部は、前記チャンバの内面に前記第2のガスを流す、
    極端紫外光生成装置。
  6.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガス供給部は、前記第1の面から離れる方向に前記第2のガスを流す、
    極端紫外光生成装置。
  7.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガス供給部は、前記第1の面に近づく方向に前記第2のガスを流す、
    極端紫外光生成装置。
  8.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガス供給部は、前記第1の直線を囲んで配置された複数の第2の開口部を有する、
    極端紫外光生成装置。
  9.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガス供給部は、オブスキュレーション領域に配置された第2の開口部を有する、
    極端紫外光生成装置。
  10.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガス供給部が供給する前記第2のガスの流量は、前記第1のガス供給部が供給する前記第1のガスの流量の0.6倍以上、4倍以下である、
    極端紫外光生成装置。
  11.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガス供給部が供給する前記第2のガスの流量は、前記第1のガス供給部が供給する前記第1のガスの流量より大きい、
    極端紫外光生成装置。
  12.  請求項1に記載の極端紫外光生成装置であって、
     前記第1のガス供給部が供給する前記第1のガスの流量は、1気圧に換算した場合に毎分120リットル以下である、
    極端紫外光生成装置。
  13.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガス供給部が供給する前記第2のガスの流量は、1気圧に換算した場合に毎分200リットル以下である、
    極端紫外光生成装置。
  14.  請求項1に記載の極端紫外光生成装置であって、
     前記第1のガスは、エッチングガスを含む、
    極端紫外光生成装置。
  15.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガスは、エッチングガスを含む、
    極端紫外光生成装置。
  16.  請求項1に記載の極端紫外光生成装置であって、
     前記第1のガスは、水素ガスを含む、
    極端紫外光生成装置。
  17.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガスは、水素ガスを含む、
    極端紫外光生成装置。
  18.  請求項1に記載の極端紫外光生成装置であって、
     前記第2のガスの温度は、16℃以下である、
    極端紫外光生成装置。
  19.  請求項1に記載の極端紫外光生成装置であって、
     前記排気装置は、前記チャンバの内部の圧力が50Pa以上、150Pa以下となるように前記チャンバの内部のガスを排気する、
    極端紫外光生成装置。
  20.  チャンバと、
     前記チャンバの内部に位置し、第1の焦点と第2の焦点とを定める反射面を有し、前記第1の焦点と前記第2の焦点とを通る第1の直線に垂直で前記第1の焦点を通る第1の面を挟んで、前記反射面と前記第2の焦点とが位置するように構成されたEUV集光ミラーと、
    を備える極端紫外光生成装置の制御方法であって、
     前記第1の焦点及び前記第1の焦点の周辺に磁場を発生させることと、
     前記チャンバの内部に、前記反射面の外周部の近傍から前記反射面に第1のガスを供給することと、
     前記チャンバの内部に、前記第1の面と前記第2の焦点との間の位置から第2のガスを供給することと、
     前記チャンバの内部のガスを前記磁場が通る位置から排気することと、
    を含む、極端紫外光生成装置の制御方法。
PCT/JP2017/033747 2017-09-19 2017-09-19 極端紫外光生成装置及び極端紫外光生成装置の制御方法 WO2019058430A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/033747 WO2019058430A1 (ja) 2017-09-19 2017-09-19 極端紫外光生成装置及び極端紫外光生成装置の制御方法
JP2019542843A JP6977047B2 (ja) 2017-09-19 2017-09-19 極端紫外光生成装置及び極端紫外光生成装置の制御方法
US16/786,542 US11211239B2 (en) 2017-09-19 2020-02-10 Extreme ultraviolet light generation apparatus and extreme ultraviolet light generation apparatus controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033747 WO2019058430A1 (ja) 2017-09-19 2017-09-19 極端紫外光生成装置及び極端紫外光生成装置の制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/786,542 Continuation US11211239B2 (en) 2017-09-19 2020-02-10 Extreme ultraviolet light generation apparatus and extreme ultraviolet light generation apparatus controlling method

Publications (1)

Publication Number Publication Date
WO2019058430A1 true WO2019058430A1 (ja) 2019-03-28

Family

ID=65809581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033747 WO2019058430A1 (ja) 2017-09-19 2017-09-19 極端紫外光生成装置及び極端紫外光生成装置の制御方法

Country Status (3)

Country Link
US (1) US11211239B2 (ja)
JP (1) JP6977047B2 (ja)
WO (1) WO2019058430A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148933A (ja) * 2020-03-18 2021-09-27 ギガフォトン株式会社 極端紫外光生成装置、極端紫外光生成システム、及び電子デバイスの製造方法
US11483917B2 (en) 2020-03-16 2022-10-25 Gigaphoton Inc. Chamber device, extreme ultraviolet light generation apparatus, and electronic device manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273239A (ja) * 2006-03-31 2007-10-18 Komatsu Ltd 極端紫外光源装置
JP2009253032A (ja) * 2008-04-07 2009-10-29 Komatsu Ltd 極端紫外光源装置
JP2009544148A (ja) * 2006-07-14 2009-12-10 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のゲッタおよび洗浄構成、ならびに表面を洗浄する方法
JP2012169580A (ja) * 2010-03-18 2012-09-06 Gigaphoton Inc 極端紫外光生成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655925B2 (en) 2007-08-31 2010-02-02 Cymer, Inc. Gas management system for a laser-produced-plasma EUV light source
US8872142B2 (en) * 2010-03-18 2014-10-28 Gigaphoton Inc. Extreme ultraviolet light generation apparatus
WO2014090480A1 (en) * 2012-12-12 2014-06-19 Asml Netherlands B.V. Power source for a lithographic apparatus, and lithographic apparatus comprising such a power source
JP6869242B2 (ja) * 2015-11-19 2021-05-12 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のためのeuvソースチャンバーおよびガス流れ様式、多層ミラー、およびリソグラフィ装置
WO2018211569A1 (ja) * 2017-05-15 2018-11-22 ギガフォトン株式会社 極端紫外光生成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273239A (ja) * 2006-03-31 2007-10-18 Komatsu Ltd 極端紫外光源装置
JP2009544148A (ja) * 2006-07-14 2009-12-10 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のゲッタおよび洗浄構成、ならびに表面を洗浄する方法
JP2009253032A (ja) * 2008-04-07 2009-10-29 Komatsu Ltd 極端紫外光源装置
JP2012169580A (ja) * 2010-03-18 2012-09-06 Gigaphoton Inc 極端紫外光生成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11483917B2 (en) 2020-03-16 2022-10-25 Gigaphoton Inc. Chamber device, extreme ultraviolet light generation apparatus, and electronic device manufacturing method
JP2021148933A (ja) * 2020-03-18 2021-09-27 ギガフォトン株式会社 極端紫外光生成装置、極端紫外光生成システム、及び電子デバイスの製造方法
JP7389691B2 (ja) 2020-03-18 2023-11-30 ギガフォトン株式会社 極端紫外光生成装置、極端紫外光生成システム、及び電子デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2019058430A1 (ja) 2020-11-05
US11211239B2 (en) 2021-12-28
JP6977047B2 (ja) 2021-12-08
US20200185212A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP4954584B2 (ja) 極端紫外光源装置
JP5301545B2 (ja) 極紫外線(euv)フォトリソグラフィ装置のチャンバ間のガス流を管理するシステム
US8519366B2 (en) Debris protection system having a magnetic field for an EUV light source
CN102822903A (zh) 用于在激光产生的等离子体远紫外光源中的靶材传送保护的系统和方法
JP2013135033A (ja) 極端紫外光生成装置
US10582602B2 (en) Extreme ultraviolet light generation apparatus
JP2013109854A (ja) チャンバ装置および極端紫外光生成装置
US8547525B2 (en) EUV radiation generation apparatus
WO2011102162A1 (ja) チャンバ装置、および極端紫外光生成装置
US11145429B2 (en) Extreme ultraviolet chamber apparatus, extreme ultraviolet light generation system, and method for manufacturing electronic device
JP6367941B2 (ja) 極端紫外光生成装置
US10455679B2 (en) Extreme ultraviolet light generation device
US11211239B2 (en) Extreme ultraviolet light generation apparatus and extreme ultraviolet light generation apparatus controlling method
WO2018211569A1 (ja) 極端紫外光生成装置
US11036143B2 (en) Extreme ultraviolet light generation apparatus and electronic device manufacturing method
US20210364928A1 (en) Tin trap device, extreme ultraviolet light generation apparatus, and electronic device manufacturing method
KR20220005464A (ko) 극자외선 광원을 위한 보호 시스템
US10959317B1 (en) Extreme ultraviolet light generating apparatus and method of manufacturing electronic device
WO2018016034A1 (ja) 極端紫外光生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925668

Country of ref document: EP

Kind code of ref document: A1