WO2019057007A1 - 一种通信连接检测方法及装置 - Google Patents

一种通信连接检测方法及装置 Download PDF

Info

Publication number
WO2019057007A1
WO2019057007A1 PCT/CN2018/105975 CN2018105975W WO2019057007A1 WO 2019057007 A1 WO2019057007 A1 WO 2019057007A1 CN 2018105975 W CN2018105975 W CN 2018105975W WO 2019057007 A1 WO2019057007 A1 WO 2019057007A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
data traffic
nhrp
receive
message
Prior art date
Application number
PCT/CN2018/105975
Other languages
English (en)
French (fr)
Inventor
季叶一
张玉磊
臧亮
刘必振
朱宏浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18857533.6A priority Critical patent/EP3678335A4/en
Publication of WO2019057007A1 publication Critical patent/WO2019057007A1/zh
Priority to US16/825,544 priority patent/US11303528B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/26Route discovery packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/70Routing based on monitoring results
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing

Definitions

  • the present application relates to the field of information technology, and in particular, to a communication connection detection method and apparatus.
  • the auto discovery virtual private network allows a hub node as a central node to adopt a static internet protocol (IP) address, and a spoke node as a branch node can adopt a dynamic IP address.
  • IP internet protocol
  • the hub node establishes a static tunnel between the spoke node and the spoke node through the multipoint generic routing encapsulation (MGRE) interface, and the data traffic between the spokes can be transmitted through the dynamic tunnel established between the spokes without going through the hub relay. Can reduce the overhead of the hub node.
  • MGRE multipoint generic routing encapsulation
  • the establishment of a dynamic tunnel between Spoke nodes can be implemented by the next hop resolution protocol (NHRP).
  • NHRP protocol is used to solve the problem of how the source spoke node obtains the dynamic public network address of the destination spoke node.
  • the present application provides a communication connection detection method and apparatus, and provides an effective manner for recovering data traffic transmission between a spoke node and a spoke node.
  • the embodiment of the present application provides a communication connection detection method, including: a first network node sends a detection request message to a second network node, where the detection request message is used to detect the first network node and Whether the second network node is in a connected state; the first network node determines that the first network node does not receive the detection response message sent by the second network node, the first network node The NHRP table is deleted, and the detection response message is a response message in response to the detection request message, and the NHRP table is used for forwarding data traffic between the first network node and the second network node.
  • the NHRP table between the first network node and the second network node does not automatically disappear until the NHRP table ages, and before the NHRP table ages, the first network node and the first network node The data flow between the two network nodes, the first network node is still sent based on the NHRP table, and the transmission resource of the first network node is occupied, and the first network node is used as the detection initiation device in the manner provided by the embodiment of the present application.
  • the NHRP table in the event of a link failure between two nodes, ensures that data traffic is no longer sent and no longer occupies transmission resources.
  • the NHRP table is used for the first The network node forwards data traffic to the second network node by using a tunnel established between the first network node and the second network node, and the data traffic is transmitted between the first network node and the second network node.
  • the NHRP table is no longer queried, but is forwarded through the central node, thereby restoring the transmission of data traffic between the first network node and the second network node after a tunnel failure established between the first network node and the second network node.
  • the above method can be applied to the GRE tunneling network of the multi-point general routing encapsulation protocol, and the other networking methods that can apply the NHRP are applicable to the embodiments of the present application.
  • the first network node sends a detection request message to the second network node when the data traffic sent by the second network node is not received. Because the first network node can determine that the link between the first network node and the second network node is normal when the second network node can receive the data traffic, the first network node cannot receive the second network. When the data traffic sent by the node, that is, when the data traffic is stopped, the first network node may send a detection request message to the second network node. Therefore, it can be determined in advance whether the traffic stop between the two nodes is due to a link failure, which can improve the reliability of the fault of the discovered link.
  • the first network node sends a detection request message to the second network node when the data traffic sent by the second network node is not received within the first preset duration. Since the first network node does not receive the data traffic sent by the second network node, the data transmission sent by the second network node to the first network node may be completed, so the first network node may not receive the second network node.
  • the duration of the sent data traffic reaches the first preset duration, that is, when the duration of the data traffic reception stops for the first preset duration, the first network node sends a detection request message to the second network node. Therefore, it can be determined in advance whether the traffic stop between the two nodes is due to a link failure, which can improve the reliability of the fault of the discovered link.
  • the second network node when the first network node does not receive the data traffic sent by the second network node and the first network node stops sending data traffic to the second network node, the second network node The network node sends a detection request message.
  • the first network node does not receive the data traffic sent by the second network node, if the first network node sends data traffic to the second network node, the first network node does not trigger the sending of the detection request message, but When the first network node stops sending data traffic to the second network node, it sends a detection request message to the second network node, that is, the first network node does not send data traffic to the second network node and does not receive the first
  • the first network node sends data traffic to the second network node.
  • the first network node does not receive the data traffic sent by the second network node, and the first network node stops sending data traffic to the second network node for a duration longer than the first network node.
  • the preset duration is two, the detection request message is sent to the second network node.
  • the first network node determines that the first network node does not receive the detection response message sent by the second network node, and includes:
  • the first network node determines that the detection response message sent by the second network node is not received within a third preset duration; or the first network node determines that the third preset duration is within the third preset duration Not receiving the detection response message sent by the second network node, and after transmitting the detection request message to the second network node N times, failing to receive the second network node
  • the detection response message, N is an integer greater than 1.
  • the above design provides two simple and effective ways to determine that the first network node does not receive the detection response message sent by the second network node.
  • the detection request message is an NHRP message
  • the NHRP message includes a first field
  • the first field is used to indicate that the NHRP message is used to detect the first A message of whether the network node is in a connected state with the second network node.
  • the above-mentioned design through the protocol packets of the multi-point GRE tunnel, that is, the NHRP protocol packets, does not need to configure other detection packets, such as BFD, in the network, thereby saving the resources of the nodes.
  • the NHRP message further includes a second field, where the second field is used by the second network node to detect whether the detection request message is secure. Therefore, the security of the detection request packet is improved, and the security of the link is improved.
  • the NHRP packet further includes a third field, where the third field is used to identify a sequence number of the NHRP packet, and the sequence number is used to indicate whether the NHRP packet is Replay the message. Therefore, the network node is prevented from being attacked to some extent.
  • the detection request message is a failed peer detection DPD message.
  • the IP security association technology is applied to the network of the multi-point GRE tunnel. Therefore, the DPF packets of the IP security technology are used.
  • the other nodes in the network are not required to configure other detection packets, such as BFD, thus saving the resources of the node.
  • the method when the first network node determines that the first network node does not receive the detection response message sent by the second network node, the method further includes: the first network The node deletes IP security association information, and the IP security association information is used by the first network node to encrypt data traffic transmitted between the second network node and the second network node.
  • the IP security association information is deleted in time, and the storage resources of the node can be saved.
  • the first network node and the second network node are both branch nodes, and the first network node determines that the first network node does not receive the second network node to send.
  • the first network node deletes an NHRP table between the first network node and the second network node, and the first network node recovers an aggregated route between the first network node and the central node Function, the aggregate routing function is configured to forward data traffic transmitted between the first network node and the second network node by using the central node.
  • the method when the first network node determines that the first network node does not receive the detection response message sent by the second network node, the method further includes: the first network The node sends an alarm signal, and the alarm signal is used to indicate that the transmission link between the first network node and the second network node is faulty.
  • the embodiment of the present application provides a communication connection detecting apparatus, where the apparatus is applied to a first network node, including:
  • a first sending module configured to send a detection request message to the second network node, where the detection request message is used to detect whether the first network node and the second network node are in a connected state;
  • a first receiving module configured to receive a detection response message sent by the second network node
  • a processing module configured to: when determining that the first receiving module does not receive the detection response message sent by the second network node, the first network node deletes an NHRP table, so that the first network node and the Data traffic transmitted between the second network nodes is forwarded by the central node; the NHRP table is used by the first network node to tunnel through the tunnel established between the first network node and the second network node The second network node forwards the data traffic.
  • the first network node serves as the detection initiating device, and after determining that the second network node does not receive the detection request message, deleting the data traffic between the first network node and the second network node.
  • the NHRP table is adopted so that when a link failure occurs between two nodes, data traffic is no longer transmitted and the transmission resources are no longer occupied.
  • the device further includes:
  • a second receiving module configured to receive data traffic sent by the second network node
  • a second sending module configured to send data traffic to the second network node
  • the first sending module is specifically configured to send a detection request message to the second network node when determining that any one of the following conditions is met:
  • the second receiving module does not receive the data traffic sent by the second network node
  • the second receiving module does not receive the data traffic sent by the second network node within the first preset duration
  • the second receiving module does not receive the data traffic sent by the second network node, and the second sending module does not send the data traffic to the second network node;
  • the second receiving module does not receive the data traffic sent by the second network node, and the second sending module does not send the data traffic to the second network node for a duration longer than the second preset duration.
  • the processing module is specifically configured to: when determining that the first receiving module does not receive the detection response message sent by the second network node:
  • the first receiving module Determining that the first receiving module does not receive the detection response message sent by the second network node within the third preset duration, and repeats N times to the second in the first sending module. After the network node sends the detection request message, the first receiving module does not receive the detection response message sent by the second network node, where N is an integer greater than 1.
  • the above design provides two simple and effective ways to determine that the first receiving module does not receive the detection response message sent by the second network node.
  • the detection request message is an NHRP message
  • the NHRP message includes a first field
  • the first field is used to indicate that the NHRP message is used to detect the first A message of whether the network node is in a connected state with the second network node.
  • the NHRP message further includes a second field, where the second field is used by the network node to detect whether the detection request message is secure. Therefore, the security of the detection request packet is improved, and the security of the link is improved.
  • the NHRP packet further includes a third field, where the third field is used to identify a sequence number of the NHRP packet, and the sequence number is used to indicate whether the NHRP packet is Replay the message. Therefore, the network node is prevented from being attacked to some extent.
  • the detection request message is a failed peer detection DPD message.
  • the IP security association technology is applied to the network of the multi-point GRE tunnel. Therefore, the DPF packets of the IP security technology are used.
  • the other nodes in the network are not required to configure other detection packets, such as BFD, thus saving the resources of the node.
  • the processing module is further configured to: when the first receiving module does not receive the detection response packet sent by the second network node, delete the IP security association information, the IP security alliance. Information is used for encryption of data traffic transmitted between the first network node and the second network node.
  • the IP security association information is deleted in time, and the storage resources of the node can be saved.
  • the first network node and the second network node are both branch nodes
  • the processing module is further configured to: after determining that the first receiving module does not receive the second network Recovering the aggregate routing function between the first network node and the central node when the detecting response packet sent by the node, the aggregate routing function is used by the processing module to use the first network node and the second network Data traffic transmitted between nodes is forwarded through the central node.
  • the processing module is further configured to: when determining that the first receiving module does not receive the detection response message sent by the second network node, send an alarm signal, where the alarm signal is used by And indicating that the transmission link between the first network node and the second network node fails.
  • an embodiment of the present application provides a communication connection detection network node, including a communication interface, a memory, and a processor;
  • the communication interface is configured to send and receive data
  • the memory is configured to store a program executed by the processor
  • the processor is configured to execute the program stored in the memory, and send and receive data through the communication interface to implement the method described in any one of the foregoing first aspects.
  • an embodiment of the present application provides a computer storage medium, where the computer readable storage medium stores computer executable instructions, where the computer executable instructions are used to cause the computer to perform any one of the foregoing first aspects.
  • the method described is designed.
  • an embodiment of the present application provides a chip, where the chip is connected to a memory, and is configured to read and execute a software program stored in the memory, to implement any one of the foregoing first aspects. method.
  • FIG. 1 is a network diagram of a multi-point GRE tunnel network according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for detecting a communication connection according to an embodiment of the present application
  • 3A is a schematic flowchart of a method for detecting a communication connection according to an embodiment of the present application
  • FIG. 3B is a schematic flowchart of another communication connection detecting method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an NHRP table provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an NHRP packet according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a communication connection detecting apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first network node according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another first network node according to an embodiment of the present disclosure.
  • the embodiment of the present application provides a communication connection detecting method and apparatus.
  • a tunnel fault is established between a first network node and a second network node
  • the NHRP table is deleted, so that a link failure occurs between the two nodes.
  • Data traffic is no longer sent and no longer occupies transmission resources.
  • the data traffic transmitted between the first network node and the second network node is triggered to be forwarded by the central node, thereby recovering the transmission of data traffic between the first network node and the second network node.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • the method and the device for detecting the communication connection proposed by the embodiment of the present invention can be applied to the multi-point GRE tunneling network, and other networking modes capable of applying the NHRP protocol are applicable to the present application.
  • the multi-point GRE tunnel networking is used as an example.
  • the multi-point GRE tunnel network includes one central node and multiple branch nodes. As shown in FIG. 1 , a multi-point GRE tunnel network includes a central node. In FIG. 1 , a hub node is taken as an example, and two branch nodes are also included. In FIG. 1 , spoke 1 and spoke 2 are taken as an example.
  • a hub-spoke tunnel is established between the hub node and the two spoke nodes, and a spoke-spoke tunnel is established between spoke1 and spoke2 based on the NHRP protocol. Data traffic between spoke1 and spoke2 can be transmitted through the spoke-spoke tunnel.
  • the network node involved in the embodiment of the present application may be a central node or a branch node.
  • the plurality referred to in the embodiments of the present application refers to two or more.
  • FIG. 2 is a schematic flowchart diagram of a communication connection detecting method provided by an embodiment of the present application. The method includes:
  • the first network node sends a detection request message to the second network node, where the detection request message is used to detect whether the first network node and the second network node are in a connected state.
  • the second network node sends a detection response to the first network node when receiving the detection request message sent by the first network node.
  • the detection response message is a response message in response to the detection request message.
  • the first network node deletes the first network node and the first network node when determining that the first network node does not receive the detection response message sent by the second network node.
  • An NHRP table between two network nodes the NHRP table being used for forwarding data traffic between the first network node and the second network node.
  • the NHRP table between the first network node and the second network node does not automatically disappear until the NHRP table ages, and before the NHRP table ages, the first network node still The data flow between the first network node and the second network node is sent based on the NHRP table, so that the transmission resource of the first network node is occupied, and the first network node is used as the detection initiation device in the manner provided by the embodiment of the present application.
  • the NHRP table used for forwarding data traffic between the first network node and the second network node is deleted, so that a link failure occurs between the two nodes.
  • the transmission resources of the first network node are no longer occupied.
  • the NHRP table between the first network node and the second network node is used by the first network node to pass the first network node and the The tunnel established between the second network nodes forwards data traffic to the second network node. Based on this, the first network node deletes the NHRP table between the first network node and the second network node, that is, the first network node does not query the first network node when determining the data traffic that needs to be sent to the second network node.
  • the NHRP table between the second network nodes so that the transmitted data traffic between the first network node and the second network node needs to bypass the central node, thereby ensuring tunnel failure established between the first network node and the second network node. At the same time, the transmission of data traffic between the first network node and the second network node is resumed.
  • the first network node determines that the first network node does not receive the second network node and sends After detecting the response message, deleting the NHRP table used for forwarding data traffic between the first network node and the second network node, the first way is to delete the NHRP table, that is, the default restored aggregated route Function, the aggregate routing function is configured to forward data traffic transmitted between the first network node and the second network node by using the central node.
  • the second way is to delete the NHRP.
  • the aggregation routing function is not restored by default.
  • the first network node recovers the first network node and the center after deleting the NHRP table used by the first network node and the second network node to forward data traffic.
  • the aggregation routing function between the nodes so that when a link failure occurs between the two branch nodes, the central node can be resumed, so that the data traffic transmission between the branch nodes can be restored.
  • the first network node determines that the first network node does not receive the detection response packet sent by the second network node, and may be implemented as follows:
  • the first network node determines that the detection response message sent by the second network node is not received within the third preset duration. Specifically, when the first network node does not receive the detection response packet sent by the second network node within the third preset duration after the detection request packet is sent by the second network node, the first network node is deleted. An NHRP table with the second network node.
  • the first network node determines that the detection response message sent by the second network node is not received within the third preset duration, and after transmitting the detection request message to the second network node N times, None of the detection response packets sent by the second network node is received. Specifically, after the first network node sends the detection request message to the second network node, if the detection response message sent by the second network node is not received within the third preset duration, the first network node sends the detection response message again. After receiving the detection response message sent by the second network node, the first network node deletes the NHRP table between the first network node and the second network node.
  • the method may further include S301 or S303.
  • the second network node sends the detection response message to the first network node after receiving the detection request message.
  • the first network node receives the detection response packet sent by the second network node within a third preset duration, and determines that the link between the first network node and the second network node is normal.
  • the first network node does not receive the detection response packet sent by the second network node within a third preset duration.
  • the first network node determines that the maximum number of retransmissions N has not been reached, and sends a detection request message to the second network node again.
  • the first network node does not receive the detection response packet sent by the second network node within a third preset duration.
  • the first network node determines that the maximum number of retransmissions N is reached.
  • the first network node deletes an NHRP table between the first network node and the second network node.
  • the first network node may be a hub node or a spoke node.
  • the second network node is a spoke node; when the first network node is a spoke node, the second network node may be a hub node or a hub node.
  • the two spokes and the hub learn the NHRP table and the routing table through the NHRP protocol.
  • the IP address of the subnet where the hub is located is 192.168.1.0/24
  • the public IP address of the hub (GE1/0/0) is 202.1.1.10/24
  • the tunnel interface address of the hub (tunnel0/0/0) is 172.10. .1.1/24.
  • the IP address of the subnet where spoke1 is located is 192.168.2.0/24
  • the IP address of the public network of spoke1 is 202.1.2.10/24
  • the address of the tunnel interface of spoke1 is 172.10.1.2/24
  • the IP address of the subnet where spoke2 is located is 192.168.
  • the public IP address of spoke2 is 202.1.3.10/24
  • the tunnel interface address of spoke2 is 172.10.1.3/24.
  • the public network IP address of each node can be regarded as a Non-Broadcast Multiple Access (NBMA) address.
  • the tunnel interface address is the same as the IP address on other physical interfaces. (eg get routing information, etc.).
  • the IP address of the node in the subnet is the IP address in the LAN.
  • the routing table is used to represent the correspondence between the public network IP address and the tunnel interface address of different nodes.
  • the NHRP table is used to characterize the IP address of the next hop corresponding to the destination IP address of the data traffic, as shown in the box of Figure 4.
  • the destination IP address of the data traffic is the IP address of the subnet where the target node is located, and the corresponding next hop IP address is the tunnel interface address of the tunnel established between the source node and the target node.
  • the data traffic sent by spoke1 to spoke2 the destination IP address of the data traffic is 192.168.3.0
  • the corresponding next hop IP address is 172.10.1.2.
  • the NHRP table between spoke1 and spoke2 does not automatically disappear until the NHRP table ages. Before the NHRP table ages, the traffic sent by spoke1 to spoke2 is queried by NHRP. The table will still be sent later, thus occupying the transmission resources of spoke1.
  • the first network node serves as the detection initiation device, and after determining that the detection response message sent by the second network node is not received, deleting the first network node and the second The NHRP table used by the network nodes to forward data traffic, so that when a link failure occurs between two nodes, data traffic is no longer transmitted and no longer uses transmission resources.
  • BFD bidirectional forwarding detection
  • the first network node sends a detection request message to the second network node when the data traffic sent by the second network node is not received. Because the first network node can determine that the link between the first network node and the second network node is normal when the second network node can receive the data traffic, the first network node cannot receive the second network.
  • the first network node may send a detection request message to the second network node.
  • the first network node may repeatedly send the detection request message at a preset time interval until the detection response message sent by the second network node is received or the preset number of retransmissions (such as N times) is stopped. Therefore, it can be determined in advance whether the traffic stop between the two nodes is due to a link failure, the reliability of the fault of the discovered link can be improved, and resources can be saved compared to the prior art.
  • the first network node sends a detection request message to the second network node when the data traffic sent by the second network node is not received within the first preset duration. Since the first network node does not receive the data traffic sent by the second network node, the data transmission sent by the second network node to the first network node may be completed, so the first network node may not receive the second network node.
  • the duration of the sent data traffic reaches the first preset duration, that is, when the duration of the data traffic reception stops for the first preset duration, the first network node sends a detection request message to the second network node.
  • the first network node may repeatedly send the detection request message at a preset time interval until the detection response message sent by the second network node is received or the preset number of retransmissions (such as N times) is stopped. Therefore, it can be determined in advance whether the traffic stop between the two nodes is due to a link failure, which can improve the reliability of the fault of the discovered link.
  • the second network node when the first network node does not receive the data traffic sent by the second network node, and the first network node stops sending data traffic to the second network node, The second network node sends a detection request message.
  • the first network node does not receive the data traffic sent by the second network node, if the first network node sends data traffic to the second network node, the first network node does not trigger the sending of the detection request message, but
  • the first network node stops sending data traffic to the second network node it sends a detection request message to the second network node, that is, the first network node does not send data traffic to the second network node and does not receive the first
  • the first network node sends data traffic to the second network node.
  • the processing resources are saved.
  • the first network node does not receive the data traffic sent by the second network node, and the first network node stops sending data traffic to the second network node for a duration longer than When the second preset duration is long, the detection request message is sent to the second network node.
  • the detection request message may be an NHRP message.
  • a new packet type may be defined on the basis of the NHRP standard packet to detect whether the first network node and the second network node are in a connected state.
  • the NHRP packet defined in the embodiment of the present application may further include a second field, where the second field is used by the second network node to detect whether the detection request packet is secure.
  • the second field may be an authentication field in the NHRP packet, and the first network node generates the content of the authentication field by using the configured password, so that the second network node receives the NHRP packet according to the configuration.
  • the password determines whether the NHRP packet is secure.
  • the authentication field may be located between the header of the NHRP packet and the data field.
  • the NHRP packet defined in the embodiment of the present application may further include a third field, where the third field is used to identify the sequence number of the NHRP packet, and the sequence number is used to indicate whether the NHRP packet is a replay report. Text.
  • the serial number may be a serial number that is incremented from 1 and is not allowed to be repeated, and uniquely identifies each data traffic packet sent.
  • the second network node verifies the attack against the replayed message according to the serial number combined with the anti-replay window and the message. For example, if the serial number of the message falls within the anti-replay window, if not, it is considered a normal message.
  • the right edge of the anti-replay window is slid to the serial number. If the serial number of the message falls to the left of the anti-replay window, it is determined to be a replay message.
  • the NHRP packet defined in the embodiment of the present disclosure is shown in FIG. 5, and the Sequence number field is a third field.
  • the authentication field may be located after the Sequence number field shown in FIG.
  • the SNAP indicates that the NHRP packet can be encoded by a subnetwork access protocol (SNAP).
  • Protocol_type indicates the type of protocol used by the outer network layer. Hop_count represents the number of bars used to indicate the maximum number of NHRP data packets allowed to be spanned. Packet_size indicates the size of the NHRP data traffic packet. Checksum indicates a checksum used to correct errors for NHRP headers.
  • the source NBMA address is also the public network address of the source node.
  • the source NBMA subnet address is also the subnet address where the source node is located.
  • the source protocol address is also the tunnel interface address of the source node.
  • the destination protocol address is also the next hop address, which is the tunnel interface address of the destination node to be probed.
  • C is used to specify the function of NHRP packets.
  • U is an unused bit.
  • the IPsec SA (Security Association) technology can also be applied to the multi-point GRE tunnel networking in the embodiment of the present application. If the IPsec SA (Security Association) technology is applied to the multi-point GRE tunnel, the detection request packet can be the above-mentioned NHRP packet, and the peer end detection of the IPsec SA (Security Association) technology itself can be used. Detection, DPD) message.
  • IPsec SA Security Association
  • the first network node determines in the step S202 that the first network node does not receive the second network.
  • the first network node may also delete the IP security association information, and jointly delete the NHRP table used by the first network node and the second network node to forward data traffic.
  • the IP security association information is used to encrypt data traffic transmitted between the first network node and the second network node.
  • timely deleting the IP security association information can save storage resources of the network node, and can prevent the network node from being based on the IP security alliance information. Encryption of the quantity traffic reduces the processing resources of the network node.
  • the first network node determines that the first network node does not receive the second network node to send. After detecting the response message, deleting the IP Security Association information and the NHRP table used by the first network node and the second network node to forward data traffic, one way is to delete the IP security alliance information and The NHRP table is deleted, that is, the aggregation routing function is restored by default. The other way is to delete the IP security association information and delete the NHRP table. The aggregation routing function is not restored by default.
  • the first network node is in the After deleting the IP security association information and the NHRP table, recovering the aggregate routing function between the first network node and the central node, so that data traffic transmission between the first network node and the second network node can pass through The central node forwards. After the link between the two branch nodes fails, the central node can be resumed and the data traffic transmission between the branch nodes can be restored.
  • the first network node in the embodiment of the present application determines that the first network node does not receive the detection response packet sent by the second network node, that is, determines the first network node and the first Transmitting a link failure between the two network nodes, so that the first network node may send an alert signal to the user, the alert signal being used to indicate a transmission link between the first network node and the second network node error occured.
  • the warning signal may be a warning sound (eg, a beep, an alarm, etc.) that can be heard by the user, or may be a warning that can be seen by the user (eg, illumination light, flashing light, image on the display)
  • the prompt text is on the display, etc., or may be an alarm (eg, vibration) that can be touched by the user, which is not specifically limited in the present application.
  • the first network node if receiving the detection request message sent by the second network node, sends a detection response message to the second network node, so that the second network node determines the first network.
  • the link between the node and the second network node is normal.
  • the embodiment of the present application provides a communication connection detecting apparatus, where the apparatus can be applied to a first network node in a GRE tunneling network of a multi-point universal routing encapsulation protocol, and the apparatus is specifically A method for implementing the execution of the first network node in the embodiment shown in Figures 2 to 5.
  • the apparatus can include:
  • the first sending module 61 is configured to send a detection request message to the second network node, where the detection request message is used to detect whether the first network node and the second network node are in a connected state.
  • the first receiving module 65 is configured to receive a detection response message sent by the second network node.
  • the processing module 62 is configured to: when the first receiving module 65 does not receive the detection response message sent by the second network node, the first network node deletes the first network node and the second An NHRP table between the network nodes, such that data traffic transmitted between the first network node and the second network node is forwarded by the central node; the NHRP table is used by the first network node to pass the first A tunnel established between the network node and the second network node sends data traffic to the second network node.
  • the device may further include:
  • the second receiving module 63 is configured to receive data traffic sent by the second network node.
  • a second sending module 64 configured to send data traffic to the second network node
  • the first sending module 61 is configured to: when it is determined that the data traffic sent by the second network node is not received, send a detection request message to the second network node: or determine that the first preset duration is Sending a detection request message to the second network node when the data traffic sent by the second network node is not received; or determining that the data traffic sent by the second network node is not received and the second When the sending module 64 does not send the data traffic to the second network node, sending a detection request message to the second network node; or determining that the data traffic sent by the second network node is not received and the second When the sending module 64 does not send the data traffic to the second network node for a duration exceeding a second preset duration, the sending module 64 sends a detection request message to the second network node.
  • the device may further include:
  • the processing module 62 is specifically configured to: when determining that the first receiving module 65 does not receive the detection response message sent by the second network node,
  • the first receiving module 65 Determining that the first receiving module 65 does not receive the detection response message sent by the second network node within the third preset duration, and repeats N times to the second in the first sending module 61. After the network node sends the detection request message, the first receiving module 65 does not receive the detection response message sent by the second network node, where N is an integer greater than 1.
  • the detection request message is an NHRP message
  • the NHRP message includes a first field, where the first field is used to indicate that the NHRP message is used to detect the first network node and the A message indicating whether the second network node is in a connected state.
  • the NHRP packet further includes a second field, where the second field is used by the second network node to detect whether the detection request packet is secure.
  • the NHRP packet further includes a third field, where the third field is used to identify a sequence number of the NHRP packet, where the sequence number is used to indicate whether the NHRP packet is a replay packet. .
  • the detection request message is a DPD message.
  • the processing module 62 is further configured to delete the IP security association information when the first receiving module 65 does not receive the detection response packet sent by the second network node, where the IP security association information is used. Encryption of data traffic transmitted between the first network node and the second network node.
  • the first network node and the second network node are both branch nodes, and the processing module 62 is further configured to: after determining that the first receiving module 65 does not receive the second network node, Recovering the aggregate routing function between the first network node and the central node when detecting the response message, the aggregate routing function is used by the processing module 62 to the first network node and the second network node The data traffic transmitted between is forwarded through the central node.
  • the processing module 62 is further configured to: when determining that the first receiving module 65 does not receive the detection response message sent by the second network node, send an alarm signal, where the alarm signal is used to indicate A transmission link between the first network node and the second network node fails.
  • each functional module in each embodiment of the present application may be integrated into one or In multiple processors, it may be physically separate, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. Therefore, the method described in any of the above embodiments of the present application may be implemented by one or more processors in the first network node.
  • the first network node described herein may be a branch node or a central node.
  • the structure of the first network node is the same as that of the second network node, and the structure of the second network node is referred to the first network node, and details are not described herein.
  • the first network node when the first network node is implemented by hardware, it may be implemented by the structure shown in FIG. 7 or by the structure shown in FIG. 8.
  • FIG. 7 is a schematic structural diagram of a first network node according to an embodiment of the present disclosure.
  • the first network node may include a main control board 510, a switching network board 520, an interface board 530, and an interface board 540.
  • the main control board 510 includes a central processing unit 511.
  • the interface board 530 includes a memory 534, a network processor 532, and a physical interface card 533.
  • the interface board 540 includes a memory 544, a network processor 542, and a physical interface card 543.
  • the switching network board 520 is mainly used to forward data traffic packets between the interface board 530 and the interface board 540.
  • the interface board 530 serves as a receiving board, and the interface board 540 functions as a transmitting board.
  • the network processor 532 checks, according to the detection interval (the first preset duration) configured by the operation manager (OM), that the data traffic sent by the second network node is not received within the configured time interval, and the traffic is considered abnormal.
  • a detection request message is sent to the central processing unit 511.
  • the central processing unit 511 After receiving the detection request message, the central processing unit 511 constructs a detection request message.
  • the local routing table is queried according to the destination address of the detection request packet, and the interface board 530 of the outbound interface is found, and then the detection request packet is sent to the network processor 532.
  • the network processor 532 After completing the link layer encapsulation, the network processor 532 sends the detection request message from the physical interface card 533, that is, to the second network node.
  • the physical interface card 543 After receiving the detection response message sent by the second network node, the physical interface card 543 sends the detection response message to the network processor 542.
  • the physical interface card 543 receives the detection response message from the network, and submits it to the network processor 542 for processing after completing the correlation check.
  • the network processor 542 queries the NHRP table stored in the memory 544 by using the destination address of the detection response message to determine the native message, and sends it to the central processing unit 511 for processing.
  • the central processing unit 511 matches the detection request message according to the information such as the detection address and the serial number carried in the received detection response message. If the matching is successful, the link state is considered to be normal. If the central processing unit 511 does not receive the detection response message sent by the second network node within the third preset duration, a limited number of retransmissions of the detection request message are performed. After receiving the detection response message sent by the second network node after retransmitting N times, determining a link failure between the first network node and the second network node, the link may be set to DOWN, and the memory 544 and the memory may be The NHRP table deletion stored in 533 for forwarding data traffic between the first network node and the second network node.
  • the physical interface card 543 receives the detection request message sent by the second network node from the network, and submits it to the network processor 542 for processing.
  • the network processor 542 queries the local route by using the destination address of the detection request message, determines that it is a local message, and sends it to the central processing unit 511 for processing.
  • the central processing unit 511 is configured to: after detecting, according to the packet characteristic information of the received detection request message, determining that the detection request message is used to detect whether the first network node and the second network node are in between
  • the connection status message constructs a detection response message.
  • the NHRP table stored in the memory 534 is queried according to the destination address of the test response packet, and the interface board 530 of the outbound interface is found, and then the detection response message is sent to the network processor 532.
  • the network processor 532 sends the detection response message from the physical interface card 533 after the link layer encapsulation is completed according to the information such as the outbound interface, that is, sends the packet to the second network node.
  • FIG. 8 is a schematic structural diagram of another first network node according to an embodiment of the present application.
  • the first network node includes a communication interface 610, a processor 620, and a memory 630.
  • the processor 620 transmits and receives data traffic through the transceiver 610, and detects the request message, the detection response message, and is used to implement the method performed by the first network node described in FIG. 2 to FIG.
  • each step of the processing flow may be completed by an integrated logic circuit of hardware in the processor 620 or an instruction in the form of software.
  • Processor 620 includes one or more of a general purpose processor, a network processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software units in the processor.
  • Program code for processor 620 to implement the above methods may be stored in memory 630.
  • the memory 630 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid state drive (SSD), or a volatile memory (English: volatile) Memory), such as random access memory (English: random-access memory, abbreviation: RAM).
  • Memory 630 is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • connection medium between the above transceiver 610, the processor 620, and the memory 630 is not limited in the embodiment of the present application.
  • the memory 630, the processor 620, and the transceiver 610 are connected by a bus 640 in FIG. 8.
  • the bus is indicated by a thick line in FIG. 8, and the connection manner between other components is only schematically illustrated. , not limited to.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application further provides a computer storage medium, where the software program stores a software program, and the software program can implement the method provided by the foregoing embodiment when being read and executed by one or more processors.
  • the computer storage medium may include various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.
  • the embodiment of the present application further provides a chip system, where the chip system includes a processor, which is configured to support a distributed unit, a centralized unit, and a base station to implement functions involved in the foregoing embodiments, for example, generating. Or process the data and/or information involved in the above methods.
  • the chip system further includes a memory for storing distributed program units, centralized units, and program instructions and data necessary for the network node.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the application can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种通信连接检测方法及装置,提供一种有效的方式来恢复分支节点与分支节点之间的数据流量的传输。所述方法包括:第一网络节点向第二网络节点发送检测请求报文,所述检测请求报文用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态;所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,所述第一网络节点删除所述第一网络节点与所述第二网络节点间NHRP表,以使得所述第一网络节点与所述第二网络节点之间传输的数据流量通过中心节点转发;所述NHRP表用于所述第一网络节点通过所述第一网络节点与所述第二网络节点之间建立的隧道向所述第二网络节点转发数据流量。

Description

一种通信连接检测方法及装置
本申请要求于2017年9月22日提交中国专利局、申请号为201710866379.8、申请名称为“一种通信连接检测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息技术领域,尤其涉及一种通信连接检测方法及装置。
背景技术
自动发现虚拟私有网(auto discovery virtual private network,ADVPN)允许作为中心节点的集线器(hub)节点采用静态互联网协议(nternet Protocol,IP)地址,作为分支节点的路由器(spoke)节点可以采用动态IP地址。hub节点通过多点通用路由封装协议(multipoint generic routing encapsulation,MGRE)接口和所有spoke节点之间建立静态隧道,而spoke间的数据流量可以通过spoke间建立的动态隧道来传输,不需要经过hub中转,可以降低hub节点的开销。
Spoke节点间建立动态隧道可以通过下一跳解析协议(next hop resolution protocol,NHRP)来实现。其中NHRP协议用于解决源spoke节点如何获取目的spoke节点的动态公网地址的问题。
现有方案仅解决了spoke节点和hub节点间保活的问题。但是现有技术中,并没有一种有效的方式来解决:spoke节点与spoke节点之间链路中断后,如何来恢复spoke节点与spoke节点之间的数据流量。
发明内容
本申请提供一种通信连接检测方法及装置,提供一种有效的方式恢复spoke节点与spoke节点之间的数据流量的传输。
第一方面,本申请实施例提供了一种通信连接检测方法,包括:第一网络节点向第二网络节点发送检测请求报文,所述检测请求报文用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态;所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,所述第一网络节点删除NHRP表,所述检测响应报文为响应于所述检测请求报文的响应报文,所述NHRP表用于所述第一网络节点与所述第二网络节点间数据流量的转发。
现有在两个节点间发生链路故障时,第一网络节点与第二网络节点间的NHRP表并不会自动消失,直到NHRP表老化,而在NHRP表老化之前,第一网络节点与第二网络节点之间的数据流量,第一网络节点依然会基于NHRP表被发送,从而会占用第一网络节点的传输资源,通过本申请实施例提供的方式,第一网络节点作为检测发起设备,在确定所述第一网络节点未接收到所述第二网络节点发送的所述检测响应报文后,则删除所述第一网络节点与所述第二网络节点间用于转发数据流量所采用的 NHRP表,从而在两个节点间发生链路故障时,能够保证数据流量不再被发送,不再占用传输资源。
本申请实施例在第一网络节点以及第二网络节点均为分支节点时,在第一网络节点删除第一网络节点与第二网络节点间的NHRP表后,该NHRP表用于所述第一网络节点通过所述第一网络节点与所述第二网络节点之间建立的隧道向所述第二网络节点转发数据流量,所述第一网络节点与所述第二网络节点之间传输数据流量不再查询该NHRP表,而是通过中心节点转发,从而在第一网络节点与第二网络节点之间建立的隧道故障后,恢复第一网络节点与第二网络节点之间的数据流量的传输。
上述方法可以但不仅限于应用多点通用路由封装协议GRE隧道组网中,当然其它的能够应用NHRP的组网方式,均适用于本申请实施例。
在一种可能的设计中,所述第一网络节点在未接收到所述第二网络节点发送的数据流量时,向第二网络节点发送检测请求报文。由于,第一网络节点在能够接收到第二网络节点传输数据流量时,可以确定第一网络节点与第二网络节点之间的链路正常,因此,第一网络节点在接收不到第二网络节点发送的数据流量时,即数据流量接收停止时,第一网络节点就可以向第二网络节点发送检测请求报文。从而可以提前确定两个节点之间流量停止是否是因为链路故障,可以提高发现链路的故障的可靠性。
一种可能的实现方式中,所述第一网络节点在第一预设时长内未接收到所述第二网络节点发送的数据流量时,向第二网络节点发送检测请求报文。由于第一网络节点未接收到第二网络节点发送的数据流量可能是第二网络节点向第一网络节点发送的数据流量传输完成了,因此,第一网络节点可以在未接收到第二网络节点发送的数据流量持续的时长达到第一预设时长时,即数据流量接收停止的时长达到第一预设时长时,第一网络节点向第二网络节点发送检测请求报文。从而可以提前确定两个节点之间流量停止是否是因为链路故障,可以提高发现链路的故障的可靠性。
在一种可能的设计中,所述第一网络节点未接收到所述第二网络节点发送的数据流量且所述第一网络节点停止向所述第二网络节点发送数据流量时,向第二网络节点发送检测请求报文。在第一网络节点未接收到第二网络节点发送的数据流量时,如果第一网络节点在向所述第二网络节点发送数据流量,第一网络节点不会触发发送检测请求报文,而在第一网络节点停止向第二网络节点发送数据流量时,才向所述第二网络节点发送检测请求报文,即所述第一网络节点未向第二网络节点发送数据流量且未接收到第二网络节点发送的数据流量时,所述第一网络节点才向第二网络节点发送数据流量。
在一种可能的设计中,所述第一网络节点未接收到所述第二网络节点发送的数据流量且所述第一网络节点停止向所述第二网络节点发送数据流量持续的时长超过第二预设时长时,向第二网络节点发送检测请求报文。
在一种可能的设计中,所述第一网络节点确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文,包括:
所述第一网络节点确定在第三预设时长内未收到所述第二网络节点发送的所述检测响应报文;或者,所述第一网络节点确定在所述第三预设时长内未收到所述第二网络节点发送的所述检测响应报文,且重复N次向所述第二网络节点发送所述检测请求 报文后,均未收到所述第二网络节点发送的所述检测响应报文,N为大于1的整数。
上述设计,提供了两种简单有效的确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文的方式。
在一种可能的设计中,所述检测请求报文为NHRP报文,所述NHRP报文包括第一字段,所述第一字段用于指示所述NHRP报文为用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态的报文。
上述设计,通过多点GRE隧道组网中本身存在的协议报文,即NHRP协议报文,无需组网中各个节点配置其它检测报文,比如BFD,从而节省了节点的资源。
在一种可能的设计中,所述NHRP报文还包括第二字段,所述第二字段用于所述第二网络节点检测所述检测请求报文是否安全。从而提高了检测请求报文的安全性,提高了链路的安全性。
在一种可能的设计中,所述NHRP报文还包括第三字段,所述第三字段用于标识所述NHRP报文的序列号,所述序列号用于指示所述NHRP报文是否为重放报文。从而在一定程度上防止网络节点被攻击。
在一种可能的设计中,所述检测请求报文为失效对端检测DPD报文。在多点GRE隧道组网中应用IP安全联盟技术,从而采用IP安全联盟技术自身的DPD报文,无需组网中各个节点配置其它检测报文,比如BFD,从而节省了节点的资源。
在一种可能的设计中,所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,所述方法还包括:所述第一网络节点删除IP安全联盟信息,IP安全联盟信息用于所述第一网络节点对与所述第二网络节点之间传输的数据流量进行加密。
上述设计,在所述第一网络节点与所述第二网络节点之间传输链路出现故障时,及时删除IP安全联盟信息,能够节省节点的存储资源。
在一种可能的设计中,所述第一网络节点和所述第二网络节点均为分支节点,所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,所述第一网络节点删除第一网络节点与第二网络节点间的NHRP表,并且所述第一网络节点恢复所述第一网络节点与中心节点之间的聚合路由功能,所述聚合路由功能用于将所述第一网络节点与所述第二网络节点之间传输的数据流量通过所述中心节点转发。
通过上述设计,当两个分支节点之间出现链路故障后,可以恢复由中心节点转发,使得分支节点之间的数据流量传输得以恢复。
在一种可能的设计中,所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,所述方法还包括:所述第一网络节点发出告警信号,所述告警信号用于指示所述第一网络节点与所述第二网络节点之间的传输链路出现故障。
通过上述设计,在第一网络节点与第二网络节点之间的传输链路出现故障时,可以提醒用户,从而用户能够及时的修复链路故障。
第二方面,基于与上述第一方面所述的实施例同样的发明构思,本申请实施例提供了一种通信连接检测装置,所述装置应用于第一网络节点,包括:
第一发送模块,用于向第二网络节点发送检测请求报文,所述检测请求报文用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态;
第一接收模块,用于接收所述第二网络节点发送的检测响应报文;
处理模块,用于在确定所述第一接收模块未接收到所述第二网络节点发送的检测响应报文时,所述第一网络节点删除NHRP表,以使得所述第一网络节点与所述第二网络节点之间传输的数据流量通过中心节点转发;所述NHRP表用于所述第一网络节点通过所述第一网络节点与所述第二网络节点之间建立的隧道向所述第二网络节点转发数据流量。
通过上述方式,第一网络节点作为检测发起设备,在确定第二网络节点未收到检测请求报文后,则删除所述第一网络节点与所述第二网络节点间用于转发数据流量所采用的NHRP表,从而在两个节点间发生链路故障时,能够保证数据流量不再被发送,不再占用传输资源。
在一种可能的设计中,所述装置还包括:
第二接收模块,用于接收所述第二网络节点发送的数据流量;
第二发送模块,用于向所述第二网络节点发送数据流量;
所述第一发送模块,具体用于在确定满足以下条件中任意一项时,向所述第二网络节点发送检测请求报文:
所述第二接收模块未接收到所述第二网络节点发送的数据流量;
所述第二接收模块在第一预设时长内未接收到所述第二网络节点发送的数据流量;
所述第二接收模块未接收到所述第二网络节点发送的数据流量且所述第二发送模块未向所述第二网络节点发送数据流量;和,
所述第二接收模块未接收到所述第二网络节点发送的数据流量且所述第二发送模块未向所述第二网络节点发送数据流量持续的时长超过第二预设时长。
通过上述设计,可以提高发现链路故障的可靠性。
在一种可能的设计中,所述处理模块,在确定所述第一接收模块未接收到所述第二网络节点发送的检测响应报文时,具体用于:
确定所述第一接收模块在第三预设时长内未收到所述第二网络节点发送的所述检测响应报文;或者,
确定所述第一接收模块在所述第三预设时长内未收到所述第二网络节点发送的所述检测响应报文,且在所述第一发送模块重复N次向所述第二网络节点发送所述检测请求报文后,所述第一接收模块均未收到所述第二网络节点发送的检测响应报文,N为大于1的整数。
上述设计,提供了两种简单有效的确定所述第一接收模块未接收到所述第二网络节点发送的检测响应报文的方式。
在一种可能的设计中,所述检测请求报文为NHRP报文,所述NHRP报文包括第一字段,所述第一字段用于指示所述NHRP报文为用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态的报文。上述设计,通过多点GRE隧道组网中本身存在的协议报文,即NHRP协议报文,无需组网中各个节点配置其它检测报文,比如BFD,从而节省了节点的资源。
在一种可能的设计中,所述NHRP报文还包括第二字段,所述第二字段用于所述网络节点检测所述检测请求报文是否安全。从而提高了检测请求报文的安全性,提高了链路的安全性。
在一种可能的设计中,所述NHRP报文还包括第三字段,所述第三字段用于标识所述NHRP报文的序列号,所述序列号用于指示所述NHRP报文是否为重放报文。从而在一定程度上防止网络节点被攻击。
在一种可能的设计中,所述检测请求报文为失效对端检测DPD报文。在多点GRE隧道组网中应用IP安全联盟技术,从而采用IP安全联盟技术自身的DPD报文,无需组网中各个节点配置其它检测报文,比如BFD,从而节省了节点的资源。
在一种可能的设计中,所述处理模块,还用于在确定所述第一接收模块未接收到所述第二网络节点发送的检测响应报文时,删除IP安全联盟信息,IP安全联盟信息用于所述第一网络节点与所述第二网络节点之间传输的数据流量的加密。上述设计,在所述第一网络节点与所述第二网络节点之间传输链路出现故障时,及时删除IP安全联盟信息,能够节省节点的存储资源。
在一种可能的设计中,所述第一网络节点和所述第二网络节点均为分支节点,所述处理模块,还用于在确定所述第一接收模块未接收到所述第二网络节点发送的检测响应报文时,恢复所述第一网络节点与中心节点之间的聚合路由功能,所述聚合路由功能用于所述处理模块将所述第一网络节点与所述第二网络节点之间传输的数据流量通过所述中心节点转发。通过上述设计,当两个分支节点之间出现链路故障后,可以恢复由中心节点转发,使得分支节点之间的数据流量传输得以恢复。
在一种可能的设计中,所述处理模块,还用于在确定所述第一接收模块未接收到所述第二网络节点发送的检测响应报文时,发出告警信号,所述告警信号用于指示所述第一网络节点与所述第二网络节点之间的传输链路出现故障。通过上述设计,在第一网络节点与第二网络节点之间的传输链路出现故障时,可以提醒用户,从而用户能够及时的修复链路故障。
第三方面,本申请实施例提供了一种通信连接检测网络节点,包括通信接口、存储器以及处理器;
所述通信接口,用于收发数据;
所述存储器,用于存储所述处理器执行的程序;
所述处理器,用于执行所述存储器存储的程序,通过所述通信接口收发数据来实现上述第一方面的任意一种设计所述的方法。
第四方面,本申请实施例提供了一种计算机存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第一方面的任意一种设计所述的方法。
第五方面,本申请实施例提供了一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面的任意一种设计所述的方法。
附图说明
图1为本申请实施例提供的多点GRE隧道组网架构图;
图2为本申请实施例提供的通信连接检测方法流程图;
图3A为本申请实施例提供的一种通信连接检测方法流程示意图;
图3B为本申请实施例提供的另一种通信连接检测方法流程示意图;
图4为本申请实施例提供的NHRP表示意图;
图5为本申请实施例提供的NHRP报文示意图;
图6为本申请实施例提供的通信连接检测装置结构示意图;
图7为本申请实施例提供的一种第一网络节点结构示意图;
图8为本申请实施例提供的另一种第一网络节点结构示意图。
具体实施方式
本申请实施例提出一种通信连接检测方法及装置,在第一网络节点与第二网络节点之间建立的隧道故障时,删除NHRP表,从而在两个节点间发生链路故障时,能够保证数据流量不再被发送,不再占用传输资源。进一步还能够触发所述第一网络节点与所述第二网络节点之间传输的数据流量通过中心节点转发,进而恢复第一网络节点与第二网络节点之间的数据流量的传输。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提出的通信连接检测方法及装置,可以但不仅限于应用多点GRE隧道组网中,其它能够通过应用NHRP协议的组网方式均适用于本申请。本申请实施例中以应用于多点GRE隧道组网为例进行说明,多点GRE隧道组网中包括一个中心节点以及多个分支节点。参见图1所示,以多点GRE隧道组网中包括一个中心节点,图1中以hub节点为例,还包括两个分支节点,图1中以spoke1和spoke2为例。hub节点与两个spoke节点之间分别建立有hub-spoke隧道,spoke1与spoke2之间基于NHRP协议建立有spoke-spoke隧道。spoke1与spoke2之间的数据流量可以通过所述spoke-spoke隧道传输。
本申请实施例中涉及到的网络节点可以为中心节点,也可以为分支节点。本申请实施例中涉及到的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
参见图2所示,为本申请实施例提供的通信连接检测方法流程示意图。该方法包括:
S201,第一网络节点向第二网络节点发送检测请求报文,所述检测请求报文用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态。其中,第一网络节点向第二网络节点发送检测请求报文后,所述第二网络节点在接收到所述第一网络节点发送的检测请求报文时,会向第一网络节点发送检测响应报文。其中,所述检测响应报文为响应于所述检测请求报文的响应报文。
S202,所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,所述第一网络节点删除所述第一网络节点与所述第二网络节点间的NHRP表,所述NHRP表用于所述第一网络节点与所述第二网络节点间数据流量的转发。
现有在两个节点间发生链路故障时,第一网络节点与第二网络节点间的NHRP表并不会自动消失,直到NHRP表老化,而在NHRP表老化之前,第一网络节点依然会基于NHRP表发送第一网络节点与第二网络节点之间的数据流量,从而会占用第一网络节点的传输资源,通过本申请实施例提供的方式,第一网络节点作为检测发起设备,在确定第二网络节点未收到检测请求报文后,则删除所述第一网络节点与所述第二网络节点间用于转发数据流量所采用的NHRP表,从而在两个节点间发生链路故障时,能够保证数据流量不再被发送,不再占用第一网络节点的传输资源。
本申请实施例在第一网络节点以及第二网络节点均为分支节点时,第一网络节点与第二网络节点间的NHRP表用于所述第一网络节点通过所述第一网络节点与所述第二网络节点之间建立的隧道向所述第二网络节点转发数据流量。基于此,在第一网络节点删除第一网络节点与第二网络节点间的NHRP表,即第一网络节点在确定需要发送给第二网络节点的数据流量时,不再查询第一网络节点与第二网络节点间的NHRP表,从而第一网络节点与第二网络节点之间的传输的数据流量需要绕行中心节点,进而保证在第一网络节点与第二网络节点之间建立的隧道故障时,恢复第一网络节点与第二网络节点之间数据流量的传输。
本申请实施例中,在所述第一网络节点和所述第二网络节点均为分支节点的情况下,所述第一网络节点在确定第一网络节点未接收到所述第二网络节点发送的检测响应报文时,删除所述第一网络节点与所述第二网络节点间用于转发数据流量所采用的NHRP表后,第一种方式是删除NHRP表,即默认的恢复了聚合路由功能,所述聚合路由功能用于将所述第一网络节点与所述第二网络节点之间传输的数据流量通过所述中心节点转发。第二种方式是删除NHRP,并不是默认恢复了聚合路由功能。在第二种方式下,所述第一网络节点在删除所述第一网络节点与所述第二网络节点间用于转发数据流量所采用的NHRP表后,恢复所述第一网络节点与中心节点之间的聚合路由功能,这样当两个分支节点之间出现链路故障后,可以恢复由中心节点转发,使得分支节点之间的数据流量传输得以恢复。
本申请实施例中,所述第一网络节点确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文,可以通过如下方式实现:
第一种实现方式:
所述第一网络节点确定在第三预设时长内未收到所述第二网络节点发送的检测响应报文。具体的,第一网络节点向第二网络节点发送检测请求报文后的第三预设时长内未收到所述第二网络节点发送的检测响应报文时,则删除所述第一网络节点与所述第二网络节点间的NHRP表。
第二种实现方式:
所述第一网络节点确定在第三预设时长内未收到所述第二网络节点发送的检测响应报文,且重复N次向所述第二网络节点发送所述检测请求报文后,均未收到所述第 二网络节点发送的检测响应报文。具体的,所述第一网络节点向所述第二网络节点发送检测请求报文后,若在第三预设时长内未收到所述第二网络节点发送的检测响应报文,再次发送,反复N次后,未收到所述第二网络节点发送的检测响应报文,则所述第一网络节点删除所述第一网络节点与所述第二网络节点间的NHRP表。
具体的,参见图3A或图3B所示。S201,第一网络节点向第二网络节点发送检测请求报文后,还可以包括S301或者S303。
S301,所述第二网络节点接收到所述检测请求报文,则向所述第一网络节点发送检测响应报文。
S302,所述第一网络节点在第三预设时长内接收到所述第二网络节点发送的检测响应报文,确定所述第一网络节点与所述第二网络节点之间链路正常。
S303,所述第一网络节点在第三预设时长内未收到所述第二网络节点发送的检测响应报文。
S304,所述第一网络节点确定未达到最大重传次数N,再次向所述第二网络节点发送检测请求报文。
S305,所述第一网络节点在第三预设时长内未收到所述第二网络节点发送的检测响应报文。
S306,所述第一网络节点确定达到最大重传次数N。
S307,所述第一网络节点删除所述第一网络节点与所述第二网络节点间的NHRP表。
其中,所述第一网络节点可以为hub节点或者spoke节点。在第一网络节点为hub节点时,第二网络节点为spoke节点;在第一网络节点为spoke节点时,则第二网络节点可以为hub节点,也可以为hub节点。
例如,如图4所示,在多点GRE隧道组网建立时,两个spoke以及hub通过NHRP协议学习到NHRP表以及路由表。
其中,hub所在子网的IP地址为192.168.1.0/24,hub的公网IP地址(GE1/0/0)为202.1.1.10/24,hub的隧道接口地址(tunnel0/0/0)为172.10.1.1/24。spoke1所在的子网的IP地址为192.168.2.0/24,spoke1的公网IP地址为202.1.2.10/24,spoke1的隧道接口地址为172.10.1.2/24;spoke2所在的子网的IP地址为192.168.3.0/24,spoke2的公网IP地址为202.1.3.10/24,spoke2的隧道接口地址为172.10.1.3/24。
其中,各个节点的公网IP地址可以看成是非广播-多路访问网络(Non-Broadcast Multiple Access,NBMA)地址,隧道接口地址与其他物理接口上的IP地址一样,用于节点之间的通信(例如获取路由信息等)。节点在子网的IP地址为在局域网中的IP地址。
其中,路由表用于表征不同的节点的公网IP地址与隧道接口地址之间的对应关系。NHRP表用于表征数据流量的目的IP地址对应的下一跳的IP地址,图4方框中所示。数据流量的目的IP地址为目标节点所在的子网的IP地址,对应的下一跳的IP地址为源节点与目标节点之间建立的隧道的在源节点上的隧道接口地址。比如spoke1发往spoke2的数据流量,数据流量的目的IP地址为192.168.3.0,则对应的下一跳的IP地址为172.10.1.2。现有中,如果spoke1与spoke2之间发生链路故障,spoke1与spoke2 之间的NHRP表并不会自动消失,直到NHRP表老化,而在NHRP表老化之前,spoke1发往spoke2的流量经过查询NHRP表后还是会被发送,从而占用spoke1的传输资源。
因此,通过本申请实施例提供的方案,第一网络节点作为检测发起设备,在确定未收到第二网络节点发送的检测响应报文后,则删除所述第一网络节点与所述第二网络节点间用于转发数据流量所采用的NHRP表,从而在两个节点间发生链路故障时,能够保证数据流量不再被发送,不再占用传输资源。
现有技术中,spoke节点与hub节点之间保活通过双向转发检测(bidirectional forwarding detection,BFD)报文。BFD是一种常规链路检测手段,可以将BFD报文应用于spoke节点间的链路检测。BFD检测首先需要全网所有的spoke节点均要支持且配置BFD协议,但是在BFD协议的异步模式下,BFD报文一直处于周期发送状态,从而会对全网spoke节点造成压力,浪费资源。
一种可能的实现方式中,所述第一网络节点在未接收到所述第二网络节点发送的数据流量时,向第二网络节点发送检测请求报文。由于,第一网络节点在能够接收到第二网络节点传输数据流量时,可以确定第一网络节点与第二网络节点之间的链路正常,因此,第一网络节点在接收不到第二网络节点发送的数据流量时,即数据流量接收停止时,第一网络节点就可以向第二网络节点发送检测请求报文。其中,第一网络节点可以按预设时间间隔重复发送检测请求报文,直到接收到第二网络节点发送的检测响应报文或者达到预设的重传次数(比如N次)停止发送。从而可以提前确定两个节点之间流量停止是否是因为链路故障,可以提高发现链路的故障的可靠性,并且相比现有技术能够节省资源。
另一种可能的实现方式中,所述第一网络节点在第一预设时长内未接收到所述第二网络节点发送的数据流量时,向第二网络节点发送检测请求报文。由于第一网络节点未接收到第二网络节点发送的数据流量可能是第二网络节点向第一网络节点发送的数据流量传输完成了,因此,第一网络节点可以在未接收到第二网络节点发送的数据流量持续的时长达到第一预设时长时,即数据流量接收停止的时长达到第一预设时长时,第一网络节点向第二网络节点发送检测请求报文。其中,第一网络节点可以按预设时间间隔重复发送检测请求报文,直到接收到第二网络节点发送的检测响应报文或者达到预设的重传次数(比如N次)停止发送。从而可以提前确定两个节点之间流量停止是否是因为链路故障,可以提高发现链路的故障的可靠性。
又一种可能的实现方式中,所述第一网络节点未接收到所述第二网络节点发送的数据流量且所述第一网络节点停止向所述第二网络节点发送数据流量时,向第二网络节点发送检测请求报文。在第一网络节点未接收到第二网络节点发送的数据流量时,如果第一网络节点在向所述第二网络节点发送数据流量,第一网络节点不会触发发送检测请求报文,而在第一网络节点停止向第二网络节点发送数据流量时,才向所述第二网络节点发送检测请求报文,即所述第一网络节点未向第二网络节点发送数据流量且未接收到第二网络节点发送的数据流量时,所述第一网络节点才向第二网络节点发送数据流量。相比前两种可能的实现方式,比较节省处理资源。
又一种可能的实现方式中,所述第一网络节点未接收到所述第二网络节点发送的数据流量且所述第一网络节点停止向所述第二网络节点发送数据流量持续的时长超过 第二预设时长时,向第二网络节点发送检测请求报文。
本申请实施例中,检测请求报文可以为NHRP报文。具体的,本申请实施例中可以在NHRP标准报文的基础上,定义新的报文类型用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态。
本申请实施例定义的NHRP报文可以包括第一字段,所述第一字段用于指示所述NHRP报文为用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态的报文。参见图5所示type=10的字段,扩展类型type=10时,表明该报文为检测所述第一网络节点与所述第二网络节点之间是否处于连接状态的报文。
本申请实施例定义的NHRP报文还可以包括第二字段,所述第二字段用于第二网络节点检测所述检测请求报文是否安全。该第二字段可以为NHRP报文中的认证字段,第一网络节点通过获取配置的密码,通过配置的密码生成认证字段的内容,从而第二网络节点在接收到该NHRP报文时,根据配置的密码确定该NHRP报文是否安全。所述认证字段可以位于NHRP报文中报文头以及数据字段之间。
本申请实施例定义的NHRP报文还可以包括第三字段,所述第三字段用于标识所述NHRP报文的序列号,所述序列号用于指示所述NHRP报文是否为重放报文。其中,序列号可以为从1开始单增的序列号,不允许重复,唯一的标识每一个发送的数据流量包。第二网络节点根据序列号结合防重放窗口以及报文验证防御重放报文的攻击。比如,如果报文的序列号落在防重放窗口内,若否,则认为是正常报文,若落在防重放窗口内,且报文的序列号落在防重放窗口右侧,则验证为正常报文,则将防重放窗口右边界滑动到该序列号处,若报文的序列号落在防重放窗口左侧,则确定是重放报文。
参见图5所示为本申请实施例定义的NHRP报文,Sequence number字段为第三字段。认证字段可以位于图5所示的Sequence number字段之后。
其中,图5中,SNAP表示该NHRP报文可以采用子网访问协议(subnetwork access protocol,SNAP)编码传输的数据流量。protocol_type表示以外网层采用的协议类型。hop_count表示条数,用于指示允许NHRP数据流量包跨越的最大数值。packet_size表示NHRP数据流量包的大小。checksum表示校验和,用于针对NHRP报文头进行纠错。源NBMA地址也就是源节点的公网地址。源NBMA子网地址也就是源节点的所在的子网地址。源协议地址也就是源节点的隧道接口地址。目的协议地址也就是下一跳地址,也就是要探测的目的节点的隧道接口地址。C用于指定NHRP报文的功能。U为未使用位。
本申请实施例中的多点GRE隧道组网还可以应用IPsec SA(安全联盟)技术。在多点GRE隧道组网应用IPsec SA(安全联盟)技术的情况下,检测请求报文可以是上述的NHRP报文,还可以采用IPsec SA(安全联盟)技术本身的失效对端检测(dead peer detection,DPD)报文。
本申请实施例中的多点GRE隧道组网应用IPsec SA(安全联盟)技术的情况下,在步骤S202中所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,所述第一网络节点还可以删除IP安全联盟信息,以及联动删除所述第一网络节点与所述第二网络节点间用于转发数据流量所采用的NHRP表。 其中,该IP安全联盟信息用于对所述第一网络节点与所述第二网络节点之间传输的数据流量进行加密。在所述第一网络节点与所述第二网络节点之间传输链路出现故障时,及时的删除IP安全联盟信息,能够节省网络节点的存储资源,另外,能够防止网络节点依据IP安全联盟信息针对数量流量进行加密,从而降低网络节点的处理资源。
可选地,在所述第一网络节点和所述第二网络节点均为分支节点的情况下,所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,删除IP安全联盟信息以及所述第一网络节点与所述第二网络节点间用于转发数据流量所采用的NHRP表后,一种方式是,删除IP安全联盟信息以及删除NHRP表,即默认的恢复了聚合路由功能,另一种方式是,删除IP安全联盟信息以及删除NHRP表,并不是默认恢复了聚合路由功能,在该方式下,所述第一网络节点在删除IP安全联盟信息以及NHRP表后,恢复所述第一网络节点与中心节点之间的聚合路由功能,从而所述第一网络节点与所述第二网络节点之间的数据流量传输可以通过所述中心节点转发。两个分支节点之间链路故障后,可以恢复由中心节点转发,分支节点之间数据流量传输得以恢复。
可选地,本申请实施例中所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,即确定第一网络节点与所述第二网络节点之间传输链路故障,从而所述第一网络节点可以向用户发出告警信号,所述告警信号用于指示所述第一网络节点与所述第二网络节点之间的传输链路出现故障。
另外,告警信号可以是能够被用户听见的警告声(例如,一种蜂鸣声,警报器,等),还可以是能够被用户看见的警告(例如,照明光,闪灯,图像在显示器上,提示文字在显示器上等),或者可以是能够被用户触觉到的警报(例如,振动),本申请对此不作具体限定。
本申请实施例中,第一网络节点若接收到第二网络节点发送的检测请求报文,则向所述第二网络节点发送检测响应报文,以便于所述第二网络节点确定第一网络节点与第二网络节点之间链路正常。
基于与上述方法实施例同样的发明构思,本申请实施例提供了一种通信连接检测装置,所述装置可以应用于多点通用路由封装协议GRE隧道组网中的第一网络节点,该装置具体用于实现图2至图5所示的实施例中第一网络节点执行的方法。参见图6所示,该装置可以包括:
第一发送模块61,用于向第二网络节点发送检测请求报文,所述检测请求报文用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态。
第一接收模块65,用于接收所述第二网络节点发送的检测响应报文;
处理模块62,用于在确定所述第一接收模块65未接收到所述第二网络节点发送的检测响应报文时,所述第一网络节点删除所述第一网络节点与所述第二网络节点间的NHRP表,以使得所述第一网络节点与所述第二网络节点之间传输的数据流量通过中心节点转发;所述NHRP表用于所述第一网络节点通过所述第一网络节点与所述第二网络节点之间建立的隧道向所述第二网络节点发送数据流量。
可选地,所述装置还可以包括:
第二接收模块63,用于接收所述第二网络节点发送的数据流量;
第二发送模块64,用于向所述第二网络节点发送数据流量;
所述第一发送模块61,具体用于在确定未接收到所述第二网络节点发送的数据流量时,向所述第二网络节点发送检测请求报文:或者,确定在第一预设时长内未接收到所述第二网络节点发送的数据流量时,向所述第二网络节点发送检测请求报文;或者,确定未接收到所述第二网络节点发送的数据流量且所述第二发送模块64未向所述第二网络节点发送数据流量时,向所述第二网络节点发送检测请求报文;或者,确定未接收到所述第二网络节点发送的数据流量且所述第二发送模块64未向所述第二网络节点发送数据流量持续的时长超过第二预设时长时,向所述第二网络节点发送检测请求报文。
可选地,所述装置还可以包括:
所述处理模块62,在确定所述第一接收模块65未接收到所述第二网络节点发送的检测响应报文时,具体用于:
确定所述第一接收模块65在第三预设时长内未收到所述第二网络节点发送的检测响应报文;或者,
确定所述第一接收模块65在所述第三预设时长内未收到所述第二网络节点发送的检测响应报文,且在所述第一发送模块61重复N次向所述第二网络节点发送所述检测请求报文后,所述第一接收模块65均未收到所述第二网络节点发送的检测响应报文,N为大于1的整数。
可选地,所述检测请求报文为NHRP报文,所述NHRP报文包括第一字段,所述第一字段用于指示所述NHRP报文为用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态的报文。
可选地,所述NHRP报文还包括第二字段,所述第二字段用于第二网络节点检测所述检测请求报文是否安全。
可选地,所述NHRP报文还包括第三字段,所述第三字段用于标识所述NHRP报文的序列号,所述序列号用于指示所述NHRP报文是否为重放报文。
可选地,所述检测请求报文为DPD报文。
可选地,所述处理模块62,还用于在确定所述第一接收模块65未接收到所述第二网络节点发送的检测响应报文时,删除IP安全联盟信息,IP安全联盟信息用于所述第一网络节点与所述第二网络节点之间传输的数据流量的加密。
可选地,所述第一网络节点和所述第二网络节点均为分支节点,所述处理模块62,还用于在确定所述第一接收模块65未接收到所述第二网络节点发送的检测响应报文时,恢复所述第一网络节点与中心节点之间的聚合路由功能,所述聚合路由功能用于所述处理模块62将所述第一网络节点与所述第二网络节点之间传输的数据流量通过所述中心节点转发。
可选地,所述处理模块62,还用于在确定所述第一接收模块65未接收到所述第二网络节点发送的检测响应报文时,发出告警信号,所述告警信号用于指示所述第一网络节点与所述第二网络节点之间的传输链路出现故障。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一 个或者多个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。因此,本申请上述任一实施例所述的方法可以由第一网络节点中一个或者多个处理器实现。这里所述的第一网络节点可以是分支节点,也可以是中心节点。本申请实施例中第一网络节点与第二网络节点的结构相同,第二网络节点的结构参见第一网络节点,不再赘述。
其中,第一网络节点采用硬件实现时,可以通过图7所示的结构实现,也可以通过图8所示的结构实现。
参见图7所示,为本申请实施例提供的一种第一网络节点的结构示意图,第一网络节点可以包括主控板510、交换网板520、接口板530以及接口板540。其中主控板510中包括中央处理器511,接口板530中包括存储器534、网络处理器532以及物理接口卡533;接口板540中包括存储器544、网络处理器542以及物理接口卡543。
所述交换网板520主要用于在所述接口板530以及接口板540之间转发数据流量包。
其中,接口板530作为接收板,接口板540中作为发送板。
网络处理器532根据运营管理器(operation manager,OM)配置的检测间隔(第一预设时长),检查在配置的时间间隔内没有接收到第二网络节点发来的数据流量,认为流量异常,向中央处理器511发送检测请求消息。
中央处理器511收到检测请求消息后,构造检测请求报文。根据检测请求报文的目的地址查询本地路由表,找到出接口所在接口板530,然后将检测请求报文下发给网络处理器532。
网络处理器532根据出接口等信息,在完成链路层封装后,将检测请求报文从物理接口卡533发送出去,即向第二网络节点发送。
物理接口卡543从网络上接收到第二网络节点发送的检测响应报文后,发送给网络处理器542。
物理接口卡543:从网络上接收到检测响应报文,在完成相关校验后,提交给网络处理器542处理。
网络处理器542使用检测响应报文的目的地址查询存储器544存储的NHRP表,确定为本机报文,发送给中央处理器511处理。
中央处理器511根据接收到的检测响应报文中携带的检测地址、序列号等信息匹配检测请求报文,如果匹配成功,则认为链路状态正常。如果中央处理器511在第三预设时长内未收到第二网络节点发送的检测响应报文,会进行检测请求报文的有限次重传。在重传N次后没有收到第二网络节点发送的检测响应报文后,则确定第一网络节点与第二网络节点之间链路故障,可以将链路置DOWN,将存储器544以及存储器533中存储的用于转发第一网络节点与第二网络节点之间数据流量的NHRP表删除。
可选地,物理接口卡543从网络上接收到第二网络节点发来的检测请求报文,并提交给网络处理器542处理。
网络处理器542使用检测请求报文的目的地址查询本地路由,确定是本机报文,上送中央处理器511处理。
中央处理器511:根据接收到的检测请求报文的报文特征信息进行校验后,确定该检测请求报文是用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态的报文,构造检测响应报文。根据检测响应报文的目的地址查询存储器534中存储的NHRP表,找到出接口所在接口板530,然后将检测响应报文下发给网络处理器532。
网络处理器532根据出接口等信息,在完成链路层封装后,将检测响应报文从物理接口卡533发送出去,即向第二网络节点发送。
参见图8所示,为本申请实施例提供的另一种第一网络节点的结构示意图。第一网络节点包括通信接口610、处理器620以及存储器630。处理器620通过收发器610收发数据流量以及检测请求报文、检测响应报文,并用于实现图2至图4中所述的第一网络节点所执行的方法。在实现过程中,处理流程的各步骤可以通过处理器620中的硬件的集成逻辑电路或者软件形式的指令完成。处理器620包括通用处理器、网络处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等中的一个或者多个,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。处理器620用于实现上述方法所执行的程序代码可以存储在存储器630中。存储器630可以是非易失性存储器,比如硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD)等,还可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM)。存储器630是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请实施例中不限定上述收发器610、处理器620以及存储器630之间的具体连接介质。本申请实施例在图8中以存储器630、处理器620以及收发器610之间通过总线640连接,总线在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于以上实施例,本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述实施例提供的方法。所述计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,用于支持分布式单元、集中式单元以及基站以实现上述实施例中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。可选地,所述芯片系统还包括存储器,所述存储器,用于保存分布式单元、集中式单元以及网络节点必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件 方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种通信连接检测方法,其特征在于,包括:
    第一网络节点向第二网络节点发送检测请求报文,所述检测请求报文用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态;
    所述第一网络节点在确定所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,所述第一网络节点删除下一跳解析协议NHRP表,以使得所述第一网络节点与所述第二网络节点之间传输的数据流量通过中心节点转发,所述检测响应报文为响应于所述检测请求报文的响应报文;所述NHRP表用于所述第一网络节点通过所述第一网络节点与所述第二网络节点之间建立的隧道向所述第二网络节点转发数据流量。
  2. 根据权利要求1所述的方法,其特征在于,在满足以下条件中任意一项时,所述第一网络节点向所述第二网络节点发送检测请求报文:
    所述第一网络节点未接收到所述第二网络节点发送的数据流量;
    所述第一网络节点在第一预设时长内未接收到所述第二网络节点发送的数据流量;
    所述第一网络节点未接收到所述第二网络节点发送的数据流量且所述第一网络节点未向所述第二网络节点发送数据流量;和,
    所述第一网络节点未接收到所述第二网络节点发送的数据流量且所述第一网络节点未向所述第二网络节点发送数据流量持续的时长超过第二预设时长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网络节点未接收到所述第二网络节点发送的检测响应报文,包括:
    所述第一网络节点确定在第三预设时长内未收到所述第二网络节点发送的所述检测响应报文;或者,
    所述第一网络节点确定在所述第三预设时长内未收到所述第二网络节点发送的所述检测响应报文,且重复N次向所述第二网络节点发送所述检测请求报文后,均未收到所述第二网络节点发送的所述检测响应报文,N为大于1的整数。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述检测请求报文为NHRP报文,所述NHRP报文包括第一字段,所述第一字段用于指示所述NHRP报文为用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态的报文。
  5. 根据权利要求4所述的方法,其特征在于,所述NHRP报文还包括第二字段,所述第二字段用于所述第二网络节点检测所述检测请求报文是否安全。
  6. 根据权利要求4或5所述的方法,其特征在于,所述NHRP报文还包括第三字段,所述第三字段用于标识所述NHRP报文的序列号,所述序列号用于指示所述NHRP报文是否为重放报文。
  7. 根据权利要求6所述的方法,其特征在于,所述第一网络节点未接收到所述第二网络节点发送的检测响应报文时,所述方法还包括:
    所述第一网络节点删除互联网协议IP安全联盟信息,所述IP安全联盟信息用于对所述第一网络节点对与所述第二网络节点之间传输的数据流量进行加密。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述第一网络节点未接 收到所述第二网络节点发送的检测响应报文时,所述方法还包括:
    所述第一网络节点恢复所述第一网络节点与中心节点之间的聚合路由功能,所述聚合路由功能用于将所述第一网络节点与所述第二网络节点之间传输的数据流量通过所述中心节点转发。
  9. 一种通信连接检测装置,其特征在于,所述装置应用于第一网络节点,包括:
    第一发送模块,用于向第二网络节点发送检测请求报文,所述检测请求报文用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态;
    第一接收模块,用于接收所述第二网络节点发送的检测响应报文;
    处理模块,用于在确定所述第一接收模块未接收到所述第二网络节点发送的所述检测响应报文时,所述第一网络节点删除下一跳解析协议NHRP表,以使得所述第一网络节点与所述第二网络节点之间传输的数据流量通过中心节点转发,所述检测响应报文为响应于所述检测请求报文的响应报文;所述NHRP表用于所述第一网络节点通过所述第一网络节点与所述第二网络节点之间建立的隧道向所述第二网络节点发送数据流量。
  10. 根据权利要求9所述的装置,其特征在于,所述装置还包括:
    第二接收模块,用于接收所述第二网络节点发送的数据流量;
    第二发送模块,用于向所述第二网络节点发送数据流量;
    所述第二发送模块,具体用于在确定满足以下条件中任意一项时,向所述第二网络节点发送检测请求报文:
    所述第二接收模块未接收到所述第二网络节点发送的数据流量;
    所述第二接收模块在第一预设时长内未接收到所述第二网络节点发送的数据流量;
    所述第二接收模块未接收到所述第二网络节点发送的数据流量且所述第二发送模块未向所述第二网络节点发送数据流量;和,
    所述第二接收模块未接收到所述第二网络节点发送的数据流量且所述第二发送模块未向所述第二网络节点发送数据流量持续的时长超过第二预设时长。
  11. 根据权利要求9或10所述的装置,其特征在于,所述处理模块,在确定所述第一接收模块未接收到所述第二网络节点发送的检测响应报文时,具体用于:
    确定所述第一接收模块在第三预设时长内未收到所述第二网络节点发送的所述检测响应报文;或者,
    确定所述第一接收模块在所述第三预设时长内未收到所述第二网络节点发送的所述检测响应报文,且在所述第一发送模块重复N次向所述第二网络节点发送所述检测请求报文后,所述第一接收模块均未收到所述第二网络节点发送的所述检测响应报文,N为大于1的整数。
  12. 根据权利要求9至11任一项所述的装置,其特征在于,所述检测请求报文为NHRP报文,所述NHRP报文包括第一字段,所述第一字段用于指示所述NHRP报文为用于检测所述第一网络节点与所述第二网络节点之间是否处于连接状态的报文。
  13. 根据权利要求12所述的装置,其特征在于,所述NHRP报文还包括第二字段,所述第二字段用于所述第二网络节点检测所述检测请求报文是否安全。
  14. 根据权利要求12或13所述的装置,其特征在于,所述NHRP报文还包括第 三字段,所述第三字段用于标识所述NHRP报文的序列号,所述序列号用于指示所述NHRP报文是否为重放报文。
  15. 根据权利要求14所述的装置,其特征在于,所述处理模块,还用于在确定所述第一接收模块未接收到所述第二网络节点发送的检测响应报文时,删除互联网协议IP安全联盟信息,IP安全联盟信息用于所述第一网络节点与所述第二网络节点之间传输的数据流量的加密。
  16. 根据权利要求9至15任一项所述的装置,其特征在于,所述处理模块,还用于在确定所述第一接收模块未接收到所述第二网络节点发送的检测响应报文时,恢复所述第一网络节点与所述中心节点之间的聚合路由功能,所述聚合路由功能用于所述处理模块将所述第一网络节点与所述第二网络节点之间传输的数据流量通过所述中心节点转发。
  17. 一种通信连接检测网络节点,其特征在于,包括:通信接口、存储器以及处理器;
    所述通信接口,用于收发数据;
    所述存储器,用于存储所述处理器执行的程序;
    所述处理器,用于执行所述存储器存储的程序,通过所述通信接口收发数据来实现如权利要求1至8任一项所述的方法。
  18. 一种计算机存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至8任一项所述的方法。
PCT/CN2018/105975 2017-09-22 2018-09-17 一种通信连接检测方法及装置 WO2019057007A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18857533.6A EP3678335A4 (en) 2017-09-22 2018-09-17 COMMUNICATION CONNECTION DETECTION METHOD AND DEVICE
US16/825,544 US11303528B2 (en) 2017-09-22 2020-03-20 Communications connection detection method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710866379.8A CN107612776B (zh) 2017-09-22 2017-09-22 一种通信连接检测方法及装置
CN201710866379.8 2017-09-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/825,544 Continuation US11303528B2 (en) 2017-09-22 2020-03-20 Communications connection detection method and apparatus

Publications (1)

Publication Number Publication Date
WO2019057007A1 true WO2019057007A1 (zh) 2019-03-28

Family

ID=61062057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105975 WO2019057007A1 (zh) 2017-09-22 2018-09-17 一种通信连接检测方法及装置

Country Status (4)

Country Link
US (1) US11303528B2 (zh)
EP (1) EP3678335A4 (zh)
CN (2) CN107612776B (zh)
WO (1) WO2019057007A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612776B (zh) * 2017-09-22 2021-03-23 华为技术有限公司 一种通信连接检测方法及装置
CN109274748B (zh) * 2018-09-30 2021-06-25 西安科技大学 数据可靠传输方法及应用其的电力设备监测数据传输方法
CN109413689A (zh) * 2018-11-30 2019-03-01 公安部沈阳消防研究所 一种无线链路脱网检测方法
CN111432379B (zh) * 2019-01-10 2022-09-23 大唐移动通信设备有限公司 一种直通链路的传输方法和终端
CN111404877A (zh) * 2020-02-24 2020-07-10 联合汽车电子有限公司 消息传输方法及系统
CN111697997B (zh) * 2020-05-29 2021-08-17 国网河北省电力有限公司电力科学研究院 一种基于抄控器的hplc模块快速检测装置及方法
CN113300816B (zh) * 2020-07-15 2022-04-12 阿里巴巴集团控股有限公司 节点定位方法、网络传输方法、装置及设备
CN111934939B (zh) * 2020-09-17 2021-02-02 北京搜狐新媒体信息技术有限公司 一种网络节点故障检测方法、装置及系统
CN112242943B (zh) * 2020-11-26 2022-08-16 迈普通信技术股份有限公司 IPSec隧道建立方法及装置、分支设备、中心端设备
CN114374667B (zh) * 2021-12-28 2024-04-16 中国电信股份有限公司 一种分配nat ip的方法、装置及存储介质
WO2024016322A1 (en) * 2022-07-22 2024-01-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and communication device for communication security
CN114979780B (zh) * 2022-07-27 2022-11-11 成都卓元科技有限公司 一种数字电视播出系统视音频信号异态检测及质量比对方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355416A (zh) * 2011-09-30 2012-02-15 杭州华三通信技术有限公司 路由信息协议联动双向会话检测建立路由的方法及设备
US20140126351A1 (en) * 2012-11-08 2014-05-08 Hitachi Metals, Ltd. Communication system and network relay device
CN104579736A (zh) * 2013-10-29 2015-04-29 华为技术有限公司 一种环路数据传输方法及节点设备
CN107612776A (zh) * 2017-09-22 2018-01-19 华为技术有限公司 一种通信连接检测方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030112808A1 (en) * 2001-12-13 2003-06-19 Net Reality Ltd Automatic configuration of IP tunnels
DE10301265A1 (de) * 2003-01-15 2004-07-29 Siemens Ag Verfahren und Anordnung zum Routing von Datenpaketen in einem paketvermittelnden Datennetz
US8072879B2 (en) * 2006-02-03 2011-12-06 Cisco Technology, Inc. Technique for determining whether to reestablish fast rerouted primary tunnels based on backup tunnel path quality feedback
WO2008055429A1 (fr) * 2006-11-09 2008-05-15 Huawei Technologies Co., Ltd. Procédé et noeud limite pour l'annonce d'informations de connexion limite d'un système as
US7836497B2 (en) * 2006-12-22 2010-11-16 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for resilient IP security/internet key exchange security gateway
CN101521616B (zh) * 2008-02-27 2012-07-04 华为技术有限公司 边界网关协议bgp分布式系统中邻居迁移的方法和系统
US20090304003A1 (en) * 2008-05-27 2009-12-10 Olivier Huynh Van Global Virtual VPN
WO2010068698A2 (en) * 2008-12-09 2010-06-17 Glue Networks, Inc. System and method for providing virtual private networks
US8032641B2 (en) * 2009-04-30 2011-10-04 Blue Coat Systems, Inc. Assymmetric traffic flow detection
CN102104532B (zh) * 2009-12-22 2014-02-12 杭州华三通信技术有限公司 一种故障切换的方法、系统和中心提供商边缘路由器
WO2014011684A1 (en) 2012-07-09 2014-01-16 Everyone Counts, Inc. Auditing election results
CN102868586B (zh) * 2012-09-25 2015-06-10 杭州华三通信技术有限公司 一种建立隧道转发表项的方法、中心节点和分支节点
CN103209108B (zh) * 2013-04-10 2016-03-02 杭州华三通信技术有限公司 一种基于dvpn的路由生成方法和设备
CN105704747A (zh) * 2014-11-25 2016-06-22 中兴通讯股份有限公司 一种基站实现控制/业务数据可靠传输的方法及装置
US10198724B2 (en) * 2015-08-21 2019-02-05 Mastercard International Incorporated Payment networks and methods for facilitating data transfers within payment networks
CN106487802B (zh) * 2016-11-07 2019-09-17 杭州迪普科技股份有限公司 基于DPD协议的IPSec SA的异常探测方法及装置
CN109428741A (zh) * 2017-08-22 2019-03-05 中兴通讯股份有限公司 一种网络故障的检测方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355416A (zh) * 2011-09-30 2012-02-15 杭州华三通信技术有限公司 路由信息协议联动双向会话检测建立路由的方法及设备
US20140126351A1 (en) * 2012-11-08 2014-05-08 Hitachi Metals, Ltd. Communication system and network relay device
CN104579736A (zh) * 2013-10-29 2015-04-29 华为技术有限公司 一种环路数据传输方法及节点设备
CN107612776A (zh) * 2017-09-22 2018-01-19 华为技术有限公司 一种通信连接检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3678335A4

Also Published As

Publication number Publication date
CN113114528A (zh) 2021-07-13
US20200220785A1 (en) 2020-07-09
EP3678335A1 (en) 2020-07-08
US11303528B2 (en) 2022-04-12
CN107612776B (zh) 2021-03-23
EP3678335A4 (en) 2020-09-30
CN107612776A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2019057007A1 (zh) 一种通信连接检测方法及装置
WO2020020144A1 (zh) 链路切换方法、链路切换设备、网络通信系统以及计算机可读存储介质
US7903546B2 (en) Detecting unavailable network connections
US9674285B2 (en) Bypassing failed hub devices in hub-and-spoke telecommunication networks
JP5514213B2 (ja) プロバイダネットワーク内のccメッセージの送信の低減
WO2009046644A1 (fr) Procédé et dispositif pour la commutation de flux de trafic
WO2013020437A1 (zh) 一种双向转发检测会话的验证方法及节点
WO2009052765A1 (fr) Procédé et dispositif de détection et de traitement de défaillance de nœud dans un réseau poste à poste
WO2022083563A1 (zh) 链路检测方法、链路检测装置、终端设备和存储介质
WO2019201209A1 (zh) 报文转发
JP7124206B2 (ja) パケット処理方法およびゲートウェイ・デバイス
WO2015149353A1 (zh) 一种oam报文处理方法、网络设备和网络系统
WO2019223534A1 (zh) 一种转发表项的监测方法及装置
US20230111966A1 (en) Ethernet storage system, and information notification method and related apparatus thereof
WO2018002713A1 (en) Methods and router devices for verifying a multicast datapath
WO2012075934A1 (zh) 消息循环的检测方法、路由代理设备及组网系统
CN101030912A (zh) 基于rrpp的快速环网防攻击的方法、装置和系统
US20080267080A1 (en) Fault Verification for an Unpaired Unidirectional Switched-Path
US9300642B2 (en) Restarting network reachability protocol sessions based on transport layer authentication
US8379514B2 (en) Route reflector for a communication system
JP2020521409A (ja) Netconfセッション状態の検出方法、装置及びコンピュータ読取可能な記録媒体
US10680930B2 (en) Method and apparatus for communication in virtual network
WO2019218740A1 (zh) 报文优先级的确定、发送方法及装置、路由系统
WO2015100637A1 (zh) 链路倒换的方法和交换设备
WO2012022150A1 (zh) 一种故障告警方法、系统及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018857533

Country of ref document: EP

Effective date: 20200402