WO2019056923A1 - Vpls双归属业务模型的上行流量快速切换系统及方法 - Google Patents

Vpls双归属业务模型的上行流量快速切换系统及方法 Download PDF

Info

Publication number
WO2019056923A1
WO2019056923A1 PCT/CN2018/102475 CN2018102475W WO2019056923A1 WO 2019056923 A1 WO2019056923 A1 WO 2019056923A1 CN 2018102475 W CN2018102475 W CN 2018102475W WO 2019056923 A1 WO2019056923 A1 WO 2019056923A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
traffic
module
mac
value
Prior art date
Application number
PCT/CN2018/102475
Other languages
English (en)
French (fr)
Inventor
周万涛
李凯
魏晓曼
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2019056923A1 publication Critical patent/WO2019056923A1/zh
Priority to PH12019550278A priority Critical patent/PH12019550278A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability

Definitions

  • the present invention relates to the field of packet transmission network technologies, and in particular, to a system and method for rapidly switching uplink traffic of a VPLS dual-homed service model.
  • the service access node is usually connected to the primary and backup PE nodes by means of dual-homing. Under normal circumstances, the access node transmits traffic through the link with the primary PE node. Then switch to the standby PE node.
  • the switching time of the downlink traffic is completely determined by the time that the RNC switches the primary and backup links, and is independent of the PE device of the IPRAN backhaul network.
  • the switching time of the uplink traffic is completely determined by the update time of the first PE device to the RNC MAC, and the RNC MAC address learned from the first PW interface is updated to the second PW interface.
  • the update time of the MAC address is proportional to the number of MAC addresses
  • the switching time of the uplink traffic increases linearly with the number of MAC addresses on the RNC side, causing the uplink service switching time to be too long, and even the base station service is interrupted.
  • the object of the present invention is to provide a fast switching system and method for uplink traffic of a VPLS dual-homing service model, which has a simple traffic switching mode and a short traffic switching time, and does not linearly increase with the number of MAC addresses. .
  • the technical solution adopted by the present invention is: an uplink traffic fast switching system of a VPLS dual-homing service model: the VPLS dual-homing service model includes a base station, a first PE device, a second PE device, and a third PE. And the RNC, the base station is connected to the first PE device by using a first AC link, where the first PE device is connected to the second PE device by using a first PW interface, and the second PE device passes the a second active AC link is connected to the RNC, the first PE device is connected to the third PE device through a second PW interface, and the third PE device is connected to the RNC through a second standby AC link ;
  • the uplink traffic fast switching system includes a MAC learning module, a fault detection module, an ID update module, and a traffic forwarding module, where:
  • the traffic forwarding module is configured to receive the downlink traffic from the first PW interface, read the value of the interface state ID of the first PW interface from the first PW interface, and send the value of the interface state ID of the first PW interface to the MAC learning module;
  • the MAC learning module is configured to: when the traffic forwarding module receives downlink traffic from the first PW interface, read a MAC address of the RNC and a forwarding relationship with the first PW interface from the first PW interface to generate a MAC forwarding table; receiving the value of the interface state ID of the first PW interface sent by the traffic forwarding module, and recording the value in the MAC forwarding table;
  • the fault detecting module is configured to periodically detect whether the second active AC link is faulty; if yes, the fault detecting module sends a MAC switching message to the ID update module;
  • the ID update module is configured to update the value of the interface state ID of the first PW interface to a different ID value after receiving the MAC switching message;
  • the traffic forwarding module is further configured to: receive an uplink traffic from the first AC link, and search for an interface state ID of the first PW interface in the MAC forwarding table; and determine an interface of the first PW interface in the MAC forwarding table. Whether the value of the state ID is the same as the actual value of the interface state ID of the first PW interface; if they are the same, the traffic is forwarded to the first PW interface; if not, the traffic is flooded to the first PW interface and the The second PW interface.
  • the second PW interface after the second PW interface receives the traffic forwarded by the traffic forwarding module, the second PW interface forwards the traffic to the third PE device, and the third PE device Traffic is forwarded to the RNC via the second alternate AC link.
  • the traffic forwarding module, the MAC learning module, and the ID update module are all disposed on the first PE device.
  • the fault detection module is disposed on the second PE device.
  • the traffic forwarding module When the traffic forwarding module receives the downlink traffic from the first PW interface, the value of the interface state ID of the first PW interface is read from the first PW interface, and the value of the interface state ID of the first PW interface is sent to the The MAC learning module reads the MAC address of the RNC and the forwarding relationship with the first PW interface from the first PW interface to generate a MAC forwarding table, and receives the first PW sent by the traffic forwarding module. The value of the interface state ID of the interface is recorded in the MAC forwarding table.
  • the fault detection module periodically detects whether the second primary AC link is faulty; if present, the fault detection module sends a MAC handover message to the ID update module, and the ID update module receives a MAC handover message. Afterwards, updating the value of the interface state ID of the first PW interface is a different ID value;
  • the traffic forwarding module searches for the value of the interface state ID of the first PW interface in the MAC forwarding table when receiving the uplink traffic from the first AC link interface, and determines the first PW interface in the MAC forwarding table. Whether the value of the interface state ID is the same as the actual value of the interface state ID of the first PW interface; if the same, the traffic forwarding module forwards the traffic to the first PW interface; if different, the traffic forwarding module will flow Flooding to the first PW interface and the second PW interface.
  • the second PW interface forwards the traffic to the third PE device, and the third PE device forwards the traffic to the RNC through the second standby AC link.
  • the fault detection module detects whether the second active AC link is faulty every preset detection period.
  • the traffic forwarding module, the MAC learning module, and the ID update module are all disposed on the first PE device.
  • the fault detection module is disposed on the second PE device.
  • the invention uses the MAC learning module to read the MAC address of the RNC and records the value of the interface state ID of the first PW interface into the MAC forwarding table; when the fault detection module detects that the second primary AC link is faulty, the ID update module The interface state ID of the first PW interface is updated to be a different ID value.
  • the traffic forwarding module receives the uplink traffic, the value of the interface state ID of the first PW interface in the MAC forwarding table is determined by the interface state ID of the first PW interface. Whether the actual values are consistent. If they are inconsistent, the traffic is flooded to the first PW interface and the second PW interface.
  • the traffic switching mode of the present invention is simple, and the traffic forwarding switching can be implemented only after the MAC forwarding table in the first PW interface is updated to the second PW interface. Therefore, the traffic switching time is short and does not increase linearly with the number of MAC addresses.
  • FIG. 1 is a schematic structural diagram of a VPLS dual-homing service model in an uplink traffic fast switching system of a VPLS dual-homing service model according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an uplink traffic fast switching system of a VPLS dual-homing service model according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of learning MAC addresses of an uplink traffic fast switching method in a VPLS dual-homing service model according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of an interface state ID update of an uplink traffic fast switching method in a VPLS dual-homing service model according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of traffic forwarding and switching of an uplink traffic fast switching method in a VPLS dual-homing service model according to an embodiment of the present invention.
  • the embodiment of the present invention provides a fast switching system for the uplink traffic of the VPLS dual-homing service model.
  • the VPLS dual-homed service model includes a base station, a first PE device, a second PE device, a third PE device, and an RNC.
  • the base station is connected to the first PE device by using the first AC link
  • the first PE device is connected to the second PE device through the first PW interface
  • the second PE device is connected to the RNC through the second active AC link
  • the third PE device is connected to the RNC through the second standby AC link.
  • the uplink traffic fast switching system includes a MAC learning module, a fault detection module, an ID update module, and a traffic forwarding module, where:
  • the traffic forwarding module is configured to receive the downlink traffic from the first PW interface, read the value of the interface state ID of the first PW interface from the first PW interface, and send the value of the interface state ID of the first PW interface to the MAC learning module;
  • the MAC learning module is configured to: when the traffic forwarding module receives the downlink traffic from the first PW interface, read the MAC address of the RNC and the forwarding relationship with the first PW interface from the first PW interface to generate a MAC forwarding table; and receive the traffic forwarding module.
  • the fault detection module is configured to periodically detect whether the second active AC link is faulty; if yes, the fault detection module sends a MAC switching message to the ID update module;
  • the ID update module is configured to update the value of the interface state ID of the first PW interface to a different ID value after receiving the MAC switching message.
  • the traffic forwarding module is further configured to: receive the uplink traffic from the first AC link, and find the interface state ID of the first PW interface in the MAC forwarding table; and determine the value of the interface state ID of the first PW interface in the MAC forwarding table and the first PW. Whether the actual value of the interface status ID of the interface is the same; if they are the same, the traffic is forwarded to the first PW interface; if not, the traffic is flooded to the first PW interface and the second PW interface.
  • the traffic forwarding module, the MAC learning module, and the ID update module are all disposed on the first PE device.
  • the fault detection module is disposed on the second PE device.
  • the fault detection module is configured to detect whether the second primary AC link is faulty every preset detection period.
  • the invention uses the MAC learning module to read the MAC address of the RNC and records the value of the interface state ID of the first PW interface into the MAC forwarding table; when the fault detection module detects that the second primary AC link is faulty, the ID update module The interface state ID of the first PW interface is updated to be a different ID value.
  • the traffic forwarding module receives the uplink traffic, the value of the interface state ID of the first PW interface in the MAC forwarding table is determined by the interface state ID of the first PW interface. Whether the actual values are consistent. If they are inconsistent, the traffic is flooded to the first PW interface and the second PW interface.
  • the traffic switching mode of the present invention is simple, and the traffic forwarding switching can be implemented only after the MAC forwarding table in the first PW interface is updated to the second PW interface. Therefore, the traffic switching time is short and does not increase linearly with the number of MAC addresses.
  • the invention also discloses an uplink traffic fast switching method for an uplink traffic fast switching system adopting a VPLS dual-homing service model according to claim 1:
  • the traffic forwarding module receives downlink traffic from the first PW interface.
  • the traffic forwarding module reads the value of the interface state ID of the first PW interface from the first PW interface, and sends the value of the interface state ID of the first PW interface to the MAC learning module;
  • the MAC learning module reads the MAC address of the RNC and the forwarding relationship with the first PW interface from the first PW interface to generate a MAC forwarding table, and receives the value of the interface state ID of the first PW interface sent by the traffic forwarding module, and records Go to the MAC forwarding table and end.
  • the interface status ID update includes the following steps;
  • the fault detection module periodically detects the status of the second active AC link.
  • step B2 determining whether the second primary AC link is faulty, and if so, proceeding to step B3; if not, returning to step B1;
  • the fault detection module sends a MAC switching message to the ID update module.
  • the ID update module After receiving the MAC switching message, the ID update module updates the value of the interface state ID of the first PW interface to a different ID value, and ends.
  • the traffic forwarding module searches for the value of the interface state ID of the first PW interface in the MAC forwarding table when receiving the uplink traffic from the first AC link interface.
  • step C2 it is determined whether the value of the interface state ID of the first PW interface in the MAC forwarding table is the same as the actual value of the interface state ID of the first PW interface; if they are the same, proceed to step C3; if not, proceed to step C4;
  • the traffic forwarding module forwards the traffic to the first PW interface, and ends.
  • the traffic forwarding module floods the traffic to the first PW interface and the second PW interface, and ends.
  • the second PW interface forwards the traffic to the third PE device, and the third PE device forwards the traffic to the RNC through the second standby AC link.
  • the traffic forwarding module, the MAC learning module, and the ID update module are all disposed on the first PE device.
  • the fault detection module is disposed on the second PE device.
  • the fault detection module detects whether the second primary AC link is faulty every preset detection period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明公开了一种VPLS双归属业务模型的上行流量快速切换系统,涉及分组传送网技术领域,上行流量快速切换系统包括MAC学习模块,故障检测模块,ID更新模块和流量转发模块,MAC学习模块读取RNC的MAC地址并将第一PW接口的接口状态ID的值记录到MAC转发表中;故障检测模块检测到第二主用AC链路有故障时,ID更新模块会更新第一PW接口的接口状态ID为不同的ID值;流量转发模块接收到上行流量时,判断MAC转发表中的第一PW接口的接口状态ID的值与第一PW接口的接口状态ID的实际值是否一致,若不一致,将流量洪泛至第一PW接口和第二PW接口。采用本发明流量切换时间短,不会随MAC地址数量线性增长。

Description

VPLS双归属业务模型的上行流量快速切换系统及方法 技术领域
本发明涉及分组传送网技术领域,具体涉及一种VPLS双归属业务模型的上行流量快速切换系统及方法。
背景技术
为了增加VPLS组网的稳定性,业务接入节点通常采用双归的方式接入到主、备PE节点中,正常情况下接入节点通过和主用PE节点间的链路传输流量,故障情况下则切换到备用PE节点。下行流量的倒换时间完全取决于RNC对主备用链路切换的时间,和IPRAN回传网的PE设备无关。上行流量的倒换时间完全取决于第一PE设备对RNC MAC的更新时间,即将倒换前从第一PW接口学习到的RNC MAC地址更新到第二PW接口上去。由于MAC地址的更新时间正比与MAC地址数量,因此,上行流量的倒换时间会随着RNC侧MAC地址数量线性增长,导致上行业务倒换时间过长,甚至基站业务中断。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种VPLS双归属业务模型的上行流量快速切换系统及方法,流量切换方式简单,且流量切换时间短,不会随MAC地址数量线性增长。
为达到以上目的,本发明采取的技术方案是:一种VPLS双归属业务模型的上行流量快速切换系统:所述VPLS双归属业务模型包括基站、第一PE设备、第二PE设备、第三PE设备以及RNC,所述 基站通过第一AC链路连接至所述第一PE设备,所述第一PE设备通过第一PW接口连接至所述第二PE设备,所述第二PE设备通过第二主用AC链路连接至所述RNC,所述第一PE设备通过第二PW接口连接至所述第三PE设备,所述第三PE设备通过第二备用AC链路连接至所述RNC;
所述上行流量快速切换系统包括MAC学习模块,故障检测模块,ID更新模块和流量转发模块,其中:
所述流量转发模块用于从所述第一PW接口接收下行流量,从第一PW接口读取第一PW接口的接口状态ID的值并将第一PW接口的接口状态ID的值发送给所述MAC学习模块;
所述MAC学习模块用于在所述流量转发模块从所述第一PW接口接收到下行流量时,从第一PW接口读取RNC的MAC地址以及和所述第一PW接口的转发关系以生成MAC转发表;接收所述流量转发模块发送来的第一PW接口的接口状态ID的值并记录到MAC转发表中;
所述故障检测模块用于周期性检测所述第二主用AC链路是否有故障;若存在,所述故障检测模块发送MAC切换消息给所述ID更新模块;
所述ID更新模块用于收到MAC切换消息后,更新所述第一PW接口的接口状态ID的值为不同的ID值;
所述流量转发模块还用于从所述第一AC链路接收上行流量,查找所述MAC转发表中第一PW接口的接口状态ID;并判断所述MAC转发表中第一PW接口的接口状态ID的值与第一PW接口的接口状态ID的实际值是否相同;若相同,将流量转发至所述第一PW接口;若不同,将流量洪泛至所述第一PW接口和所述第二PW接口。
在上述技术方案的基础上,所述第二PW接口接收到所述流量转发模块转发的流量后,所述第二PW接口将流量转发给所述第三PE设备,所述第三PE设备将流量经过所述第二备用AC链路转发至所述RNC。
在上述技术方案的基础上,所述流量转发模块、MAC学习模块、ID更新模块均设于所述第一PE设备上。
在上述技术方案的基础上,所述故障检测模块设于所述第二PE设备上。
本发明实施例还公开了一种采用VPLS双归属业务模型的上行流量快速切换系统的上行流量快速切换方法:
所述流量转发模块从所述第一PW接口接收到下行流量时,从第一PW接口读取第一PW接口的接口状态ID的值并将第一PW接口的接口状态ID的值发送给所述MAC学习模块;所述MAC学习模块从第一PW接口读取RNC的MAC地址以及和所述第一PW接口的转发关系以生成MAC转发表;接收所述流量转发模块发送来的第一PW接口的接口状态ID的值并记录到MAC转发表中;
所述故障检测模块周期性检测所述第二主用AC链路是否有故障;若存在,所述故障检测模块发送MAC切换消息给所述ID更新模块,所述ID更新模块收到MAC切换消息后,更新所述第一PW接口的接口状态ID的值为不同的ID值;
所述流量转发模块从所述第一AC链路接口接收到上行流量时,查找所述MAC转发表中第一PW接口的接口状态ID的值;并判断所述MAC转发表中第一PW接口的接口状态ID的值与第一PW接口的接口状态ID的实际值是否相同;若相同,所述流量转发模块将流量转发至所述第一PW接口;若不同,所述流量转发模块将流量洪 泛至所述第一PW接口和所述第二PW接口。
在上述技术方案的基础上,所述第二PW接口将流量转发给所述第三PE设备,所述第三PE设备将流量经过所述第二备用AC链路转发至所述RNC。
在上述技术方案的基础上,所述故障检测模块每隔预设的检测周期检测一次所述第二主用AC链路是否有故障。
在上述技术方案的基础上,所述流量转发模块、MAC学习模块、ID更新模块均设于所述第一PE设备上。
在上述技术方案的基础上,所述故障检测模块设于所述第二PE设备上。
与现有技术相比,本发明的优点在于:
本发明采用MAC学习模块读取RNC的MAC地址并将第一PW接口的接口状态ID的值记录到MAC转发表中;故障检测模块检测到第二主用AC链路有故障时,ID更新模块会更新第一PW接口的接口状态ID为不同的ID值;流量转发模块接收到上行流量时,判断MAC转发表中的第一PW接口的接口状态ID的值与第一PW接口的接口状态ID的实际值是否一致,若不一致,将流量洪泛至所述第一PW接口和所述第二PW接口。采用本发明流量切换方式简单,无须将第一PW接口中的MAC转发表更新至第二PW接口才能实现流量转发倒换,因此流量切换时间短,不会随MAC地址数量线性增长。
附图说明
图1为本发明实施例中VPLS双归属业务模型的上行流量快速切换系统中VPLS双归属业务模型的结构示意图;
图2为本发明实施例中VPLS双归属业务模型的上行流量快速切换系统的结构示意图;
图3为本发明实施例中VPLS双归属业务模型的上行流量快速切换方法的学习MAC地址的流程示意图;
图4为本发明实施例中VPLS双归属业务模型的上行流量快速切换方法的接口状态ID更新的流程示意图;
图5为本发明实施例中VPLS双归属业务模型的上行流量快速切换方法的流量转发和倒换的流程示意图。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
本发明实施例提供一种VPLS双归属业务模型的上行流量快速切换系统,参见图1所示,VPLS双归属业务模型包括基站、第一PE设备、第二PE设备、第三PE设备以及RNC,基站通过第一AC链路连接至第一PE设备,第一PE设备通过第一PW接口连接至第二PE设备,第二PE设备通过第二主用AC链路连接至RNC,第一PE设备通过第二PW接口连接至第三PE设备,第三PE设备通过第二备用AC链路连接至RNC。
参见图2所示,上行流量快速切换系统包括MAC学习模块,故障检测模块,ID更新模块和流量转发模块,其中:
流量转发模块用于从第一PW接口接收下行流量,从第一PW接口读取第一PW接口的接口状态ID的值并将第一PW接口的接口状态ID的值发送给MAC学习模块;
MAC学习模块用于在流量转发模块从第一PW接口接收到下行流量时,从第一PW接口读取RNC的MAC地址以及和第一PW接口的转发关系以生成MAC转发表;接收流量转发模块发送来的第一PW接口的接口状态ID的值并记录到MAC转发表中;
故障检测模块用于周期性检测第二主用AC链路是否有故障;若 存在,故障检测模块发送MAC切换消息给ID更新模块;
ID更新模块用于收到MAC切换消息后,更新第一PW接口的接口状态ID的值为不同的ID值;
流量转发模块还用于从第一AC链路接收上行流量,查找MAC转发表中第一PW接口的接口状态ID;并判断MAC转发表中第一PW接口的接口状态ID的值与第一PW接口的接口状态ID的实际值是否相同;若相同,将流量转发至第一PW接口;若不同,将流量洪泛至第一PW接口和第二PW接口。
流量转发模块、MAC学习模块、ID更新模块均设于第一PE设备上。故障检测模块设于第二PE设备上。
第二PW接口接收到流量转发模块转发的流量后,第二PW接口将流量转发给第三PE设备,第三PE设备将流量经过第二备用AC链路转发至RNC。故障检测模块用于每隔预设的检测周期检测一次第二主用AC链路是否有故障。
本发明采用MAC学习模块读取RNC的MAC地址并将第一PW接口的接口状态ID的值记录到MAC转发表中;故障检测模块检测到第二主用AC链路有故障时,ID更新模块会更新第一PW接口的接口状态ID为不同的ID值;流量转发模块接收到上行流量时,判断MAC转发表中的第一PW接口的接口状态ID的值与第一PW接口的接口状态ID的实际值是否一致,若不一致,将流量洪泛至第一PW接口和第二PW接口。采用本发明流量切换方式简单,无须将第一PW接口中的MAC转发表更新至第二PW接口才能实现流量转发倒换,因此流量切换时间短,不会随MAC地址数量线性增长。
本发明还公开了一种采用如权利要求1的一种VPLS双归属业务模型的上行流量快速切换系统的上行流量快速切换方法:
(1)学习MAC地址,参见图3所示,包括以下步骤;
A1,流量转发模块从第一PW接口接收到下行流量;
A2,流量转发模块从第一PW接口读取第一PW接口的接口状态ID的值并将第一PW接口的接口状态ID的值发送给MAC学习模块;
A3,MAC学习模块从第一PW接口读取RNC的MAC地址以及和第一PW接口的转发关系以生成MAC转发表;接收流量转发模块发送来的第一PW接口的接口状态ID的值并记录到MAC转发表中,结束。
(2)接口状态ID更新,参见图4所示,包括以下步骤;
B1,故障检测模块周期性检测第二主用AC链路状态;
B2,判断第二主用AC链路是否存在故障,若是,进入步骤B3;若否,返回步骤B1;
B3,故障检测模块发送MAC切换消息给ID更新模块;
B4,ID更新模块收到MAC切换消息后,更新第一PW接口的接口状态ID的值为不同的ID值,结束。
(3)流量转发和倒换,参见图5所示,包括以下步骤;
C1,流量转发模块从第一AC链路接口接收到上行流量时,查找MAC转发表中第一PW接口的接口状态ID的值;
C2,判断MAC转发表中第一PW接口的接口状态ID的值与第一PW接口的接口状态ID的实际值是否相同;若相同,进入步骤C3;若不同,进入步骤C4;
C3,流量转发模块将流量转发至第一PW接口,结束;
C4,流量转发模块将流量洪泛至第一PW接口和第二PW接口,结束。
其中,第二PW接口将流量转发给第三PE设备,第三PE设备将流量经过第二备用AC链路转发至RNC。流量转发模块、MAC学习模块、ID更新模块均设于第一PE设备上。故障检测模块设于第二PE设备上。
故障检测模块每隔预设的检测周期检测一次第二主用AC链路是否有故障。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (9)

  1. 一种VPLS双归属业务模型的上行流量快速切换系统,其特征在于:所述VPLS双归属业务模型包括基站、第一PE设备、第二PE设备、第三PE设备以及RNC,所述基站通过第一AC链路连接至所述第一PE设备,所述第一PE设备通过第一PW接口连接至所述第二PE设备,所述第二PE设备通过第二主用AC链路连接至所述RNC,所述第一PE设备通过第二PW接口连接至所述第三PE设备,所述第三PE设备通过第二备用AC链路连接至所述RNC;
    所述上行流量快速切换系统包括MAC学习模块,故障检测模块,ID更新模块和流量转发模块,其中:
    所述流量转发模块用于从所述第一PW接口接收下行流量,从第一PW接口读取第一PW接口的接口状态ID的值并将第一PW接口的接口状态ID的值发送给所述MAC学习模块;
    所述MAC学习模块用于在所述流量转发模块从所述第一PW接口接收到下行流量时,从第一PW接口读取RNC的MAC地址以及和所述第一PW接口的转发关系以生成MAC转发表;接收所述流量转发模块发送来的第一PW接口的接口状态ID的值并记录到MAC转发表中;
    所述故障检测模块用于周期性检测所述第二主用AC链路是否有故障;若存在,所述故障检测模块发送MAC切换消息给所述ID更新模块;
    所述ID更新模块用于收到MAC切换消息后,更新所述第一PW接口的接口状态ID的值为不同的ID值;
    所述流量转发模块还用于从所述第一AC链路接收上行流量,查找所述MAC转发表中第一PW接口的接口状态ID;并判断所述MAC 转发表中第一PW接口的接口状态ID的值与第一PW接口的接口状态ID的实际值是否相同;若相同,将流量转发至所述第一PW接口;若不同,将流量洪泛至所述第一PW接口和所述第二PW接口。
  2. 如权利要求1所述的一种VPLS双归属业务模型的上行流量快速切换系统,其特征在于:所述第二PW接口接收到所述流量转发模块转发的流量后,所述第二PW接口将流量转发给所述第三PE设备,所述第三PE设备将流量经过所述第二备用AC链路转发至所述RNC。
  3. 如权利要求1所述的一种VPLS双归属业务模型的上行流量快速切换系统,其特征在于:所述流量转发模块、MAC学习模块、ID更新模块均设于所述第一PE设备上。
  4. 如权利要求1所述的一种VPLS双归属业务模型的上行流量快速切换系统,其特征在于:所述故障检测模块设于所述第二PE设备上。
  5. 一种采用如权利要求1-4任意一项所述的一种VPLS双归属业务模型的上行流量快速切换系统的上行流量快速切换方法,其特征在于:
    所述流量转发模块从所述第一PW接口接收到下行流量时,从第一PW接口读取第一PW接口的接口状态ID的值并将第一PW接口的接口状态ID的值发送给所述MAC学习模块;所述MAC学习模块从第一PW接口读取RNC的MAC地址以及和所述第一PW接口的转发关系以生成MAC转发表;接收所述流量转发模块发送来的第一PW接口的接口状态ID的值并记录到MAC转发表中;
    所述故障检测模块周期性检测所述第二主用AC链路是否有故障;若存在,所述故障检测模块发送MAC切换消息给所述ID更新模块, 所述ID更新模块收到MAC切换消息后,更新所述第一PW接口的接口状态ID的值为不同的ID值;
    所述流量转发模块从所述第一AC链路接口接收到上行流量时,查找所述MAC转发表中第一PW接口的接口状态ID的值;并判断所述MAC转发表中第一PW接口的接口状态ID的值与第一PW接口的接口状态ID的实际值是否相同;若相同,所述流量转发模块将流量转发至所述第一PW接口;若不同,所述流量转发模块将流量洪泛至所述第一PW接口和所述第二PW接口。
  6. 如权利要求5所述的一种上行流量快速切换方法,其特征在于:所述第二PW接口将流量转发给所述第三PE设备,所述第三PE设备将流量经过所述第二备用AC链路转发至所述RNC。
  7. 如权利要求5所述的一种上行流量快速切换方法,其特征在于:所述故障检测模块每隔预设的检测周期检测一次所述第二主用AC链路是否有故障。
  8. 如权利要求5所述的一种上行流量快速切换方法,其特征在于:所述流量转发模块、MAC学习模块、ID更新模块均设于所述第一PE设备上。
  9. 如权利要求5所述的一种上行流量快速切换方法,其特征在于:所述故障检测模块设于所述第二PE设备上。
PCT/CN2018/102475 2017-09-22 2018-08-27 Vpls双归属业务模型的上行流量快速切换系统及方法 WO2019056923A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12019550278A PH12019550278A1 (en) 2017-09-22 2019-12-12 Uplink traffic fast switching system and method for vpls dual-homing service model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710863069.0 2017-09-22
CN201710863069.0A CN107612738B (zh) 2017-09-22 2017-09-22 Vpls双归属业务模型的上行流量快速切换系统及方法

Publications (1)

Publication Number Publication Date
WO2019056923A1 true WO2019056923A1 (zh) 2019-03-28

Family

ID=61061784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102475 WO2019056923A1 (zh) 2017-09-22 2018-08-27 Vpls双归属业务模型的上行流量快速切换系统及方法

Country Status (3)

Country Link
CN (1) CN107612738B (zh)
PH (1) PH12019550278A1 (zh)
WO (1) WO2019056923A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612738B (zh) * 2017-09-22 2019-09-27 烽火通信科技股份有限公司 Vpls双归属业务模型的上行流量快速切换系统及方法
CN111901182B (zh) * 2019-05-06 2022-06-28 华为技术有限公司 流量转发方法和网络设备
CN113891373B (zh) * 2021-10-11 2024-03-12 中盈优创资讯科技有限公司 一种基站质量劣化自愈方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800662A (zh) * 2010-01-22 2010-08-11 中兴通讯股份有限公司 一种基于vpls的双归保护倒换方法及系统
CN101931520A (zh) * 2010-09-02 2010-12-29 中兴通讯股份有限公司 一种切换方法及系统
CN102223660A (zh) * 2011-08-02 2011-10-19 华为技术有限公司 一种控制主备伪线切换的方法和装置
CN103490969A (zh) * 2013-09-17 2014-01-01 烽火通信科技股份有限公司 实现vpws冗余保护快速收敛的系统及方法
CN107612738A (zh) * 2017-09-22 2018-01-19 烽火通信科技股份有限公司 Vpls双归属业务模型的上行流量快速切换系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103685022B (zh) * 2012-09-17 2016-12-21 杭州华三通信技术有限公司 报文转发方法及服务提供商网络边缘设备
JP6076937B2 (ja) * 2014-03-28 2017-02-08 株式会社日立製作所 パケット伝送システムおよびネットワークコントローラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800662A (zh) * 2010-01-22 2010-08-11 中兴通讯股份有限公司 一种基于vpls的双归保护倒换方法及系统
CN101931520A (zh) * 2010-09-02 2010-12-29 中兴通讯股份有限公司 一种切换方法及系统
CN102223660A (zh) * 2011-08-02 2011-10-19 华为技术有限公司 一种控制主备伪线切换的方法和装置
CN103490969A (zh) * 2013-09-17 2014-01-01 烽火通信科技股份有限公司 实现vpws冗余保护快速收敛的系统及方法
CN107612738A (zh) * 2017-09-22 2018-01-19 烽火通信科技股份有限公司 Vpls双归属业务模型的上行流量快速切换系统及方法

Also Published As

Publication number Publication date
CN107612738B (zh) 2019-09-27
CN107612738A (zh) 2018-01-19
PH12019550278A1 (en) 2021-01-11

Similar Documents

Publication Publication Date Title
US7564779B2 (en) Ring rapid spanning tree protocol
US8169896B2 (en) Connectivity fault management traffic indication extension
CN102546222B (zh) 备份系统及故障检测处理方法
WO2016023436A1 (zh) 一种虚拟路由器冗余协议故障检测的方法及路由设备
EP2533475A1 (en) Method and system for host route reachability in packet transport network access ring
US20130138832A1 (en) Method, router bridge, and system for trill network protection
WO2019056923A1 (zh) Vpls双归属业务模型的上行流量快速切换系统及方法
WO2017092400A1 (zh) 故障恢复方法及装置、控制器、软件定义网络
JP2011518506A5 (zh)
CN108668308B (zh) 一种lte ptn传送网及其静态路由保护方法
CN104378296A (zh) 一种报文转发方法及设备
WO2012028029A1 (zh) 一种切换方法及系统
RU2008136890A (ru) Соединение ячеистых сетей с множеством узлов-ретрансляторов с использованием сетевого моста подуровня управления доступом к среде передачи
WO2016086713A1 (zh) 一种等价多路径的出接口更新方法及装置
CN105897515A (zh) 基于ipran设备的以太网环路检测及处理方法
WO2013017011A1 (zh) 一种控制主备伪线切换的方法和装置
CN102769561B (zh) 在业务保护方案中减少丢包的方法和系统
WO2016034127A1 (zh) 一种实现双节点互联伪线的系统及方法
US8705346B2 (en) Method and system for joint detection of Ethernet part segment protection
US20100014416A1 (en) Systems and methods for routing data in a communications network
CN105634952A (zh) Lsp报文快速通告方法以及装置
CN103825754B (zh) 一种环网多点故障发现和恢复处理方法
JP5618946B2 (ja) 通信装置および通信システム
WO2011094971A1 (zh) 防止以太环网节点地址表重复刷新的方法和装置
US10771284B2 (en) Troubleshooting method and apparatus for edge routing bridge in TRILL campus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857528

Country of ref document: EP

Kind code of ref document: A1