WO2019056604A1 - 基于复合能源的太阳能溴化锂吸收式三联供系统 - Google Patents
基于复合能源的太阳能溴化锂吸收式三联供系统 Download PDFInfo
- Publication number
- WO2019056604A1 WO2019056604A1 PCT/CN2017/116345 CN2017116345W WO2019056604A1 WO 2019056604 A1 WO2019056604 A1 WO 2019056604A1 CN 2017116345 W CN2017116345 W CN 2017116345W WO 2019056604 A1 WO2019056604 A1 WO 2019056604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage tank
- water
- solution
- generator
- solenoid valve
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
- F25B27/002—Machines, plants or systems, using particular sources of energy using solar energy
- F25B27/007—Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Definitions
- the invention relates to a solar energy lithium bromide absorption triple supply system based on composite energy, belonging to the technical field of photovoltaics.
- the present invention provides a solar energy lithium bromide absorption triple supply system based on composite energy, which can combine solar photothermal technology and heat pump technology, has a reasonable structure, short startup time, and small volume of the energy storage device.
- Solar energy lithium bromide absorption triple supply system based on composite energy, including solar collector, heat pump system, hot water storage tank, starting water tank, absorber, generator, concentrated solution storage tank, dilute solution storage tank, solution heat exchange , evaporator, condenser, refrigerant storage tank, cooling tower and air handling unit, wherein
- the solar collector output end is connected to one end of the heat pump system through a first one-way solenoid valve, and the other end of the heat pump system is connected to the first input end of the first three-way solenoid valve, and the output end of the first three-way valve Connected to one end of the generator, the other end of the generator is respectively connected to the first input end of the second three-way solenoid valve and the input end of the seventh one-way solenoid valve, and the output end of the second three-way solenoid valve Connecting the water storage tank water inlet, the water storage tank water outlet is connected to the solar collector input end through a hot water pump to form a hot water circulation loop, and the output end of the seventh one-way solenoid valve is connected to the startup water tank inlet
- the starting water tank outlet is connected to the hot water pump, and is connected in parallel with the hot water storage tank, and the second input end of the first three-way electromagnetic valve is respectively connected to the output end of the second one-way electromagnetic valve and the second three-way through a
- the generator, the condenser, the refrigerant storage tank, the throttle valve, the evaporator, the absorber, the fifth one-way electromagnetic valve, the dilute solution storage tank, the solution pump, and the solution heat exchanger are sequentially connected through the pipeline to form refrigeration a reagent circuit, one end of the concentrated solution storage tank is connected to the solution heat exchanger, and the other end is connected to the absorber through a sixth one-way electromagnetic valve, and forms a parallel structure with the dilute solution storage tank;
- the cooling water in the cooling tower flows through the absorber and the condenser in sequence through the cooling water pump, and flows into the cooling tower through the third one-way electromagnetic valve to form a cooling water circuit;
- the air conditioning cold water in the air treatment unit flows through the evaporator through the pipeline, and flows back to the air treatment unit through the fourth one-way electromagnetic valve to form an air conditioning cold water circuit.
- both the hot water storage tank and the startup water tank adopt a temperature layered structure.
- the refrigerant in the refrigerant storage tank is water
- the solution in the concentrated solution storage tank and the dilute solution storage tank is a lithium bromide solution.
- the composite energy-based solar lithium bromide absorption triple supply system provided by the present invention combines a conventional solar lithium bromide absorption air conditioning system and a heat pump energy saving system to reduce the instability of a single energy supply. It can realize the functions of cooling, heating and hot water supply.
- the system is changed from the original water storage energy to the energy storage method combined with the water storage energy and the solution potential energy storage. Since the volume of the latent heat storage device is 1/5 of the volume of the conventional water storage device, it can be greatly reduced. The volume of the energy storage device. At the same time, a starting tank that does not have half the volume of the hot water tank is added, which ensures the quick start of the absorption unit.
- FIG. 1 is a schematic structural view of the present invention.
- Solar energy lithium bromide absorption triple supply system based on composite energy source, including solar collector 1, heat pump system 2, hot water storage tank 16, starting water tank 17, absorber 11, generator 3, concentrated solution storage tank 14, thin a solution storage tank 12, a solution heat exchanger 14, an evaporator 6, a condenser 4, a refrigerant storage tank 5, a cooling tower 7, and an air treatment unit 10, wherein
- the output end of the solar collector 1 is connected to one end of the heat pump system 2 through a first one-way electromagnetic valve F1, and the other end of the heat pump system 2 is connected to a first input end of the first three-way solenoid valve F3, the first three The output end of the valve F3 is connected to one end of the generator 3, and the other end of the generator 3 is respectively connected to the first input end of the second three-way solenoid valve F9 and the input end of the seventh one-way solenoid valve F10.
- the output end of the second three-way solenoid valve F9 is connected to the water inlet of the hot water storage tank 16, and the water outlet of the hot water storage tank 16 is connected to the input end of the solar heat collector 1 through the hot water pump 18 to form a hot water circulation circuit.
- the output end of the seventh one-way electromagnetic valve F10 is connected to the water inlet of the starting water tank 17, the water outlet of the starting water tank 17 is connected to the hot water pump 18, and is connected in parallel with the hot water storage tank 16, the first three-way electromagnetic valve F3
- the two input ends are respectively connected to the output end of the second one-way electromagnetic valve F2 and the second input end of the second three-way electromagnetic valve F9 through a pipeline, and the input end of the second one-way electromagnetic valve F2 and the output of the solar heat collector 1 End connection
- the fuses 14 are sequentially connected by pipes to form a refrigerant circuit, the concentrated solution storage tank 15 is connected to the solution heat exchanger 14 at one end, and the absorber 11 is connected to the absorber 11 through the sixth one-way electromagnetic valve F8 at the other end, and the dilute solution storage tank 12 Forming a parallel structure;
- the cooling water in the cooling tower 7 flows through the absorber 11 and the condenser 4 in sequence through the cooling water pump 8, and flows into the cooling tower 7 through the third one-way electromagnetic valve F4 to form a cooling water circuit;
- the air-conditioning cold water in the air treatment unit 10 flows through the evaporator 6 through the pipeline, and flows back to the air treatment unit 10 through the fourth one-way electromagnetic valve F6 to form an air-conditioning cold water circuit.
- both the hot water storage tank 16 and the startup water tank 17 adopt a temperature layered structure.
- the refrigerant in the refrigerant storage tank 5 is water
- the solution in the concentrated solution storage tank 15 and the dilute solution storage tank 12 is a lithium bromide solution.
- the system starting condition of the present invention is that the hot water outlet temperature of the solar collector 1 reaches the minimum starting temperature of the refrigerator. Therefore, in order to achieve a quick start, a starting water tank having a volume of only half of the hot water storage tank is added.
- the start-up circulatory system consists of a solar collector, a generator, a start tank and a hot water pump.
- the seventh one-way solenoid valve F10 is connected to the generator 3, the second one-way solenoid valve F2 is opened, the first three-way solenoid valve F3 is not connected to the heat pump system, and the hot water pump 18 transfers the water of the starting water tank 17 to the solar energy.
- the collector 1 absorbs the heat of the light, it then flows into the generator 3.
- the generator 3 operates. In this state, F1 is closed, F3 is connected to F2 and generator 3, F9 is closed, F10 is connected to generator 3 and starting water tank 17, and when the unit is started for a period of time, the F9 communication generator 3 and the hot water storage tank 16 are opened. At the same time, F10 is turned off.
- Solution latent heat storage When the hot water outlet temperature of the solar collector 1 reaches the minimum temperature required for the refrigerator to start, the solution pump 13 drives the diluted solution in the dilute solution storage tank 12 through the solution heat exchanger 14 In the generator 3, the dilute solution is heated by hot water, gas-liquid separation occurs, and the concentrated solution of the separated water vapor flows into the concentrated solution storage tank 15, and the water vapor flows into the condenser 4 to be condensed, and becomes liquid water flowing into the refrigerant storage tank 5, An energy storage process that converts solar energy into solution potential.
- Heating in winter During the daytime, the water with lower temperature in the hot water storage tank is heated by the solar collector 1. When the temperature is high, the heat pump system 2 is turned on, so that the generator 3 and the condenser 4 of the system start working. . The concentrated solution produced is stored in the concentrated solution storage tank 15, and the heat of condensation is used as the heating of the room. At this time, other components, the refrigerant storage tank 5, the evaporator 6, the cooling tower 7, the air treatment unit 10, the absorber 11, etc. At night, the heating of the room is first supplied by the hot water storage tank 16. When the hot water temperature in the water tank is lower than the design value, the heat pump system 2 is started to increase the hot water temperature.
- Hot water supply in spring and autumn mainly composed of solar collectors, hot water storage tanks and hot water pumps. When the sun is not irradiated, the heat pump system can be turned on. At this time, F9 and F2 are connected.
- the function of the heat exchanger in the invention is to improve the efficiency of the lithium bromide refrigeration unit, and the temperature of the dilute solution from the dilute solution storage tank is relatively low.
- heating In order to convert the gas-liquid separation into a concentrated solution in the generator, heating must be heated.
- the concentrated solution from the generator has a relatively high temperature, and in order to absorb the refrigerant vapor (water vapor), it is necessary to cool down. Heating is obtained by diluting the heat exchanger, and the concentrated solution is cooled, which can reduce the heat required by the generator and improve the efficiency.
- the dilute solution in the dilute solution storage tank flows through the heat exchanger into the generator.
- the refrigerant vapor (water vapor) in the generator enters the condenser to cool down to form water, and the concentrated concentrated solution flows through the heat exchanger. Entering the concentrated solution storage tank is a conventional technical means, so the specific structure is not described in detail.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
基于复合能源的太阳能溴化锂吸收式三联供系统,由太阳能集热器(1),热泵系统(2),发生器(3)和蓄热水箱(16)构成热水回路;由吸收器(11),稀溶液储罐(12),溶液泵(13),溶液热交换器(14),发生器(3)和浓溶液储罐(15)构成溶液回路;由冷却塔(7),冷却水泵(8),吸收器(11)和冷凝器(4)构成冷却水回路;由蒸发器(6),冷冻水泵(9)和空气处理机组(10)构成冷冻水回路;由蒸发器(6),吸收器(11),稀溶液储罐(12),溶液泵(13),溶液热交换器(14),发生器(3),冷凝器(4),冷剂储罐(5)和节流阀(F5)构成制冷剂回路;若干回路之间设置有若干阀门,该复合型太阳能溴化锂吸收式空调系统,将热泵节能技术同太阳能光热技术有机结合起来,能减少单一能源供给的不稳定性,可以实现制冷,供暖和供热水的功能。
Description
本发明涉及一种基于复合能源的太阳能溴化锂吸收式三联供系统,属于光伏技术领域。
在提倡节能环保的今天,利用太阳能光热驱动的吸收式空调系统越来越受人们的关注。但是,常规太阳能吸收式空调系统的性能受气候环境的影响比较大,导致其在应用上受到了一定的限制。主要表现为:在夜间和阴雨天没有足够的太阳辐射时,无法实现机组的正常运行。而加上辅助加热方式,又会消耗其他能源,无法达到环保的目的。同时,常规太阳能吸收式空调机组还存在机组启动时间长,蓄能水箱体积大等问题。
发明内容
为了克服现有技术的缺陷,本发明提供基于复合能源的太阳能溴化锂吸收式三联供系统,能将太阳能光热技术和热泵技术结合起来,结构合理,启动时间短,蓄能装置体积小。
一种基于复合能源的太阳能溴化锂吸收式三联供系统,包括太阳能集热器,热泵系统,蓄热水箱,启动水箱,吸收器,发生器,浓溶液储罐,稀溶液储罐,溶液热交换器,蒸发器,冷凝器,冷剂储罐,冷却塔和空气处理机组,其中,
所述太阳能集热器输出端通过第一单向电磁阀连接热泵系统的一端,所述热泵系统另一端连接第一三通电磁阀的第一输入端,所述第一三通阀的输出端与发生器的一端连接,所述发生器的另一端分别与第二三通电磁阀的第一输入端和第七单向电磁阀的输入端连接,所述第二三通电磁阀的输出端连接蓄热水箱进水口,所述蓄热水箱出水口通过热水水泵连接太阳能集热器输入端,形成热水循环回路,所述第七单向电磁阀的输出端连接启动水箱进水口,所述启动水箱出水口连接热水水泵,与蓄热水箱并联,所述第一三通电磁阀的第二输入 端分别通过管道连接第二单向电磁阀的输出端和第二三通电磁阀的第二输入端,所述第二单向电磁阀的输入端与太阳能集热器输出端连接;
所述发生器、冷凝器、冷剂储罐、节流阀、蒸发器、吸收器、第五单向电磁阀、稀溶液储罐、溶液泵、溶液热交换器通过管道按顺序连接,形成制冷剂回路,所述浓溶液储罐一端连接溶液热交换器,另一端通过第六单向电磁阀连接吸收器,且与稀溶液储罐形成并联结构;
所述冷却塔中的冷却水通过冷却水泵按顺序流经吸收器和冷凝器,并通过第三单向电磁阀流入冷却塔,形成冷却水回路;
所述空气处理机组中的空调冷水通过管道流经蒸发器,并通过第四单向电磁阀流回空气处理机组,形成空调冷水回路。
优选地,所述蓄热水箱和启动水箱均采用温度分层结构。
优选地,所述冷剂储罐中的冷剂为水,所述浓溶液储罐和稀溶液储罐中溶液是溴化锂溶液。
有益效果:本发明提供的基于复合能源的太阳能溴化锂吸收式三联供系统,与现有技术相比,将常规太阳能溴化锂吸收式空调系统和热泵节能系统将结合,减少了单一能源供给的不稳定性,可以实现制冷,供暖和供热水的功能。所述系统由原来的的水蓄能变成水蓄能和溶液潜能蓄能相结合的蓄能方式,由于潜热蓄能的装置体积是传统水蓄能装置体积的1/5,可以大大减小蓄能装置的体积。同时,增加了不到蓄热水箱一半容积的启动水箱,保证了吸收式机组的快速启动。
图1为本发明的原理结构示意图。
图中:1—太阳能集热器,2—热泵系统,3—发生器,4—冷凝器,5—冷剂储罐,6—蒸发器,7—冷却塔,8—冷却水泵,9—冷冻水泵,10—空气处理机组,11—吸收器,12—稀溶液储罐,13—溶液泵,14—溶液热交换器,15—浓溶液储罐,16—蓄热水箱,17—启动水箱,18—热水水泵、F1-第一单向电磁阀、F2-第二单向电磁阀、F3-第一三通电磁阀、F4-第三单向电磁阀、F5-节流阀、F6-第四单向电磁阀、F7-第五单相电磁阀、F8-第六单相电磁阀、F9-第二三通电磁阀、F10-第七单向电磁阀。
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
一种基于复合能源的太阳能溴化锂吸收式三联供系统,包括太阳能集热器1,热泵系统2,蓄热水箱16,启动水箱17,吸收器11,发生器3,浓溶液储罐14,稀溶液储罐12,溶液热交换器14,蒸发器6,冷凝器4,冷剂储罐5,冷却塔7和空气处理机组10,其中,
所述太阳能集热器1输出端通过第一单向电磁阀F1连接热泵系统2的一端,所述热泵系统2另一端连接第一三通电磁阀F3的第一输入端,所述第一三通阀F3的输出端与发生器3的一端连接,所述发生器3的另一端分别与第二三通电磁阀F9的第一输入端和第七单向电磁阀F10的输入端连接,所述第二三通电磁阀F9的输出端连接蓄热水箱16进水口,所述蓄热水箱16出水口通过热水水泵18连接太阳能集热器1输入端,形成热水循环回路,所述第七单向电磁阀F10的输出端连接启动水箱17进水口,所述启动水箱17出水口连接热水水泵18, 与蓄热水箱16并联,所述第一三通电磁阀F3的第二输入端分别通过管道连接第二单向电磁阀F2的输出端和第二三通电磁阀F9的第二输入端,所述第二单向电磁阀F2的输入端与太阳能集热器1输出端连接;
所述发生器3、冷凝器4、冷剂储罐5、节流阀F5、蒸发器6、吸收器11、第五单向电磁阀F7、稀溶液储罐12、溶液泵13、溶液热交换器14通过管道按顺序连接,形成制冷剂回路,所述浓溶液储罐15一端连接溶液热交换器14,另一端通过第六单向电磁阀F8连接吸收器11,且与稀溶液储罐12形成并联结构;
所述冷却塔7中的冷却水通过冷却水泵8按顺序流经吸收器11和冷凝器4,并通过第三单向电磁阀F4流入冷却塔7,形成冷却水回路;
所述空气处理机组10中的空调冷水通过管道流经蒸发器6,并通过第四单向电磁阀F6流回空气处理机组10,形成空调冷水回路。
优选地,所述蓄热水箱16和启动水箱17均采用温度分层结构。
优选地,所述冷剂储罐5中的冷剂为水,所述浓溶液储罐15和稀溶液储罐12中溶液是溴化锂溶液。
本发明的具体工作原理如下:
1、快速启动:本发明的系统启动条件是太阳能集热器1热水出口温度达到制冷机的最低启动温度,因此,为实现快速启动,增加了体积只有蓄热水箱一半的启动水箱。启动循环系统由太阳能集热器,发生器,启动水箱和热水水泵组成。
启动循环时,第七单向电磁阀F10连通发生器3,第二单向电磁阀F2开启,第一三通电磁阀F3不连通热泵系统,热水水泵18将启动水箱17的水传输到太阳能集热器1后吸收光热升温,然后流入发生器3,当水温达到吸收式机组启动 温度后,发生器3工作。此状态时,F1关闭,F3连通F2与发生器3,F9关闭,F10连通发生器3和启动水箱17,当机组完成启动运行一段时间后,打开F9连通发生器3和蓄热水箱16,同时将F10关闭。
当热水温度难以达到启动温度时,打开第一三通电磁阀F3连通热泵系统2和发生器3,打开单向电磁阀F1,此状态时,F9关闭,打开F10连通发生器3和启动水箱17。
2、溶液潜热蓄能:当太阳能集热器1热水出口温度达到制冷机启动所需的最低温度时,溶液泵13将稀溶液储罐12中的稀溶液经溶液热交换器14后打入发生器3中,稀溶液经热水加热,发生气液分离,分离出水蒸气的浓溶液流入浓溶液储罐15,水蒸气流入冷凝器4冷凝,变成液态水流入冷剂储罐5中,实现太阳能转化为溶液潜能的蓄能过程。
3、夏季制冷:当房间需要降温时,根据负荷的大小,冷剂储罐5中的水进入蒸发器6中蒸发吸热,使空调冷冻水冷却降温,降温后的冷冻水经冷冻水泵9输入到空气处理机组10中,调节进入室内送风温度,实现房间的降温。同时升温后的冷剂水被吸收器11中浓溶液吸收形成稀溶液进入稀溶液储罐12,稀溶液被溶液泵13经溶液热交换器14后打入发生器3,发生气液分离,浓溶液经浓溶液储罐15流回吸收器11中,水蒸气经冷凝降温后流回冷剂储罐5。实现制冷循环。
4、平衡冷负荷和太阳供给:在同一时刻,太阳能集热器1所收集的太阳能光热经吸收式机组转换得到的冷量和房间负荷可能不一致。当流经发生器3的溶液流量大于吸收器的溶液流量时,多余的浓溶液存储在浓溶液储罐15中。反之,则由浓溶液储罐15补充不足的部分。系统通过这种方式平衡冷负荷和太阳 供给的差异。
5、夏季夜间供冷:房间的供冷完全由储存在浓溶液储罐中的溶液潜能来转换提供。由浓溶液储罐15释放浓溶液到吸收器11中,吸收蒸发器中挥发出的水蒸气制冷(蒸发器中冷剂水由冷剂储罐5提供),吸收后的稀溶液进入稀溶液储罐12保存。
6、冬季制热:白天,蓄热水箱内温度较低的水通过太阳能集热器1加热,当温度高到一定值,开启热泵系统2,使系统的发生器3和冷凝器4开始工作。产生的浓溶液存储在浓溶液储罐15中,冷凝热作为房间的供热,此时其他部件,冷剂储罐5、蒸发器6、冷却塔7,空气处理机组10,吸收器11等不工作;夜间,房间的供暖先由蓄热水箱16供应,当水箱内热水温度低于设计值时,启动热泵系统2,提高热水水温。
7、春秋季节提供热水:主要由太阳能集热器,蓄热水箱和热水水泵组成。当太阳辐照不好时,可开启热泵系统,此时,将F9与F2连通。
本发明中换热器的作用是提高溴化锂制冷机组的效率,自稀溶液储罐出来的稀溶液温度较低,为了使其在发生器中发生气液分离转化为浓溶液,必须要加热升温,而同时从发生器出来的浓溶液温度较高,为了使其能吸收冷剂蒸气(水蒸气),必须降温。通过热交换器稀溶液得到加热,浓溶液得到冷却,可以减少发生器所需热量,提高效率。稀溶液储罐中的稀溶液流经换热器进入发生器,气液分离后,发生器中冷剂蒸气(水蒸气)进入冷凝器冷却降温成水,蒸发浓缩的浓溶液流经换热器进入浓溶液储罐,属于常规技术手段,故而具体结构未加详述。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本 发明。对这些实施例的两种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (3)
- 一种基于复合能源的太阳能溴化锂吸收式三联供系统,其特征在于,包括太阳能集热器,热泵系统,蓄热水箱,启动水箱,吸收器,发生器,浓溶液储罐,稀溶液储罐溶液热交换器,蒸发器,冷凝器,冷剂储罐,冷却塔和空气处理机组,其中,所述太阳能集热器输出端通过第一单向电磁阀连接热泵系统的一端,所述热泵系统另一端连接第一三通电磁阀的第一输入端,所述第一三通阀的输出端与发生器的一端连接,所述发生器的另一端分别与第二三通电磁阀的第一输入端和第七单向电磁阀的输入端连接,所述第二三通电磁阀的输出端连接蓄热水箱进水口,所述蓄热水箱出水口通过热水水泵连接太阳能集热器输入端,形成热水循环回路,所述第七单向电磁阀的输出端连接启动水箱进水口,所述启动水箱出水口连接热水水泵,与蓄热水箱并联,所述第一三通电磁阀的第二输入端分别通过管道连接第二单向电磁阀的输出端和第二三通电磁阀的第二输入端,所述第二单向电磁阀的输入端与太阳能集热器输出端连接;所述发生器、冷凝器、冷剂储罐、节流阀、蒸发器、吸收器、第五单向电磁阀、稀溶液储罐、溶液泵、溶液热交换器通过管道按顺序连接,形成制冷剂回路,所述浓溶液储罐一端连接溶液热交换器,另一端通过第六单向电磁阀连接吸收器,且与稀溶液储罐形成并联结构;所述冷却塔中的冷却水通过冷却水泵按顺序流经吸收器和冷凝器,并通过第三单向电磁阀流入冷却塔,形成冷却水回路;所述空气处理机组中的空调冷水通过管道流经蒸发器,并通过第四单向电磁阀流回空气处理机组,形成空调冷水回路。
- 根据权利要求1所述的基于复合能源的太阳能溴化锂吸收式三联供系统, 其特征在于,所述蓄热水箱和启动水箱均采用温度分层结构。
- 根据权利要求1所述的基于复合能源的太阳能溴化锂吸收式三联供系统,其特征在于,所述冷剂储罐中的冷剂为水,所述浓溶液储罐和稀溶液储罐中溶液是溴化锂溶液。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710853939.6A CN107388620B (zh) | 2017-09-20 | 2017-09-20 | 一种复合型太阳能溴化锂吸收式空调系统 |
CN201710853939.6 | 2017-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019056604A1 true WO2019056604A1 (zh) | 2019-03-28 |
Family
ID=60350302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/116345 WO2019056604A1 (zh) | 2017-09-20 | 2017-12-15 | 基于复合能源的太阳能溴化锂吸收式三联供系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107388620B (zh) |
WO (1) | WO2019056604A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112460703A (zh) * | 2020-11-17 | 2021-03-09 | 武汉理工大学 | 一种利用太阳能制冷制热的冷梁空调装置 |
CN114738068A (zh) * | 2022-04-29 | 2022-07-12 | 西安交通大学 | 一种耦合低温地热的热泵储电系统及运行方法 |
CN115247909A (zh) * | 2022-01-20 | 2022-10-28 | 衢州学院 | 一种自适应调节工作方式的太阳能热泵设备 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107388620B (zh) * | 2017-09-20 | 2020-05-05 | 河海大学常州校区 | 一种复合型太阳能溴化锂吸收式空调系统 |
CN108019983A (zh) * | 2018-01-23 | 2018-05-11 | 华北电力大学 | 新型太阳能单罐相变蓄热吸收式热泵 |
CN108981229A (zh) * | 2018-08-09 | 2018-12-11 | 青岛理工大学 | 一种带辅助冷源的地铁废热源热泵系统及其工作方法 |
CN111076448B (zh) * | 2018-10-18 | 2024-10-29 | 华龙国际核电技术有限公司 | 一种热水利用装置及冷冻水系统 |
CN109269143B (zh) * | 2018-10-26 | 2024-04-16 | 中交第四航务工程勘察设计院有限公司 | 一种新型吸收式热泵及其应用方法 |
CN113324274A (zh) * | 2018-12-12 | 2021-08-31 | 湖南东尤水汽能热泵制造有限公司 | 一种空气能与太阳能串联式热源热泵机组 |
CN110044098A (zh) * | 2019-05-20 | 2019-07-23 | 天津商业大学 | 一种风光电联合驱动的溴化锂吸收式制冷系统 |
CN110388756A (zh) * | 2019-07-22 | 2019-10-29 | 湖南哲能赫新能源有限责任公司 | 一种结合相变微胶囊的太阳能光伏光热系统 |
CN111692775B (zh) * | 2020-06-22 | 2022-01-11 | 国网综合能源服务集团有限公司 | 一种溴化锂吸收式热泵 |
CN113503657B (zh) * | 2021-06-17 | 2022-03-22 | 燕山大学 | 一种集成余热回收和自清洗功能的太阳能辅助热泵系统 |
CN113686045B (zh) * | 2021-08-09 | 2022-09-06 | 天津乐科节能科技有限公司 | 一种低溶液泵功耗的氨水吸收式热泵系统及方法 |
CN113915795B (zh) * | 2021-09-27 | 2023-03-03 | 河南科技大学 | 一种太阳能溶液潜热储能双源热泵系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4070870A (en) * | 1976-10-04 | 1978-01-31 | Borg-Warner Corporation | Heat pump assisted solar powered absorption system |
CN201811485U (zh) * | 2010-09-07 | 2011-04-27 | 陕西理工学院 | 太阳能工质储能连续制冷装置 |
JP2011112272A (ja) * | 2009-11-26 | 2011-06-09 | Kawasaki Thermal Engineering Co Ltd | 冷暖房方法および装置 |
CN202660661U (zh) * | 2012-05-10 | 2013-01-09 | 上海交通大学 | 实现辅助制热和辅助制冷的太阳能热泵空调系统 |
CN204301361U (zh) * | 2014-11-28 | 2015-04-29 | 浙江理工大学 | 一种冷热功储存与转换系统 |
CN106595117A (zh) * | 2016-12-27 | 2017-04-26 | 广东技术师范学院 | 一种热泵系统 |
US20170138649A1 (en) * | 2015-11-17 | 2017-05-18 | King Fahd University Of Petroleum And Minerals | Integrated solar absorption heat pump system |
CN206488503U (zh) * | 2016-12-27 | 2017-09-12 | 广东技术师范学院 | 一种热泵系统 |
CN107388620A (zh) * | 2017-09-20 | 2017-11-24 | 河海大学常州校区 | 一种复合型太阳能溴化锂吸收式空调系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4386501A (en) * | 1981-07-29 | 1983-06-07 | Martin Marietta Corporation | Heat pump using liquid ammoniated ammonium chloride, and thermal storage system |
JP5757796B2 (ja) * | 2011-06-20 | 2015-07-29 | 新日本空調株式会社 | 太陽熱利用冷暖房システム |
KR101333143B1 (ko) * | 2012-09-26 | 2013-11-26 | (주)센도리 | 축열식 냉난방 장치 |
-
2017
- 2017-09-20 CN CN201710853939.6A patent/CN107388620B/zh active Active
- 2017-12-15 WO PCT/CN2017/116345 patent/WO2019056604A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4070870A (en) * | 1976-10-04 | 1978-01-31 | Borg-Warner Corporation | Heat pump assisted solar powered absorption system |
JP2011112272A (ja) * | 2009-11-26 | 2011-06-09 | Kawasaki Thermal Engineering Co Ltd | 冷暖房方法および装置 |
CN201811485U (zh) * | 2010-09-07 | 2011-04-27 | 陕西理工学院 | 太阳能工质储能连续制冷装置 |
CN202660661U (zh) * | 2012-05-10 | 2013-01-09 | 上海交通大学 | 实现辅助制热和辅助制冷的太阳能热泵空调系统 |
CN204301361U (zh) * | 2014-11-28 | 2015-04-29 | 浙江理工大学 | 一种冷热功储存与转换系统 |
US20170138649A1 (en) * | 2015-11-17 | 2017-05-18 | King Fahd University Of Petroleum And Minerals | Integrated solar absorption heat pump system |
CN106595117A (zh) * | 2016-12-27 | 2017-04-26 | 广东技术师范学院 | 一种热泵系统 |
CN206488503U (zh) * | 2016-12-27 | 2017-09-12 | 广东技术师范学院 | 一种热泵系统 |
CN107388620A (zh) * | 2017-09-20 | 2017-11-24 | 河海大学常州校区 | 一种复合型太阳能溴化锂吸收式空调系统 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112460703A (zh) * | 2020-11-17 | 2021-03-09 | 武汉理工大学 | 一种利用太阳能制冷制热的冷梁空调装置 |
CN115247909A (zh) * | 2022-01-20 | 2022-10-28 | 衢州学院 | 一种自适应调节工作方式的太阳能热泵设备 |
CN114738068A (zh) * | 2022-04-29 | 2022-07-12 | 西安交通大学 | 一种耦合低温地热的热泵储电系统及运行方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107388620A (zh) | 2017-11-24 |
CN107388620B (zh) | 2020-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019056604A1 (zh) | 基于复合能源的太阳能溴化锂吸收式三联供系统 | |
US10260763B2 (en) | Method and apparatus for retrofitting an air conditioning system using all-weather solar heating | |
CN103983042B (zh) | 一种太阳能室内冷热一体化系统 | |
US9488394B1 (en) | System and method for continuously operating a solar-powered air conditioner | |
WO2018000601A1 (zh) | 一种多支路热管热泵复合系统 | |
CN101571330B (zh) | 一种无霜型多功能太阳能辅助热泵系统 | |
CN108050571B (zh) | 单级平衡式氨-水再吸收式热泵循环设备及供热方法 | |
JP2014025653A (ja) | 冷凍空調方法及び装置 | |
CN110030762A (zh) | 太阳能-空气源耦合热源多功能热泵系统 | |
CN110454897A (zh) | 一种蒸发冷却-太阳能吸收式制冷空调系统 | |
CN110160115A (zh) | 双源热泵系统 | |
CN209870025U (zh) | 一种光伏多功能热泵系统 | |
CN204593941U (zh) | 一种双效吸收式汽车空调 | |
CN108036397B (zh) | 一种热水优化节能系统及太阳能耦合热源制热水节能方法 | |
CN203785282U (zh) | 太阳能复合多元热泵热水系统 | |
CN204757451U (zh) | 一种太阳能辅助式热泵机组 | |
WO2013010329A1 (zh) | 热水空调系统 | |
CN110469896A (zh) | 一种太阳能空气源双热源热泵系统 | |
CN106895474B (zh) | 一种多模式太阳能热泵冷热水系统 | |
CN108088111B (zh) | 两级等温氨-水再吸收式热泵循环及供热方法 | |
CN113188200B (zh) | 光伏光热组件与热泵和溶液除湿机耦合的三联供系统 | |
CN103017400B (zh) | 适用于智能化城市能源综合调控的压缩/吸收式联合热泵 | |
CN208042559U (zh) | 一种高效空气源热泵装置 | |
CN203240837U (zh) | 循环节能供暖制冷装置 | |
CN207893845U (zh) | 一种空气能热泵和太阳能集热装置的组合采暖系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17926171 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17926171 Country of ref document: EP Kind code of ref document: A1 |