WO2019056488A1 - 平面显示装置 - Google Patents

平面显示装置 Download PDF

Info

Publication number
WO2019056488A1
WO2019056488A1 PCT/CN2017/108320 CN2017108320W WO2019056488A1 WO 2019056488 A1 WO2019056488 A1 WO 2019056488A1 CN 2017108320 W CN2017108320 W CN 2017108320W WO 2019056488 A1 WO2019056488 A1 WO 2019056488A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap material
units
display device
unit
substrate
Prior art date
Application number
PCT/CN2017/108320
Other languages
English (en)
French (fr)
Inventor
单剑锋
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US16/648,620 priority Critical patent/US11048126B2/en
Publication of WO2019056488A1 publication Critical patent/WO2019056488A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]

Definitions

  • the present application relates to a display device, and more particularly to a flat display device.
  • Planar display devices have been widely used in various fields. Due to their superior characteristics such as slimness, low power consumption and no radiation, liquid crystal display devices have gradually replaced traditional cathode ray tube display devices and applied to many kinds of electronic products. Among them, such as mobile phones, portable multimedia devices, notebook computers, LCD TVs, and LCD screens, and the like.
  • the liquid crystal display device includes components such as a display panel, and the active matrix type liquid crystal display panel is a general display panel including an active matrix substrate, an opposite substrate, and a liquid crystal layer interposed between the two substrates.
  • the active matrix substrate has a plurality of row wires, column wires and pixels, and the pixel has a pixel driving component, and the pixel driving component is connected with the row wires and the column wires.
  • a typical pixel drive component is a thin film transistor, and the row and column conductors are typically metal wires.
  • a gap material is disposed between the two substrates.
  • the arrangement amount or arrangement of the gap materials may also affect the display quality. Controlled display devices can even affect touch detection.
  • the purpose of the application is to provide a flat display device which can improve uneven distribution of gap materials and improve display efficiency.
  • the present application provides a flat display device comprising: two substrates disposed opposite to each other; a display medium interposed between the inner sides of the substrate; and a gap material region having a plurality of layout units distributed on the substrate Between the inner sides, the arrangement unit is composed of a plurality of sub-distribution units, and in one of the arrangement units, a part of the sub-distribution units is provided with a gap material, wherein the one or one row of the sub-orders The layout unit does not have gap material.
  • At least one of the sub-layout units on the same line is provided with a gap material.
  • At most one of the sub-layout units on the same column is provided with a gap material.
  • the sub-cloth of one of the columns It is assumed that the unit has no gap material, and the sub-layout unit of one of the rows does not have a gap material.
  • the number of the sub-layout units provided with the gap material is the same on each row of the gap material region.
  • the number of the sub-layout units provided with the gap material is the same on each column of the gap material region.
  • the empty columns not provided with the gap material are replaced by the arrangement unit.
  • the blank line not provided with the gap material is wraped by the arrangement unit.
  • routing units each have the same amount of the gap material disposed between the inner sides of the substrate.
  • the gap material region provides a fixed distance between the substrates.
  • the display medium is a liquid crystal
  • the flat display device of the present application is divided into a plurality of layout units of the gap material, and the arrangement unit is configured by a plurality of sub-distribution units arranged in a matrix, and in one of the arrangement units, the portion of the arrangement is The laying unit is provided with a gap material, wherein the sub-laying unit of one row or one row is not provided with a gap material, thereby improving the uneven distribution of the gap material, simultaneously increasing the pixel aperture ratio, improving the utilization rate of the light source, and improving the display efficiency.
  • FIG. 1A is a schematic diagram of an embodiment of a flat display device of the present application.
  • FIG. 1B is a schematic side view of an embodiment of a flat display device of the present application.
  • FIG. 1C is a schematic diagram of an embodiment of a unit pixel of the present application.
  • 2A-2C are schematic views of an embodiment of a gap material region of the present application.
  • 3A to 3C are schematic views of an embodiment of a deployment unit of the present application.
  • FIG. 4 is a schematic view of an embodiment of a gap material region of the present application.
  • 5A and 5B are schematic views of an embodiment of the arrangement unit of Fig. 4.
  • 6A is a schematic view of an embodiment of a placement unit of a gap material region of the present application.
  • FIG. 6B is a schematic diagram of an embodiment of a pixel light transmission amount according to the present application.
  • FIG. 7A is a block diagram of an embodiment of a flat display device of the present application.
  • FIG. 7B is a schematic diagram of an embodiment of a compensation table of the present application.
  • FIGS. 8A and 8B are schematic views of an embodiment of a touch display device of the present application.
  • FIG. 9A is a schematic diagram of an embodiment of a touch display device of the present application.
  • FIG. 9B is a schematic diagram of an embodiment of a touch detection capability of the present application.
  • FIG. 10A is a block diagram of an embodiment of a touch display device of the present application.
  • 10B and 10C are schematic views of an embodiment of a compensation table of the present application.
  • FIG. 11A and 11B are schematic views of an embodiment of touch compensation according to the present application.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • a plurality means two or more unless otherwise stated.
  • the term “comprises” and its variations are intended to cover a non-exclusive inclusion.
  • installation means, for example, a fixed connection, a detachable connection, or an integral connection; either a mechanical connection or an electrical connection; Connected, they can also be connected indirectly through an intermediate medium, which can be the internal communication between two components.
  • intermediate medium which can be the internal communication between two components.
  • FIG. 1A is a schematic view of an embodiment of a flat display device of the present application, and FIG. 1A shows a plan view of the flat display device in plan view.
  • a first substrate 1 includes a substrate 11, a plurality of row wires 12, a plurality of column wires 13, a plurality of unit pixels 14, a region 16, and a region 17.
  • the row conductors 12 and the column conductors 13 are alternately formed to form a pixel matrix DM, and the unit pixels 14 are disposed in the pixel matrix DM.
  • the first substrate 1 is, for example, an active matrix substrate.
  • the substrate 11 is, for example, an insulating light transmissive substrate, and the material may be a rigid material or a flexible material such as glass or plastic.
  • Row conductors 12 and column conductors 13 are typically metal conductors.
  • the area 16 and the area 17 may be provided with wire drivers for connecting wires, for example, the area 16 is provided with a row driver, the row driver is connected to the row conductor 12 and the row driving signal is output to the row conductor 12, the area 17 is provided with a column driver, and the column driver is connected to the column conductor 13 and output The column drives the signal to the column conductor 13.
  • the area 16 and the area 17 are not directly provided with a driver, but are provided with a line or a connection pad for connecting the wire driver, the line or connection pad of the area 16 is connected to the row conductor 12, and the line or connection pad of the area 17 is connected to the column conductor 13,
  • the row driver and the column driver are respectively electrically connected to the region 16 and the region 17 through a flat cable or a circuit board, thereby electrically connecting the row conductor 12 and the column conductor 13, respectively, and respectively outputting the row driving signal and the column driving signal to the row conductor. 12 and column conductors 13.
  • the row conductor 12 is a scan line including a plurality of scan lines S1 SSm
  • the row driver is a scan driving circuit
  • the row driving signal is a scan driving signal.
  • the column conductor is a data line including a plurality of data lines D1 to Dn
  • the column driver is a data driving circuit
  • the column driving signal is a data driving signal.
  • the data lines D1 to Dn are alternately arranged with the scanning lines S1 to Sm to define a plurality of unit pixels 14.
  • the flat display device 1 includes a first substrate 11, a second substrate 18, a display medium 15, and a gap material region 19. .
  • the second substrate 18 is provided opposite to the first substrate 11.
  • the display medium 15 is interposed between the first substrate 11 and the inner side of the second substrate 18, and the display medium 15 is, for example, liquid crystal.
  • the second substrate 18 may be provided with a color filter layer, and the first substrate 11 and the second substrate 18 may have components such as an alignment film, a filter, and the like (not shown).
  • the gap material region 19 has a gap material (Photo Spacer, PS), and the gap material region 19 is sandwiched between the first substrate 11 and the inner side of the second substrate 18 to provide a fixed distance between the first substrate 11 and the second substrate 18. .
  • PS Photo Spacer
  • the gap material of the gap material region 19 is columnar and can serve as a support between the first substrate 11 and the second substrate 18.
  • the gap material is, for example, a polymer resin material, which has preferable adhesion, heat resistance, and light penetration effect. Compared with the spherical gap material, the columnar gap material has better mechanical strength, does not flow freely, and may leak light.
  • the columnar gap material can be formed on the first substrate 11 by a photolithography process. In addition to fixing the spacing between the first substrate 11 and the second substrate 18, the thickness of the gap material can also be utilized. Adjust the interval of the liquid crystal layer to provide a flat support.
  • FIG. 1C is a schematic diagram of an embodiment of a unit pixel of the present application.
  • the pixel driving unit of the unit pixel 14 includes a thin film transistor 141 and a pixel capacitor 142.
  • the thin film transistor 141 is used as a switch, the gate is connected to the row conductor 12, the source is connected to the column conductor 13, and the drain is connected to the pixel capacitor 142.
  • the scan driving signal on the row conductor 12 controls the thin film transistor 141 to be turned on, thereby allowing the data driving signal on the column conductor 13 to be written to the pixel capacitor 142.
  • the pixel capacitor 142 is a liquid crystal capacitor and is composed of two electrodes. In general, liquid crystal capacitors The pixel electrode and the common electrode are included, and the drain of the thin film transistor 141 is connected to the pixel electrode, and the common electrode is connected to a common voltage (Vcom). In some embodiments, the voltage value of the common voltage can be 0 volts (ground).
  • the gate of the thin film transistor 141 When the gate of the thin film transistor 141 is turned on by the row conductor 12 and a scan driving signal is turned on, the data voltage of the data driving signal on the column conductor 13 is applied to the pixel electrode through the thin film transistor 141, so that the pixel electrode and the common electrode are A voltage difference is generated between the liquid crystal capacitors and the potential difference written by the data driving signal to drive the liquid crystal molecules between the two electrodes to rotate.
  • the material of the pixel electrode and the common electrode may be, for example but not limited to, a transparent conductive material such as indium-tin oxide (ITO) or indium-zinc oxide (IZO).
  • ITO indium-tin oxide
  • IZO indium-zinc oxide
  • the pixel electrode and the common electrode are different for different types of display panels.
  • the pixel electrode and the common electrode are formed on the first substrate 11, that is, on the same substrate 11 as the thin film transistor 141.
  • the second substrate 18 can form a common electrode without forming a whole piece of the common electrode, thereby forming a touch electrode.
  • a whole common electrode is formed on the opposite substrate, and the pixel electrode and the thin film transistor 141 are formed on the first substrate 11, and the pixel electrode on the first substrate 11 is
  • the common electrode on the opposite substrate constitutes a liquid crystal capacitor.
  • FIG. 1C is a diagram illustrating a basic component of a general unit pixel, so that only one thin film transistor 141 and one pixel capacitor 142 are cited.
  • the unit pixel may also include a plurality of thin film transistors and other capacitive components.
  • a storage electrode (not shown) may be further included in each pixel, which may form an auxiliary capacitor with the second electrode.
  • FIG. 2A is a schematic illustration of an embodiment of a gap material region of the present application.
  • 2A shows a configuration in which the gap material region is planarly viewed on the substrate plane of the flat display device.
  • a gap material region 2 has a plurality of layout units 21 to 27, and the layout units 21 to 27 are distributed between, for example, the inner sides of the first substrate 11 and the second substrate 18 of FIG. 1B.
  • the gap between the first substrate 11 and the second substrate 18 is provided between the first substrate 11 and the second substrate 18 in the layout unit 21 to 27, and a fixed distance between the first substrate 11 and the second substrate 18 is provided, and the units 21 to 27 are arranged.
  • the same amount of gap material is provided, and a gap material of units 21 to 27 is disposed as a support between the first substrate 11 and the second substrate 18 to accommodate the display medium 15.
  • Fig. 2A only nine layout units 21 are drawn for convenience of explanation, and only two layout units 22, 23, 24, and 25 are drawn, and layout units 26 and 27 are drawn one at each of four corners.
  • the number of units to be deployed is not limited to this.
  • the area of one of the layout units 21 at the center of the substrate is larger than the area of any of the layout units 24 to 26 at the edge of the substrate.
  • the areas of the arrangement units 22 to 27 on the two side edges of the substrate are equal.
  • the areas of the arrangement units 24 and 25 on the left and right sides of the substrate are equal, and the areas of the arrangement units 22 and 23 on the upper and lower sides of the substrate are equal. .
  • the width and height of the layout units 21 to 27 gradually become higher or wider from the center of the substrate toward the square, and the range of change to the left and right is the same, and the amplitude of the change is up and down.
  • Gradually increasing for example, is that consecutive rows of units have the same height (first height), and then the upper or lower layout unit becomes another height (second height), and becomes another height and is also a continuous number.
  • Row layout units have the same height (second height), and so on.
  • Gradually widening and gradually becoming higher, for example, the continuous series of layout units have the same width (first width), and then the left or right layout unit becomes another width (second width) and becomes another After the width, there are also consecutive rows of layout units having the same width (second width), and so on.
  • the ellipsis in the figure indicates that the aforementioned gradual increase and gradual widening.
  • other layout units of different sizes are further provided according to the manner of gradually increasing and gradually widening.
  • the heights of the layout units of the top row and the bottom row are the same, and the widths of the layout units of the leftmost column and the rightmost column are the same.
  • the height of the layout unit is the same.
  • the width of the layout unit is the same.
  • Fig. 2B shows an example of the arrangement of the arrangement unit, as shown in Fig. 2B, the short chain line indicates that the right half is symmetrical with the left half, so the right half is not shown in the figure.
  • the layout units A, B, and C have different sizes, and the layout units A, B, and C are laid out from the middle, and the heights of the layout units A, B, and C are gradually higher, and the widths of the layout units A, B, and C are gradually widened. .
  • the width ratio of the layout units A, B, and C is 10:12:15
  • the height ratio of the layout units A, B, and C is 10: 12:15.
  • the number of layout units can also be asymmetrical.
  • the number of the same layout units can be different on the ranks.
  • the layout unit C has 22 columns (the left half of the 11 columns) and 12 rows, and the ratio is close to 16:9 to match the HDTV. standard.
  • the layout unit C there are several rows in the layout unit C that have different heights of layout units.
  • the height of the layout unit can be lower than other layout units, so that all 22 columns of the layout unit are
  • the ratio of the width of C to the height of all 12 rows of the layout unit C is 16:9, which is fully compliant with the standard of HDTV.
  • only the height of the layout unit C2 of the bottom row and the other layout unit C may be different.
  • the area of one layout unit 22 at the top edge of the substrate is larger than the area of one layout unit 23a at the bottom edge of the substrate, and the layout unit for the corner is also a layout unit at the top edge of the substrate.
  • the area of 26 is larger than the area of one of the layout units 27a at the bottom edge of the substrate.
  • the area of one of the layout units 24, 25 of the two side edges of the substrate is larger than the area of one of the layout units 23a at the bottom edge of the substrate.
  • the width and height of the layout units 21 to 27a are gradually increased or widened from the center of the substrate to the four sides, and the range of change to the left and the right is different, and the amplitude of the upward and downward changes is different, and the amplitude of the upward change is larger than that of the downward change.
  • the area of one of the routing units 26 at the top edge of the substrate is made larger than the area of one of the routing units 27a at the bottom edge of the substrate.
  • the layout units 22 to 27a of the edge of the substrate the height of the layout unit in the same row is the same, and the width of the layout unit in the same row is the same.
  • the heights of the arrangement units 24 and 26 in the upper half of the substrate are the same, but the heights of the arrangement units 27a in the lower half of the substrate are different, and the arrangement unit 23a is closer to the bottom.
  • the height of 27a is shorter.
  • the height of the layout units 23a, 27a at the bottom can still be equal to the height of the layout unit 21 at the center.
  • the structural strength of the lower edge of the display device can be improved, and the problem that the gap material distribution is uneven and the flat display device is prone to defective pixels can be improved.
  • the heights of the three central layout units 21 are equal to the heights of the two layout units 24, 25 in the horizontal direction, and the widths of the three central layout units 21 are equal to the two layout units in the same vertical direction.
  • the width of 22, 23, the ratio of the above height to the width is an example, and may be appropriately changed to other available ratios.
  • the arrangement unit may be configured by N times by N times, and the configuration may be referred to the example of FIGS. 3A, 3B, and 3C, but the configuration is not limited to the example of the foregoing figure.
  • the arrangement unit may also be configured by N times by M sub-layout units (N, M are not equal). This configuration can be referred to the example of FIGS. 5A and 5B, but the configuration is not limited to the example of the foregoing figure. In each deployment unit.
  • the sub-layout unit gradually becomes higher or gradually becomes wider as the proportion of the laying unit.
  • the number of rows and the number of columns of the sub-layout units in each of the layout units are equal for all the layout units. Different sized layout units still have the same amount of gap material.
  • FIG. 3A to 3C are schematic views of an embodiment of a deployment unit of the present application.
  • the layout unit 3 is configured by N times N sub-layout units 31 and 32 rows, and the example in FIGS. 3A to 3C is described by N being equal to 5, but N may be Other positive integers are not limited to 5.
  • N gap materials are arranged.
  • the sub-distribution unit 31 provided with the gap material is marked with P, and the sub-distribution unit 32 without the gap material is left blank.
  • only one of the sub-layout units 31, 32 on the same line is provided with a gap material.
  • only one of the sub-layout units 31, 32 on the same column is provided with a gap material.
  • N gap materials are arranged in N ⁇ N sub-layout units 31, 32, and each arrangement unit 3 is repeatedly arranged in accordance with such an arrangement to cover the entire panel. Since the area of the gap material still needs to consider that the sub-layout units 31 and 32 still have light transmissivity, the area of the gap material disposed in one sub-layout unit 31 is smaller than the area of the sub-layout unit 31, and does not occupy the entire layout. Unit 31.
  • the five gap materials P are respectively disposed in different rows and different rows.
  • the arrangement of the gap materials P has no specific rule, and only one gap material P is in the same row and the same column in one layout unit 3.
  • the layout unit 3 can also be as shown in FIG. 3B and FIG. 3C. There are different arrangements.
  • FIG. 3B there may be a change in arrangement between different layout units 3, as shown in FIG. 3B and FIG. 3C.
  • the gap materials of different rows are arranged in a row in the sub-layout unit 31, in FIG. 3C.
  • the gap material of different rows is set in the second arrangement unit 31 in the second column, and so on, every other arrangement unit 3, the number of columns or the number of rows separated by the gap material is increased by one column or one row.
  • the flat display device of the present application is divided into a plurality of routing units of the gap material, each of the routing units having the same amount of gap material disposed between the inner sides of the substrate, and a central portion of the substrate
  • the area of the layout unit is larger than the area of one of the layout units at the edge of the substrate, so that the problem that the middle of the panel is more easily recessed can be solved.
  • the routing units each have the same amount of gap material disposed between the inner sides of the substrate, and an area of the layout unit at the top edge of the substrate is larger than one of the layout units at the bottom edge of the substrate.
  • the area can increase the structural strength of the lower edge of the display device.
  • FIG. 4 is a schematic view of an embodiment of a gap material region of the present application, and FIG. 4 shows a configuration of the gap material region 4 in plan view on a plane of the flat display device.
  • a gap material region 4 has a plurality of layout units 40, and the layout unit 40 is distributed between the inner sides of the first substrate 11 and the second substrate 18 of FIG. 1B, and the layout unit 40 is provided as shown in FIG. 1B.
  • the gap material between the first substrate 11 and the inner side of the second substrate 18 provides a fixed distance between the first substrate 11 and the second substrate 18, so that the first substrate 11 and the second substrate 18 can be accommodated.
  • the routing units 40 may each have the same amount of gap material disposed between the first substrate 11 and the inner side of the second substrate 18. In Fig. 4, the units 40 of the respective layouts are equal in size.
  • FIG. 5A-5B are schematic illustrations of an embodiment of the deployment unit 40 of FIG.
  • the layout unit 40 in FIG. 4 indicates the arrangement units of different positions in FIG. 5A at 41 to 45, respectively.
  • the layout units 41 to 45 are arranged in a plurality of sub-layout units, and in one of the layout units 41 to 45, a part of the sub-distribution unit is provided with a gap material P, and a sub-layout unit of one or one of the rows is not provided with a gap. material.
  • the layout units 41 to 45 may each have the same number of gap materials P.
  • the sub-distribution unit on the same line is the most Only one of the sub-layout units P on the same column is provided with at least one spacer material P.
  • the sub-layout unit of one of the rows is not provided with the gap material.
  • the blank line without the gap material is changed by the arrangement unit 41 to 45 of the different columns, and the number of lines for the line feed is, for example, one line.
  • the number of sub-layout units provided with the gap material is the same on each row of the gap material region. For example, in the layout units 41 to 45, there are four gap materials P in each row.
  • the sub-distribution unit of one of the columns is not provided with the gap material.
  • the empty columns in which the gap material is not provided are replaced by the arrangement units 41a to 45a of the different rows, and the number of columns to be replaced is, for example, one column.
  • the number of sub-distribution units in which the gap material P is provided is the same in each column of the gap material region. For example, there are four gap materials P in each of the layout units 41a to 45a.
  • the flat display device of the present application is divided into a plurality of layout units of the gap material, and the arrangement unit is configured by a plurality of sub-distribution units arranged in a matrix, and in one of the arrangement units, the portion of the arrangement is The laying unit is provided with a gap material, wherein the sub-laying unit of one row or one row is not provided with a gap material, thereby improving the uneven distribution of the gap material, simultaneously increasing the pixel aperture ratio, improving the utilization rate of the light source, and improving the display efficiency.
  • one layout unit of the gap material region may cover a plurality of pixels 14 in the pixel matrix DM as shown in FIG. 1A.
  • part of the sub-layout unit is provided with a gap material, and the remaining sub-layout units are not provided with a gap material. Therefore, this may cause some of the pixels 14 to have a gap material, and some of the pixels 14 have no gap material, thus The light transmission control ability of the different pixels 14 is different.
  • FIG. 6A is a schematic view of an embodiment of a placement unit of a gap material region of the present application.
  • a layout unit 50 covers 9 pixels, and here is an example of covering 9 pixels. In different implementations, it is also possible to cover other numbers of pixels, and the pixels covered by the unit 50 are arranged. The quantity is not limited to 9.
  • the arrangement unit 50 can be configured by a plurality of sub-distribution units in a row-like configuration as in the foregoing embodiment, and the implementation manner can be as described in the foregoing embodiments, and thus will not be described again.
  • a portion of the pixel 51 of the pixel matrix has a gap material P therein, and there is no gap material in the portion of the pixel 52.
  • the flat display device may include a driving compensation module for performing light transmission compensation on the pixels 51 and 52 to solve the problem of uneven light transmittance.
  • the drive compensation module is for the internal gap material P
  • the pixel 51, or the pixel 52 without the gap material performs light transmission compensation.
  • the pixel 51 with the gap material P has a light-transmissive drive compensation
  • the pixel 52 without the gap material is not compensated by the light-transmissive drive; or the pixel 52 without the gap material has the light-transmissive drive compensation, and has a gap therein.
  • the pixel 51 of the material P is not compensated for by the light transmission.
  • the light transmission drive compensation is such that the light transmission capabilities controlled by the respective pixels 51, 52 are equal.
  • FIG. 6B is a schematic diagram of an embodiment of a pixel light transmission amount according to the present application.
  • the pixels 51 and 52 originally have different light transmission control capabilities 51L and 52L, and after the light transmission driving compensation 51C is performed on the pixels 51 and 52, the original pixels have a gap material.
  • the pixels 51 and 52 of different light transmittances have equal control of light transmission capability.
  • the transparent drive compensation is performed, for example, by writing different gray scale values to the pixels 51 having the gap material P and the pixels 52 having no gap material under the same display gray scale.
  • a flat display device 6 includes a controller 61, a memory 62, a driver 63, and a pixel matrix 64.
  • the controller 61 is coupled to the memory 62
  • the driver 63 is coupled to the controller 61
  • the pixel matrix 64 is coupled to the driver 63.
  • the pixel matrix 64 is, for example, the pixel matrix DM of FIG. 1A described above, and the pixel of the pixel matrix 64 is, for example, the pixel 14 of FIG. 1C described above, and thus will not be described again.
  • the drive compensation module can be implemented at the controller 61 or the data driver 63.
  • controller 61 transmits the image data of the viewbox to driver 63, such as the driver of region 17 of FIG. 1A described above, to write pixel grayscale data to the pixels of pixel matrix 64.
  • the memory 62 can store a compensation table. As shown in FIG. 7B, the compensation table has different gains or corrections for different pixels.
  • the compensation value for the pixel 51 having the gap material P is 1.1
  • the compensation value for the pixel 52 without the gap material is 1
  • the compensation value is 1 for no special treatment
  • the compensation value for more than 1 is for reinforcement compensation
  • the compensation value is less than 1 is the weakening compensation.
  • the controller 61 may multiply the pixel grayscale value of the view frame image data by a different compensation value for the pixel gap-free material, and pass the grayscale value multiplied by the compensation value as an output to the driver 63, and the driver 63 will compensate the image.
  • the grayscale value is sent to the corresponding pixel.
  • the liquid crystal display device of the present embodiment includes: two substrates disposed opposite to each other; a liquid crystal layer interposed between the inner sides of the substrate; a gap material region having a plurality of The arrangement unit is distributed between the inner sides of the substrate, and the arrangement unit is composed of a plurality of sub-distribution units arranged in a matrix.
  • a part of the sub-distribution units are provided with a gap material, and the remaining portions are provided.
  • the sub-layout unit is not provided with a gap material; a pixel matrix includes a plurality of pixels, a portion of the pixels have the gap material, and some of the pixels do not have the gap material; and a driving compensation module, The pixels perform light transmission drive compensation.
  • the gap material is included in some of the pixels, and the gap material is not present in some of the pixels.
  • the driving compensation module performs light-transmissive driving compensation on the pixels, so that pixels having different light-transmissive capabilities due to the presence or absence of the gap material are compensated to have equal control light transmission capability. Therefore, the distribution of the gap material region can improve the uneven distribution of the gap material, increase the pixel aperture ratio, improve the utilization rate of the light source, improve the display efficiency, and further improve the defect of the light transmittance of the pixel by using the circuit design.
  • FIG. 8A is a schematic diagram of an embodiment of a touch display device according to the present application, and FIG. 8A shows a configuration of a layout unit of the gap material region and a top view of the touch matrix on the plane of the touch display device.
  • the layout unit 70 of the gap material region is composed of a plurality of sub-layout unit rows and columns.
  • a part of the sub-layout unit is provided with a gap material P, and the remaining sub-layout units are not provided.
  • the gap material P of the layout unit 70 reference may be made to the foregoing embodiment, and thus no further description is provided.
  • a touch matrix includes a plurality of touch units 71, 72, and the touch units 71, 72 are disposed along a secondary arrangement unit in which the gap material P is provided.
  • the sub-distribution units provided with the gap material P are arranged in a line segment, and the edges of the touch units 71, 72 are disposed along the line segments.
  • the main area of the touch units 71, 72 does not cover the gap material P.
  • the main area is an area of more than half of the area of the touch unit, which can be used to perform the touch function. In the preferred embodiment, the main area occupies more than 75% of the touch unit or even more than 90% of the area. .
  • the main area is located at the center of one touch unit and extends to the periphery, and the gaps are overlapped on the four edges.
  • the main area may also extend from the center of one touch unit to the periphery, and the edge of the portion overlaps with the gap material P, and the edge of the portion does not overlap with the gap material P.
  • a layout unit 70 At most two sub-layout units on the same column are provided with a gap material P. In a placement unit 70, there are only two sub-layout units on the same line. A gap material P is provided.
  • FIG. 8B is a schematic diagram of an embodiment of the touch display device of the present application, and FIG. 8B shows a layout of the layout of the gap material region and a plan view of the touch matrix on the plane of the touch display device.
  • the touch unit 71 in FIG. 8A is disposed along a sub-distribution unit provided with a gap material P in a layout unit 70, and the touch unit 71a in FIG. 8B is along four.
  • the arrangement units 701 to 704 are provided with a sub-distribution unit provided with the gap material P.
  • in one of the layout units 701 to 704 at most one of the sub-distribution units on the same column is provided with the gap material P.
  • at most one of the sub-layout units on the same line is provided with the gap material P.
  • the touch display device of the present embodiment includes: two substrates disposed opposite to each other; a display medium sandwiched between the inner sides of the substrate; a gap material region having a plurality of layout units distributed Between the inner sides of the substrate, the arrangement unit is configured by a plurality of sub-distribution units arranged in a row, and in one of the arrangement units, a part of the sub-distribution unit is provided with a gap material, and the remaining sub-layout units are not a gap material is provided; and a touch matrix includes a plurality of touch units, and the touch unit is disposed along the sub-distribution unit provided with the gap material.
  • the touch display device of the present application is divided into a plurality of layout units of the gap material, wherein the layout units each have the same amount of gap material disposed between the inner sides of the substrate, and the layout unit is composed of a plurality of sub-distribution units
  • the layout unit is composed of a plurality of sub-distribution units
  • a part of the sub-distribution unit is provided with a gap material, and the remaining sub-distribution units are not provided with a gap material, thereby improving the uneven distribution of the gap material and improving the pixel aperture ratio.
  • the touch unit of the touch matrix is disposed along the sub-distribution unit provided with the gap material, thereby improving the touch effect. Therefore, with the above configuration, the touch display device has better touch effects in addition to improving the aforementioned problems and producing the aforementioned effects.
  • FIG. 9A is a schematic diagram of an embodiment of a touch display device of the present application.
  • the touch display device includes a gap material region and a touch matrix.
  • the gap material region has a plurality of layout units 80
  • the touch matrix includes a plurality of touch units 81 and 82 .
  • the touch display device can have two substrates and a liquid crystal layer. The substrate and the liquid crystal layer can be referred to the description of the foregoing embodiments, and thus will not be described again.
  • the setting unit 80 is composed of a plurality of sub-layout units arranged in a row and column arrangement, and is arranged in one unit. In 80, some sub-layout units are provided with gap material P, and the remaining sub-layout units have no gap material.
  • the deployment unit 80 reference may be made to the arrangement of the foregoing embodiment, and thus no further description is provided.
  • the touch display device can include a touch compensation module to perform touch compensation on the touch units 81 and 82 to solve the problem of uneven touch detection capability.
  • the touch compensation module performs touch compensation for the touch unit 81 that covers the gap material P or the touch unit 82 that covers the gap material P.
  • the touch unit 81 that covers the gap material P has touch compensation or strong touch compensation, and the touch unit that covers less gap material P does not perform touch compensation or performs weak touch compensation.
  • the touch unit 82 that covers the gap material P has a touch compensation, and the touch unit 81 that covers the gap material P is not touch-compensated.
  • the touch compensation is to make the touch detection capabilities of the touch units 81 and 82 equal.
  • FIG. 9B is a schematic diagram of an embodiment of a touch detection capability of the present application.
  • the touch units 81 and 82 originally have different touch detection capabilities 81T and 82T.
  • the touch compensation units 81 and 82 are touch-compensated 81C, the touch units have different touches due to different gap materials.
  • the sensing units 81 and 82 have the same touch detection capability.
  • the touch units 81 and 82 are touch excitation electrodes.
  • the touch unit 81 that covers the gap material P is applied with a strong touch driving signal, and the contact material P is less touched.
  • the control unit 82 is applied with a weak touch drive signal. If the touch units 81 and 82 are touch excitation electrodes, the design of the electrodes may have a different configuration from that of FIG. 9A.
  • FIG. 9A shows that different touch units cover different numbers of gap materials, and the arrangement of the touch units is not limited. Features.
  • the touch units 81 and 82 are touch detection electrodes
  • the touch compensation is, for example, the touch detection signal outputted by the touch unit 81 that covers the gap material P is enhanced to be larger than the coverage gap.
  • the touch detection signal output by the touch unit 82 having less material P is enhanced by the amplitude.
  • the design of the electrodes may have a different configuration from that of FIG. 9A.
  • FIG. 9A shows that different touch units cover different numbers of gap materials, and the arrangement of the touch units is not limited. And features.
  • FIG. 10A is a block diagram of an embodiment of a touch display device of the present application.
  • a touch display device 9 includes a controller 91, a memory 92, a driver 93, a touch matrix 94, and a detector 95.
  • the controller 91 is coupled to the memory 92.
  • the driver 93 and the detector 95 are coupled to the controller 91.
  • the touch matrix 94 is coupled to the driver 93 and the detector 95.
  • the touch compensation module can be implemented in the controller 91 or the driver 93.
  • the controller 91 controls the driver 93 to send the touch driving signal to the touch unit of the touch matrix 94, and the detector 95 detects the presence or absence of a touch to generate a detection signal, and sends the detection signal to the controller. 91.
  • the memory 92 can store a compensation table. As shown in FIG. 10B, the compensation table has different gains or corrections for different touch units. For example, the compensation value of the touch unit 81 having a plurality of gap materials P is 1.1, the compensation value for the touch unit 82 having less gap material is 1, the compensation value is 1 for no special treatment, and the compensation value greater than 1 is fortification.
  • the compensation value less than 1 is the weakening compensation.
  • the controller 91 can multiply the detection signal of the detector 94 by the amount of the gap material by the touch compensation unit, and use the detection signal multiplied by the compensation value as the touch detection result.
  • the touch driving signals 81Tx and 82Tx sent by the driver 93 to the touch units 81 and 82 are the same, but the detection signal 81Rx output by the detector 94 for the touch unit 81 is the same.
  • the controller 91 performs the touch compensation 81c, so that the touch detection result generated by the touch unit 81 can be equal to the touch detection result generated by the touch unit 82.
  • the touch compensation ⁇ can be compensated for in the touch drive signal.
  • the compensation table is shown in Figure 10C and has different gains or corrections for different touch units.
  • the compensation value of the touch unit 81 having a plurality of gap materials P is 1.1
  • the compensation value for the touch unit 82 having less gap material is 1
  • the compensation value is 1 for no special treatment
  • the compensation value greater than 1 is fortification.
  • the compensation value less than 1 is the weakening compensation.
  • the controller 91 can multiply the touch driving signal of the driver 93 by a different compensation value for the touch unit, and then output the compensated touch driving signal to the touch unit of the touch matrix 94. As shown in FIG.
  • the touch driving signals 81Tx and 82Tx sent by the driver 93 to the touch units 81 and 82 are the same, but the touch control unit 81Tx sent by the driver 93 is performed on the touch unit 81.
  • the touch compensation 81c is such that the touch detection result generated by the touch unit 81 can be equal to the touch detection result generated by the touch unit 82.
  • the touch display device of the embodiment includes: two substrates, which are opposite to each other; a display medium is interposed between the inner sides of the substrate; a gap material region has a plurality of layout units distributed between the inner sides of the substrate, and the layout unit is composed of a plurality of sub-distribution units arranged in a row.
  • the layout units a part of the sub-layout unit is provided with a gap material, and the remaining sub-layout units have no gap material;
  • a touch matrix includes a plurality of touch units, and each of the touch units covers The amount of the gap material is different; and a touch compensation module performs touch compensation on the touch unit.
  • the touch display device of the present application is divided into a plurality of layout units of the gap material, wherein the layout units each have the same amount of gap material disposed between the inner sides of the substrate, and the layout unit is composed of a plurality of sub-distribution units
  • the layout unit is composed of a plurality of sub-distribution units
  • a part of the sub-distribution unit is provided with a gap material, and the remaining sub-distribution units are not provided with a gap material, thereby improving the uneven distribution of the gap material and improving the pixel aperture ratio.
  • the touch unit of the touch matrix covers the gap material, and the touch unit does not cover the gap material, and the touch compensation unit performs touch compensation on the touch unit, so that the original factor is
  • the touch unit with different touch detection capabilities has the same touch detection capability after being compensated, and the circuit design is used to improve the defect of uneven touch detection capability of the touch unit. Therefore, with the above configuration, the touch display device has a better touch effect in addition to improving the aforementioned problem of the gap material and the effect of the gap material.

Abstract

一种平面显示装置,包括:二基板(11,18),彼此相对而设;一显示介质(15),夹设在基板的内侧之间;以及一间隙材料区(19),具有多个布设单位(41-45)分布在基板的内侧之间,布设单位是由多个次布设单位行列状配置构成,在一个布设单位中,部分的次布设单位设有间隙材料(P),其中一列或其中一行的次布设单位未设有间隙材料。

Description

平面显示装置 技术领域
本申请关于一种显示装置,特别关于一种平面显示装置。
背景技术
平面显示装置已经广泛的被运用在各种领域,液晶显示装置因具有体型轻薄、低功率消耗及无辐射等优越特性,已经渐渐地取代传统阴极射线管显示装置,而应用至许多种类的电子产品中,例如行动电话、可携式多媒体装置、笔记型计算机、液晶电视及液晶屏幕等等。
液晶显示装置包括显示面板等组件,有源矩阵型液晶显示面板是目前一般的显示面板,其包括有源矩阵基板、对向基板、以及夹设在这二基板间的液晶层。有源矩阵基板上具有多个行导线、列导线以及像素,像素中有像素驱动组件,像素驱动组件和行导线及列导线连接。一般的像素驱动组件是薄膜晶体管,行导线及列导线通常是金属导线。
为了隔开有源矩阵基板和对向基板,这二个基板之间设有间隙材料,间隙材料除了影响液晶层的配向之外,间隙材料的配置数量或配置方式也会影响显示质量,对于触控显示设备甚至也会影响触控侦测。
发明内容
有鉴于先前技术的不足,发明人经研发后得本申请。本申请的目的为提供一种平面显示装置,可改善间隙材料分布不均匀,提升显示效率。
本申请提出一种平面显示装置,包括:二基板,彼此相对而设;一显示介质,夹设在所述基板的内侧之间;以及一间隙材料区,具有多个布设单位分布在所述基板的内侧之间,所述布设单位是由多个次布设单位行列状配置构成,在一个所述布设单位中,部分的所述次布设单位设有间隙材料,其中一列或其中一行的所述次布设单位未设有间隙材料。
在一实施例中,其中在一个所述布设单位中,同一行上的所述次布设单位最多只有一个设有间隙材料。
在一实施例中,其中在一个所述布设单位中,同一列上的所述次布设单位最多只有一个设有间隙材料。
在一实施例中,其中在一个所述布设单位中,其中一列的所述次布 设单位未有间隙材料,且其中一行的所述次布设单位未设有间隙材料。
在一实施例中,其中在所述间隙材料区的各行上,设有所述间隙材料的所述次布设单位的数量相同。
在一实施例中,其中在所述间隙材料区的各列上,设有所述间隙材料的所述次布设单位的数量相同。
在一实施例中,其中位在同一行上的所述布设单位中,未设有所述间隙材料的空列逐所述布设单位而换列。
在一实施例中,其中位在同一列上的所述布设单位中,未设有所述间隙材料的空行逐所述布设单位而换行。
在一实施例中,其中所述布设单位各具有相同数量的所述间隙材料设置在所述基板的内侧之间。
在一实施例中,其中所述间隙材料区提供所述基板间有一固定距离。
在一实施例中,其中所述显示介质是液晶。
综上所述,本申请的平面显示装置中分成多个间隙材料的布设单位,所述布设单位是由多个次布设单位行列状配置构成,在一个所述布设单位中,部分的所述次布设单位设有间隙材料,其中一列或其中一行的所述次布设单位未设有间隙材料,因而可改善间隙材料分布不均匀、同时提高像素开口率,增进光源利用率,提升显示效率。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1A为本申请的平面显示装置的一实施例的示意图。
图1B为本申请的平面显示装置的一实施例的侧视示意图。
图1C为本申请的单位像素的一实施例的示意图。
图2A至图2C为本申请的间隙材料区的实施例的示意图。
图3A至图3C为本申请的布设单位的实施例的示意图。
图4为本申请的间隙材料区的一实施例的示意图。
图5A与图5B为图4中的布设单位的实施例的示意图。
图6A为本申请的间隙材料区的布设单位的一实施例的示意图。
图6B为本申请的像素透光量的一实施例的示意图。
图7A为本申请的平面显示装置的一实施例的区块图。
图7B为本申请的补偿表的一实施例的示意图。
图8A与图8B为本申请的触控显示装置的实施例的示意图。
图9A为本申请的触控显示装置的一实施例的示意图。
图9B为本申请的触控侦测能力的实施例的示意图。
图10A为本申请的触控显示装置的一实施例的区块图。
图10B与图10C为本申请的补偿表的实施例的示意图。
图11A与图11B为本申请的触控补偿的实施例的示意图。
具体实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或组件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定, 术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个组件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
以下将参照相关图式,说明依本申请较佳实施例的内嵌式触控显示装置,其中相同的组件将以相同的参照符号加以说明。
图1A为本申请的平面显示装置的一实施例的示意图,图1A显示平面显示装置的平面上俯视的配置。在图1A与图1B中,一第一基板1包括一基板11、多条行导线12、多条列导线13、多个单位像素14、区域16及区域17。行导线12及列导线13交错形成一像素矩阵DM,单位像素14设置在像素矩阵DM内。第一基板1例如是有源矩阵基板。
基板11例如是绝缘透光基板,材料可以是刚性材料或是可挠曲材料,例如玻璃或塑料等。行导线12及列导线13通常是金属导线。
区域16及区域17可以设置连接导线的导线驱动器,例如区域16设置行驱动器,行驱动器连接行导线12并输出行驱动信号到行导线12,区域17设置列驱动器,列驱动器连接列导线13并输出列驱动信号到列导线13。或者是区域16及区域17没有直接设置驱动器,而是设有用来连接导线驱动器的线路或连接垫,区域16的线路或连接垫连接行导线12,区域17的线路或连接垫连接列导线13,行驱动器及列驱动器透过扁平电缆或电路板等分别电性连接区域16以及区域17,因而分别电性连接行导线12及列导线13,并能够分别输出行驱动信号及列驱动信号到行导线12及列导线13。
举例来说,行导线12是扫描线,包括多条扫描线S1~Sm,行驱动器是扫描驱动电路,行驱动信号是扫描驱动信号。列导线是数据线,包括多条数据线D1~Dn,列驱动器是数据驱动电路,列驱动信号是数据驱动信号。数据线D1~Dn与扫描线S1~Sm交错设置以定义出多个单位像素14。
图1B为本申请的平面显示装置的一实施例的侧视示意图,如图1B所示,平面显示装置1包括第一基板11、一第二基板18、一显示介质15及一间隙材料区19。第二基板18与第一基板11相对而设。
显示介质15夹设在第一基板11与第二基板18的内侧之间,显示介质15例如是液晶。第二基板18可设有彩色滤光层,第一基板11与第二基板18有配向膜、滤光片等组件(图未出示)。
间隙材料区19内有间隙材料(Photo Spacer,PS),间隙材料区19夹设在第一基板11与第二基板18的内侧之间,提供第一基板11与第二基板18间有一固定距离。
间隙材料的数量与均匀度影响液晶层中的液晶流动性,间隙材料的稳定性也影响液晶层配置的厚度。在本实施例中,间隙材料区19的间隙材料为柱状,可作为第一基板11与第二基板18之间的支撑。间隙材料例如是高分子树脂材质,其具有较佳的附着性、耐热性及光穿透效果。相较于球状间隙材料,柱状间隙材料具有较佳的机械强度、不会自由流动及会漏光现象。柱状间隙材料可利用光微影制程法制成于第一基版11上,使用柱状间隙材料除了可使第一基板11与第二基板18之间的间距固定之外,还可以利用间隙材料之厚度调整液晶层的区间大小,以提供面板较平整之支撑。
图1C为本申请的单位像素的一实施例的示意图。如图1C所示,单位像素14的像素驱动组件包括一薄膜晶体管141以及一像素电容142。薄膜晶体管141作为开关用,闸极连接行导线12,源极连接列导线13,汲极连接像素电容142。行导线12上的扫描驱动信号可控制薄膜晶体管141导通,藉以让列导线13上的数据驱动信号写入像素电容142。
像素电容142是液晶电容,由二个电极构成。一般来说,液晶电容 包括像素电极与共同电极,薄膜晶体管141的汲极则连接像素电极,共同电极连接一共同电压(Vcom)。在一些实施例中,共同电压的电压值可为0伏特(接地)。当薄膜晶体管141的闸极被行导线12施加一扫描驱动信号而导通时,列导线13上的数据驱动信号的数据电压便透过薄膜晶体管141施加于像素电极,使像素电极与共同电极之间产生一电压差,液晶电容储存数据驱动信号写入的电位差,以驱动两电极之间的液晶分子转动。
像素电极与共同电极的材料可例如但不限于为铟锡氧化物(indium-tin oxide,ITO)或铟锌氧化物(indium-zinc oxide,IZO)等透明导电材料。
像素电极与共同电极的配置因不同类型显示面板有所差异,以横向电场效应显示面板来说,像素电极与共同电极皆形成在第一基板11,也就是与薄膜晶体管141形成在同一个基板11上,在这架构下,第二基板18可以不用形成一整片的共通电极,因而较有空间形成触控电极。
以多象限垂直配向面板或扭曲向列型面板来说,对向基板上形成一整片的共通电极,像素电极与薄膜晶体管141皆形成在第一基板11,第一基板11上的像素电极与对向基板上的共通电极构成液晶电容。
图1C是举例说明一般单位像素的基本组件,故只举出一个薄膜晶体管141以及一个像素电容142。在其他实施态样中,单位像素还可以包括多个薄膜晶体管和其他电容组件。在一实施例中,在各像素中更可具有一储存电极(未显示),其可与第二电极形成一辅助电容之用。
图2A为本申请的间隙材料区的实施例的示意图。图2A显示间隙材料区在平面显示设备的基板平面上俯视的配置。如图2A所示,一间隙材料区2具有多个布设单位21~27,布设单位21~27是分布在例如图1B的第一基板11及第二基版18的内侧之间。
布设单位21~27内设有如图1B的间隙材料在第一基板11及第二基版18的内侧之间,提供第一基板11与第二基板18间有一固定距离,布设单位21~27各具有相同数量的间隙材料,布设单位21~27的间隙材料作为第一基板11与第二基板18之间的支撑以容置显示介质15。
在图2A中,为方便说明仅绘出9个布设单位21,布设单位22、23、24、25仅分别绘出2个、布设单位26、27在四个角落各只绘出1个。但实际上布设单位的数量不限于此。
在图2A中,基板中央的一个布设单位21的面积大于在基板边缘的任一个布设单位24~26的面积。在基板二侧边缘的各布设单位22~27的面积相等,例如在基板左右二侧边缘的各布设单位24、25的面积相等,在基板上下二侧边缘的各布设单位22、23的面积相等。
布设单位21~27的宽度与高度从基板中央往四方逐渐变高或变宽,往左右的变化幅度一样,往上下变化的幅度一样。逐渐变高例如是连续数行布设单位具有相同高度(第一高度),再更往上或往下的布设单位变为具有另一个高度(第二高度),变为另一个高度后也是连续数行布设单位具有相同高度(第二高度),以此类推。逐渐变宽和逐渐变高类似,例如是连续数列布设单位具有相同宽度(第一宽度),再更往左或往右的布设单位变为具有另一个宽度(第二宽度),变为另一个宽度后也是连续数行布设单位具有相同宽度(第二宽度),以此类推。图中省略号表示前述逐渐变高和逐渐变宽。在布设单位21与布设单位22~27之间,根据前述逐渐变高及逐渐变宽的方式还设有其他不同大小的布设单位。
对于基板边缘的布设单位22~27来说,在顶行和底行的布设单位的高度一样,在最左列和最右列的布设单位的宽度一样。对于基板左右边缘的布设单位24~27来说,布设单位的高度一样。对于基板上下边缘的布设单位22~23、26~27来说,布设单位的宽度一样。
藉此配置,可解决面板中间较易凹陷的问题,还可改善间隙材料分布不均匀、平面显示设备容易产生缺陷画素的问题。
图2B显示布设单位配置的例子,如图2B,短链线是表示右半部是与左半部对称,故右半部未出示在图中。布设单位A、B、C具有不同大小,布设单位A、B、C由中间往外布设,布设单位A、B、C的高度是逐渐变高,布设单位A、B、C的宽度是逐渐变宽。举例来说,布设单位A、B、C的宽度比是10:12:15,布设单位A、B、C的高度比是10: 12:15。
另外,布设单位的数量也可以不对称,例如在图中,布设单位A上方有三行布设单位B,布设单位A下方有二行布设单位B。另外,同样的布设单位在行列上配置的数量也可以不同,例如在图中,布设单位C共有22列(左半部11列)以及12行,这个比例接近16:9,以符合高清电视的标准。
另外,在一个变化的例子,布设单位C中有几行的布设单位高度不同,例如布设单位C1、C2所在的行上,布设单位的高度可较其他布设单位低,使全部22列的布设单位C的宽度和全部12行的布设单位C的高度的比例是16:9,完全符合高清电视的标准。另外,也可以仅最底行的布设单位C2和其他布设单位C的高度不同。
图2C中,与图2A不同的是,在基板顶部边缘的一个布设单位22的面积大于在基板底部边缘的一个布设单位23a的面积,对于角落的布设单位也是,在基板顶部边缘的一个布设单位26的面积大于在基板底部边缘的一个布设单位27a的面积。另外,在基板二侧边缘的布设单位24、25的一个布设单位的面积大于在基板底部边缘的一个布设单位23a的面积。
布设单位21~27a的宽度与高度除了从基板中央往四方逐渐变高或变宽,往左右的变化幅度一样,往上下变化的幅度不一样,往上变化的幅度大于往下变化的幅度,因而使在基板顶部边缘的一个布设单位26的面积大于在基板底部边缘的一个布设单位27a的面积。对于基板边缘的布设单位22~27a来说,在同一行的布设单位的高度一样,在同一列的布设单位的宽度一样。对于基板左右边缘的布设单位24~27a来说,在基板上半部的布设单位24、26的高度一样,但在基板下半部的布设单位27a的高度不同,越靠近底部的布设单位23a、27a的高度越矮。例如在底部的布设单位23a、27a的高度仍可和在中央的布设单位21的高度相等。
藉由上述配置,可提高显示设备下边缘的结构强度,还可改善间隙材料分布不均匀、平面显示设备容易产生缺陷画素的问题。
另外,在上述实施例中,三个中央的布设单位21的高度等于同水平方向上二个布设单位24、25的高度,三个中央的布设单位21的宽度等于同垂直方向上二个布设单位22、23的宽度,以上高度与宽度的比例是举例说明,也可以适当地改为其他可用的比例。
在上述实施例中,布设单位可由N乘N个次布设单位行列状配置构成,这个配置可参考图3A、3B、3C的例子,但配置不限于前述图的例子。布设单位也可由N乘M个次布设单位行列状配置构成(N、M不相等),这个配置可参考图5A、5B的例子,但配置不限于前述图的例子。各次布设单位中。
另外,随着布设单位的逐渐变高或逐渐变高宽,次布设单位也随着布设单位的比例逐渐变高或逐渐变高宽。在一个实施例中,对于全部的布设单位来说,各布设单位内的次布设单位的行数及列数相等。不同大小的布设单位仍具有相同数量的间隙材料。
图3A至图3C为本申请的布设单位的实施例的示意图。如图3A至图3C所示,布设单位3是由N乘N个次布设单位31、32行列状配置构成,在图3A至图3C的例子是以N等于5来说明,但N也可以是其他正整数不限于5。图中是以配置N个间隙材料来说明,在设有间隙材料的次布设单位31上图示标示有P,未设有间隙材料的次布设单位32则图面维持空白。在一个布设单位3中,同一行上的次布设单位31、32只有一个设有间隙材料。在一个布设单位3中,同一列上的次布设单位31、32只有一个设有间隙材料。
在本实施例中,N个间隙材料排列在N×N个次布设单位31、32中,并根据这样的排列方式重复排列每个布设单位3,以布满整个面板上。由于间隙材料的面积大小仍须考虑让次布设单位31、32仍有透光性,故在一个次布设单位31中间隙材料设置的面积小于次布设单位31的面积,不会占满整个次布设单位31。
在图3A中,5个间隙材料P分别设置于不同列不同行,本实施例中间隙材料P的排列方式没有特定规律,在一个布设单位3中同一行及同一列仅只有一个间隙材料P。另外,布设单位3也可以如图3B与图3C 有不同的排列方式。
另外,在不同的布设单位3之间也可以有排列方式的变化,如图3B与图3C,在图3B中,不同行的间隙材料是隔一列设置在次布设单位31,在图3C中,不同行的间隙材料是隔二列设置在次布设单位31,以此类推,每隔一个布设单位3,间隙材料隔的列数或行数增加一列或一行。
综上所述,本申请的平面显示装置中分成多个间隙材料的布设单位,所述布设单位各具有相同数量的间隙材料设置在所述基板的内侧之间,在所述基板中央的一个所述布设单位的面积大于在所述基板边缘的一个所述布设单位的面积,因而可解决面板中间较易凹陷的问题。另外,所述布设单位各具有相同数量的间隙材料设置在所述基板的内侧之间,在所述基板顶部边缘的一个所述布设单位的面积大于在所述基板底部边缘的一个所述布设单位的面积,可提高显示设备下边缘的结构强度。藉由上述配置,还可改善间隙材料分布不均匀、平面显示设备容易产生缺陷画素的问题。
图4为本申请的间隙材料区的一实施例的示意图,图4显示间隙材料区4中在平面显示设备的平面上俯视的配置。如图4所示,一间隙材料区4具有多个布设单位40,布设单位40分布在如图1B的第一基板11及第二基版18的内侧之间,布设单位40内设有如图1B的间隙材料在第一基板11及第二基版18的内侧之间,提供第一基板11与第二基板18间有一固定距离,让第一基板11与第二基板18之间能容置有显示介质15。布设单位40可各具有相同数量的间隙材料设置在第一基板11与所述第二基板18的内侧之间。在图4中,各布设单位40的大小相等。
图5A至图5B为图4中的布设单位40的实施例的示意图。如图5A所示,为方便说明,图4中的布设单位40在图5A分别以41~45来标示不同位置的布设单位。布设单位41~45是由多个次布设单位行列状配置构成,在一个布设单位41~45中,部分的次布设单位设有间隙材料P,其中一列或其中一行的次布设单位未设有间隙材料。布设单位41~45可各具有相同数量的间隙材料P。
在图5A中,在一个布设单位41~45中,同一行上的次布设单位最 多只有一个设有间隙材料P,同一列上的次布设单位最多只有一个设有间隙材料P。在一个布设单位41~45中,其中一行的次布设单位未设有间隙材料。未设有间隙材料的空行逐不同列的布设单位41~45换行,换行的行数例如是一行。在间隙材料区的各行上,设有间隙材料的次布设单位的数量相同。例如布设单位41~45中,每行共有4个间隙材料P。
如图5B所示,与图5A不同的是,在一个布设单位41a~45a中,其中一列的次布设单位未设有间隙材料。位在同一行上的布设单位41a~45a中,未设有间隙材料的空列逐不同行的布设单位41a~45a换列,换列的列数例如是一列。在间隙材料区的各列上,设有间隙材料P的次布设单位的数量相同。例如布设单位41a~45a中每列共有4个间隙材料P。
综上所述,本申请的平面显示装置中分成多个间隙材料的布设单位,所述布设单位是由多个次布设单位行列状配置构成,在一个所述布设单位中,部分的所述次布设单位设有间隙材料,其中一列或其中一行的所述次布设单位未设有间隙材料,因而可改善间隙材料分布不均匀、同时提高像素开口率,增进光源利用率,提升显示效率。
在前述的实施例中,间隙材料区的一个布设单位可能会涵盖到多个如图1A所示的像素矩阵DM中的像素14。在一个布设单位中,部分的次布设单位设有间隙材料,其余的次布设单位未设有间隙材料,因此,这会造成部分的像素14有间隙材料,部分的像素14未有间隙材料,因而造成不同像素14的透光控制能力不同。
图6A为本申请的间隙材料区的布设单位的一实施例的示意图。如图6A所示,一布设单位50涵盖到9个像素,在此是以涵盖到9个像素为例说明,在不同的实施情况也有可能涵盖到其他数量的像素,布设单位50涵盖到的像素数量不以9为限。布设单位50可如前述实施例是由多个次布设单位行列状配置构成,实施的方式可如前述实施例内容,故此不再赘述。在图6A中,像素矩阵的部分像素51内有间隙材料P,部分像素52内未有间隙材料。
平面显示设备可包括一驱动补偿模块对像素51、52进行透光驱动补偿,以解决透光能力不均的问题。驱动补偿模块是针对内有间隙材料P 的像素51、或针对未有间隙材料的像素52进行透光驱动补偿。例如:内有间隙材料P的像素51有进行透光驱动补偿,未有间隙材料的像素52未进行透光驱动补偿;或者是未有间隙材料的像素52有进行透光驱动补偿,内有间隙材料P的像素51未进行透光驱动补偿。透光驱动补偿是使各像素51、52控制的透光能力相等。
图6B为本申请的像素透光量的一实施例的示意图。如图6B所示,在同一显示灰阶下,像素51、52原具有不同透光控制能力51L、52L,对像素51、52进行透光驱动补偿51C后,让原本因有无间隙材料而具有不同透光能力的像素51、52具有相等的控制透光能力。透光驱动补偿的方式例如是在同一显示灰阶下,写入不同的灰阶值至内有间隙材料P的像素51以及未有间隙材料的像素52。
图7A为本申请的平面显示装置的一实施例的区块图。如图7A所示,一平面显示设备6包括一控制器61、一内存62、一驱动器63、一像素矩阵64。控制器61耦接内存62,驱动器63耦接控制器61,像素矩阵64耦接驱动器63。
像素矩阵64例如是前述图1A的像素矩阵DM,像素矩阵64的像素例如是前述图1C的像素14,故此不再赘述。
驱动补偿模块可实现在控制器61或数据驱动器63。举例来说,控制器61将视框的影像数据传送到驱动器63,驱动器63例如是前述图1A中区域17的驱动器,以将像素灰阶数据写入至像素矩阵64的像素。由于不同的像素需要不同的透光驱动补偿,内存62可储存一补偿表,补偿表如图7B所示,针对不同像素有不同的增益或修正。例如对有间隙材料P的像素51的补偿值是1.1,对于未有间隙材料的像素52的补偿值是1,补偿值是1代表未特别处理,补偿值大于1是强化的补偿,补偿值小于1是弱化的补偿。控制器61可将视框影像数据的像素灰阶值针对像素有无间隙材料乘上不同的补偿值,并将乘上补偿值的灰阶值作为输出传到驱动器63,驱动器63再将补偿后的灰阶值送到对应的像素。
综上所述,本实施例子中液晶显示装置包括:二基板,彼此相对而设;一液晶层,夹设在所述基板的内侧之间;一间隙材料区,具有多个 布设单位分布在所述基板的内侧之间,所述布设单位是由多个次布设单位行列状配置构成,在一个所述布设单位中,部分的所述次布设单位设有间隙材料,其余的所述次布设单位未设有间隙材料;一像素矩阵,包括多个像素,部分所述像素内有所述间隙材料,部分所述像素内未有所述间隙材料;以及一驱动补偿模块,对所述像素进行透光驱动补偿。本申请的液晶显示装置中部分所述像素内有所述间隙材料,部分所述像素内未有所述间隙材料。驱动补偿模块对所述像素进行透光驱动补偿,让原本因有无间隙材料而具有不同透光能力的像素经补偿后具有相等的控制透光能力。因此,间隙材料区的分布来可改善间隙材料分布不均匀,同时提高像素开口率,增进光源利用率,提升显示效率,更运用电路设计来改善像素透光能力不均的缺陷。
图8A为本申请的触控显示装置的实施例的示意图,图8A显示间隙材料区的布设单位与触控矩阵在触控显示装置的平面上俯视的配置。如图8A所示,间隙材料区的布设单位70是由多个次布设单位行列状配置构成,在一个布设单位70中,部分的次布设单位设有间隙材料P,其余的次布设单位未设有间隙材料。布设单位70的间隙材料P设置方式可参考前述实施例,故此不再赘述。
在图8A中,一触控矩阵包括多个触控单位71、72,触控单位71、72沿设有间隙材料P的次布设单位设置。设有间隙材料P的次布设单位排列成一线段,触控单位71、72的边缘沿所述线段设置。触控单位71、72的主要区域未涵盖间隙材料P。主要区域是一个触控单位中一半以上的面积区域,能够用来发挥触控功能的区域,在较佳的实施例中,主要区域占一个触控单位中75%以上甚至90%以上的面积区域。在本实施例子中,主要区域位在一个触控单位的中央并往四周延伸,四个边缘上都有和间隙材料P重迭。在其他实施例中,主要区域也可以从一个触控单位的中央并往四周延伸,部分的边缘上有和间隙材料P重迭,部分的边缘上没有和间隙材料P重迭。
在一个布设单位70中,同一列上的次布设单位最多只有二个设有间隙材料P。在一个布设单位70中,同一行上的次布设单位最多只有二个 设有间隙材料P。
图8B为本申请的触控显示装置的实施例的示意图,图8B显示间隙材料区的布设单位与触控矩阵在触控显示装置的平面上俯视的配置。如图8B所示,与图8A不同的是,图8A中触控单位71是沿一个布设单位70的设有间隙材料P的次布设单位来设置,图8B中触控单位71a是沿四个布设单位701~704的设有间隙材料P的次布设单位来设置。在图8B中,在一个布设单位701~704中,同一列上的次布设单位最多只有一个设有间隙材料P。在一个布设单位701~704中,同一行上的次布设单位最多只有一个设有间隙材料P。
综上所述,本实施例中触控显示装置包括:二基板,彼此相对而设;一显示介质,夹设在所述基板的内侧之间;一间隙材料区,具有多个布设单位分布在所述基板的内侧之间,所述布设单位是由多个次布设单位行列状配置构成,在一个所述布设单位中,部分的次布设单位设有间隙材料,其余的所述次布设单位未设有间隙材料;以及一触控矩阵,包括多个触控单位,所述触控单位沿设有所述间隙材料的所述次布设单位设置。本申请的触控显示装置中分成多个间隙材料的布设单位,所述布设单位各具有相同数量的间隙材料设置在所述基板的内侧之间,所述布设单位是由多个次布设单位行列状配置构成,在一个所述布设单位中,部分的次布设单位设有间隙材料,其余的所述次布设单位未设有间隙材料,因而可改善间隙材料分布不均匀、同时提高像素开口率,增进光源利用率,提升显示效率。触控矩阵的所述触控单位沿设有所述间隙材料的所述次布设单位设置,因而可提高触控效果。因此,藉由上述配置,触控显示装置除了改善前述问题及产生前述效果,还具有较佳触控效果。
图9A为本申请的触控显示装置的一实施例的示意图。如图9A所示,触控显示装置包括一间隙材料区以及一触控矩阵,间隙材料区具有多个布设单位80,触控矩阵包括多个触控单位81、82。另外,触控显示装置可具有二基板以及一液晶层,基板以及液晶层可参考前述实施例的说明,故此不再赘述。
布设单位80是由多个次布设单位行列状配置构成,在一个布设单位 80中,部分次布设单位设有间隙材料P,其余次布设单位未有间隙材料。由于布设单位80的实施可参考前述实施例布设单位,故此不再赘述。
在图9A中,各触控单位81、82涵盖间隙材料P的数量不同,因而造成不同触控单位81、82的触控侦测能力不同。触控显示装置可包括一触控补偿模块,对触控单位81、82进行触控补偿,以解决触控侦测能力不均的问题。触控补偿模块针对涵盖间隙材料P较多的触控单位81、或针对涵盖间隙材料P较少的触控单位82进行触控补偿。例如涵盖间隙材料P较多的触控单位81有进行触控补偿、或较强的触控补偿,涵盖间隙材料P较少的触控单位未进行触控补偿、或进行较弱的触控补偿;或者是涵盖间隙材料P较少的触控单位82有进行触控补偿,涵盖间隙材料P较多的触控单位81未进行触控补偿。触控补偿是使各触控单位81、82的触控侦测能力相等。
图9B为本申请的触控侦测能力的实施例的示意图。如图9B所示,触控单位81、82原具有不同触控侦测能力81T、82T,对触控单位81、82进行触控补偿81C后,让原本因间隙材料数量不同而具有不同触控侦测能力的触控单位81、82具有相等的触控侦测能力。
举例来说,触控单位81、82是触控激励电极,触控补偿例如是涵盖间隙材料P较多的触控单位81被施加较强的触控驱动信号,涵盖间隙材料P较少的触控单位82被施加较弱的触控驱动信号。触控单位81、82若是触控激励电极,因应电极的设计可能有与图9A不同的配置方式,图9A是出示不同触控单位涵盖不同数量的间隙材料,并非限定触控单位的排列形式以及功能。
另外,举例来说,触控单位81、82是触控侦测电极,触控补偿例如是涵盖间隙材料P较多的触控单位81所输出的触控侦测信号被强化的幅度大于涵盖间隙材料P较少的触控单位82所输出的触控侦测信号被强化的幅度。触控单位81、82若是触控侦测电极,因应电极的设计可能有与图9A不同的配置方式,图9A是出示不同触控单位涵盖不同数量的间隙材料,并非限定触控单位的排列形式以及功能。
图10A为本申请的触控显示装置的一实施例的区块图。如图10A所 示,一触控显示设备9包括一控制器91、一内存92、一驱动器93、一触控矩阵94以及一侦测器95。控制器91耦接内存92,驱动器93及侦测器95耦接控制器91,触控矩阵94耦接驱动器93及侦测器95。
触控补偿模块可实现在控制器91或驱动器93。举例来说,控制器91控制驱动器93送出触控驱动信号到触控矩阵94的触控单元,侦测器95侦测有无触碰而产生侦测信号,并将侦测信号送到控制器91。由于不同的触控单元需要不同的触控补偿,内存92可储存一补偿表,补偿表如图10B所示,针对不同触控单元有不同的增益或修正。例如对有间隙材料P较多的触控单元81的补偿值是1.1,对于间隙材料较少的触控单元82的补偿值是1,补偿值是1代表未特别处理,补偿值大于1是强化的补偿,补偿值小于1是弱化的补偿。控制器91可将侦测器94的侦测信号针对触控单元因间隙材料数量乘上不同的补偿值,并将乘上补偿值的侦测信号作为触控侦测结果。这处理如图11A所示,原本对于触控单元81、82由驱动器93所送出的触控驱动信号81Tx、82Tx都一样,但对于触控单元81由侦测器94所输出的侦测信号81Rx则控制器91进行触控补偿81c,因而使根据触控单元81产生的触控侦测结果能和根据触控单元82产生的触控侦测结果相等。
举例来说,触控补偿奕可以是在触控驱动信号就做补偿。补偿表如图10C所示,针对不同触控单元有不同的增益或修正。例如对有间隙材料P较多的触控单元81的补偿值是1.1,对于间隙材料较少的触控单元82的补偿值是1,补偿值是1代表未特别处理,补偿值大于1是强化的补偿,补偿值小于1是弱化的补偿。控制器91可将驱动器93的触控驱动信号针对触控单元因间隙材料数量乘上不同的补偿值,然后将补偿后的触控驱动信号输出到触控矩阵94的触控单元。这处理如图11B所示,原本对于触控单元81、82由驱动器93所送出的触控驱动信号81Tx、82Tx都一样,但对于触控单元81由驱动器93所送出的触控驱动信号81Tx进行触控补偿81c,因而使根据触控单元81产生的触控侦测结果能和根据触控单元82产生的触控侦测结果相等。
综上所述,本实施例中触控显示装置包括:二基板,彼此相对而设; 一显示介质,夹设在所述基板的内侧之间;一间隙材料区,具有多个布设单位分布在所述基板的内侧之间,所述布设单位是由多个次布设单位行列状配置构成,在一个所述布设单位中,部分的次布设单位设有间隙材料,其余的所述次布设单位未有间隙材料;一触控矩阵,包括多个触控单位,各所述触控单位涵盖所述间隙材料的数量不同;以及一触控补偿模块,对所述触控单位进行触控补偿。本申请的触控显示装置中分成多个间隙材料的布设单位,所述布设单位各具有相同数量的间隙材料设置在所述基板的内侧之间,所述布设单位是由多个次布设单位行列状配置构成,在一个所述布设单位中,部分的次布设单位设有间隙材料,其余的所述次布设单位未设有间隙材料,因而可改善间隙材料分布不均匀、同时提高像素开口率,增进光源利用率,提升显示效率。触控矩阵的部分所述触控单位涵盖所述间隙材料,部分所述触控单位未涵盖所述间隙材料,由于触控补偿模块对所述触控单位进行触控补偿,让原本因有无间隙材料而具有不同触控侦测能力的触控单位经补偿后具有相等的触控侦测能力,运用电路设计来改善触控单位的触控侦测能力不均的缺陷。因此,藉由上述配置,触控显示装置除了改善前述因间隙材料的问题及产生前述因间隙材料的效果,还运用具有较佳触控效果。
以上内容是结合具体的优选实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (19)

  1. 一种平面显示装置,包括:
    二基板,彼此相对而设;
    一显示介质,夹设在所述基板的内侧之间;以及
    一间隙材料区,具有多个布设单位分布在所述基板的内侧之间,所述布设单位是由多个次布设单位行列状配置构成,在一个所述布设单位中,部分的所述次布设单位设有间隙材料,其中一列或其中一行的所述次布设单位未设有间隙材料。
  2. 如权利要求1所述的平面显示装置,其中在一个所述布设单位中,同一行上的所述次布设单位最多只有一个设有间隙材料。
  3. 如权利要求1所述的平面显示装置,其中在一个所述布设单位中,同一列上的所述次布设单位最多只有一个设有间隙材料。
  4. 如权利要求1所述的平面显示装置,其中在一个所述布设单位中,其中一列的所述次布设单位未有间隙材料,且其中一行的所述次布设单位未设有间隙材料。
  5. 如权利要求1所述的平面显示装置,其中在所述间隙材料区的各行上,设有所述间隙材料的所述次布设单位的数量相同。
  6. 如权利要求1所述的平面显示装置,其中在所述间隙材料区的各列上,设有所述间隙材料的所述次布设单位的数量相同。
  7. 如权利要求1所述的平面显示装置,其中位在同一行上的所述布设单位中,未设有所述间隙材料的空列逐所述布设单位而换列。
  8. 如权利要求7所述的平面显示装置,其中换列的列数是一列。
  9. 如权利要求1所述的平面显示装置,其中位在同一列上的所述布设单位中,未设有所述间隙材料的空行逐所述布设单位而换行。
  10. 如权利要求9所述的平面显示装置,其中换行的行数是一行。
  11. 如权利要求1所述的平面显示装置,其中所述布设单位各具有相同数量的所述间隙材料设置在所述基板的内侧之间。
  12. 如权利要求1所述的平面显示装置,其中所述间隙材料区提供所述基板间有一固定距离,所述显示介质是液晶。
  13. 如权利要求1所述的平面显示装置,其中在所述基板中央的一个所 述布设单位的面积大于在所述基板边缘的一个所述布设单位的面积。
  14. 如权利要求13所述的平面显示装置,其中所述布设单位各具有相同数量的间隙材料设置在所述基板的内侧之间。
  15. 如权利要求13所述的平面显示装置,其中在所述基板二侧边缘的各所述布设单位的面积相等。
  16. 如权利要求13所述的平面显示装置,其中在所述基板顶部边缘的一个所述布设单位的面积大于在所述基板底部边缘的一个所述布设单位的面积。
  17. 如权利要求13所述的平面显示装置,其中在所述基板二侧边缘的一个所述布设单位的面积大于在所述基板底部边缘的一个所述布设单位的面积。
  18. 如权利要求1所述的平面显示装置,其中所述平面显示装置是横向电场效应显示面板。
  19. 如权利要求1所述的平面显示装置,其中所述间隙材料是柱状间隙材料,利用光微影制程法制成于所述其中一个基版上。
PCT/CN2017/108320 2017-09-19 2017-10-30 平面显示装置 WO2019056488A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/648,620 US11048126B2 (en) 2017-09-19 2017-10-30 Flat panel display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710845040.X 2017-09-19
CN201710845040.XA CN107515495A (zh) 2017-09-19 2017-09-19 平面显示装置

Publications (1)

Publication Number Publication Date
WO2019056488A1 true WO2019056488A1 (zh) 2019-03-28

Family

ID=60725759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108320 WO2019056488A1 (zh) 2017-09-19 2017-10-30 平面显示装置

Country Status (3)

Country Link
US (1) US11048126B2 (zh)
CN (1) CN107515495A (zh)
WO (1) WO2019056488A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505779A (zh) * 2017-09-19 2017-12-22 惠科股份有限公司 平面显示装置
CN107450788B (zh) 2017-09-19 2020-12-18 惠科股份有限公司 触控显示装置
CN107515495A (zh) 2017-09-19 2017-12-26 惠科股份有限公司 平面显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408820A (zh) * 2008-11-17 2009-04-15 友达光电股份有限公司 触控显示面板
CN102117146A (zh) * 2010-01-05 2011-07-06 瀚宇彩晶股份有限公司 内嵌式触控面板
CN106526990A (zh) * 2016-12-01 2017-03-22 合肥京东方光电科技有限公司 显示面板及其制备方法、显示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1410099A4 (en) * 2000-11-30 2008-10-01 Thomson Licensing METHOD AND APPARATUS FOR UNIFORM LUMINANCE IN DISPLAYS
TWI331245B (en) * 2005-07-20 2010-10-01 Au Optronics Corp Flat display apparatus with predetermined arrangement of photo spacer and photo spacer arrangement method
KR101343490B1 (ko) 2005-12-30 2013-12-20 엘지디스플레이 주식회사 액정표시소자
CN100385299C (zh) 2006-06-09 2008-04-30 友达光电股份有限公司 消除发光二极管背光模块支撑柱周围阴影的方法
JP5188825B2 (ja) * 2008-02-14 2013-04-24 株式会社ジャパンディスプレイイースト 表示装置
JP2010139573A (ja) * 2008-12-09 2010-06-24 Sharp Corp 液晶表示パネル
JP2012194257A (ja) * 2011-03-15 2012-10-11 Japan Display West Co Ltd 表示装置および光バリア素子
JP2012234142A (ja) * 2011-04-20 2012-11-29 Sony Corp 表示装置
CN105137663A (zh) * 2014-06-03 2015-12-09 群创光电股份有限公司 显示面板
CN104536630B (zh) 2015-01-21 2017-05-10 京东方科技集团股份有限公司 一种触摸显示面板、其检测方法及显示装置
CN104597667A (zh) * 2015-02-05 2015-05-06 深圳市华星光电技术有限公司 液晶显示面板及液晶显示装置
CN105404052A (zh) * 2016-01-05 2016-03-16 京东方科技集团股份有限公司 一种曲面显示面板
CN105759482B (zh) 2016-05-06 2023-04-21 上海天马微电子有限公司 触控显示面板及触控显示装置
CN105977263A (zh) * 2016-05-31 2016-09-28 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
CN105807508B (zh) * 2016-06-01 2019-09-20 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106405945B (zh) * 2016-11-25 2019-08-20 武汉华星光电技术有限公司 液晶基板及液晶面板
CN107515495A (zh) 2017-09-19 2017-12-26 惠科股份有限公司 平面显示装置
CN107450788B (zh) 2017-09-19 2020-12-18 惠科股份有限公司 触控显示装置
CN107561759A (zh) 2017-09-19 2018-01-09 惠科股份有限公司 触控显示装置
CN107479261A (zh) 2017-09-19 2017-12-15 惠科股份有限公司 液晶显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408820A (zh) * 2008-11-17 2009-04-15 友达光电股份有限公司 触控显示面板
CN102117146A (zh) * 2010-01-05 2011-07-06 瀚宇彩晶股份有限公司 内嵌式触控面板
CN106526990A (zh) * 2016-12-01 2017-03-22 合肥京东方光电科技有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
US20210096413A1 (en) 2021-04-01
US11048126B2 (en) 2021-06-29
CN107515495A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
US10234971B2 (en) Touch-display panel and touch-display device
JP4731206B2 (ja) 液晶表示装置
JP6472066B2 (ja) 電気容量分圧式低い色ずれ画素回路
US8643802B2 (en) Pixel array, polymer stablized alignment liquid crystal display panel, and pixel array driving method
US20150145812A1 (en) Array substrate, touch screen panel and display device
US20120086665A1 (en) Liquid Crystal Display Device
US10088714B2 (en) Liquid crystal display device
US10162210B2 (en) Touch panel and method of producing the same, display apparatus
US20140022465A1 (en) Color filter substrate, touch display panel and touch display device
WO2019056490A1 (zh) 触控显示装置
WO2019056493A1 (zh) 触控显示装置
CN210534741U (zh) 内嵌式触控显示面板
CN106886112B (zh) 阵列基板、显示面板和显示装置
WO2019184039A1 (zh) 阵列基板及显示面板
US10963114B1 (en) Touch display panel
KR20170077834A (ko) 디스플레이 장치
WO2019056488A1 (zh) 平面显示装置
WO2019056485A1 (zh) 液晶显示装置
EP2757411A1 (en) Array substrate and liquid crystal display panel
WO2015165217A1 (zh) 触控显示面板及触控显示装置
US20220350189A1 (en) Display module
WO2019056483A1 (zh) 平面显示装置
CN112130388A (zh) 阵列基板及其制造方法、触控显示面板及触控显示装置
CN105389051A (zh) 触控显示装置
TWI534516B (zh) 顯示面板與顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926166

Country of ref document: EP

Kind code of ref document: A1