WO2019056409A1 - 棱镜式ar显示装置 - Google Patents

棱镜式ar显示装置 Download PDF

Info

Publication number
WO2019056409A1
WO2019056409A1 PCT/CN2017/104431 CN2017104431W WO2019056409A1 WO 2019056409 A1 WO2019056409 A1 WO 2019056409A1 CN 2017104431 W CN2017104431 W CN 2017104431W WO 2019056409 A1 WO2019056409 A1 WO 2019056409A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
lens
incident surface
optical axis
Prior art date
Application number
PCT/CN2017/104431
Other languages
English (en)
French (fr)
Inventor
崔海铭
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Priority to EP17872891.1A priority Critical patent/EP3686649A4/en
Priority to JP2018529174A priority patent/JP6909790B2/ja
Priority to KR1020187015805A priority patent/KR102059760B1/ko
Priority to US15/780,213 priority patent/US10690912B2/en
Publication of WO2019056409A1 publication Critical patent/WO2019056409A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1026Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators
    • G02B27/1033Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with reflective spatial light modulators having a single light modulator for all colour channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0114Head-up displays characterised by optical features comprising device for genereting colour display comprising dichroic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • G02B2027/0116Head-up displays characterised by optical features comprising device for genereting colour display comprising devices for correcting chromatic aberration

Definitions

  • the present invention relates to the field of AR technologies, and in particular, to a prismatic AR display device.
  • Augmented Reality is a technology that calculates the position and angle of camera images in real time and adds corresponding images, videos, and 3D models. This technology superimposes virtual information into real-world scenes, enabling "seamless" integration of real-world information and virtual world information.
  • AR technology requires imaging technology and spectroscopic technology.
  • the imaging optical path and the split light combining light are realized by a light splitting prism.
  • Such a display device causes a large chromatic aberration and a poor definition of a virtual image seen by a human eye.
  • aspects of the present invention provide a prismatic AR display device for reducing chromatic aberration of a virtual image and improving the sharpness of an aliased image seen by a human eye.
  • the invention provides a prism type AR display device:
  • An LCOS display chip a polarization beam splitting prism PBS, a double cemented lens, a first single lens, and a beam splitting prism arranged in sequence along a first axis, and a second axis disposed perpendicular to the first axis and adjacent to the PBS LCOS lighting equipment;
  • the double cemented lens comprises a positive lens and a negative lens, the negative lens being close to the PBS, the positive lens being close to the first single lens;
  • a first light incident surface of the beam splitting prism is adjacent to the first single lens, and an optical axis coincides with an optical axis of the first single lens; an optical axis of the second light incident surface of the light splitting prism and the first An optical axis of a light incident surface is perpendicular and the second light incident surface is opposite to the first light emitting surface;
  • the LCOS illumination device is configured to illuminate the LCOS display chip to cause the LCOS display chip to emit virtual image light; the virtual image light emitted by the LCOS display chip is transmitted through the PBS and refracted by the double cemented lens Entering the first single lens, refracting into the beam splitting prism via the first single lens, and ambient light on a first light incident surface of the beam splitting prism and a second light incident surface from the beam splitting prism After the light is combined, it is transmitted from the first light-emitting surface of the beam splitting prism to the human eye.
  • the first single lens is a positive lens.
  • first light incident surface and/or the second light incident surface are plated with an anti-reflection film.
  • the method further includes: a polarizing element
  • the polarizing element is located on a light exiting side of the second light emitting surface of the beam splitting prism, and a polarization direction of the polarizing element is perpendicular to a polarization direction of the PBS; and the second light emitting surface is opposite to the first light incident surface .
  • first light incident surface and/or the second light incident surface are concave surfaces.
  • the beam splitting prism comprises: a first prism and a second prism arranged in sequence;
  • the beveled surface of the first prism is glued to the beveled surface of the second prism, and the cemented surface is plated with a transflective film to form a spectroscopic surface of the dichroic prism;
  • a surface of the first prism adjacent to the first single lens, and an optical axis coincident with an optical axis of the first single lens is the first light incident surface
  • a surface of the first prism whose optical axis is perpendicular to an optical axis of the first single lens is the first light emitting surface
  • a surface of the second prism perpendicular to an optical axis of the first single lens is the second light incident surface.
  • the beam splitting prism comprises: a second prism arranged in sequence and a first prism;
  • the beveled surface of the second prism is glued to the beveled surface of the first prism, and the cemented surface is plated with a transflective film to form a spectroscopic surface of the dichroic prism;
  • a surface of the second prism adjacent to the first single lens, and an optical axis coincident with an optical axis of the first single lens is the first light incident surface
  • a surface of the second prism perpendicular to an optical axis of the first single lens is the second light incident surface, the second light incident surface is convex and is plated with a transflective film;
  • a surface of the first prism perpendicular to an optical axis of the first single lens is the first light-emitting surface.
  • the first light-emitting surface is a concave surface that is concentric with the second light-incident surface and has the same radius of curvature.
  • the LCOS illumination device includes: a meniscus lens arranged in sequence along the second axis; and a light source device; wherein the convex lens is concave near the first surface of the light source device, adjacent to the PBS
  • the second surface is a convex spherical surface; the light emitted by the light source device is concentrated to the PBS via the lenticular lens, polarized by the PBS, and enters the LCOS display chip with vertically linearly polarized light.
  • the LCOS illumination device includes: an aspherical positive lens disposed on the second axis and located between the meniscus lens and the PBS; the aspherical positive lens is used to The light emitted by the light source device refracted by the meniscus lens is uniformly refracted to the PBS for polarization of the PBS to enter the LCOS display chip.
  • the imaging optical path includes a double-glued lens and a first single lens which are sequentially arranged coaxially, and the optical splitting optical path is realized by a beam splitting prism.
  • the double-glued lens can correct the chromatic aberration generated by the imaging optical path and the optical splitting optical path while imaging the virtual image light emitted by the LCOS display chip, thereby reducing the chromatic aberration of the virtual image and improving the human eye.
  • the clarity of the aliased image is a double-glued lens and a first single lens which are sequentially arranged coaxially, and the optical splitting optical path is realized by a beam splitting prism.
  • FIG. 1 is a schematic structural view of a prism type AR display device in the prior art
  • FIG. 2 is a schematic structural diagram of a prismatic AR display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a prismatic AR display device according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an LCOS lighting device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a prismatic AR display device according to still another embodiment of the present invention.
  • the virtual image light reflected by the LCOS (Liquid Crystal on Silicon) display chip passes through a PBS (polarization beam splitter) and enters the dichroic prism.
  • the transflective film of the spectroscopic prism is imaged by the reflecting surface of the dichroic prism, reflected by the transflective dielectric film and mixed with the ambient light into the human eye.
  • the imaging optical path and the optical splitting light are routed through a beam splitting prism.
  • the embodiment of the present invention proposes a prismatic AR display device as shown in the following drawings.
  • FIG. 2 is a schematic structural diagram of a prismatic AR display device according to an embodiment of the present invention. As shown in FIG. 2, the device includes:
  • the LCOS display chip 100, the polarization beam splitting prism PBS101, the double cemented lens 102, the first single lens 103, and the beam splitting prism 104 are sequentially arranged along the first axis, and are disposed on the second axis perpendicular to the first axis On the shaft, and close to the LCOS lighting device 105 of the PBS 101.
  • the first axis and the second axis may be perpendicular to the light incident surface of the PBS 101 and pass through the geometric center point of the PBS 101, and the two are perpendicular to each other.
  • the double cemented lens 102 may be bonded by a low dispersion ⁇ brand glass positive lens and a highly dispersed flint glass negative lens.
  • the negative lens in the double cemented lens 102 is close to the PBS 101, and the positive lens is close to the first single lens 103.
  • the double cemented lens 102 can eliminate the chromatic aberration generated in the optical path, and can also deflect the light having a larger divergence angle transmitted by the PBS 101 to a light having a smaller divergence angle, thereby improving the light collecting efficiency of the AR display device.
  • the first single lens 103 may be a positive lens.
  • the first single lens 103 is used for imaging with the double cemented lens 102 and shares the power in the optical path system to optimize the optical path structure.
  • the material of the first single lens 103 may be different from the material of the double cemented lens 102, that is, the first single lens 103 is not a flint glass lens and is not a enamel glass lens, thereby further eliminating chromatic aberration generated in the optical path. Enhance the clarity of the virtual image that eventually enters the human eye.
  • the beam splitting prism 104 includes two light incident surfaces, two light emitting surfaces, and a light splitting surface, wherein the light splitting surface can be realized by a transflective film.
  • the first light incident surface Si1 of the dichroic prism 104 is close to the first single lens 103, and the optical axis coincides with the optical axis of the first single lens 103; the optical axis of the second light incident surface Si2 of the dichroic prism 104 It is perpendicular to the optical axis of the first light incident surface Si1, and the second light incident surface Si2 is opposed to the first light emitting surface Se1.
  • the LCOS display chip 100 is a display chip that cannot be autonomously illuminated, and needs to be illuminated by polarized light to display different gray levels and colors. Picture.
  • the PBS 101 and the LCOS illumination device 105 are used to generate linearly polarized light to realize illumination of the LCOS display chip 100.
  • the virtual image light emitted by the LCOS display chip 100 is transmitted through the PBS 101 and refracted by the double cemented lens 102 to enter the first single lens 103, and is refracted into the dichroic prism 104 via the first single lens 103.
  • the first light incident surface Si1 of the dichroic prism 104 is combined with the ambient light from the second light incident surface Si2 of the dichroic prism 104, and then transmitted to the human eye from the first light emitting surface Se1 of the dichroic prism 104. Further, the human eye can see the superimposed virtual image and the real environment image on the light exiting side of the first light emitting surface Se1.
  • the imaging optical path includes a double cemented lens 102 and a first single lens 103 which are sequentially arranged coaxially, and the light splitting light is routed to the beam splitting prism 104.
  • the double cemented lens 102 can correct the chromatic aberration generated by the imaging optical path and the optical splitting optical path while imaging the virtual image light emitted by the LCOS display chip 100, thereby reducing the virtual image.
  • the color difference improves the sharpness of the aliased image seen by the human eye.
  • the imaging optical path composed of the double cemented lens 102 and the first single lens 103 comprises a total of five optical surfaces having a certain radius of curvature, which can ensure a sufficiently large viewing angle of the imaging optical path and the viewing angle can be based on imaging. Demand adjustments.
  • the dichroic prism 104 can be equivalent to a parallel flat glass of a certain thickness in addition to the splitting and combining functions to shorten the optical path and optimize the structure of the display device.
  • the beam splitting prism 104 includes a first prism 1041 and a second prism 1042 that are sequentially arranged.
  • the beveled surface of the first prism 1041 is glued to the beveled surface of the second prism 1042, and the semi-transparent film is plated on the bonding surface to form a dichroic surface of the dichroic prism 104.
  • the first prism 1041 is adjacent to the first single lens 103, and the surface of the optical axis coincident with the optical axis of the first single lens 103 is the first light incident surface Si1; on the first prism 1041, the optical axis is The plane perpendicular to the optical axis of the first single lens 103 is the first light-emitting surface Se1; and the surface of the second prism 1042 whose optical axis is perpendicular to the optical axis of the first single lens 103 is the second light-incident surface Si2.
  • the virtual image light refracted by the first single lens 103 is incident on the spectroscopic surface through the first light incident surface Si1 on the first prism 1041, and is then reflected by the spectroscopic surface to the first light exit surface Se1 on the first prism 1041; At the same time, the ambient light is incident on the spectroscopic surface through the second light incident surface Si2 on the second prism 1042, and is transmitted to the first light exit surface Se1 on the first prism 1041 via the spectroscopic surface. Further, the human eye can see the aliased virtual combined image on the light exiting side of the first light emitting surface Se1.
  • the virtual image light refracted by the first single lens 103 can reach the human eye only after passing through the light splitting surface of the dichroic prism 104, and its light efficiency is 50%.
  • the virtual image light passes through the splitting surface of the dichroic prism, and its light efficiency is only 25%. Therefore, compared with the prior art, the present invention can greatly improve the light efficiency in the process of virtual image imaging, and make the human eye see the same brightness. Under the condition of a virtual image, the energy consumption required for illuminating the LCOS lighting device of the LCOS display chip 100 is reduced.
  • the beam splitting prism 104 includes a second prism 1042 and a first prism 1041 arranged in sequence.
  • the beveled surface of the second prism 1042 is glued to the beveled surface of the first prism 1041, and the semi-transparent film is plated on the bonding surface to form a dichroic surface of the dichroic prism 104.
  • the second prism 1042 is adjacent to the first single lens 103, and the surface of the optical axis coincident with the optical axis of the first single lens 103 is the first light incident surface Si1; the second prism 1042, the optical axis and the first single lens 103
  • the vertical plane of the optical axis is the second light incident surface Si2, the second light incident surface Si2 is convex and is coated with a transflective film; on the first prism 1041, the optical axis is perpendicular to the optical axis of the first single lens 103.
  • the face is the first light exit surface Se1.
  • the virtual image light refracted by the first single lens 103 is incident on the spectroscopic surface through the first light incident surface Si1 on the second prism 1042, and is reflected to the second prism 1042 via the spectroscopic surface.
  • the light incident surface Si2 is reflected by the second light incident surface Si2 onto the light splitting surface, and is transmitted from the light splitting surface to the first light emitting surface Se1 on the first prism 1041.
  • ambient light is incident on the spectroscopic surface through the second light incident surface Si2 on the second prism 1042, and is transmitted through the spectroscopic surface to the first light exit surface Se1 on the first prism 1041.
  • the human eye can see the aliased virtual combined image on the light exiting side of the first light emitting surface Se1.
  • the second light incident surface Si2 is convex and plated with a transflective film, and the light incident thereon can be collimated and enlarged.
  • the collimated virtual image light energy is more concentrated, which enhances the sharpness of the virtual image seen by the user.
  • the first light-emitting surface Se1 is a concave surface concentric with the second light-incident surface Si2, and the radius of curvature thereof is the same as the radius of curvature of the second light-incident surface Si2. So that the effective area of the beam splitting prism 104 is equal, thereby reducing the distortion of the ambient light and improving the quality of the ambient light seen by the human eye.
  • the PBS 101 may be glued by a pair of high-precision right-angle prisms, wherein the inclined surface of one right-angle prism is plated with a polarization splitting dielectric film, which can split the incident unpolarized light into Two sets of mutually perpendicular linearly polarized light.
  • the horizontally polarized light (P light) passes completely, and the vertically polarized light (S light) is reflected at an angle of 45 degrees, that is, the outgoing direction of the S polarized light is at an angle of 90 degrees to the outgoing direction of the P polarized light.
  • the LCOS display chip 100 and the LCOS illumination device 105 may be disposed on two adjacent sides of the PBS 101.
  • the LCOS display chip 100 is disposed on the first axis
  • the LCOS illumination device 105 is disposed on the second axis. on.
  • the LCOS illumination device 105 includes a meniscus lens 1051 and a light source device 1052 arranged in sequence along the second axis.
  • the unpolarized light having a large divergence angle emitted by the light source device 1052 first enters the meniscus lens 1051, is refracted by the meniscus lens 1051, and becomes a light having a small divergence angle, and then enters the PBS 101, and is polarized by the polarization splitting dielectric film of the PBS 101, wherein A bundle of linearly polarized light can be illuminated on the LCOS display chip 100 to display different grayscale and color images.
  • the virtual image light emitted by the LCOS display chip 100 described in the above or below embodiments of the present invention should be understood as the light reflected by the LCOS display chip 100 through the above illumination process, and will not be described again.
  • the first surface S11 of the meniscus lens 1051 close to the light source device 1052 is a concave spherical surface
  • the second surface S12 away from the light source device 1052 is a convex spherical surface.
  • the light emitted from the light source device 100 is incident on S11, and the light deflected at a small angle is incident on S12.
  • the S12 surface is a convex spherical surface close to the hemispherical surface, so that the radius of curvature is determined, so that S12 has the largest numerical aperture to increase the luminous flux of S12, and the light refracted by S11 propagates as much as possible. Go out.
  • S12 can make the light emitted from the meniscus lens 1051 have a smaller divergence angle, so as to control the angle of the illumination spot reaching the LCOS display chip 100 within a reasonable range.
  • the radius of curvature of the S12 can be designed to be twice the radius of curvature of the S11.
  • the use of the meniscus lens 1051 can achieve higher illumination efficiency.
  • the light source device 1052 is unevenly illuminated due to the limitation of the package structure of the light source device 1052, thereby causing poor uniformity of light irradiated within the display range of the LCOS display chip 100.
  • the present invention also proposes an LCOS illumination device as shown in FIG. As shown in Figure 4, the device also includes non- Spherical positive lens 1053.
  • the aspherical positive lens 1053 is located between the meniscus lens 1051 and the PBS 101 and is coaxial with the meniscus lens 1051.
  • the light emitted by the light source device 1052 can be deflected into a small divergence angle by the meniscus lens 1051 and then incident on the aspherical positive lens 1053.
  • the aspherical positive lens 1053 can refract the concave-convex lens 1051 from the light source device 1052.
  • the emitted light is uniformly refracted to the PBS 101 for polarization of the PBS 102 into the LCOS display chip 100.
  • the radius of curvature of the aspherical positive lens 1053 continuously changes from the center to the edge, and has positive refractive power, so that the direction of each outgoing light can be accurately controlled, so that the light is deflected and reaches a specified position of the target plane, thereby ensuring
  • the illumination spot has good distribution uniformity on the LCOS display chip.
  • the first light incident surface Si1 and/or the second light incident surface Si1 may be plated with an antireflection film. If the antireflection film is plated on the first light incident surface Si1, the intensity of the virtual image light entering the first light incident surface Si1 can be increased, so that the virtual image seen by the human eye is more clear. Similarly, if the antireflection film is coated on the second light incident surface Si2, the intensity of the ambient light entering the second light incident surface Si2 can be increased, so that the real environment image seen by the human eye is more clear.
  • the first light incident surface Si1 and/or the second light incident surface Si1 may be concave to increase the light collecting capability thereof.
  • the first light incident surface Si1 is a concave surface, even if the display area of the LCOS display chip 100 is increased, the first light incident surface Si1 can propagate the virtual image light emitted from the LCOS display chip 100 at a high light collection rate.
  • the transflective film in the dichroic prism 104 can transmit a portion of the virtual image light incident through the first light incident surface Si1 to the second light exit surface Se2 of the dichroic prism 104.
  • the second light-emitting surface Se2 is a surface of the beam splitting prism 104 that faces the first light-incident surface Si1.
  • the light exiting side of the second light exiting surface Se2 is unobstructed, which may cause virtual images to leak and damage user privacy.
  • the prismatic AR display provided by the present invention may further include: a polarizing element 106.
  • the polarizing element 106 is located on the light outgoing side of the second light emitting surface Se2. And the polarization direction of the polarizing element 106 is perpendicular to the polarization direction of the PBS 101.
  • the polarizing element 104 can eliminate the polarized virtual image light transmitted through the second light-emitting surface Se2, thereby avoiding the leakage of the virtual image viewed by the user, protecting the user's privacy and improving the user experience.
  • the polarizing element 106 can be an optical element separate from the dichroic prism 104, such as a polarizer.
  • the polarizing element 106 can also be integrated with the beam splitting prism.
  • the polarizing medium film can be plated on the second light emitting surface Se2 of the beam splitting prism 104 to further optimize the volume of the display device while achieving matting.
  • the present invention provides a prismatic AR display device comprising any of the prismatic AR display devices of the above embodiments. Accordingly, the device has the advantages of small imaging chromatic aberration, large field of view, and high light efficiency.
  • first and second in this document are used to distinguish different optical elements and the like, and do not represent the order of the optical elements in the optical path, nor do they limit “first” and “first”.
  • the second is a different type.

Abstract

一种棱镜式AR显示装置,其中,装置包括:沿第一轴依次排列的LCOS显示芯片(100)、偏振分光棱镜PBS(101)、双胶合透镜(102)、第一单透镜(103)以及分光棱镜(104),以及设于与第一轴垂直的第二轴上,且靠近PBS(101)的LCOS照明设备(105);其中,双胶合透镜(102)中的负透镜靠近PBS(101),正透镜靠近第一单透镜(103);分光棱镜(104)的第一入光面(Si1)靠近第一单透镜(103),且光轴与第一单透镜(103)的光轴重合;分光棱镜(104)的第二入光面(Si2)的光轴与第一入光面(Si1)的光轴垂直且第二入光面(Si2)与第一出光面(Se1)相对。棱镜式AR显示装置,在使得人眼观看到虚实混叠图像的同时,降低了虚拟图像的色差。

Description

棱镜式AR显示装置
交叉引用
本申请引用于2017年9月19日递交的名称为“棱镜式AR显示装置”的第2017108478566号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及AR技术领域,尤其涉及一种棱镜式AR显示装置。
背景技术
增强现实技术(Augmented Reality,简称AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像、视频、3D模型的技术。这种技术将虚拟信息叠加到真实世界的场景中,实现真实世界信息和虚拟世界信息“无缝”集成。
为保证用户能够看到混叠后的虚拟图像和真实世界的景物图像,AR技术需要用到成像技术以及分光合光技术。在现有的棱镜式AR显示装置中,成像光路与分光合光光路由一个分光棱镜实现。这种显示装置使得人眼看到的虚拟图像存在较大的色差,清晰度差。
发明内容
本发明的多个方面提供一种棱镜式AR显示装置,用以降低虚拟图像的色差,提升人眼看到的混叠图像的清晰度。
本发明提供一种棱镜式AR显示装置:
沿第一轴依次排列的LCOS显示芯片、偏振分光棱镜PBS、双胶合透镜、第一单透镜以及分光棱镜,以及设于与所述第一轴垂直的第二轴上,且靠近所述PBS的LCOS照明设备;
其中,所述双胶合透镜包括正透镜以及负透镜,所述负透镜靠近所述PBS,所述正透镜靠近所述第一单透镜;
所述分光棱镜的第一入光面靠近所述第一单透镜,且光轴与所述第一单透镜的光轴重合;所述分光棱镜的第二入光面的光轴与所述第一入光面的光轴垂直且所述第二入光面与第一出光面相对;
所述LCOS照明设备用于照明所述LCOS显示芯片,以使所述LCOS显示芯片发出虚拟图像光;所述LCOS显示芯片发出的虚拟图像光,经所述PBS透射以及所述双胶合透镜折射后进入所述第一单透镜,经所述第一单透镜折射入所述分光棱镜,在所述分光棱镜的第一入光面上,与来自所述分光棱镜的第二入光面的环境光进行合光后从所述分光棱镜的第一出光面透射至人眼。
进一步可选地,所述第一单透镜为正透镜。
进一步可选地,所述第一入光面和/或所述第二入光面镀有增透膜。
进一步可选地,还包括:偏振元件;
所述偏振元件位于所述分光棱镜的第二出光面的出光侧,且所述偏振元件的偏振方向与所述PBS的偏振方向垂直;所述第二出光面与所述第一入光面相对。
进一步可选地,所述第一入光面和/或所述第二入光面为凹面。
进一步可选地,所述分光棱镜包括:依次排列的第一棱镜以及第二棱镜;
所述第一棱镜的斜棱面与所述第二棱镜的斜棱面胶合,且胶合面上镀有半透半反介质膜以形成所述分光棱镜的分光面;
所述第一棱镜上靠近所述第一单透镜,且光轴与所述第一单透镜的光轴重合的面为所述第一入光面;
所述第一棱镜上,光轴与所述第一单透镜的光轴垂直的面为所述第一出光面;
所述第二棱镜上,光轴与所述第一单透镜的光轴垂直的面为所述第二入光面。
进一步可选地,所述分光棱镜包括:依次排列的第二棱镜以及第一棱镜;
所述第二棱镜的斜棱面与所述第一棱镜的斜棱面胶合,且胶合面上镀有半透半反介质膜以形成所述分光棱镜的分光面;
所述第二棱镜上靠近所述第一单透镜,且光轴与所述第一单透镜的光轴重合的面为所述第一入光面;
所述第二棱镜上,光轴与所述第一单透镜的光轴垂直的面为所述第二入光面,所述第二入光面为凸面且镀有半透半反介质膜;
所述第一棱镜上,光轴与所述第一单透镜的光轴垂直的面为所述第一出光面。
进一步可选地,所述第一出光面为与所述第二入光面同心且曲率半径相同的凹面。
进一步可选地,所述LCOS照明设备包括:沿所述第二轴依次排列的凹凸透镜以及光源设备;其中,所述凹凸透镜靠近所述光源设备的第一面为凹球面,靠近所述PBS的第二面为凸球面;所述光源设备发出的光经所述凹凸透镜汇聚至所述PBS,经所述PBS偏振化后以垂直线偏振光进入所述LCOS显示芯片。
进一步可选地,所述LCOS照明设备包括:设于所述第二轴上,且位于所述凹凸透镜和所述PBS之间的非球面正透镜;所述非球面正透镜用于将所述凹凸透镜折射来的所述光源设备发出的光均匀地折射至所述PBS,以供所述PBS偏振化后进入所述LCOS显示芯片。
本发明提供的棱镜式AR显示装置中,成像光路包括依次同轴排列的双胶合透镜以及第一单透镜,分光合光光路由分光棱镜实现。在这样的光路设计中,双胶合透镜可在对LCOS显示芯片发出的虚拟图像光成像的同时,对成像光路以及分光合光光路产生的色差进行矫正,降低了虚拟图像的色差,提升人眼看到的混叠图像的清晰度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部 分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中棱镜式AR显示装置的结构示意图;
图2为本发明一实施例提供的棱镜式AR显示装置的结构示意图;
图3为本发明另一实施例提供的棱镜式AR显示装置的结构示意图;
图4是本发明一实施例提供的LCOS照明设备的结构示意图;
图5是本发明又一实施例提供的棱镜式AR显示装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在现有的棱镜式AR成像光路如图1所示,LCOS(Liquid Crystal on Silicon,液晶附硅)显示芯片反射的虚拟图像光通过PBS(polarization beam splitter,偏振分光棱镜)进入分光棱镜后,透过分光棱镜的半透半反介质膜,再经过分光棱镜的反射面成像后,经该半透半透介质膜反射并与环境光混叠进入人眼。在上述光路中,成像光路与分光合光光路由一个分光棱镜实现。由于虚拟图像光中不同波长的光在分光棱镜中存在色散和折射系数的差异,进而虚拟图像光中不同波长的光将具有不同的成像位置,最终导致人眼所看到的虚拟图像具有较大色差,清晰度差。为解决上述缺陷,本发明实施例提出了如以下附图所示的棱镜式AR显示装置。
图2为本发明一实施例提供的棱镜式AR显示装置的结构示意图,如图2所示,该装置包括:
沿第一轴依次排列的LCOS显示芯片100、偏振分光棱镜PBS101、双胶合透镜102、第一单透镜103以及分光棱镜104,以及设于与第一轴垂直的第二 轴上,且靠近PBS101的LCOS照明设备105。可选的,第一轴和第二轴可以垂直于PBS101的光入射面并穿过PBS101的几何中心点,且二者相互垂直。
可选的,双胶合透镜102可由低分散的冕牌玻璃正透镜和高分散的火石玻璃负透镜粘接而成。其中,双胶合透镜102中的负透镜靠近PBS101,正透镜靠近第一单透镜103。双胶合透镜102可消除光路中产生的色差,还可将PBS101透射来的发散角较大的光偏折为发散角较小的光传播出去,提升了AR显示装置的集光效率。
可选的,第一单透镜103可以是正透镜。第一单透镜103用于和双胶合透镜102配合成像,并分担光路系统中的光焦度以优化光路结构。可选的,第一单透镜103的材质可不同于双胶合透镜102的材质,也就是说第一单透镜103非火石玻璃透镜且非冕牌玻璃透镜,进而可进一步消除光路中产生的色差,提升最终进入人眼的虚拟图像的清晰度。
分光棱镜104包含两个入光面、两个出光面以及一个分光面,其中,分光面可通过半透半反介质膜实现。
如图2所示,分光棱镜104的第一入光面Si1靠近第一单透镜103,且光轴与第一单透镜103的光轴重合;分光棱镜104的第二入光面Si2的光轴与第一入光面Si1的光轴垂直,且第二入光面Si2与第一出光面Se1相对。
值得说明的是,在本发明的上述或下述实施例中,所采用的LCOS显示芯片100是一种不能自主发光的显示芯片,其需要采用偏振光来照明才能显示出不同的灰阶和颜色的画面。在本发明实施例中,采用PBS101和LCOS照明设备105配合产生线偏振光,实现对LCOS显示芯片100的照明。在图2所示的显示装置中,LCOS显示芯片100发出的虚拟图像光,经PBS101透射以及双胶合透镜102折射后进入第一单透镜103,经第一单透镜103折射入分光棱镜104,在分光棱镜104的第一入光面Si1上,与来自分光棱镜104的第二入光面Si2的环境光进行合光后从分光棱镜104的第一出光面Se1透射至人眼。进而,人眼在第一出光面Se1的出光侧可看到叠加后的虚拟图像和真实的环境图像。
本实例提供的棱镜式AR显示装置中,成像光路包括依次同轴排列的双胶合透镜102以及第一单透镜103,分光合光光路由分光棱镜104实现。一方面,在这样的光路设计中,双胶合透镜102可在对LCOS显示芯片100发出的虚拟图像光成像的同时,对成像光路以及分光合光光路产生的色差进行矫正,用以降低虚拟图像的色差,提升人眼看到的混叠图像的清晰度。另一方面,双胶合透镜102以及第一单透镜103组成的成像光路共包含五个具有一定曲率半径的光学表面,可以保证成像光路的具有足够大的视场角且该视场角可根据成像需求进行调整。除此之外,分光棱镜104除分光以及合光功能外,可等效为一定厚度的平行平板玻璃以缩短光路进而优化显示装置的结构。
在一可选实施方式中,如图2所示,分光棱镜104包括:依次排列的第一棱镜1041以及第二棱镜1042。其中,第一棱镜1041的斜棱面与第二棱镜1042的斜棱面胶合,且胶合面上镀有半透半反介质膜以形成分光棱镜104的分光面。
在这种结构中,第一棱镜1041上靠近第一单透镜103,且光轴与第一单透镜103的光轴重合的面为第一入光面Si1;第一棱镜1041上,光轴与第一单透镜103的光轴垂直的面为第一出光面Se1;第二棱镜1042上,光轴与第一单透镜103的光轴垂直的面为第二入光面Si2。
第一单透镜103折射来的虚拟图像光,经第一棱镜1041上的第一入光面Si1入射至分光面上,再经分光面反射至第一棱镜1041上的第一出光面Se1;与此同时,环境光通过第二棱镜1042上的第二入光面Si2入射至分光面上,再经分光面透射至第一棱镜1041上的第一出光面Se1。进而,人眼在第一出光面Se1的出光侧可看见混叠后的虚实结合图像。
在上述过程中,第一单透镜103折射来的虚拟图像光,只经过一次分光棱镜104的分光面即可到达人眼,其光效率为50%。图1中所示光路中,虚拟图像光经过两次分光棱镜的分光面,其光效率仅为25%。故相对于现有技术,本发明可极大提升虚拟图像成像的过程中的光效率,在使人眼观看到同等亮 度的虚拟图像的条件下,降低了用于照明LCOS显示芯片100的LCOS照明设备所需的能耗。
在另一可选实施方式中,如图3所示,分光棱镜104包括:依次排列的第二棱镜1042以及第一棱镜1041。其中,第二棱镜1042的斜棱面与第一棱镜1041的斜棱面胶合,且胶合面上镀有半透半反介质膜以形成分光棱镜104的分光面。
第二棱镜1042上,靠近第一单透镜103,且光轴与第一单透镜103的光轴重合的面为第一入光面Si1;第二棱镜1042上,光轴与第一单透镜103的光轴垂直的面为第二入光面Si2,第二入光面Si2为凸面且镀有半透半反介质膜;第一棱镜1041上,光轴与第一单透镜103的光轴垂直的面为第一出光面Se1。
在这种结构中,第一单透镜103折射来的虚拟图像光,经第二棱镜1042上的第一入光面Si1入射至分光面上,经分光面反射至第二棱镜1042上的第二入光面Si2,由第二入光面Si2反射至分光面上,再由分光面透射至第一棱镜1041上的第一出光面Se1。与此同时,环境光通过第二棱镜1042上的第二入光面Si2入射至分光面上,经分光面透射至第一棱镜1041上的第一出光面Se1。进而,人眼在第一出光面Se1的出光侧可看见混叠后的虚实结合图像。
在上述过程中,第二入光面Si2为凸面且镀有半透半反介质膜,可以将入射至其上的光线进行准直并成放大的像。经过准直的虚拟图像光能量更加集中,可提升用户所看到的虚拟图像的清晰度。
可选的,如图3所示,在这种实施方式中,第一出光面Se1为与第二入光面Si2同心的凹面,且其曲率半径和第二入光面Si2的曲率半径相同,以使分光棱镜104的有效区域是等厚的,进而减少环境光的畸变,提升人眼看到的环境光的质量。
可选的,PBS101可由一对高精度直角棱镜胶合而成,其中一个直角棱镜的斜面上镀有偏振分光介质膜,该偏振分光介质膜能把入射的非偏振光分成 两束相互垂直的线偏振光。其中水平偏振光(P光)完全通过,而垂直偏振光(S光)以45度角反射出去,也就是说S偏光的出射方向与P偏光的出射方向成90度角。
图如2~图3所示,LCOS显示芯片100和LCOS照明设备105可以设置在PBS101相邻的两侧,例如,LCOS显示芯片100设于第一轴上,LCOS照明设备105设于第二轴上。其中,LCOS照明设备105包括:沿第二轴依次排列的凹凸透镜1051以及光源设备1052。
光源设备1052发出的发散角较大的非偏振光首先进入凹凸透镜1051,经凹凸透镜1051折射后变为发散角较小的光线,再进入PBS101,经PBS101的偏振分光介质膜偏振化后,其中一束线偏振光可照射在LCOS显示芯片100上,使其显示出不同的灰阶和颜色的画面。在本发明的上述或下述实施例中所述的LCOS显示芯片100发出的虚拟图像光,应当理解为LCOS显示芯片100经上述照明过程所反射的光,不再赘述。
其中,凹凸透镜1051靠近光源设备1052的第一面S11为凹球面,远离光源设备1052的第二面S12为凸球面。光源设备100发出的光线入射在S11之后,偏折为小角度的光线入射到S12上。为保证光收集效率,S12面为接近半球面的凸球面,从而在曲率半径确定的情况下,使得S12具有最大的数值孔径以增大S12的光通量,将S11折射来的光线尽可能地都传播出去。除此之外,作为凸球面,S12可以使得从凹凸透镜1051出射的光线具有更小的发散角,以提控制到达LCOS显示芯片100上的照明光斑的角度在合理的范围之内。可选的,在设计凹凸透镜1051时,可设计S12的曲率半径为S11曲率半径的2倍。
在上述实施例中提供的LCOS照明设备105中,采用凹凸透镜1051可实现较高的照明效率。但是,在一些可能的情形下,受光源设备1052的封装结构的限制,光源设备1052发光不均匀,进而导致照射在LCOS显示芯片100的显示范围内的光的均匀度较差。为提升对LCOS显示芯片100的照明均匀度,本发明还提出了如图4所示的LCOS照明设备。如图4所示,该设备还包括非 球面正透镜1053。
非球面正透镜1053位于凹凸透镜1051和PBS101之间,且与凹凸透镜1051同轴。在本实施例中,光源设备1052发出的光可经凹凸透镜1051偏折为较小发散角后入射在非球面正透镜1053上,非球面正透镜1053可将凹凸透镜1051折射来的光源设备1052发出的光均匀地折射至PBS101,以供PBS102偏振化后进入LCOS显示芯片100。
其中,非球面正透镜1053的曲率半径从中心到边缘连续发生特定变化,且具有正光焦度,进而可以准确地控制每条出射光线的走向,使得光线偏折后到达目标平面的指定位置,保证了照明光斑在LCOS显示芯片上有良好的分布均匀性。
在本发明的上述或下述实施例中,可选的,第一入光面Si1和/或第二入光面Si1可镀增透膜。若在第一入光面Si1上镀增透膜,则可增加进入第一入光面Si1的虚拟图像光的强度,使得人眼所看到的虚拟图像更加清晰。同理,若在第二入光面Si2上镀增透膜,则可增加进入第二入光面Si2的环境光的强度,使得人眼所看到的真实环境图像更加清晰。
在本发明的上述实施例中,可选的,第一入光面Si1和/或第二入光面Si1可以为凹面,以增大其收光能力。例如,若第一入光面Si1为凹面,则即使LCOS显示芯片100的显示面积增大,第一入光面Si1也能够以高收光率将LCOS显示芯片100发出的虚拟图像光传播出去。
在本发明的上述或下述实施例中,分光棱镜104中的半透半反介质膜,可以将通过第一入光面Si1入射的一部分虚拟图像光透射至分光棱镜104的第二出光面Se2。其中,第二出光面Se2,为分光棱镜104中与第一入光面Si1相对的面。在一些可能的情形下,第二出光面Se2的出光侧无遮挡,易导致虚拟图像泄露,破坏用户隐私。
为解决上述缺陷,可选的,如图5所示,本发明提供的棱镜式AR显示该装置还可包括:偏振元件106。偏振元件106位于第二出光面Se2的出光侧, 且偏振元件106的偏振方向与PBS101的偏振方向垂直。进而,偏振元件104可消除经由第二出光面Se2透射出的偏振化的虚拟图像光,避免了用户所观看的虚拟图像的泄露,保护了用户隐私,提升了用户体验。
可选的,偏振元件106可以是一与分光棱镜104分离的光学元件,例如偏振片。可选的,偏振元件106还可与分光棱镜一体化设计,例如,可在分光棱镜104的第二出光面Se2镀偏振介质膜,以在实现消光的同时进一步优化显示装置的体积。
基于上述实施例,本发明提供一种棱镜式AR显示设备,包括上述实施例中的任一种棱镜式AR显示装置。相应地,该设备具有成像色差小、视场角大以及光效率高的优势。
需要说明的是,本文中的“第一”、“第二”等描述,是用于区分不同的光学元件等,不代表光学元件在光路中的前后顺序,也不限定“第一”和“第二”是不同的类型。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种棱镜式AR显示装置,其特征在于,包括:
    沿第一轴依次排列的LCOS显示芯片、偏振分光棱镜PBS、双胶合透镜、第一单透镜以及分光棱镜,以及设于与所述第一轴垂直的第二轴上,且靠近所述PBS的LCOS照明设备;
    其中,所述双胶合透镜包括正透镜以及负透镜,所述负透镜靠近所述PBS,所述正透镜靠近所述第一单透镜;
    所述分光棱镜的第一入光面靠近所述第一单透镜,且光轴与所述第一单透镜的光轴重合;所述分光棱镜的第二入光面的光轴与所述第一入光面的光轴垂直,且所述第二入光面与第一出光面相对;
    所述LCOS照明设备用于照明所述LCOS显示芯片,以使所述LCOS显示芯片发出虚拟图像光;所述LCOS显示芯片发出的虚拟图像光,经所述PBS透射以及所述双胶合透镜折射后进入所述第一单透镜,经所述第一单透镜折射入所述分光棱镜,在所述分光棱镜的第一入光面上,与来自所述分光棱镜的第二入光面的环境光进行合光后从所述分光棱镜的第一出光面透射至人眼。
  2. 根据权利要求1所述的装置,其特征在于,所述第一单透镜为正透镜。
  3. 根据权利要求1所述的装置,其特征在于,所述第一入光面和/或所述第二入光面镀有增透膜。
  4. 根据权利要求1所述的装置,其特征在于,还包括:偏振元件;
    所述偏振元件位于所述分光棱镜的第二出光面的出光侧,且所述偏振元件的偏振方向与所述PBS的偏振方向垂直;所述第二出光面与所述第一入光面相对。
  5. 根据权利要求1所述的装置,其特征在于,所述第一入光面和/或所述第二入光面为凹面。
  6. 根据权利要求1~5中任一项所述的装置,其特征在于,所述分光棱镜包括:依次排列的第一棱镜以及第二棱镜;
    所述第一棱镜的斜棱面与所述第二棱镜的斜棱面胶合,且胶合面上镀有 半透半反介质膜以形成所述分光棱镜的分光面;
    所述第一棱镜上靠近所述第一单透镜,且光轴与所述第一单透镜的光轴重合的面为所述第一入光面;
    所述第一棱镜上,光轴与所述第一单透镜的光轴垂直的面为所述第一出光面;
    所述第二棱镜上,光轴与所述第一单透镜的光轴垂直的面为所述第二入光面。
  7. 根据权利要求1~4中任一项所述的装置,其特征在于,所述分光棱镜包括:依次排列的第二棱镜以及第一棱镜;
    所述第二棱镜的斜棱面与所述第一棱镜的斜棱面胶合,且胶合面上镀有半透半反介质膜以形成所述分光棱镜的分光面;
    所述第二棱镜上靠近所述第一单透镜,且光轴与所述第一单透镜的光轴重合的面为所述第一入光面;
    所述第二棱镜上,光轴与所述第一单透镜的光轴垂直的面为所述第二入光面,所述第二入光面为凸面且镀有半透半反介质膜;
    所述第一棱镜上,光轴与所述第一单透镜的光轴垂直的面为所述第一出光面。
  8. 根据权利要求7所述的装置,其特征在于,所述第一出光面为与所述第二入光面同心且曲率半径相同的凹面。
  9. 根据权利要求1所述的装置,其特征在于,所述LCOS照明设备包括:沿所述第二轴依次排列的凹凸透镜以及光源设备;
    其中,所述凹凸透镜靠近所述光源设备的第一面为凹球面,靠近所述PBS的第二面为凸球面;
    所述光源设备发出的光经所述凹凸透镜汇聚至所述PBS,经所述PBS偏振化后以垂直线偏振光进入所述LCOS显示芯片。
  10. 根据权利要求9所述的装置,其特征在于,还包括:设于所述第二轴上,且位于所述凹凸透镜和所述PBS之间的非球面正透镜;
    所述非球面正透镜用于将所述凹凸透镜折射来的所述光源设备发出的光均匀地折射至所述PBS,以供所述PBS偏振化后进入所述LCOS显示芯片。
PCT/CN2017/104431 2017-09-19 2017-09-29 棱镜式ar显示装置 WO2019056409A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17872891.1A EP3686649A4 (en) 2017-09-19 2017-09-29 PRISMATIC AR DISPLAY DEVICE
JP2018529174A JP6909790B2 (ja) 2017-09-19 2017-09-29 プリズム型拡張現実ディスプレイデバイス
KR1020187015805A KR102059760B1 (ko) 2017-09-19 2017-09-29 프리즘식 ar 표시 장치
US15/780,213 US10690912B2 (en) 2017-09-19 2017-09-29 Prismatic AR display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710847856.6A CN107422484B (zh) 2017-09-19 2017-09-19 棱镜式ar显示装置
CN201710847856.6 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019056409A1 true WO2019056409A1 (zh) 2019-03-28

Family

ID=60433604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104431 WO2019056409A1 (zh) 2017-09-19 2017-09-29 棱镜式ar显示装置

Country Status (6)

Country Link
US (1) US10690912B2 (zh)
EP (1) EP3686649A4 (zh)
JP (1) JP6909790B2 (zh)
KR (1) KR102059760B1 (zh)
CN (1) CN107422484B (zh)
WO (1) WO2019056409A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262038A (zh) * 2019-06-06 2019-09-20 歌尔股份有限公司 光学系统及具有其的虚拟现实设备

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568792B1 (ko) * 2017-12-04 2023-08-21 삼성전자주식회사 회절 광학 렌즈를 구비한 다중 영상 디스플레이 장치
CN107966821A (zh) 2018-01-02 2018-04-27 京东方科技集团股份有限公司 增强现实眼镜
CN109991744B (zh) 2018-01-02 2020-12-01 京东方科技集团股份有限公司 显示装置、显示方法及平视显示装置
CN108681068B (zh) 2018-02-12 2023-03-21 优奈柯恩(北京)科技有限公司 Ar显示装置和穿戴式ar设备
CN108776390A (zh) * 2018-06-08 2018-11-09 施轩杰 一种使用非严格分光棱镜的光学显示系统方案
CN108881538A (zh) * 2018-06-22 2018-11-23 北京小米移动软件有限公司 移动终端
CN108957750A (zh) * 2018-07-09 2018-12-07 歌尔科技有限公司 光学系统、头戴显示设备及智能眼镜
JP7131145B2 (ja) * 2018-07-10 2022-09-06 セイコーエプソン株式会社 ヘッドマウントディスプレイ
KR102129669B1 (ko) * 2018-08-27 2020-07-02 주식회사 파노비젼 전반사 구조를 갖는 투과형 hmd 광학시스템
WO2021002641A1 (en) * 2019-07-04 2021-01-07 Samsung Electronics Co., Ltd. Electronic device and method for displaying augmented reality
CN110361872A (zh) * 2019-07-15 2019-10-22 合肥工业大学 一种透视三维显示装置及三维显示系统
CN111158150A (zh) * 2020-02-10 2020-05-15 Oppo广东移动通信有限公司 镜片组件及头戴显示设备
CN111474723A (zh) * 2020-05-09 2020-07-31 Oppo广东移动通信有限公司 显示光学系统及头戴显示设备
CN112346252A (zh) * 2020-11-09 2021-02-09 京东方科技集团股份有限公司 近眼显示装置
KR102603651B1 (ko) * 2021-05-27 2023-11-21 유한회사 에픽에이비오닉스 이미지의 위치 조절이 가능한 디스플레이모듈 및 이를 포함한 광학장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029968A (zh) * 2007-04-06 2007-09-05 北京理工大学 可寻址光线屏蔽机制光学透视式头盔显示器
CN106154553A (zh) * 2016-08-01 2016-11-23 全球能源互联网研究院 一种电力巡检智能头盔双目显示系统及其实现方法
CN205787364U (zh) * 2016-03-23 2016-12-07 北京三星通信技术研究有限公司 近眼显示设备
CN106773068A (zh) * 2017-03-24 2017-05-31 深圳增强现实技术有限公司 一种增强现实可穿戴智能眼镜的光学模组
US20170255017A1 (en) * 2016-03-03 2017-09-07 Disney Enterprises, Inc. Increasing returned light in a compact augmented reality / virtual reality display
CN107148592A (zh) * 2014-11-11 2017-09-08 微软技术许可有限责任公司 防止透视显示器中的显示泄露

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473720B2 (ja) * 1995-02-23 2003-12-08 株式会社ニコン 観察光学系および観察方法
JPH1075407A (ja) 1996-08-30 1998-03-17 Olympus Optical Co Ltd 画像表示装置
JP3291448B2 (ja) * 1997-01-21 2002-06-10 三洋電機株式会社 偏光照明装置及び該偏光照明装置を用いた投写型表示装置
JP3802653B2 (ja) * 1997-05-21 2006-07-26 オリンパス株式会社 立体画像表示装置
JP2002365585A (ja) * 2001-05-31 2002-12-18 Daeyang E & C Co Ltd 頭部装着用ディスプレー用光学システム
WO2003001275A2 (en) * 2001-06-21 2003-01-03 Koninklijke Philips Electronics N.V. Display device
US7192139B2 (en) * 2002-12-04 2007-03-20 Thomson Licensing High contrast stereoscopic projection system
US7290882B2 (en) * 2004-02-05 2007-11-06 Ocutronics, Llc Hand held device and methods for examining a patient's retina
TWI287166B (en) * 2004-11-15 2007-09-21 Young Optics Inc Projection display system
US7369317B2 (en) * 2005-03-07 2008-05-06 Himax Technologies, Inc. Head-mounted display utilizing an LCOS panel with a color filter attached thereon
US7529029B2 (en) 2005-07-29 2009-05-05 3M Innovative Properties Company Polarizing beam splitter
WO2007054738A1 (en) * 2005-11-10 2007-05-18 Bae Systems Plc A display source
JPWO2008105156A1 (ja) * 2007-02-28 2010-06-03 株式会社フォトニックラティス 偏光イメージング装置,及び微分干渉顕微鏡
JP2010243641A (ja) * 2009-04-02 2010-10-28 Fujifilm Corp 接合型光学素子、及び接合方法
KR101997845B1 (ko) 2010-12-24 2019-10-01 매직 립, 인코포레이티드 인체공학적 머리 장착식 디스플레이 장치 및 광학 시스템
US9784985B2 (en) 2011-10-24 2017-10-10 3M Innovative Properties Company Titled dichroic polarizing beamsplitter
EP2786197A1 (en) 2011-11-28 2014-10-08 3M Innovative Properties Company Polarizing beam splitters providing high resolution images and systems utilizing such beam splitters
JP2013114022A (ja) * 2011-11-29 2013-06-10 Seiko Epson Corp 偏光装置及び表示装置
CN102402005B (zh) * 2011-12-06 2015-11-25 北京理工大学 自由曲面双焦面单目立体头盔显示器装置
CN102540465A (zh) * 2011-12-09 2012-07-04 中航华东光电有限公司 一种头盔显示器的光学系统
TWI524128B (zh) * 2011-12-09 2016-03-01 銘異科技股份有限公司 投影系統
KR101546962B1 (ko) 2013-08-27 2015-08-24 주식회사 에픽옵틱스 헤드 마운트 디스플레이의 광학계
JP6413291B2 (ja) 2014-03-27 2018-10-31 セイコーエプソン株式会社 虚像表示装置、およびヘッドマウントディスプレイ
US20160077338A1 (en) * 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
JP6535456B2 (ja) * 2014-11-10 2019-06-26 株式会社日立エルジーデータストレージ 映像投射装置及びヘッドマウントディスプレイ
CN104635333B (zh) * 2015-01-26 2017-05-31 青岛歌尔声学科技有限公司 一种目镜、头戴目镜系统和微显示头戴设备
JP6081508B2 (ja) 2015-02-16 2017-02-15 株式会社テレパシージャパン 直線配置型の接眼映像表示装置
JP6333467B2 (ja) 2015-03-24 2018-05-30 三菱電機株式会社 情報処理装置
CN104898280B (zh) * 2015-05-04 2017-09-29 青岛歌尔声学科技有限公司 一种头戴式显示器的显示方法和头戴式显示器
CN106569333A (zh) * 2015-10-12 2017-04-19 美商晶典有限公司 透视型近眼显示光学系统
CN106526859A (zh) * 2016-12-14 2017-03-22 中国航空工业集团公司洛阳电光设备研究所 一种vr虚拟现实和ar增强现实兼容的头戴显示设备
CN207133517U (zh) * 2017-09-19 2018-03-23 歌尔科技有限公司 棱镜式ar显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029968A (zh) * 2007-04-06 2007-09-05 北京理工大学 可寻址光线屏蔽机制光学透视式头盔显示器
CN107148592A (zh) * 2014-11-11 2017-09-08 微软技术许可有限责任公司 防止透视显示器中的显示泄露
US20170255017A1 (en) * 2016-03-03 2017-09-07 Disney Enterprises, Inc. Increasing returned light in a compact augmented reality / virtual reality display
CN205787364U (zh) * 2016-03-23 2016-12-07 北京三星通信技术研究有限公司 近眼显示设备
CN106154553A (zh) * 2016-08-01 2016-11-23 全球能源互联网研究院 一种电力巡检智能头盔双目显示系统及其实现方法
CN106773068A (zh) * 2017-03-24 2017-05-31 深圳增强现实技术有限公司 一种增强现实可穿戴智能眼镜的光学模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262038A (zh) * 2019-06-06 2019-09-20 歌尔股份有限公司 光学系统及具有其的虚拟现实设备

Also Published As

Publication number Publication date
US20190285883A1 (en) 2019-09-19
CN107422484B (zh) 2023-07-28
JP6909790B2 (ja) 2021-07-28
KR102059760B1 (ko) 2019-12-26
JP2019533176A (ja) 2019-11-14
CN107422484A (zh) 2017-12-01
EP3686649A4 (en) 2020-11-25
EP3686649A1 (en) 2020-07-29
KR20190039658A (ko) 2019-04-15
US10690912B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2019056409A1 (zh) 棱镜式ar显示装置
US10386563B2 (en) Illuminator for a wearable display
WO2019154430A1 (zh) 穿戴式ar系统、ar显示设备及其投射源模组
US9194995B2 (en) Compact illumination module for head mounted display
JP4508655B2 (ja) 光導体光学装置
WO2020010703A1 (zh) 光学系统、头戴显示设备及智能眼镜
WO2022095663A1 (zh) 近眼显示装置
US11543648B2 (en) Virtual image projection device
CN107643559A (zh) 基于反射式波导耦合器的光线传导和分离方法及装置
JP2019113842A (ja) 投影装置
US9829716B1 (en) Head mounted display
CN104049368B (zh) 一种瞳距可调的穿透式视频眼镜光学引擎系统
KR20200108666A (ko) 영상의 횡이동이 가능한 디스플레이 장치
CN207133517U (zh) 棱镜式ar显示装置
US10983317B2 (en) Compact, lightweight optical imaging system having free-form surface and common optical axis direction
CN116027532A (zh) 一种短焦折反投影系统及近眼显示装置
CN113568141B (zh) 镜头、投影光机以及近眼显示设备
US11460703B2 (en) Laser optical projection module and wearable device having the same
CN113900263A (zh) 一种合色装置
CN113253558A (zh) 光源组件、成像装置和电子装置
CN209167776U (zh) 一种投影镜头及近眼显示装置
TW201821861A (zh) 頭戴式顯示裝置
CN217954844U (zh) 近眼显示装置及穿戴设备
CN217467350U (zh) 近眼显示装置及穿戴设备
CN117250767A (zh) 投影显示系统以及投影设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017872891

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018529174

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187015805

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017872891

Country of ref document: EP

Effective date: 20180522

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE