WO2019056401A1 - 基于感应电场的多磁路多次级流体反应系统及其应用 - Google Patents

基于感应电场的多磁路多次级流体反应系统及其应用 Download PDF

Info

Publication number
WO2019056401A1
WO2019056401A1 PCT/CN2017/103696 CN2017103696W WO2019056401A1 WO 2019056401 A1 WO2019056401 A1 WO 2019056401A1 CN 2017103696 W CN2017103696 W CN 2017103696W WO 2019056401 A1 WO2019056401 A1 WO 2019056401A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic circuit
reaction system
electric field
fluid reaction
branch
Prior art date
Application number
PCT/CN2017/103696
Other languages
English (en)
French (fr)
Inventor
杨哪
郭璐楠
金亚美
徐学明
吴石林
李丹丹
陈益胜
吴凤凤
张瑶
张梦月
谢正军
金征宇
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2019056401A1 publication Critical patent/WO2019056401A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid

Definitions

  • the invention particularly relates to a multi-magnetic multi-secondary fluid reaction system based on an induced electric field and an application thereof, and belongs to the technical field of electrocatalytic processing in the fields of biochemistry, medical treatment, food and environment.
  • the sample can be left to stand in the electrode for processing, or it can be processed through the electrode in a continuous stream.
  • the electric field processing has thermal effects and non-thermal effects.
  • the thermal effect is mainly caused by large-scale reciprocating movement of charged solute under electromigration, which can increase the chemical reaction rate.
  • the non-thermal effect is mainly electroporation or electric breakdown.
  • the cell membrane is damaged by the action, which causes the overflow of the intracellular solute and the death of the microorganism, thereby completing the rapid extraction of the functional component and the sterilization and inactivation of the food at normal temperature or at a lower temperature.
  • the main object of the present application is to provide a multi-magnetic multi-secondary fluid reaction system based on an induced electric field and an application thereof to overcome the deficiencies of the prior art.
  • the embodiment of the present application provides a multi-magnetic path multi-secondary fluid reaction system based on an induced electric field, including:
  • a closed magnetic circuit system comprising:
  • the secondary coil wound around the main magnetic circuit and/or the branch magnetic circuit, the secondary coil including a spiral conduit through which the liquid can flow.
  • An induction cavity disposed on the main magnetic circuit and/or the branch magnetic circuit for accommodating the secondary coil
  • a power supply system includes one or more programmable power supply modules, the programmable power supply module being electrically coupled to the primary coil and providing an excitation voltage to the primary coil.
  • the embodiments of the present application also provide the use of the induced electric field-based multi-magnetic multi-secondary fluid reaction system in the fields of biochemistry, medical treatment, food or the environment.
  • the embodiment of the present application further provides a liquid processing method, which is implemented by the multi-magnetic path multi-secondary fluid reaction system based on an induced electric field, and the method includes:
  • the feed liquid to be treated is fed to the multi-magnetic multi-secondary fluid reaction system for processing.
  • the method further includes: adjusting a winding direction of the secondary coil in the sensing cavity to adjust an output voltage polarity of the sensing cavity.
  • the multi-magnetic multi-secondary fluid reaction system provided by the present application has the characteristics of compact structure, convenient application and high processing efficiency, and particularly the overall working performance can be simply adjusted according to actual needs, and is suitable for sterilization. Widely used in the fields of enzymes and chemical electrocatalysis.
  • FIG. 1 is a schematic view showing the structure of an induction cavity in a multi-magnetic multi-secondary fluid reactor based on an induced electric field in an exemplary embodiment of the present application;
  • FIG. 2 is a schematic diagram of a multi-magnetic path multi-secondary fluid reaction system based on an induced electric field in Embodiment 1 of the present application;
  • Embodiment 3 is a three-stage magnetic circuit of a multi-magnetic path multi-secondary fluid reaction system based on an induced electric field in Embodiment 1 of the present application; Road size diagram;
  • FIG. 4 is a schematic diagram of a three-stage magnetic circuit structure of a multi-magnetic path multi-secondary fluid reaction system based on an induced electric field in Embodiment 1 of the present application;
  • FIG. 5 is a schematic diagram showing the distribution of an induction cavity in a three-stage magnetic circuit in a multi-magnetic multi-secondary fluid reaction system based on an induced electric field in Embodiment 1 of the present application;
  • FIG. 6 is a schematic diagram of an equivalent connection circuit of a sample coil of an induction cavity in a multi-magnetic multi-secondary fluid reaction system based on an induced electric field in Embodiment 1 of the present application;
  • FIG. 7 is a schematic diagram of a constant temperature medium flow of an induction cavity in a multi-magnetic multi-secondary fluid reaction system based on an induced electric field in Embodiment 1 of the present application;
  • FIG. 8 is a schematic diagram of a multi-magnetic multi-secondary fluid reaction system based on an induced electric field in an exemplary embodiment 2 of the present application;
  • FIG. 9 is a schematic diagram showing the size of a five-stage magnetic circuit of a multi-magnetic multi-secondary fluid reaction system based on an induced electric field in Embodiment 2 of the present application;
  • FIG. 10 is a schematic diagram of a five-stage magnetic circuit structure of a multi-magnetic path multi-secondary fluid reaction system based on an induced electric field in Embodiment 2 of the present application;
  • FIG. 11 is a schematic diagram showing the distribution of an induction cavity in a five-stage magnetic circuit in a multi-magnetic path multi-secondary fluid reaction system based on an induced electric field in Embodiment 2 of the present application;
  • FIG. 12 is a schematic diagram of an equivalent connection circuit of a sample coil of an induction cavity in a multi-magnetic multi-secondary fluid reaction system based on an induced electric field according to Embodiment 2 of the present application;
  • FIG. 13 is a schematic diagram of a constant temperature medium flow of an induction cavity in a multi-magnetic multi-secondary fluid reaction system based on an induced electric field in Embodiment 2 of the present application;
  • An embodiment of the present application provides a multi-magnetic multi-secondary fluid reaction system based on an induced electric field, including:
  • a closed magnetic circuit system comprising:
  • the secondary coil wound around the main magnetic circuit and/or the branch magnetic circuit, the secondary coil including a spiral conduit through which the liquid can flow.
  • An induction cavity disposed on the main magnetic circuit and/or the branch magnetic circuit for accommodating the secondary coil
  • a power supply system includes one or more programmable power supply modules, the programmable power supply module being electrically coupled to the primary coil and providing an excitation voltage to the primary coil.
  • the multi-magnetic path multi-secondary fluid reaction system based on the induced electric field may further include:
  • a liquid container that is at least used to communicate with the spiral conduit.
  • the multi-magnetic path multi-secondary fluid reaction system based on the induced electric field may further include:
  • a pump system that is at least used to drive the feed fluid to flow within the spiral conduit.
  • the multi-magnetic path multi-secondary fluid reaction system based on the induced electric field may further include:
  • the temperature control system comprises one or more constant temperature circulating water baths, wherein the constant temperature circulating water bath is in communication with a constant temperature jacket, and the constant temperature jacket is at least used for regulating the temperature of the secondary coil in the sensing chamber.
  • the thermostatic jacket is sleeved on the sensing cavity
  • the secondary coil is encapsulated in the sensing cavity
  • a sample inlet and a sample outlet of the spiral conduit are disposed in the sensing cavity on.
  • the sensing cavity is sleeved on the main magnetic circuit and/or the branch magnetic circuit.
  • the position of the sensing cavity sleeved on the main magnetic circuit and/or the branch magnetic circuit is adjustable.
  • the primary coil is encapsulated in each induction cavity.
  • the winding direction of the secondary coil in each induction chamber is adjustable.
  • main magnetic circuit and/or the sensing cavity disposed on the branch magnetic circuit of the closed magnetic circuit system are arranged in series and/or in parallel with each other.
  • the secondary coil is wound around the main magnetic circuit and/or the branch magnetic circuit in a clockwise or counterclockwise direction.
  • branch magnetic circuit in the closed magnetic circuit system is integrally disposed with the main magnetic circuit.
  • the sum of the areas of the cross sections of the magnetic circuits of the branch circuits in the closed magnetic circuit system is equal to the area of the cross section of the main magnetic circuit.
  • the material of the main magnetic circuit and the branch magnetic circuit includes any one or more of an oriented silicon steel core, a ferrite core, a non-oriented silicon steel core, a nickel steel core, and an amorphous alloy iron core. The combination.
  • the power system includes a programmable power supply module with an operating frequency of 1 Hz to 200 kHz.
  • the constant temperature medium circulating in the constant temperature jacket has a conductivity of 1 ⁇ 10 -6 s ⁇ cm -1 -1 ⁇ 10 -18 s ⁇ cm -1 .
  • the potential difference between two adjacent sensing cavities is 0-100 kV/cm.
  • Another aspect of the present application also provides the use of the induced electric field-based multi-magnetic multi-secondary fluid reaction system in the fields of biochemistry, medical treatment, food or the environment.
  • Another aspect of the embodiment of the present application further provides a liquid processing method, which is implemented based on the induced electric field-based multi-magnetic circuit multi-secondary fluid reaction system, and the method includes:
  • the feed liquid to be treated is fed to the multi-magnetic multi-secondary fluid reaction system for processing.
  • the method further comprises: adjusting an output voltage polarity of the sensing cavity by adjusting a winding direction of the secondary coil in the sensing cavity.
  • the method further comprises: arranging a plurality of multi-magnetic circuit multi-secondary fluid reaction systems in series and/or in parallel to achieve continuous processing of the liquid.
  • the multi-magnetic path multi-secondary fluid reaction system based on the induced electric field provided by the embodiment of the present application has a plurality of closed magnetic circuits, and the plurality of sensing cavities are respectively disposed on the main magnetic circuit and the branch magnetic circuit.
  • the material layout can be realized by adjusting the position layout of the induction cavity in the closed multi-magnetic circuit system and controlling the conductivity of the circulating constant temperature medium.
  • the structure of the system is more compact, and a plurality of processing sections with different potential differences can be obtained in the same reaction system, thereby improving the processing efficiency of the system;
  • the output voltage polarity of each sensing cavity It can be set according to the winding direction of the sample coil in the sensing chamber; again, in order to increase the processing amount of the product, a plurality of reaction systems can be used and/or connected in series to complete continuous sterilization, enzyme elimination and chemical electrocatalytic treatment.
  • sample coil mentioned in the embodiment of the present application can be understood as the aforementioned secondary coil, and the aforementioned secondary coil includes It is not limited to the sample coil in the embodiment.
  • an induction cavity 100 in a multi-magnetic path multi-secondary fluid reaction system based on an induced electric field includes: a sample outlet 101 , a sample outlet 102 , a circulating constant temperature medium inlet 103 , and a circulating constant temperature medium outlet 104 .
  • the constant temperature jacket 105, the sample coil 106, the sealing ring 107, the induction cavity 100 has a hollow structure and is open at the upper side, and the sealing ring 107 is sleeved at the upper opening.
  • the multi-magnetic path multi-secondary fluid reaction system based on the induced electric field used in the embodiment includes six sensing cavities 100, an alternating power source 108, a constant temperature circulating water bath 109, a plunger pump 110, and a collecting container. 111, and a closed three-stage magnetic circuit 202 composed of an iron core, wherein a middle one is a main magnetic circuit, and the left and right sides are branch magnetic circuits, and the size of the closed three-stage magnetic circuit 202 is shown in FIG.
  • the main magnetic circuit is wound with 30 ⁇ primary coil 201, two branch magnetic circuits Each of the primary coils 201 is electrically connected to the alternating current source 108.
  • the alternating power source 108 operates at a frequency of 1 kHz.
  • the two sensing cavities 100 on each secondary magnetic circuit are first and second, and the tail ends are connected to form a parallel structure, that is, the sample inlet 101 and the sample inlet 101 are connected, and the sample outlet 102 and the sample outlet 102 are connected;
  • the two sensing cavities 100 on the main magnetic circuit are connected end to end to form a series structure, that is, the sample inlet 101 and the sample outlet 102 are connected;
  • the final main magnetic circuit and the sensing cavity 100 of the two secondary magnetic circuits form a series structure, and the reaction
  • the sample coil 106 of the system is equivalently connected to the circuit structure and the sample flow direction 400. Please refer to FIG.
  • the sample coil 106 includes a spiral line through which the feed liquid flows and a liquid flowing through the spiral line; the flow of the sample Driven by the plunger pump 110 and into the reaction system, the final product flows into the collection container 111; the induction chamber 100 has a circulating constant temperature medium inlet 103 and an outlet 104, and the temperature of the constant temperature medium is controlled by the constant temperature circulating water bath 109, and the constant temperature medium flows.
  • Direction 300, the flow mode of the constant temperature medium in the reaction system please refer to Figure 7; the inner diameter of the sample coil is 2mm, the outer diameter of the tube is 3mm; the core material constituting the magnetic circuit is 0.08mm Thick oriented silicon steel sheets are overlapped.
  • the cross-sectional areas of the two branch magnetic circuits are respectively 16 cm 2 , and the cross-sectional area of the main magnetic circuit in the middle is 32 cm 2 .
  • the juice processing is taken as an example to further illustrate the application of the multi-magnetic multi-secondary fluid reaction system based on the induced electric field in the sterilization and killing enzyme.
  • Step 1 After washing and peeling the watermelon, cut into small pieces of 5cm ⁇ 5cm ⁇ 5cm, put it into the masher and beat it, then centrifuge the beaten watermelon syrup at 8000rpm for 20min, then filter it with two layers of filter cloth. The supernatant was removed to remove the pomace to obtain a clear watermelon juice sample. Watermelon juice was divided into three groups for treatment, which were induction electric field group, control group and blank group, each treatment volume was 1L;
  • Step 2 Turn on the constant temperature circulating water bath 109 and set the temperature to 12 ° C.
  • the circulating constant temperature medium is absolute ethanol (conductivity is 1.24 ⁇ 10 -16 s ⁇ cm -1 ).
  • the constant temperature medium is from each induction cavity.
  • the circulating constant temperature medium inlet 103 of 100 flows in, and then flows out from the circulating constant temperature medium outlet 104 and enters the constant temperature jacket 105 of the next induction chamber 100.
  • six induction chambers 100 are used and the sample coils 106 are counterclockwise. , the polarity of the output voltage of each sensing cavity 100 is the same;
  • Step 3 Turn on the alternating power supply 108 to select a frequency of 1 kHz, a voltage of 1 kV, and energize the primary coil 201 in the three-stage magnetic circuit 202.
  • Step 4 The control group is treated. If all the other conditions are the same, the sample obtained when the watermelon juice passes through the reaction system but does not apply the excitation voltage to the primary coil 201 is a control group; and the freshly squeezed watermelon juice without any treatment is Is a blank group.
  • Step 5 Determination of polyphenol oxidase (PPO) activity, adding 1.5 mL of 40 mmol ⁇ L -1 catechol and 2.3 mL of 0.1 mol ⁇ L -1 phosphate buffer (pH 6.5) in a 10 mL tube, and After standing in a 25 ° C water bath for 5 min, 0.2 mL of watermelon juice was added to the system, and after mixing, the change of the absorbance in 2 min was measured at 420 nm.
  • the PPO activity (Unit) is defined as the number of units per gram of fresh pulp (FW) that causes a change in absorbance at 420 nm of 0.001 per minute.
  • Step 6 Determination of peroxidase (POD) activity: 3 mL of 0.1 mol ⁇ L -1 phosphate buffer (pH 6.0), 19 ⁇ L of guaiacol and 28 ⁇ L of 30% H 2 O 2 were added to a 10 mL tube. The mixture was allowed to stand in a 25 ° C water bath for 5 min, and then 0.05 mL of watermelon juice was added to the reaction system for mixing, and the change in absorbance within 2 min was measured at 470 nm.
  • the POD activity (Unit) is defined as the number of units per gram of fresh pulp (FW) that causes a change in absorbance of 0.001 at 470 nm per minute.
  • Step 7 Determination of the total number of colonies: The test was carried out with reference to the AOAC 990.12 Petrifilm MT method.
  • the PPO activity of the induction electric field group, the control group and the blank group was 1.2Unit ⁇ g -1 ⁇ FW, 14.6Unit ⁇ g -1 ⁇ FW, 15.8Unit ⁇ g -1 ⁇ FW; POD activity They are 0.01Unit ⁇ g -1 ⁇ FW, 0.06Unit ⁇ g -1 ⁇ FW, 0.07Unit ⁇ g -1 ⁇ FW; and the total number of colonies is 0.8log (CFU ⁇ mL -1 ), 12.3log (CFU ⁇ mL) -1 ), 11.5 log (CFU ⁇ mL -1 ).
  • the induction cavity structure used in this embodiment refers to the form in Example 1, and the multi-magnetic path multi-secondary fluid reaction system based on the induced electric field is shown in FIG. 8.
  • the eight induction cavities 100, the alternating power source 108, and the constant temperature cycle are included.
  • the five-stage magnetic circuit 203 wherein the middle one is the main magnetic circuit, the left and right sides are the branch magnetic circuit, and the closed five-level magnetic circuit 203 is labeled as shown in Fig.
  • sample coil 106 includes a spiral line through which the feed liquid flows and a liquid flowing through the spiral line;
  • Each set of samples of a 115 and reagent bottle b 116 is driven by metering pump a 113 and metering pump b 114 into heat exchanger a 118 and heat exchanger b 119, respectively, to reach a predetermined temperature, and each set of samples is mixed via mixer 112.
  • the induction chamber 100 has a circulating constant temperature medium inlet 103 and an outlet 104, and the temperature of the constant temperature medium is controlled by the constant temperature circulating water bath 109, and the flow of the constant temperature medium in the reaction system
  • the inner diameter of the tube of the sample coil is 1 mm
  • the outer diameter of the tube is 2 mm
  • the core material constituting the magnetic circuit is formed by overlapping ferrite.
  • the cross-sectional areas of the four branch magnetic circuits are respectively 25 cm 2
  • the cross-sectional area of the main magnetic circuit in the middle is 100 cm 2 .
  • the catalytic reaction extraction is taken as an example to further illustrate the application of the multi-magnetic multi-secondary fluid reaction system based on induced electric field in chemical reaction.
  • Step 1 respectively, 500 mL of acetic acid (mass concentration 36%) and 400 mL of hydrogen peroxide (mass concentration 60%) were poured into the reagent bottle a 115 for premixing, and transported by a metering pump a 113 (60 mL/min).
  • the heat exchanger a 118 was introduced to bring the temperature to 5 ° C; then 300 mL of dilute sulfuric acid (3% by mass) contained in the reagent bottle b 116 was transferred to the heat exchanger b 119 through a metering pump b 114 (20 mL/min).
  • the temperature reaches 25 ° C; the two sets of reagents simultaneously enter the mixer 112 for mixing, and then enter the reaction system;
  • Step 2 Turn on the constant temperature circulating water bath 109 and set the temperature to 76 ° C.
  • the constant temperature medium is methyl silicone oil (conductivity is 2.53 ⁇ 10 -17 s ⁇ cm -1 ).
  • the constant temperature medium is from each sensing cavity 100.
  • the circulating constant temperature medium inlet 103 flows in, and then flows out from the circulating constant temperature medium outlet 104 and enters the constant temperature jacket 105 of the next induction chamber 100.
  • eight induction chambers 100 are used and the sample coils 106 are counterclockwise.
  • the output voltage of each sensing cavity 100 has the same polarity;
  • Step 3 Turn on the alternating power supply 108 to select a frequency of 20 kHz, a voltage of 10 kV, and energize the primary coil 201 in the five-stage magnetic circuit 203.
  • Step 4 The control group is treated. If all the other conditions are the same, the sample obtained by passing the above-mentioned various types of reagents through the reaction system but not applying the excitation voltage to the primary coil 201 is a control group.
  • Step 5 After measurement, the mass fraction of peracetic acid in the induced electric field group and the control product were 17.5% and 7.4%, respectively. This indicates a significant increase in peroxyacetic acid in the product after treatment with the induced electric field of the reaction system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本申请公开了一种基于感应电场的多磁路多次级流体反应系统及其应用。基于感应电场的多磁路多次级流体反应系统,包括:闭合磁路系统,其包括:一个以上主磁路和两个以上分支磁路,每一分支磁路均与一主磁路组成闭合回路,绕设于主磁路和/或分支磁路上的初级线圈,绕设于主磁路和/或分支磁路上的次级线圈,次级线圈包括可供料液流通的螺旋管路,设置在主磁路和/或分支磁路上的感应腔体,其用于容置次级线圈;以及电源系统,其包括一个以上程控电源模块,程控电源模块与初级线圈电连接并向所述初级线圈提供激励电压。本申请提供的多磁路多次级流体反应系统具有结构紧凑,应用方便、适于在杀菌,灭酶和化学电催化处理等领域广泛应用。

Description

基于感应电场的多磁路多次级流体反应系统及其应用 技术领域
本申请特别涉及一种基于感应电场的多磁路多次级流体反应系统及其应用,属于生化、医疗、食品和环境领域电催化加工技术领域。
背景技术
目前的电场加工技术例如欧姆加热和高压脉冲电场处理都需要采用电极来产生足够强度的电势差。样品可以静置在电极中进行处理,或者以连续流的形式通过电极来完成处理。电场加工存在热效应和非热效应,热效应主要是由电迁移(Electromigration)作用下的带电溶质大规模往复移动造成,可提高化学反应速率;非热效应主要是电穿孔(Electroporation)或电崩溃(Electric breakdown)作用下造成的细胞膜破损,进而引起胞内溶质的溢出和微生物的死亡,从而在常温或较低的温度下完成功能性成分的快速提取以及对食品的杀菌和灭酶。但这些技术均使用了金属电极,即便有氧化膜的保护,在极端环境下长时间处理样品,特别是在酸性、碱性环境和高温加工时,仍会引起不同程度的电化学反应、极板表面腐蚀、重金属泄露和样品污染。因此,利用交变磁通在感应腔体间产生出电势差即感应电场,从而避免了对电极的使用进而解决上述问题。
申请内容
本申请的主要目的在于提供一种基于感应电场的多磁路多次级流体反应系统及其应用,以克服现有技术的不足。
为实现前述申请目的,本申请采用的技术方案包括:
本申请实施例提供了一种基于感应电场的多磁路多次级流体反应系统,包括:
闭合磁路系统,其包括:
一个以上主磁路和两个以上分支磁路,每一分支磁路均与一主磁路组成闭合回路,
绕设于所述主磁路和/或分支磁路上的初级线圈,
绕设于所述主磁路和/或分支磁路上的次级线圈,所述次级线圈包括可供料液流通的螺旋管路,
设置在所述主磁路和/或分支磁路上的感应腔体,其用于容置所述次级线圈;以及
电源系统,其包括一个以上程控电源模块,所述程控电源模块与所述初级线圈电连接并向所述初级线圈提供激励电压。
本申请实施例还提供了所述的基于感应电场的多磁路多次级流体反应系统于生化、医疗、食品或环境领域中的用途。
本申请实施例还提供了一种料液处理方法,它是所述的基于感应电场的多磁路多次级流体反应系统实施的,所述的方法包括:
依据实际需要,调整各感应腔体在所述闭合磁路系统的主磁路和/或分支磁路上的位置,和/或,调整流经恒温夹套的恒温介质的电导率,和/或,调控流经各感应腔体的料液的温度,和/或,根据变压器工作原理调整施加在各初级线圈上的激励电压大小和/或交变频率,从而在相邻两个感应腔体间生成不同电势差,进而在所述多磁路多次级流体反应系统中形成多个不同电势差的加工区段;以及
将待处理的料液输入所述多磁路多次级流体反应系统进行处理。
优选的,所述的方法还包括:通过调整所述感应腔体内次级线圈的绕制方向进而调整所述感应腔体的输出电压极性。
与现有技术相比,本申请提供的多磁路多次级流体反应系统具有结构紧凑,应用方便、加工效率高等特点,特别是其整体工作性能可以依据实际需要而简单调整,适于在杀菌,灭酶和化学电催化处理等领域广泛应用。
附图说明
图1是本申请典型实施例中一种基于感应电场的多磁路多次级流体反应器中感应腔体的结构示意图
图2是本申请实施例1中一种基于感应电场的多磁路多次级流体反应系统示意图;
图3是本申请实施例1中一种基于感应电场的多磁路多次级流体反应系统的三级磁 路尺寸示意图;
图4是本申请实施例1中一种基于感应电场的多磁路多次级流体反应系统的三级磁路结构示意图;
图5是本申请实施例1中一种基于感应电场的多磁路多次级流体反应系统中感应腔体在三级磁路的分布示意图;
图6是本申请实施例1中一种基于感应电场的多磁路多次级流体反应系统中感应腔体的样品线圈等效连接电路示意图;
图7是本申请实施例1中一种基于感应电场的多磁路多次级流体反应系统中感应腔体的恒温介质流通示意图;
图8是本申请典型实施例2中一种基于感应电场的多磁路多次级流体反应系统示意图;
图9是本申请实施例2中一种基于感应电场的多磁路多次级流体反应系统的五级磁路尺寸示意图;
图10是本申请实施例2中一种基于感应电场的多磁路多次级流体反应系统的五级磁路结构示意图;
图11是本申请实施例2中一种基于感应电场的多磁路多次级流体反应系统中感应腔体在五级磁路的分布示意图;
图12是本申请实施例2中一种基于感应电场的多磁路多次级流体反应系统中感应腔体的样品线圈等效连接电路示意图;
图13是本申请实施例2中一种基于感应电场的多磁路多次级流体反应系统中感应腔体的恒温介质流通示意图;
附图标记说明:100-感应腔体;101-样品进口;102-样品出口;103-循环恒温介质进口;104-循环恒温介质出口;105-恒温夹套;106-样品线圈;107-密封圈;108-交变电源;109-恒温循环水浴;110-柱塞泵;111收集容器;112-混合器;113-计量泵a;114-计量泵b;115-试剂瓶a;116-试剂瓶b;117-收集瓶;118-换热器a;119-换热器b;201-初级线圈;202-三级磁路;203-五级磁路;300-恒温介质流动方向;400-样品流动方向。
具体实施方式
鉴于现有技术中的不足,本案申请人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例一方面提供了一种基于感应电场的多磁路多次级流体反应系统,包括:
闭合磁路系统,其包括:
一个以上主磁路和两个以上分支磁路,每一分支磁路均与一主磁路组成闭合回路,
绕设于所述主磁路和/或分支磁路上的初级线圈,
绕设于所述主磁路和/或分支磁路上的次级线圈,所述次级线圈包括可供料液流通的螺旋管路,
设置在所述主磁路和/或分支磁路上的感应腔体,其用于容置所述次级线圈;以及
电源系统,其包括一个以上程控电源模块,所述程控电源模块与所述初级线圈电连接并向所述初级线圈提供激励电压。
进一步的,所述基于感应电场的多磁路多次级流体反应系统还可以包括:
料液容器,其至少用于与所述螺旋管路连通。
进一步的,所述基于感应电场的多磁路多次级流体反应系统还可以包括:
泵系统,其至少用于驱使料液在所述螺旋管路内流动。
进一步的,所述基于感应电场的多磁路多次级流体反应系统还可以包括:
温控系统,其包括一个或两个以上的恒温循环水浴,所述恒温循环水浴与恒温夹套连通,所述恒温夹套至少用于对所述感应腔体内的次级线圈温度进行调控。
优选的,所述恒温夹套套设在所述感应腔体上,所述次级线圈被封装于所述感应腔体内,且所述螺旋管路的样品入口和样品出口设置在所述感应腔体上。
优选的,所述感应腔体套设在所述主磁路和/或分支磁路上。
更为优选的,所述感应腔体套设在所述主磁路和/或分支磁路上的位置是可调的。
优选的,每一感应腔体内封装一次级线圈。
更为优选的,每一感应腔体内的次级线圈的绕制方向是可调的。
进一步的,设置于所述闭合磁路系统的主磁路和/或分支磁路上的感应腔体之间相互串联和/或并联设置。
进一步的,所述次级线圈沿顺时针或逆时针方向绕设在所述主磁路和/或分支磁路上。
进一步的,所述闭合磁路系统中的分支磁路与主磁路一体设置。
进一步的,所述闭合磁路系统中各分支路磁路的横截面的面积之和与主磁路的横截面的面积相等。
进一步的,所述主磁路和分支磁路的材质包括取向硅钢铁芯、铁氧体铁芯、非取向硅钢铁芯、镍钢铁芯和非晶合金铁芯中的任意一种或两种以上的组合。
进一步的,所述电源系统包括工作频率为1Hz~200kHz的程控电源模块。
进一步的,在所述恒温夹套内流通的恒温介质的电导率为1·10-6s·cm-1-1·10-18s·cm-1
更进一步的,在所述反应系统处于工作状态时,相邻两个感应腔体间的电势差为0-100kV/cm。
本申请实施例另一方面还提供了所述的基于感应电场的多磁路多次级流体反应系统于生化、医疗、食品或环境领域中的用途。
本申请实施例另一方面还提供了一种料液处理方法,它是基于所述的基于感应电场的多磁路多次级流体反应系统实施的,所述的方法包括:
依据实际需要,调整各感应腔体在所述闭合磁路系统的主磁路和/或分支磁路上的位置,和/或,调整流经恒温夹套的恒温介质的电导率,和/或,调控流经各感应腔体的料液的温度,和/或,根据变压器工作原理调整施加在各初级线圈上的激励电压大小和/或交变频率,从而在相邻两个感应腔体间生成不同电势差,进而在所述多磁路多次级流体反应系统中形成多个不同电势差的加工区段;以及
将待处理的料液输入所述多磁路多次级流体反应系统进行处理。
优选的,所述的方法还包括:通过调整所述感应腔体内次级线圈的绕制方向而调整所述感应腔体的输出电压极性。
优选的,所述的方法还包括:将多个多磁路多次级流体反应系统串联和/或并联设置,从而实现对料液的连续处理。
与现有技术相比,本申请实施例提供的基于感应电场的多磁路多次级流体反应系统具有多条闭合的磁路,多个感应腔体分别布置在主磁路和分支磁路上,根据磁路的欧姆 定律可知,由于磁路不同位置中存在不同的磁动势即磁势降,所以通过调整感应腔体在闭合多磁路系统中的位置布局以及控制循环恒温介质的电导率,可实现原料对交变磁通的特异性利用,同时在各个感应腔体里得到不同的输出电压,进而在相邻两个感应腔体间生成不同的电势差,由于反应系统采用了多磁路和多次级的结构来耦合交变磁通使该系统结构更加紧凑,可在同一个反应系统中得到多个不同电势差的加工区段,进而提高了系统的加工效率;其次,每个感应腔体的输出电压极性可根据感应腔体内样品线圈缠绕方向进行设定;再次,为了提高产品加工量也可将多个反应系统进行并/串联后进行使用,进而完成连续性的杀菌,灭酶和化学电催化处理。
如下将结合具体实施例对该技术方案、其实施过程及原理等作进一步的解释说明,在本申请实施例中提到的样品线圈可以理解为前述的次级线圈,前述的次级线圈包括但不限于实施例中的样品线圈。
实施例1
请参阅图1,该实施例中一种基于感应电场的多磁路多次级流体反应系统中感应腔体100包括:样品出口101,样品出口102,循环恒温介质进口103,循环恒温介质出口104,恒温夹套105,样品线圈106,密封圈107,感应腔体100为中空结构且上方开口,上方开口处套密封圈107。
请参阅图2,本实施例中采用的基于感应电场的多磁路多次级流体反应系统,包括6个感应腔体100,交变电源108,恒温循环水浴109,柱塞泵110,收集容器111,以及由铁芯构成的闭合三级磁路202,其中正中间一条为主磁路,左右两边为分支磁路,闭合三级磁路202尺寸标示请参阅图3,其中高度L1=40mm,长度L2=360mm,宽度L3=330mm,两个窗口尺寸为L4=100mm和L5=250mm;请参阅图4,主磁路上绕设有30匝初级线圈201,两条分支磁路上各绕设有20匝的初级线圈201;所述初级线圈201与交变电源108电连接,所述交变电源108的工作频率为1kHz;请参阅图5,6个感应腔体100分别布置在两条分支磁路和主磁路上;其中2条分支磁路上布置2个各含40匝样品线圈106的感应腔体100,感应腔体100的内径D1=80mm,外径D2=140mm,高度H=120mm,其中每个样品线圈106的绕设方向都是逆时针;主磁路上布置2个各含60匝样品线圈106感应腔体100,感应腔体100内径D1=120mm,外径D2=180mm,高度 H=120mm,其中每个样品线圈的绕设方向都是逆时针。
每个次级磁路上的2个感应腔体100之间首跟首,尾跟尾相连形成并联的结构,即样品进口101和样品进口101相连接,样品出口102和样品出口102相连接;同时,主磁路上的2个感应腔体100首尾相连形成串联的结构,即样品进口101和样品出口102相连接;最终主磁路和两条次级磁路上的感应腔体100形成串联结构,反应系统的样品线圈106等效连接电路结构和样品流动方向400请参阅图6;其中所述样品线圈106包括供料液流动的螺旋管路以及流经所述螺旋管路的料液;样品的流动由柱塞泵110驱动并进入反应系统,最终产品流入收集容器111中;所述感应腔体100上具有循环恒温介质进口103和出口104,恒温介质的温度由恒温循环水浴109控制,恒温介质流动方向300、恒温介质在反应系统中的流动方式请参阅图7;样品线圈的管内径为2mm,管外径为3mm;构成磁路的铁芯材料由0.08mm厚的取向硅钢片重叠而成。两条分支磁路的横截面积分别为16cm2,正中间的主磁路截面积为32cm2
下面以果汁加工为例,进一步说明这种基于感应电场的多磁路多次级流体反应系统在杀菌灭酶中的应用。
请参阅如下步骤:
步骤一:将西瓜清洗、去皮后,切成5cm×5cm×5cm的小块,放入捣碎机打浆,再将打好的西瓜浆在8000rpm下离心20min,然后用两层滤布过滤上清液,以除去果渣,得到澄清的西瓜汁样品。西瓜汁分为3组进行处理,分别为感应电场组,对照组和空白组,每次处理量为1L;
步骤二:开启恒温循环水浴109并设定温度为12℃,循环的恒温介质为无水乙醇(电导率为1.24·10-16s·cm-1),此时恒温介质从每个感应腔体100的循环恒温介质进口103流入,再从循环恒温介质出口104流出,并进入下一个感应腔体100的恒温夹套105,此实施例用6个感应腔体100且样品线圈106都为逆时针,则每个感应腔体100的输出电压极性一致;
步骤三:开启交变电源108选择频率为1kHz,电压1kV,激励闭合三级磁路202中的初级线圈201,根据变压器工作原理,此时反应系统中各感应腔体100的瞬时极性电势分别为Va=+1kV,Vb=+1kV,Vc=-1kV,Vd=+1kV,Ve=-1kV,Vf=+1kV,Vg=-1kV,Vh=-1kV; 管道各段长度为Lac=20cm,Lbc=20cm,Lde=10cm,Lfg=20cm,Lfh=20cm,则管道各段的电势差或感应电场强度分别为Eac=100V/cm,Ebc=100V/cm,Ede=200V/cm,Efg=100V/cm,Efh=100V/cm,再开启柱塞泵110,使西瓜汁流动并通过反应系统且体积流量为500mL/min,处理时间为3min,最终西瓜汁流出反应系统并进入到收集容器111,然后再关闭交变电源108、柱塞泵110和恒温循环水浴109;
步骤四:进行对照组处理,若上述其他条件均相同,此时西瓜汁通过反应系统但不施加激励电压于初级线圈201时得到的样品为对照组;而未经任何处理的鲜榨西瓜汁则为空白组。
步骤五:多酚氧化酶(PPO)活性测定,在10mL试管中加入1.5mL 40mmol·L-1的邻苯二酚和2.3mL 0.1mol·L-1的磷酸缓冲液(pH值6.5),并在25℃水浴中静置5min,然后向该体系中加入0.2mL西瓜汁,混匀后在420nm下测定吸光值在2min内的变化情况。PPO活性(Unit)定义为每克鲜果肉(FW)每分钟引起420nm处吸光值变化0.001的单位数。
步骤六:过氧化物酶(POD)活性测定:10mL试管中加入3mL 0.1mol·L-1的磷酸缓冲液(pH值6.0)、19μL愈创木酚和28μL 30%的H2O2,并在25℃水浴中静置5min,然后0.05mL西瓜汁加入到反应体系中混匀,470nm下测定吸光值2min内的变化情况。POD活性(Unit)定义为每克鲜果肉(FW)每分钟引起470nm处吸光值变化0.001的单位数。
步骤七:菌落总数测定:参考AOAC 990.12PetrifilmMT方法进行检测。
经测量,通过处理后,感应电场组,对照组和空白组的PPO活性分别为1.2Unit·g-1·FW,14.6Unit·g-1·FW,15.8Unit·g-1·FW;POD活性分别为0.01Unit·g-1·FW,0.06Unit·g-1·FW,0.07Unit·g-1·FW;而菌落总数分别为0.8log(CFU·mL-1),12.3log(CFU·mL-1),11.5log(CFU·mL-1)。
这表明经过该反应系统的感应电场处理后,西瓜汁中的多酚氧化酶活性,过氧化物酶活性和菌落总数得到了显著的下降。
实施例2
本实施例中采用的感应腔体结构参考实例1中的形式,基于感应电场的多磁路多次 级流体反应系统请参阅图8,包括8个感应腔体100,交变电源108,恒温循环水浴109,混合器112,计量泵a 113,计量泵b 114,试剂瓶a 115,试剂瓶b 116,收集瓶117,换热器a 118,换热器b 119,以及由铁芯构成的闭合五级磁路203,其中正中间一条为主磁路,左右两边的为分支磁路,闭合五级磁路203尺寸标示请参阅图9,其中高度L1=50mm,长度L2=840mm,宽度L3=320mm,两个窗口尺寸为L4=110mm和L5=220mm;主磁路上绕设有80匝初级线圈201,请参阅图10;所述初级线圈201与交变电源108电连接,所述交变电源108的工作频率为20kHz;8个感应腔体100分别布置在四条分支磁路上,请参阅图11;其中每条分支磁路上布置2个含160匝样品线圈106的感应腔体100,感应腔体100的内径D1=80mm,外径D2=140mm,高度H=100mm,其中每个样品线圈106的绕设方向都是逆时针;所有感应腔体100之间首跟尾相连形成串联结构,即样品进口101和样品出口102相连接,反应系统的样品线圈106等效连接电路结构和样品流动方向400请参阅图12;其中所述样品线圈106包括供料液流动的螺旋管路以及流经所述螺旋管路的料液;置于试剂瓶a 115和试剂瓶b 116的各组样品分别由计量泵a 113和计量泵b 114驱动进入换热器a 118和换热器b 119以达到预定的温度,每组样品再经由混合器112混合后进入反应系统,最终流出的产品进入收集瓶117中;所述感应腔体100上具有循环恒温介质进口103和出口104,恒温介质温度由恒温循环水浴109控制,恒温介质在反应系统中的流动方式请参阅图13;样品线圈的管内径为1mm,管外径为2mm;构成磁路的铁芯材料由铁氧体重叠而成。四条分支磁路的横截面积分别为25cm2,正中间的主磁路截面积为100cm2
下面以催化反应提取为例,进一步说明这种基于感应电场的多磁路多次级流体反应系统在化学反应中的应用。
反应如下步骤:
步骤一:分别将500mL的乙酸(质量浓度36%)和400mL的过氧化氢(质量浓度60%)盛倒进试剂瓶a 115进行搅拌预混,并通过计量泵a 113(60mL/min)输送进入换热器a 118使其温度达到5℃;然后将盛装在试剂瓶b 116中的300mL稀硫酸(质量浓度3%)通过计量泵b 114(20mL/min)输送进入换热器b 119使其温度达到25℃;两组试剂再同时进入混合器112进行混合,随后进入反应系统;
步骤二:开启恒温循环水浴109并设定温度为76℃,恒温介质为甲基硅油(电导率为2.53·10-17s·cm-1),此时恒温介质从每个感应腔体100的循环恒温介质进口103流入,再从循环恒温介质出口104流出,并进入下一个感应腔体100的恒温夹套105,此实施例用8个感应腔体100且样品线圈106都为逆时针,则每个感应腔体100的输出电压极性一致;
步骤三:开启交变电源108选择频率为20kHz,电压10kV,激励闭合五级磁路203中的初级线圈201,根据变压器工作原理,此时反应系统中各感应腔体100的瞬时极性电势分别为Va=+10kV,Vb=-10kV,Vc=+10kV,Vd=-10kV,Ve=+10kV,Vf=-10kV,Vg=+10kV,Vh=-10kV,Vi=+10kV,Vj=-10kV,Vk=+10kV,Vl=-10kV,Vm=+10kV,Vn=-10kV;管道各段长度为Lab=10cm,Lcd=10cm,Lef=10cm,Lgh=20cm,Lij=10cm,Lkl=10cm,Lmn=10cm,则管道各段的电势差或感应电场强度分别为Eab=2kV/cm,Ecd=2kV/cm,Eef=2kV/cm,Egh=1kV/cm,Eij=2kV/cm,Ekl=2kV/cm,Emn=2kV/cm,试剂全部通过该反应系统的时间为18min即反应时间,最终反应系统出口的产物过氧乙酸进入到收集瓶117中,然后关闭交变电源108、计量泵113和114以及恒温循环水浴109;
步骤四:进行对照组处理,若上述其他条件均相同,此时上述各类试剂通过反应系统但不施加激励电压于初级线圈201时得到的样品为对照组。
步骤五:经测量,通过处理后,感应电场组和对照组产物中的过氧乙酸质量分数分别为17.5%和7.4%。这表明经过该反应系统的感应电场处理后,产物中的过氧乙酸有了显著的提高。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (12)

  1. 一种基于感应电场的多磁路多次级流体反应系统,其特征在于包括:
    闭合磁路系统,其包括:
    一个以上主磁路和两个以上分支磁路,每一分支磁路均与一主磁路组成闭合回路,
    绕设于所述主磁路和/或分支磁路上的初级线圈,
    绕设于所述主磁路和/或分支磁路上的次级线圈,所述次级线圈包括可供料液流通的螺旋管路,
    设置在所述主磁路和/或分支磁路上的感应腔体,其用于容置所述次级线圈;以及
    电源系统,其包括一个以上程控电源模块,所述程控电源模块与所述初级线圈电连接并向所述初级线圈提供激励电压。
  2. 根据权利要求1所述基于感应电场的多磁路多次级流体反应系统,其特征在于还包括:
    料液容器,其至少用于与所述螺旋管路连通;
    和/或,泵系统,其至少用于驱使料液在所述螺旋管路内流动;
    和/或,温控系统,其包括一个或两个以上的恒温循环水浴,所述恒温循环水浴与恒温夹套连通,所述恒温夹套至少用于对所述感应腔体内的次级线圈温度进行调控;
    优选的,所述恒温夹套套设在所述感应腔体上,所述次级线圈被封装于所述感应腔体内,且所述螺旋管路的样品入口和样品出口设置在所述感应腔体上;优选的,所述感应腔体套设在所述主磁路和/或分支磁路上;更为优选的,所述感应腔体套设在所述主磁路和/或分支磁路上的位置是可调的;
    优选的,每一感应腔体内封装一次级线圈;
    更为优选的,每一感应腔体内的次级线圈的绕制方向是可调的。
  3. 根据权利要求1所述基于感应电场的多磁路多次级流体反应系统,其特征在于:设置于所述闭合磁路系统的主磁路和/或分支磁路上的感应腔体之间相互串联和/或并联设置。
  4. 根据权利要求1所述基于感应电场的多磁路多次级流体反应系统,其特征在于:所述次级线圈沿顺时针或逆时针方向绕设在所述主磁路和/或分支磁路上。
  5. 根据权利要求1所述基于感应电场的多磁路多次级流体反应系统,其特征在于:所述闭合磁路系统中的分支磁路与主磁路一体设置。
  6. 根据权利要求1所述基于感应电场的多磁路多次级流体反应系统,其特征在于:所述闭合磁路系统中各分支路磁路的横截面的面积之和与主磁路的横截面的面积相等。
  7. 根据权利要求1所述基于感应电场的多磁路多次级流体反应系统,其特征在于:所述主磁路和分支磁路的材质包括取向硅钢铁芯、铁氧体铁芯、非取向硅钢铁芯、镍钢铁芯和非晶合金铁芯中的任意一种或两种以上的组合。
  8. 根据权利要求1所述基于感应电场的多磁路多次级流体反应系统,其特征在于:所述电源系统包括工作频率为1Hz~200kHz的程控电源模块。
  9. 根据权利要求1所述基于感应电场的多磁路多次级流体反应系统,其特征在于:在所述恒温夹套内流通的控温介质的电导率为1·10-6s·cm-1-1·10-18s·cm-1
  10. 根据权利要求1所述基于感应电场的多磁路多次级流体反应系统,其特征在于:在所述反应系统处于工作状态时,相邻两个感应腔体间的电势差为0-100kV/cm。
  11. 如权利要求1-10中任一项所述的基于感应电场的多磁路多次级流体反应系统于生化、医疗、食品或环境领域中的用途。
  12. 一种料液处理方法,它是基于权利要求1-10中任一项所述的基于感应电场的多磁路多次级流体反应系统实施的,其特征在于,所述的方法包括:
    调整各感应腔体在所述闭合磁路系统的主磁路和/或分支磁路上的位置,和/或,调整流经各恒温夹套的恒温介质的电导率,和/或,调控流经各感应腔体的料液的温度,和/或,调整施加在各初级线圈上的激励电压大小和/或交变频率,从而在相邻两个感应腔体间生成不同电势差,进而在所述多磁路多次级流体反应系统中形成多个不同电势差的加工区段;以及
    将待处理的料液输入所述多磁路多次级流体反应系统进行处理;
    优选的,所述的方法还包括:通过调整所述感应腔体内次级线圈的绕制方向而调整所述感应腔体的输出电压极性;
    优选的,所述的方法还包括:将多个多磁路多次级流体反应系统串联和/或并联设置,从而实现对料液的连续处理。
PCT/CN2017/103696 2017-09-22 2017-09-27 基于感应电场的多磁路多次级流体反应系统及其应用 WO2019056401A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710867450.4 2017-09-22
CN201710867450.4A CN107486114B (zh) 2017-09-22 2017-09-22 基于感应电场的多磁路多次级流体反应系统及其应用

Publications (1)

Publication Number Publication Date
WO2019056401A1 true WO2019056401A1 (zh) 2019-03-28

Family

ID=60652871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103696 WO2019056401A1 (zh) 2017-09-22 2017-09-27 基于感应电场的多磁路多次级流体反应系统及其应用

Country Status (2)

Country Link
CN (1) CN107486114B (zh)
WO (1) WO2019056401A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112189778A (zh) * 2020-09-30 2021-01-08 江南大学 一种三相连续流感应热绿色杀菌系统及方法
TWI726737B (zh) * 2020-06-02 2021-05-01 中國鋼鐵股份有限公司 用於區別不同材料之分割式鐵芯的量測裝置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109618439B (zh) * 2018-12-27 2021-05-28 英都斯特(无锡)感应科技有限公司 星形-星形式三相感应热反应器
WO2020133099A1 (zh) * 2018-12-27 2020-07-02 英都斯特(无锡)感应科技有限公司 连续式感应热反应器
US20220243164A1 (en) * 2019-07-02 2022-08-04 Kytopen Corporation Devices, systems, and kits for electro-mechanical delivery and methods of use thereof
CN111982976B (zh) * 2020-08-30 2022-04-08 广东利诚检测技术有限公司 基于异相等差感应电势检测红薯粉中明矾含量的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236461A (ja) * 1996-03-01 1997-09-09 Nippon Steel Corp スラグ流出量判定方法およびスラグ流出判定装置
CN102709034A (zh) * 2012-01-04 2012-10-03 吴江市东泰电力特种开关有限公司 一种有载连续变压器
CN105304298A (zh) * 2015-09-14 2016-02-03 江南大学 一种多级感应式连续流磁电加工装置及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552116B (zh) * 2008-12-26 2011-06-08 魏明 分磁路变压器
CN102464323A (zh) * 2010-11-04 2012-05-23 中国科学院过程工程研究所 一种高频等离子体制备高纯超细硼化锆粉体的方法
CN106140046B (zh) * 2016-07-06 2019-02-22 江南大学 阵列式感应电场流体反应系统及其应用
CN106932465B (zh) * 2017-03-13 2020-04-14 江南大学 利用同步交变磁通分析生化料液理化特性的系统及方法
CN207287403U (zh) * 2017-09-22 2018-05-01 江南大学 基于感应电场的多磁路多次级流体反应系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236461A (ja) * 1996-03-01 1997-09-09 Nippon Steel Corp スラグ流出量判定方法およびスラグ流出判定装置
CN102709034A (zh) * 2012-01-04 2012-10-03 吴江市东泰电力特种开关有限公司 一种有载连续变压器
CN105304298A (zh) * 2015-09-14 2016-02-03 江南大学 一种多级感应式连续流磁电加工装置及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726737B (zh) * 2020-06-02 2021-05-01 中國鋼鐵股份有限公司 用於區別不同材料之分割式鐵芯的量測裝置
CN112189778A (zh) * 2020-09-30 2021-01-08 江南大学 一种三相连续流感应热绿色杀菌系统及方法
CN112189778B (zh) * 2020-09-30 2022-05-24 江南大学 一种三相连续流感应热绿色杀菌系统及方法

Also Published As

Publication number Publication date
CN107486114B (zh) 2023-05-23
CN107486114A (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
WO2019056401A1 (zh) 基于感应电场的多磁路多次级流体反应系统及其应用
CN106140046B (zh) 阵列式感应电场流体反应系统及其应用
CN105304298B (zh) 一种多级感应式连续流磁电加工装置及其应用
CN101292769B (zh) 脉冲电场和磁场对物料协同杀菌钝酶方法及设备
CN105268388B (zh) 一种循环式磁电感应反应系统及其应用
CN112167501B (zh) 一种连续流磁感应电场低温杀菌装置及方法
CN207287403U (zh) 基于感应电场的多磁路多次级流体反应系统
CN112189778B (zh) 一种三相连续流感应热绿色杀菌系统及方法
CN205933340U (zh) 一种循环水低频电场杀菌装置
CN202340775U (zh) 基于耦合场结构优化的高压脉冲电场杀菌系统的共场处理室
CN205756580U (zh) 智能环保型水产养殖系统
CN101254014A (zh) 一种高密度二氧化碳杀菌处理反应器
CN109714847B (zh) 间歇式感应热反应器
DE60009277T2 (de) Verfahren zur entfernung von legionellen aus wässrigen strömen mittels elektropulsierung
CN109640429A (zh) 三角形-三角形式三相感应热反应器
CN109618439B (zh) 星形-星形式三相感应热反应器
CN201850164U (zh) 一种水源地饮用水突发性环境污染物应急处理装置
CN109647305B (zh) 连续式感应热反应器
CN113016874A (zh) 一种基于交变磁场的低温高品质牛乳杀菌方法
WO2020133099A1 (zh) 连续式感应热反应器
CN206886906U (zh) 一种工业循环水加工生产装置
WO2020133101A1 (zh) 星形-星形式三相感应热反应器
CN205470819U (zh) 一种高压脉冲电场杀菌微藻液储存罐
CN214223394U (zh) 一种基于欧姆加热的液态食品加热装置
CN205045860U (zh) 一种工业原液脱盐的膜分离系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926096

Country of ref document: EP

Kind code of ref document: A1