WO2020133101A1 - 星形-星形式三相感应热反应器 - Google Patents

星形-星形式三相感应热反应器 Download PDF

Info

Publication number
WO2020133101A1
WO2020133101A1 PCT/CN2018/124477 CN2018124477W WO2020133101A1 WO 2020133101 A1 WO2020133101 A1 WO 2020133101A1 CN 2018124477 W CN2018124477 W CN 2018124477W WO 2020133101 A1 WO2020133101 A1 WO 2020133101A1
Authority
WO
WIPO (PCT)
Prior art keywords
star
magnetic coupling
thermal reactor
group
reaction chamber
Prior art date
Application number
PCT/CN2018/124477
Other languages
English (en)
French (fr)
Inventor
杨哪
孙汉
金亚美
徐学明
Original Assignee
英都斯特(无锡)感应科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英都斯特(无锡)感应科技有限公司 filed Critical 英都斯特(无锡)感应科技有限公司
Priority to PCT/CN2018/124477 priority Critical patent/WO2020133101A1/zh
Publication of WO2020133101A1 publication Critical patent/WO2020133101A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements

Definitions

  • the invention relates to a star-star three-phase induction thermal reactor, which belongs to the technical field of chemical industry, food and environment.
  • Permeability is a physical quantity that characterizes the magnetic properties of a magnetic medium; it means the resistance of a magnetic flux or its ability to conduct lines of magnetic force in a magnetic field after a current flows through a coil in a space or a core material.
  • a substance with magnetic permeability When a substance with magnetic permeability is placed in an alternating magnetic field, it responds to the alternating magnetic field, and an induced current appears, which in turn causes a thermal effect, which is called an eddy current effect.
  • the premise of using the eddy current effect to heat the substance is that the substance has magnetic permeability; and for materials with magnetic permeability close to zero, such as liquid samples, it is currently not possible to directly use the eddy current effect for electrical heating treatment. Need to use other electric field heating treatment methods, such as ohmic heating.
  • the liquid to be treated also has a certain acid-base corrosion. If the above-mentioned ohmic heating treatment is adopted, that is, the metal plate is used to generate heat, which will cause metal contamination of the sample.
  • the present invention provides a simple flow path structure
  • the star-star three-phase induction thermal reactor uses the alternating magnetic flux in the three-phase three-column magnetic circuit to excite the continuous flow low permeability material or reaction medium based on the three-phase circuit structure to allow it to quickly generate heat
  • the star-star three-phase induction thermal reactor has a single inlet and outlet, the reaction chamber has a large liquid holding capacity, and has a higher throughput under the same sampling flow rate.
  • the first object of the present invention is to provide a star-star three-phase induction thermal reactor, including: a three-column magnetic circuit, an excitation coil, a magnetic coupling tube, and a reaction chamber;
  • the sample inlet and the sample outlet are set at the junction of the magnetic coupling tube group or the reaction chamber group to ensure that the continuous flow of materials or reaction medium of each branch in the reaction chamber has the same residence time;
  • the three-pillar magnetic circuit is composed of a magnetically conductive material, and the excitation coil is wound on the three-pillar magnetic circuit;
  • the three magnetic coupling tubes are in a group, connected in a star shape, and each group of magnetic coupling tubes is wound on three iron core columns of a three-column magnetic circuit;
  • the three reaction chambers are in a group, connected in a star shape
  • the star-star three-phase induction thermal reactor includes at least one set of magnetic coupling tubes and at least one set of reaction chambers; the magnetic coupling tube group is connected to the reaction chamber group.
  • the total magnetic flux carried by each iron core column in the three-pillar magnetic circuit ranges from 0-10 Wb, and the initial permeability of the three-pillar magnetic circuit material is 800- 90000.
  • the reaction chamber and the magnetic coupling tube are supports for the flow of the reaction medium and have electrical insulation, and the inner diameter of the reaction chamber is smaller than the inner diameter of the magnetic coupling tube.
  • the ratio of the cross-sectional area of the reaction chamber to the cross-sectional area of the magnetic coupling tube is 1:1.3 to 1:50.
  • the sample inlet is located at the junction of the magnetic coupling tube group; the sample outlet is located at the junction of the reaction chamber group.
  • the polarity of the instantaneous induced voltage across each reaction chamber is opposite.
  • the alternating magnetic field in the column magnetic circuit can cause the low permeability material or reaction medium in the magnetic coupling tube to produce an effective potential difference.
  • the induced current density of the material or reaction medium in the reaction chamber is 1-120A/cm 2 to cause the sample to quickly heat up.
  • the conductivity of the material or reaction medium is in the range of 0.1-40 S/m.
  • the induction current loop exists only between the magnetic coupling tube and the reaction chamber, and the sample inlet and the sample outlet have no leakage and are safe.
  • the second object of the present invention is to provide a heating device that uses the above-mentioned star-star three-phase induction thermal reactor, and the heating device performs on a substance with a conductivity in the range of 0.1-40 S/m heating.
  • the substance is a flowable substance.
  • the third object of the present invention is to provide the application of the above star-star three-phase induction thermal reactor and/or the above heating device in the fields of chemical industry, food and environment.
  • the star-star three-phase induction thermal reactor provided by the present invention has the core parameters of the initial permeability of the magnetically permeable material of the three-pillar magnetic circuit and the total magnetic flux ⁇ that can be carried.
  • the total magnetic flux ⁇ is equal to the three-pillar magnetic circuit
  • the product of the magnetic flux density B of each iron core column in the magnetic pole and the effective magnetic permeable area S of each iron core column in the three-column magnetic circuit, that is, ⁇ BS.
  • the voltage ratio between the excitation coil and the magnetic coupling tube follows the Faraday electromagnetic induction principle.
  • the induced voltage across the chamber is the effective potential difference; I—the intensity of the induced current in the reaction chamber; S—the cross-sectional area of the reaction chamber.
  • the star-star three-phase induction thermal reactor can be modularly connected in series to improve the processing efficiency of continuous flow materials or reaction media.
  • the star-to-star three-phase induction thermal reactor provided by the present invention is designed based on the operation rule of the power system, and uses a three-phase three-pillar iron core magnetic circuit as an alternating magnetic field path.
  • the three magnetic coupling tubes and the three reaction chambers each exhibit a star connection of a three-phase circuit, so that the conductive material or reaction medium in the reaction chamber will produce a higher effective potential difference.
  • the potential difference comes from the line voltage of the three-phase circuit, and its value is the normal phase voltage Times, which in turn leads to a higher temperature rise efficiency of the feed liquid or reaction medium.
  • the three-phase induction thermal reactor of the present invention can avoid the undesirable problems in traditional ohmic heating, and at the same time, without any external heat source or radiation, and without the effect of external electrodes, conduct conductive materials or reaction media. Efficient heating.
  • the star-star three-phase induction thermal reactor has a single sample inlet and sample outlet, the flow path structure is simple, the reaction chamber has a large liquid holding capacity, and has a relatively high sample injection flow rate. Throughput.
  • the principle of the three-phase induction thermal reactor is to use the alternating magnetic field in the three-column magnetic circuit and combine with the operating rules of the power system to amplify the magnetoelectric potential difference and the induced current in the material or reaction medium, so that it quickly generates heat.
  • FIG. 1 is a schematic diagram of a star-star form induction thermal reactor I
  • Figure 2 is a schematic diagram of the star-star connection form of the three-phase circuit structure
  • star-star three-phase induction thermal reactor I 101-three-column magnetic circuit; 102-excitation coil; 103-magnetic coupling tube group (star connection); 104-reaction chamber group (star Coupling); 201-inlet; 202-outlet.
  • the star-star three-phase induction thermal reactor I as shown in FIG. 1, includes a three-column magnetic circuit 101, an excitation coil 102, a magnetic coupling tube group 103, and a reaction chamber group 104; wherein the magnetic coupling tube group 103 is a star Shaped connection; the reaction chamber group 104 is also star-shaped; the inlet 201 and the outlet 202 are provided at the junction of the coupling of the magnetic coupling tube group 103 or the reaction chamber group 104. In this embodiment, the inlet 201 is located The connection junction of the magnetic coupling tube group 103 and the sample outlet 202 are located at the connection junction of the reaction chamber group 104 as an example;
  • the excitation coil 102 is wound on each iron core column of the three-column magnetic circuit 101, the number of turns of the excitation coil 102 on each iron core column is 6 turns, and a three-phase power supply is used to apply an average voltage of 500V to the excitation coil 102. Then the magnetic flux of each iron core column in the three-pillar magnetic circuit 101 is 0.06Wb. At this time, the magnetically conductive material of the three-pillar magnetic circuit 101 is cold-rolled silicon steel, the initial relative permeability is 1000, and the magnetic flux density during operation is 1.2T.
  • each iron core column in the three-pillar magnetic circuit 101 The effective magnetic permeability cross-sectional area of each iron core column in the three-pillar magnetic circuit 101 is 0.05m 2 ; three star-shaped magnetic coupling tubes form the magnetic coupling tube group 103 and are wound around each iron of the three-pillar magnetic circuit 101 On the stem, the number of turns of each magnetic coupling tube is 36 turns;
  • Three reaction chambers form a star-shaped reaction chamber group 104
  • three magnetic coupling tubes form a star-shaped magnetic coupling tube group 103, the magnetic coupling tube group 103 and the reaction chamber group 104 as continuous flow The support of the reaction medium;
  • the connection of the magnetic coupling tube group 103 and the reaction chamber group 104 presents a star-to-star connection form based on a three-phase circuit structure; the cross-sectional area of each reaction chamber is 0.36 cm 2 , and each magnetic The cross-sectional area of the coupling tube is 1 cm 2.
  • a reaction medium with a conductivity of 2.35 S/m such as 25° C., 0.2% HCl, and 0.3% Na 2 CO 3
  • each reaction The effective potential difference between the two ends of the chamber is 5142V.
  • the length of each reaction chamber in the reaction chamber group 104 is 20cm.
  • the impedance is 2000 ⁇
  • the induced current is 2.57A
  • the induced current density is 7.14A/cm 2 .
  • the sample inlet 201 of the reaction medium is located at the star junction of the magnetic coupling tube group 103, and the sample outlet 202 of the reaction medium is located at the star junction of the reaction chamber group 104.
  • the injection flow rate is 3ml/min
  • the retention time of each branch of the reaction medium flowing through each reaction chamber is 7.2min, which is tested by an infrared thermal imager.
  • the reaction medium at room temperature of 25°C continuously passes three-phase induction heat After reactor I, the temperature of the outgoing reaction medium rose to 98.5°C.
  • the star-star three-phase induction thermal reactor I as shown in FIG. 1, includes a three-column magnetic circuit 101, an excitation coil 102, a magnetic coupling tube group 103, and a reaction chamber group 104; wherein the magnetic coupling tube group 103 is a star Shaped connection; the reaction chamber group 104 is also star-shaped connection.
  • the excitation coil 102 is wound on each core pole of the three-column magnetic circuit 101.
  • the number of turns of the excitation coil 102 on each core pole is 12 turns.
  • a three-phase power supply is applied to the excitation coil 102 with an average voltage of 2000V. Then the magnetic flux of each iron core column in the three-pillar magnetic circuit 101 is 0.12Wb.
  • the magnetically conductive material of the three-pillar magnetic circuit 101 is cobalt-based amorphous, the initial relative permeability is 35000, and the magnetic flux density during operation 0.8T, the effective magnetic permeability cross-sectional area of each iron core column in the three-pillar magnetic circuit 101 is 0.15m 2 ;
  • three star-shaped magnetic coupling tubes form the magnetic coupling tube group 103 and are wound around the three-pillar magnetic circuit 101
  • the number of turns of each magnetic coupling tube on each iron core column is 48;
  • three reaction chambers form a reaction chamber group 104 based on a star connection, and the magnetic coupling tube group 103 and the reaction chamber group 104 serve as The support of the continuously flowing reaction medium, further, the magnetic coupling tube group 103 and the reaction chamber group 104 exhibit a star-to-star connection form based on a three-phase circuit structure, see FIG.
  • each reaction chamber is 0.16cm 2
  • the cross-sectional area of each magnetic coupling tube is 2.3cm 2
  • the effective potential difference between the two ends of each reaction chamber is 13736V
  • the length of each reaction chamber of the reaction chamber 104 is 10cm
  • the impedance is 1600 ⁇
  • the induced current is 8.58A
  • the induced current The density is 53.65A/cm 2
  • the sample inlet 201 of the reaction medium is located at the star junction junction of the magnetic coupling tube group 103
  • the sample outlet 202 of the reaction medium is located at the star junction junction of the reaction chamber group 104.
  • the star-to-star three-phase induction thermal reactor provided by the present invention is designed based on the operating rules of the power system, and uses a three-phase three-pillar iron core magnetic circuit as an alternating magnetic field path.
  • the three magnetic coupling tubes and the three reaction chambers each exhibit a star connection of a three-phase circuit, so that the conductive material or reaction medium in the reaction chamber generates a higher effective potential difference, which is
  • the line voltage from the three-phase circuit is the normal phase voltage Times, which in turn leads to higher temperature rise efficiency of the feed liquid or reaction medium.
  • the use of the star-star three-phase induction thermal reactor of the present invention to process samples can avoid the adverse problems that occur in traditional ohmic heating, and at the same time, without any external heat source or radiation, without the effect of external electrodes, the sample Efficient heating, and the star-star three-phase induction thermal reactor has a single inlet and outlet, the reaction chamber has a large liquid holding capacity, and has a higher throughput under the same sampling flow rate.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

星形‑星形式三相感应热反应器,属于化工、食品和环境技术领域;包括:三柱磁路(101)、励磁线圈(102)、磁耦合管组(103)、反应腔室组(104);其中进样口(201)和出样口(202)设置于磁耦合管组(103)或反应腔室组(104)的联结交汇口;每组磁耦合管组(103)和反应腔室组(104)均呈三相星形联结,磁耦合管组(103)和反应腔室组(104)的连接呈星形‑星形结构;可对样品进行高效加热,且该星形‑星形式三相感应热反应器具有单一的进样口和出样口,反应腔室持液量大,在相同的进样流量下,具有较高的处理量。

Description

星形-星形式三相感应热反应器 技术领域
本发明涉及一种星形-星形式三相感应热反应器,属于化工、食品和环境技术领域。
背景技术
磁导率,是表征磁介质磁性的物理量;表示在空间或在磁芯材料中的线圈流过电流后,产生磁通的阻力或是其在磁场中导通磁力线的能力。而具有磁导率的物质置于交变磁场中时会对交变磁场产生响应,出现感应电流,进而出现热效应,称为涡流效应。
根据上述原理可知,利用涡流效应实现对物质进行加热的前提即物质具有磁导率;而对于磁导率接近于零的物质,比如液态样品,目前无法直接利用涡流效应进行电加热处理,此时需要采用其他电场加热处理方式,比如欧姆加热的方式。
而在化工、食品和环境领域中,需要处理的液体还具有一定的酸碱腐蚀性,若是通过上述欧姆加热处理,即采用金属极板来发热,会造成样品的金属污染问题。
发明内容
为了在利用涡流效应实现对具有低磁导率(磁导率接近于零)的液体进行加热的同时避免出现液体被极板电化学腐蚀而污染的问题,本发明提供一种流路结构简单的星形-星形式三相感应热反应器,利用三相三柱磁路中的交变磁通对基于三相电路结构的连续流低磁导率物料或反应介质进行激励,让其快速生热;该星形-星形式三相感应热反应器具有单一的进样口和出样口,反应腔室持液量大,在相同的进样流量下,具有较高的处理量。
本发明的第一个目的在于提供星形-星形式三相感应热反应器,包括:三柱磁路、励磁线圈、磁耦合管、反应腔室;
其中,进样口和出样口设置于磁耦合管组或反应腔室组的联结交汇口,保证各支路的连续流物料或反应介质在反应腔室的停留时间相等;
三柱磁路由导磁材料构成,励磁线圈缠绕于三柱磁路上;
三个磁耦合管为一组,呈星形联结,每组磁耦合管分别缠绕于三柱磁路的三根铁芯柱上;
三个反应腔室为一组,呈星形联结;
所述星形-星形式三相感应热反应器包括至少一组磁耦合管、至少一组反应腔室;磁耦合管组与反应腔室组连接。
在一种实施方式中,电源对励磁线圈施加三相电压后,三柱磁路中每个铁芯柱承载的总磁通量范围为0-10Wb,三柱磁路材料的初始磁导率为800-90000。
在一种实施方式中,反应腔室和磁耦合管为反应介质流动的支撑物且具有电绝缘性,反应腔室内径小于磁耦合管内径。
在一种实施方式中,反应腔室截面积与磁耦合管的截面积之比为1:1.3~1:50。
在一种实施方式中,进样口位于磁耦合管组的联结交汇口;出样口位于反应腔室组的联结交汇口,此时每个反应腔室两端的瞬时感应电压极性相反,三柱磁路中的交变磁场可引发磁耦合管中的低磁导率传导性物料或反应介质产生出有效的电势差,反应腔室中的物料或反应介质的感应电流密度为1-120A/cm 2,以导致样品迅速生热。
在一种实施方式中,物料或反应介质的电导率在0.1-40S/m范围。
在一种实施方式中,感应电流回路仅存在于磁耦合管和反应腔室之间,进样口和出样口无漏电,安全。
本发明的第二个目的在于提供一种加热装置,所述加热装置采用上述星形-星形式三相感应热反应器,所述加热装置对电导率在0.1-40S/m范围内的物质进行加热。
在一种实施方式中,所述物质为可流动物质。
本发明的第三个目的在于提供上述星形-星形式三相感应热反应器和/或上述加热装置在化工、食品和环境领域中的应用。
本发明提供的星形-星形式三相感应热反应器,其核心参数为三柱磁路的导磁材料初始磁导率和能承载的总磁通量Φ,其中的总磁通量Φ等于三柱磁路中每个铁芯柱的磁通密度B和三柱磁路中每个铁芯柱的有效导磁面积S之积,即Φ=BS。励磁线圈和磁耦合管间的电压比例遵循法拉第电磁感应原理。同时,反应腔室中的物料或反应介质阻抗Z可采用阻抗分析仪进行测试,以便根据欧姆定律推算其感应电流密度J,即I=U/Z,J=I/S,其中U—反应腔室两端的感应电压即有效电势差;I—反应腔室中的感应电流强度;S—反应腔室的截面积。该星形-星形式三相感应热反应器可进行模块化的串联,以提高对连续流物料或反应介质的加工效率。
本发明有益效果
本发明提供的星形-星形式三相感应热反应器基于电力系统的运行规律设计,采用三相三柱的铁芯磁路作为交变磁场通路。其中,三个磁耦合管和三个反应腔室各自之间均呈现为三相电路的星形联结,使得反应腔室中的电导性物料或反应介质会产生出更高的有效电势差,该有效电势差来源于三相电路的线电压,其值为正常相电压的
Figure PCTCN2018124477-appb-000001
倍,进而导致料液或反应介质的温升效率更高。因此,利用本发明涉及的三相感应热反应器处理样品可避免传统欧姆加热中出现的不良问题,同时在无任何外部热源或辐射,无外电极的作用下,对电导性物料或反应介质进行高效加热。进一步的,该星形-星形式三相感应热反应器具有单一的进样口和出样口,流路结构简单,反应腔室持液量大,在相同的进样流量下,具有较高的处理量。
本发明工作原理
三相感应热反应器的原理是利用三柱磁路中的交变磁场并结合电力系统的运行规律使物料或反应介质中的磁致电势差和感应电流放大,使其快速生热。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为星形-星形式感应热反应器I的示意图;
图2为三相电路结构的星形-星形连接形式示意图;
其中,星形-星形式三相感应热反应器I;101-三柱磁路;102-励磁线圈;103-磁耦合管组(呈星形联结);104-反应腔室组(呈星形联结);201-进样口;202-出样口。
具体实施方式
鉴于现有技术中的不足,本申请发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
实施例1
星形-星形式三相感应热反应器I,如图1所示,包括三柱磁路101,励磁线圈102,磁耦合管组103,反应腔室组104;其中磁耦合管组103呈星形联结;反应腔室组104也呈星形联结;进样口201和出样口202设置于磁耦合管组103或反应腔室组104的联结交汇口,本实施例以进样口201位于磁耦合管组103的联结交汇口、出样口202位于反应腔室组104的联结交汇口为例进行说明;
励磁线圈102缠绕于三柱磁路101的每个铁芯柱上,每个铁芯柱上的励磁线圈102的匝 数均为6匝,采用三相电源对励磁线圈102施加500V的均值电压,则三柱磁路101中每个铁芯柱的磁通量为0.06Wb,此时,三柱磁路101的导磁材料为冷轧硅钢,初始相对磁导率为1000,工作时的磁通密度为1.2T。
三柱磁路101中每个铁芯柱的有效导磁截面积均为0.05m 2;三个星形联结的磁耦合管构成磁耦合管组103并缠绕于三柱磁路101的每个铁芯柱上,每个磁耦合管的匝数为36匝;
三个反应腔室构成一个基于星形联结的反应腔室组104,三个磁耦合管构成一个基于星形联结的磁耦合管组103,磁耦合管组103和反应腔室组104作为连续流动的反应介质的支撑物;
如图2所示,磁耦合管组103与反应腔室组104的连接呈现基于三相电路结构的星形-星形连接形式;每个反应腔室的截面积为0.36cm 2,每个磁耦合管的截面积为1cm 2,当电导率为2.35S/m的反应介质(比如25℃,0.2%HCl和0.3%Na 2CO 3)泵送并流通反应腔室组104时,每个反应腔室两端的有效电势差为5142V,反应腔室组104中的每个反应腔室长度为20cm,当反应介质充满每个反应腔室时则阻抗为2000Ω,感应电流为2.57A,感应电流密度为7.14A/cm 2
反应介质的进样口201位于磁耦合管组103的星形联结交汇处,而反应介质的出样口202位于反应腔室组104的星形联结交汇处。当进样流量为3ml/min时,各支路反应介质流过每个反应腔室的保留时间均为7.2min,通过红外热像仪测试,室温25℃的反应介质在连续通过三相感应热反应器Ⅰ后,流出的反应介质温度上升为98.5℃。
实施例2
星形-星形式三相感应热反应器I,如图1所示,包括三柱磁路101,励磁线圈102,磁耦合管组103,反应腔室组104;其中磁耦合管组103呈星形联结;反应腔室组104也呈星形联结。
励磁线圈102缠绕于三柱磁路101的每个铁芯柱上,每个铁芯柱上的励磁线圈102的匝数均为12匝,采用三相电源对励磁线圈102施加2000V的均值电压,则三柱磁路101中每个铁芯柱的磁通量为0.12Wb,此时,三柱磁路101的导磁材料为钴基非晶,初始相对磁导率为35000,工作时的磁通密度为0.8T,三柱磁路101中每个铁芯柱的有效导磁截面积均为0.15m 2;三个星形联结的磁耦合管构成磁耦合管组103并缠绕于三柱磁路101的每个铁芯柱上,每个磁耦合管的匝数为48匝;三个反应腔室构成一个基于星形联结的反应腔室组104, 磁耦合管组103和反应腔室组104作为连续流动的反应介质的支撑物,进一步,磁耦合管组103与反应腔室组104呈现基于三相电路结构的星形-星形连接形式,见图2;每个反应腔室的截面积为0.16cm 2,每个磁耦合管的截面积为2.3cm 2,当电导率为3.47S/m的反应介质(25℃,0.6%NaOH和0.2%KCl)泵送并流通反应腔室组104时,每个反应腔室两端的有效电势差为13736V,反应腔室104的每个反应腔室长度为10cm,当反应介质充满每个反应腔室时则阻抗为1600Ω,感应电流为8.58A,感应电流密度为53.65A/cm 2;反应介质的进样口201位于磁耦合管组103的星形联结交汇处,而反应介质的出样口202位于反应腔室组104的星形联结交汇处。当进样流量为2.4ml/min时,各支路反应介质流过每个反应腔室的保留时间均为2min,通过红外热像仪测试,室温25℃的反应介质在连续通过三相感应热反应器Ⅰ后,流出的反应介质温度上升为96.8℃。
本发明提供的星形-星形式三相感应热反应器基于电力系统的运行规律设计,采用三相三柱的铁芯磁路作为交变磁场通路。其中,三个磁耦合管和三个反应腔室各自之间都呈现为三相电路的星形联结,使得反应腔室中的电导性物料或反应介质产生出更高的有效电势差,该有效电势差来源于三相电路的线电压,其值为正常相电压的
Figure PCTCN2018124477-appb-000002
倍,进而导致料液或反应介质的温升效率更高。因此,利用本发明涉及的星形-星形式三相感应热反应器处理样品可避免传统欧姆加热中出现的不良问题,同时在无任何外部热源或辐射,无外电极的作用下,对样品进行高效加热,且该星形-星形式三相感应热反应器具有单一的进样口和出样口,反应腔室持液量大,在相同的进样流量下,具有较高的处理量。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

  1. 星形-星形式三相感应热反应器,其特征在于,所述星形-星形式三相感应热反应器包括:三柱磁路、励磁线圈、磁耦合管、反应腔室;
    其中,进样口和出样口设置于磁耦合管组或反应腔室组的联结交汇口,保证各支路的连续流物料或反应介质在反应腔室的停留时间相等;
    三柱磁路由导磁材料构成,励磁线圈缠绕于三柱磁路上;
    三个磁耦合管为一组,呈星形联结,每组磁耦合管分别缠绕于三柱磁路的三根铁芯柱上;
    三个反应腔室为一组,呈星形联结;
    所述星形-星形式三相感应热反应器包括至少一组磁耦合管、至少一组反应腔室;磁耦合管组与反应腔室组连接。
  2. 根据权利要求1所述的星形-星形式三相感应热反应器,其特征在于,电源对励磁线圈施加三相电压后,三柱磁路中每个铁芯柱承载的总磁通量范围为0-10Wb,三柱磁路材料的初始磁导率为800-90000。
  3. 根据权利要求1所述的星形-星形式三相感应热反应器,其特征在于,反应腔室内径小于磁耦合管内径。
  4. 根据权利要求1所述的星形-星形式三相感应热反应器,其特征在于,反应腔室截面积与磁耦合管的截面积之比为1:1.3~1:50。
  5. 根据权利要求1所述的星形-星形式三相感应热反应器,其特征在于,进样口位于磁耦合管组的联结交汇口;出样口位于反应腔室组的联结交汇口。
  6. 根据权利要求1所述的星形-星形式三相感应热反应器,其特征在于,反应腔室中的感应电流密度为1-120A/cm 2
  7. 根据权利要求1所述的星形-星形式三相感应热反应器,其特征在于,感应电流回路仅存在于磁耦合管和反应腔室之间,进样口和出样口无漏电,用于开放式的连续流处理。
  8. 一种加热装置,其特征在于,所述加热装置采用权利要求1-7任一所述的星形-星形式三相感应热反应器,所述加热装置对电导率在0.1-40S/m范围内的物质进行加热。
  9. 根据权利要求8所述的加热装置,其特征在于,所述物质为可流动物质。
  10. 权利要求1-7任一所述的星形-星形式三相感应热反应器和/或权利要求8-9任一所述的加热装置在化工、食品和环境领域中的应用。
PCT/CN2018/124477 2018-12-27 2018-12-27 星形-星形式三相感应热反应器 WO2020133101A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124477 WO2020133101A1 (zh) 2018-12-27 2018-12-27 星形-星形式三相感应热反应器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124477 WO2020133101A1 (zh) 2018-12-27 2018-12-27 星形-星形式三相感应热反应器

Publications (1)

Publication Number Publication Date
WO2020133101A1 true WO2020133101A1 (zh) 2020-07-02

Family

ID=71129424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124477 WO2020133101A1 (zh) 2018-12-27 2018-12-27 星形-星形式三相感应热反应器

Country Status (1)

Country Link
WO (1) WO2020133101A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1286384A (zh) * 2000-09-15 2001-03-07 刘文起 高效电磁感应液体加热器
JP2001192728A (ja) * 1999-12-28 2001-07-17 Nippon Steel Corp 円筒状金属コイルの加熱装置、及び加熱方法
CN1356856A (zh) * 2001-11-18 2002-07-03 吴荣华 液用三相工频电磁感应及短路加热装置和方法
CN1754969A (zh) * 2004-09-29 2006-04-05 宝山钢铁股份有限公司 多工位均匀感应加热的方法及装置
CN101478843A (zh) * 2009-02-11 2009-07-08 张心益 节能电磁感应加热装置
CN105371476A (zh) * 2014-08-19 2016-03-02 全玉生 正3n(n≥1)边形截面立体卷铁芯液用三相电磁感应加热方法
WO2018225755A1 (ja) * 2017-06-09 2018-12-13 パナソニックIpマネジメント株式会社 誘導加熱装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192728A (ja) * 1999-12-28 2001-07-17 Nippon Steel Corp 円筒状金属コイルの加熱装置、及び加熱方法
CN1286384A (zh) * 2000-09-15 2001-03-07 刘文起 高效电磁感应液体加热器
CN1356856A (zh) * 2001-11-18 2002-07-03 吴荣华 液用三相工频电磁感应及短路加热装置和方法
CN1754969A (zh) * 2004-09-29 2006-04-05 宝山钢铁股份有限公司 多工位均匀感应加热的方法及装置
CN101478843A (zh) * 2009-02-11 2009-07-08 张心益 节能电磁感应加热装置
CN105371476A (zh) * 2014-08-19 2016-03-02 全玉生 正3n(n≥1)边形截面立体卷铁芯液用三相电磁感应加热方法
WO2018225755A1 (ja) * 2017-06-09 2018-12-13 パナソニックIpマネジメント株式会社 誘導加熱装置

Similar Documents

Publication Publication Date Title
US5444229A (en) Device for the inductive flow-heating of an electrically conductive, pumpable medium
CN107486114B (zh) 基于感应电场的多磁路多次级流体反应系统及其应用
Fu et al. A flux pumping method applied to the magnetization of YBCO superconducting coils: frequency, amplitude and waveform characteristics
JPS62205619A (ja) 半導体の加熱方法及びその方法に使用されるサセプタ
WO2017045434A1 (zh) 循环式磁电感应反应系统及其应用
Jin et al. Innovative induction heating technology based on transformer theory: Inner heating of electrolyte solution via alternating magnetic field
TWI656237B (zh) 用於直接電氣加熱流通式化學反應器之方法與裝置
US20180033548A1 (en) Multi-Series Continuous-Flow Magnetoelectric Coupling Processing System and Applications Thereof
US5006683A (en) Device for the electrical induction heating of a fluid contained in a pipeline
WO2020133101A1 (zh) 星形-星形式三相感应热反应器
CN109714847B (zh) 间歇式感应热反应器
CN109618439B (zh) 星形-星形式三相感应热反应器
Baitha et al. Particle balance in a steady state plasma in a dipole magnetic field
CN109701473B (zh) 星形-三角形式三相感应热反应器
CN109640429B (zh) 三角形-三角形式三相感应热反应器
CN109647305B (zh) 连续式感应热反应器
Medveď et al. Additional modification of thermomagnetic properties of objects of low relative permeability in electromagnetic field
WO2020133099A1 (zh) 连续式感应热反应器
WO2020133100A1 (zh) 间歇式感应热反应器
CN207287403U (zh) 基于感应电场的多磁路多次级流体反应系统
JPH01164736A (ja) 液状導電物の加熱撹拌装置
CN216457047U (zh) 一种电催化分离装置
US1054886A (en) Method and apparatus for producing long electrical arcs.
Wang et al. High-Temperature (940 C) furnace in 18/20 T cold bore magnet
US20240040675A1 (en) Heating device and heating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944827

Country of ref document: EP

Kind code of ref document: A1