WO2019056340A1 - 一种增加拍摄画幅的拍摄系统及其控制方法 - Google Patents

一种增加拍摄画幅的拍摄系统及其控制方法 Download PDF

Info

Publication number
WO2019056340A1
WO2019056340A1 PCT/CN2017/103097 CN2017103097W WO2019056340A1 WO 2019056340 A1 WO2019056340 A1 WO 2019056340A1 CN 2017103097 W CN2017103097 W CN 2017103097W WO 2019056340 A1 WO2019056340 A1 WO 2019056340A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
lens
optical
digital
shooting
Prior art date
Application number
PCT/CN2017/103097
Other languages
English (en)
French (fr)
Inventor
罗坤
Original Assignee
深圳传音通讯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音通讯有限公司 filed Critical 深圳传音通讯有限公司
Priority to CN201780097090.2A priority Critical patent/CN111373300A/zh
Priority to PCT/CN2017/103097 priority patent/WO2019056340A1/zh
Publication of WO2019056340A1 publication Critical patent/WO2019056340A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Definitions

  • the present invention relates to the field of imaging, and in particular to a shooting system capable of being applied to a smart phone to increase a shooting frame and a control method thereof.
  • the camera is used for photography and is an optical device that uses optical imaging principles to form an image.
  • a digital camera is a kind of camera.
  • the imaging principle of a digital camera is that when light enters a digital camera through a lens or a lens group, it is converted into a digital signal by an imaging component, and the digital signal is stored in the storage device through the image computing chip.
  • the body of a normal camera is used to connect the lens and the film, and its structure is fixed.
  • the adjustment of the lens only has the focusing function of moving back and forth. That is to say, the lens optical axis of an ordinary camera cannot be adjusted at any angle with respect to the body, and the perspective relationship and the depth of field effect imaged on the film cannot be controlled at will.
  • the object plane 4 of the real scene perpendicular to the optical axis, the image plane 3 and the optical axis 2 of the lens 1 are vertical, and the lens can only move in the focus direction, and the mobile phone cannot be added by rotating the lens 1 .
  • the conventional panoramic photography device is an independent panoramic pan/tilt, which cannot be mixed with the imaging device used for shooting, that is, cannot constitute a set of photography devices, and the two belong to two completely different devices, one is Photographic equipment, one is a gimbal device on a tripod.
  • the high-pixel mobile phone camera of the prior art usually does not contain some light of a digital camera. Learning and mechanical parts, this lack of hardware will undoubtedly make the camera phone's camera effect much worse than digital cameras.
  • a camera phone usually has at most one autofocus motor to realize the near-focus and far-focus conversion functions, and the control of the lens is at most a single dimension to bring the lens closer to or away from the image sensor.
  • the optical axis of the imaging lens is generally perpendicular to the focal plane and coincides with the center of the unique imaging device and the center of the focal plane. At this time, if a plurality of cameras are all mounted in a vertical view, the imaging range of each camera is substantially the same, and the purpose of expanding the imaging range cannot be achieved.
  • the four-camera stitching method, and the optical axes of the four cameras are not parallel to the central optical axis (ie, not perpendicular to the shooting target), but a large oblique angle to the shooting target (generally about 20 degrees). Therefore, the imaging angles of the four parts of the four camera shooting targets will be different, and it is not possible to directly splicing images or using one projection center for image processing. In this case, a virtual projection center must be constructed to unify the images of the four cameras to the virtual projection center before high-precision image stitching can be performed; and the equivalent focal length of the virtual projection center and the actual of the four cameras The focal lengths are different.
  • the imaging method is oblique imaging, the resolution of the target captured by each camera will be inconsistent: the center resolution is high, the edge resolution is low, and the resolution is averaged and the difference is processed when the image is spliced.
  • the optical axes of the four cameras are parallel to each other and are perpendicular to the subject.
  • the four cameras can be approximated as having the same projection center, and the resolution of the shooting target is evenly distributed, which is easy for post-image processing.
  • the delay is not easy to control and the accuracy is not high (the delay is related to the flight speed).
  • the inconsistent shooting time results in different positioning and attitude parameters of the four cameras; since it is not easy to separately acquire the attitude parameters of the four camera shooting moments, the attitude parameters of a certain moment can only be uniformly used for the four cameras, which will inevitably result in image processing. Error and correction error.
  • the multi-dimensional motion of the lens relative to the image sensor is controlled by more complicated mechanical devices.
  • the optical image stabilization focus motor based on the lens shift In order to make the camera effect of the camera with camera function further closer to the digital camera, the optical image stabilization focus motor based on the lens shift.
  • the structure of these motors is very complicated, and the size and power consumption are large, so they have not been promoted in the smartphone market.
  • the lens produces a controllable tilting focus motor, which realizes the function of autofocus and optical anti-shake, and realizes the miniaturization of the device, making the volume of the three-axis motor as small as the traditional single-axis motor for the first time.
  • the consumption is also well controlled, really paving the way for the application of the three-axis motor in the mobile phone. the way.
  • the tilt of the lens can also produce the equivalent translation of the lens, which can be combined with the gyro sensing control to achieve optical image stabilization.
  • this type of motor has the disadvantages of relatively large mass production difficulty and difficulty in matching with the motor drive circuit, and thus has not been widely promoted in smart phones.
  • the focus motor typically uses four identical actuators to push the lens motion together, each of which contributes to the focus and deflection of the lens, so four actuators are required to cooperate to precisely control the attitude of the lens.
  • the three control parameters of the motor focus position, the X-direction deflection angle and the Y-direction deflection angle need to be converted into four current parameters for driving the four actuators in order to achieve the required control. Therefore, the control chip needs to be implanted with a complex conversion algorithm.
  • the coil impedance of each actuator is too small to match the drive circuit, and four identical drive circuits are required to control four independent actuators. Each drive circuit assumes the task of controlling the focus position and deflection angle of the motor.
  • the drive current is a superposition of the current that controls the focus and the current that controls the deflection. Due to the limitation of the dynamic range of the current output of each driver circuit, the change in the magnitude of the focus current will affect the dynamic range of the deflection current, so the two motions of the focus motion and the yaw motion are easily pinned.
  • the image plane and the lens optical axis are normally vertical, and the lens can only move along the focus direction. It is impossible to increase the size of the mobile phone and the ultra-high pixel output by rotating the lens. Shooting the frame can only be taken by panoramic photography, mode, and the user can take photos with the horizontal mobile phone, which can only increase the frame size in one direction, which is limited by the user's camera technology, and the operation is complicated and time consuming.
  • An object of the present invention is to provide a photographing system for increasing a photographing frame and a control method thereof, which can take a photograph when the camera is not moving, and then drive the lens from the center along the diagonal line by the shift shaft motor.
  • the four directions are rotated at a high speed, and a photo is taken in each of the above four directions.
  • the image processor is used to splicing the different feature point pixels of the above five photos to achieve the purpose of increasing the frame length in the width direction and the width direction.
  • a photographing system for increasing a shooting frame comprising: a processor, a lens assembly connected to the processor, an image sensor, an image processing system and a synthesizing module; and the main control chip controls the shifting optical anti-shake in the lens assembly
  • the motor drives the lens to focus, or drives the lens to perform a tilting motion, realizes the lens shifting axis, and drives the image sensor to correspondingly collect the optical image and output the optical image analog signal according to the shooting command fed back by the lens component;
  • the image processing system is used for Converting the optical analog image signal into a digital image for outputting and synthesizing and outputting a plurality of digital images corresponding to different lens motions; the image processing system receiving the stitched and combined digital image And convert and compress the output into a picture format.
  • the photographing system further includes a power module for supplying power to the photographing system
  • the power module includes: a rechargeable battery, and a USB interface connected to the rechargeable battery, wherein the rechargeable battery is performed through the USB interface Charging; the USB interface is further connected to the data read/write end of the processor, and reads digital image data stored by the storage module provided by the photographing system.
  • the photographing system further comprises a shutter system connected to the processor, wherein the shutter system is configured to trigger the image processor to take a picture of a real scene to be photographed according to a photographing command output by the processor.
  • the photographing system further includes a display module and a storage module connected to the processor, and the display module is configured to display a stitched composite digital image of a picture format output by the image processing system; the storing The module is configured to store the stitched composite digital image of the picture format output by the image processing system.
  • the image sensor comprises: a photosensitive surface and an optical signal converter, the photosensitive surface is approximately rectangular for receiving an optical image; and the optical signal converter is connected to the photosensitive surface for using the photosensitive surface The received received is converted into an image signal.
  • the image processing system includes: an analog to digital conversion module and a processing conversion module; the analog to digital conversion module is configured to convert the optical image analog signal into a digital image signal;
  • the processing conversion module is configured to compress and convert the spliced and combined digital image signal output by the synthesis module into a JEPG format output.
  • the shift-axis optical image stabilization motor further comprises: a lens mount for fixing the lens, a focus coil, a deflection coil and a magnet, wherein the focus coil and the deflection coil are respectively fixed on the outer side of the lens mount, and the magnet is arranged in focus.
  • the coil and the deflection yoke are arranged around each other, so that the focus coil can interact with the magnet, so that the focus coil drives the lens holder to move back and forth to achieve lens focusing, and the deflection coil can be magnetized with the magnet. The interaction causes the deflection yoke to drive the lens holder to perform a tilting motion to achieve the shifting of the lens.
  • the synthesizing module splices different feature point pixels on each digital image; realizes an increase of the captured frame in the length direction and the width direction, and the synthesizing module synthesizes the same feature point pixels on each digital image , to achieve increased pixels of the shooting frame.
  • a second technical solution of the present invention is a control method for a photographing system based on the above-mentioned increased photographing frame, comprising the following process: autofocusing the lens, the image plane is perpendicular to the optical axis of the lens, and the lens is moved along the focusing direction Until the autofocus is completed, at this time, the first optical image is acquired by the image sensor and the first optical analog image signal is output; the lens is driven to tilt with respect to a plurality of pivot fulcrums perpendicular to the focus direction, the image plane and The optical axis of the lens is not perpendicular, and each time the lens is tilted to a tilt angle threshold, the image sensor correspondingly acquires an optical image and outputs a corresponding optical analog image signal; and the first optical analog image signal and the plurality of image planes The optical analog image signal acquired when the optical axis of the lens is not perpendicular is converted into a corresponding digital image signal; and the first digital image signal is spliced and synthe
  • control method further comprises: the lens is tilted along a direction from the center of the first optical image to four vertices of the image, and each time an angle to a tilt angle threshold is obtained, each of the optical images is obtained.
  • Two to fifth optical images splicing different feature point pixels of the digital images of the first to fifth optical images, synthesizing the same feature point pixels, achieving length and width directions with respect to the first optical image
  • the frame size has increased.
  • a picture is taken when the lens is not moving, and then the lens is driven by the shift-axis motor to rotate at a high speed in the four directions of the diagonal line from the center, and a photo is taken in each of the above four directions.
  • the frame length in the length direction and the width direction is increased, and the shooting range of the photographing system of the present invention can be increased by more than 3 degrees compared with the prior art.
  • the pixels of the same feature point are synthesized, which can improve the picture quality and realize the output of ultra-high pixels.
  • FIG. 1 is a schematic view showing an optical axis in a camera perpendicular to an object plane in the prior art
  • FIG. 2 is a schematic view showing an optical axis and an object plane of a lens in a photographing system for increasing a shooting frame according to the present invention
  • FIG. 3 is a structural block diagram of a photographing system for increasing a shooting frame according to the present invention.
  • FIG. 4 is a schematic diagram of a power module of a photographing system for increasing a shooting frame according to the present invention
  • FIG. 5 is a schematic diagram of an image processing system of a photographing system for increasing a shooting frame according to the present invention
  • FIG. 6 is a structural block diagram of a lens assembly of a photographing system for increasing a shooting frame according to the present invention
  • FIG. 7 is a schematic diagram of a lens moving direction of a photographing system for increasing a shooting frame according to the present invention.
  • FIG. 8 is a schematic structural view of a lens assembly of a photographing system for increasing a shooting frame according to the present invention.
  • the present invention provides a photographing system for adding a photographing frame, comprising: a camera housing, a processor 109 disposed inside the camera housing, and a lens assembly 101 respectively connected to the processor 109, and a power supply.
  • the power module 104 provided in the shooting system for increasing the shooting frame is further provided with a rechargeable battery 1040.
  • the rechargeable battery 1040 is a rechargeable lithium battery.
  • the power module 1040 is further provided with a USB interface 1041 connected to the rechargeable battery 1040 and the processor 109.
  • the USB interface 1041 can be used for charging the above;
  • the shooting system can be powered directly using the USB interface 1041 described above.
  • the lens assembly 101 further includes a lens 1010, an autofocus drive motor 1011 and a shift-axis optical anti-shake motor 1012 respectively connected to the lens, and the tilt-type optical image stabilization motor (Tilt-shift, Optical image stabilization, or OIS for short)
  • the above-described shift-axis optical anti-shake motor 1012 is provided with a spring suspension system that can drive the lens 1010 to move in the focus direction, and can drive the lens 1010 along a pivot point arbitrarily.
  • the direction is made a slight roll motion, and the angle of the above tilt can reach or exceed 1.5°.
  • the focus direction is an O-point direction, that is, a direction perpendicular to the paper surface, and the direction perpendicular to the object plane is near or backward.
  • the shift-axis optical image stabilization motor 1012 can also be used to drive the lens. 1010 is rotated at a high speed by the center 0 point along the diagonal directions oa, ob, oc, and od until it is rotated to a preset angle threshold.
  • the above-described autofocus drive motor 1011 is configured to drive the live view 100 to be photographed by the lens 1010 to perform autofocus before taking a photo.
  • the processor 109 is configured to control the autofocus 100 of the autofocus drive motor 1011 to be automatically focused after the focus is completed.
  • the shutter system 106 is driven to start photographing the real scene 100 after the focus is completed, and the image sensor 102 is driven to pass the image.
  • the photosensitive surface receives or collects an optical image, and the photosensitive surface is approximately square; the image sensor 102 is further provided with an optical signal converter connected to the photosensitive surface for converting the optical image collected by the photosensitive surface into an image signal and outputting.
  • the optical image is a first optical image
  • the image signal is a first image signal.
  • the processor 109 continues to control the above-mentioned shift-axis optical anti-shake motor 1012 to drive the lens 1010 to rotate at a high speed from the center 0 point along the diagonal directions oa, ob, oc and od, as shown in FIG. Rotate to the preset angle threshold. That is, the lens 1010 is rotated at a height in the direction of the oa, and the preset angle is 1.5°.
  • the processor 109 drives the shutter system 106 to take a picture, and the image sensor 102 collects the image. Two optical images; and converted into a second image signal output.
  • the lens 1010 is rotated at a height in the ob direction by a preset angle.
  • the preset angle is 1.5°.
  • the processor 109 drives the shutter system 106 to take a picture, and the image sensor 102 collects the third image. An optical image; and converted into a third image signal output.
  • the preset angle is 1.5°.
  • the processor 109 drives the shutter system 106 to take a picture, and the image sensor 102 collects the image. Four optical images; and converted into a fourth image signal output.
  • the preset angle is 1.5°.
  • the processor 109 drives the shutter system 106 to take a picture, and the image sensor 102 collects the image. Five optical images; and converted into a fifth image signal output.
  • the image processing system 107 is configured to sequentially perform image processing on the first to fifth image signals to obtain first to fifth digital image signals.
  • the synthesizing module 108 is configured to receive the first to fifth digital image signals output by the image processing system 107 fed back by the processor 109, and perform splicing according to the pixels at different feature points of the first to fifth digital images. , in the length direction and width direction of the first optical image The upper frame is increased, so the shooting range can be increased by more than 3°. According to the synthesis of the pixels at the same feature points between the first to fifth digital images, the image quality is improved, and the ultra-high pixel output is realized.
  • the image processing system 107 further includes an analog-to-digital conversion module 1070 and a processing conversion module 1071; the analog-to-digital conversion module 1070 is configured to convert the optical image analog signal into a digital image signal;
  • the processing conversion module 1071 is configured to compress and convert the synthesized digital image signals synthesized by the first to fifth images outputted by the synthesizing module 108 into JEPG format output, and display them through the display module 103, thereby finally achieving output display.
  • the image of the super-high pixel of the frame is stored in the JEPG format image of the large-frame ultra-high pixel by the storage module 105.
  • Embodiment 2 Based on the above-mentioned shooting system for increasing the shooting frame, the present invention also proposes a control method for increasing the shooting system of the shooting frame, comprising the following process:
  • the real scene to be photographed is subjected to autofocus by the above-described autofocus motor, and the central axis of the lens is perpendicular to the real plane.
  • the first to fifth optical images described above are converted into digital images by an image processing system, and then synthesized by a synthesis module.
  • the above synthesizing process further includes the following steps: splicing different feature point pixels in the first to fifth digital images, and synthesizing the same feature point pixels in the first to fifth digital images.
  • the synthesized digital image is converted into an image of the JEPG format by an image processing system, displayed by the display module, and stored by the storage module.
  • the shift-axis optical image stabilization motor in the above lens assembly further comprises: three mutually parallel and substantially perpendicular to the optical axis (the optical axis, that is, the central axis of the optical path determined by the imaging lens in the lens).
  • the optical axis that is, the central axis of the optical path determined by the imaging lens in the lens.
  • three coils are provided.
  • the number of coils may also be specifically set according to actual needs.
  • One of the three coils in this embodiment is the focus coil 10126, and the other two coils are The deflection coils are respectively a first deflection coil 10125 and a second deflection coil 10127, wherein the focus coil 10126 is disposed in the middle, and the two deflection coils are respectively disposed on both sides.
  • the lens mount 101212, the focus coil 10126, the deflection coil and the magnet for fixing the lens are mounted, and the focus coil 10126 and the deflection coil are respectively fixedly disposed outside the lens mount 101212, and the magnet is arranged around the focus coil 10126 and the deflection coil, so that the focus coil 10126
  • the magnet can interact with the magnet, so that the focus coil 10126 drives the lens holder 101212 to move back and forth to achieve lens focusing, and the deflection coil can interact with the magnet, so that the deflection coil drives the lens holder 101212 to perform tilting motion to realize the lens shifting.
  • the focus coil 10126 is provided with one, and the deflection coil is provided with two, respectively a first deflection coil 10125 and a first deflection coil 10127.
  • the two deflection coils are respectively disposed on both sides of the focus coil 10126, and the focus coil 10126 and the deflection coil are parallel to each other. And the focus coil 10126 and the deflection yoke are respectively disposed perpendicular to the optical axis of the lens in the lens mount 101212.
  • the magnetic body is provided with four, wherein the first magnet 10128 and the second magnet 10129 are a group, and the first magnet 10128 and the second magnet 10129 are oppositely disposed, and the generated magnetic field mainly acts on the first deflection coil 10125 and the focus coil. 10126; the third magnet 101210 and the fourth magnet 101211 are a group, and the third magnet 101210 and the fourth magnet 101211 are oppositely disposed, and the generated magnetic field mainly acts on the first deflection coil 10127 and the focus coil 10126.
  • the second magnet 10129 corresponds to the inner pole polarity of the portion of the focus coil 10126 being the same as the inner pole of the first magnet 10128, and the second magnet 10129 corresponds to the inner pole polarity of the first deflection coil 10125 portion and the first magnet.
  • the inner magnetic poles of the 10128 are opposite in polarity; the inner magnetic poles of the fourth magnet 101211 correspond to the inner magnetic poles of the third magnet 101210, and the fourth magnetic poles 101211 correspond to the inner magnetic poles of the first deflection coil 10127.
  • the polarity of the inner pole of the third magnet 101210 is opposite.
  • the outer side of the lens holder 101212 is provided with a metal yoke 10121 for shielding internal and external magnetic fields, and the magnet is fixedly mounted inside the metal yoke 10121.
  • the upper end of the lens holder 101212 is provided with a top spring piece
  • the lower end of the lens holder 101212 is provided with a bottom spring piece 101213
  • the bottom spring piece 101213 is mounted on the bottom case 201214.
  • the bottom case 201214 and the metal yoke 20121 are mounted to each other to form a receiving cavity for arranging the components of the lens holder 201212 therein.
  • the lens mount 101212 is suspended in the metal yoke 10121 by a top spring piece and a bottom spring piece 101213.
  • First and second insulating gaskets 10122, 10124 are respectively disposed on the upper and lower sides of the top spring piece.
  • the second magnet 10129 and/or the fourth magnet 101211 adopt a planar two-stage magnetic injection process to realize two magnetic pole polarization directions on the same side on the same magnet, or two magnet poles in opposite directions. Stitched together.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)

Abstract

本发明公开了一种增加拍摄画幅的拍摄系统及控制方法,包含:处理器,与处理器连接的镜头组件,图像传感器,图像处理系统与合成模块;主控芯片控制镜头组件中的移轴式光学防抖马达驱动镜头对焦,或者驱动镜头做倾斜运动,实现镜头移轴,并根据镜头组件反馈的拍摄命令驱使图像传感器对应采集光学图像并输出光学图像模拟信号;图像处理系统用于将光学模拟图像信号转换成数字图像并输出,合成模块用于将对应不同镜头动作的多幅数字图像进行拼接与合成并输出;图像处理系统接收经拼接合成后的数字图像并转换压缩成图片格式输出。本发明具有实现在长度方向与宽度方向上的画幅增加,提升画面质量,实现超高像素的输出的优点。

Description

一种增加拍摄画幅的拍摄系统及其控制方法 技术领域
本发明涉及摄像领域,特别涉及一种能够应用到智能手机中的增加拍摄画幅的拍摄系统及其控制方法。
背景技术
照相机用于摄影,是一种利用光学成像原理形成影像的光学器械。数码相机是照相机的一种,数码相机的成像原理为当光线通过镜头或者镜头组进入数码相机时,通过成像元件转化为数字信号,数字信号通过影像运算芯片储存在存储设备中。
在一般情况下,普通相机的机身是用来连接镜头和胶片的,其结构是固定的,镜头的调整只有前后移动的调焦功能。也就是说,普通相机的镜头光轴不能相对于机身进行任意角度的移轴调效,它在底片上成像的透视关系与景深效果是不能随意控制的。
如图1所示,通常情况下实景的垂直于光轴的物平面4,像平面3和镜头1光轴2是垂直的,镜头只能沿着对焦方向运动,无法通过转动镜头1实现增加手机拍摄画幅和超高像素输出。
在现有技术中,上述的这种移轴调效的功能只有在大型专业座机上才能实现,而大型专业座机的体积庞大,携带极不方便,且不能应用到智能移动终端或手机中。另一方面,以往的全景摄影装置是一个独立的全景云台,其与进行拍摄使用的摄影装置不能混合使用,即不能组成一套摄影装置,二者属于两种完全不同的设备,一种是摄影设备,一种是三脚架上的云台设备。
随着手机生产技术的不断提高,尤其是智能手机的出现以后,手机的功能越来越多,手机的摄像与拍照功能几乎已经成为每个手机的必备功能,随着5M、8M、12M等高像素摄像头在智能手机中的日益普及,使得手机拍照的素质越来越接近数码相机。
但是,现有技术中的高像素手机摄像头却通常不含有数码相机的一些光 学和机械部件,这种硬件上的缺失,无疑会让拍照手机的拍照效果比数码相机差很多。目前的拍照手机通常最多只有一个自动对焦马达来实现近焦、远焦的转换功能,其对镜头的控制至多是单维度的令镜头靠近或远离图像传感器。
传统的成像方式中,成像镜头的光轴通常垂直于焦平面且与唯一的成像器件的中心以及焦平面中心重合。此时,若多个相机全部垂视安装,则每个相机的成像范围基本一致,无法达到扩展成像范围的目的。
四相机拼接方式,且四个相机的光轴都不平行于中心光轴(即:都不垂直于拍摄目标),而是与拍摄目标呈一个较大的倾斜角度(一般为20度左右)。因此,作为这四个相机拍摄目标的四个部分的成像角度将均不相同,无法直接拼接影像或利用一个投影中心进行影像处理。这种情况下,必须构造一个虚拟的投影中心,将四个相机的影像统一到此虚拟投影中心,然后才能进行高精度的影像拼接;并且此虚拟投影中心的等效焦距与四个相机的实际焦距均不同。此外,由于成像方式为倾斜成像,每个相机所拍摄目标的分辨率将不一致:中心分辨率高,边缘分辨率低,影像拼接时还需对分辨率进行平均和差值处理。
或者四个相机的光轴相互平行且均垂直于拍摄目标。这种情况下,四个相机可近似看作具有同一个投影中心,且拍摄目标的分辨率分布均匀,易于后期影像处理。然而,由于四个相机一字排开,即使采用延时曝光以近似看作同时曝光,延时也不易控制且精确度不高(延时与飞行速度有关)。此外,拍摄时刻不一致导致四个相机的定位和姿态参数不同;由于不易分别获取四个相机拍摄时刻的姿态参数,只能对四个相机统一采用某一时刻的姿态参数,这势必造成影像的处理误差和纠正误差。
而高级的数码相机中,则同时是通过更加复杂的机械装置控制镜头相对于图像传感器进行多维度的运动。为了使具有拍照功能的手机的摄像效果进一步向数码相机靠拢,基于镜头平移的光学防抖对焦马达。但是这些马达的结构非常复杂,体积和功耗较大,因此一直未能在智能手机市场上推广开来。
镜头产生可控倾斜的对焦马达,实现了自动对焦加光学防抖动的功能,并实现了器件的小型化突破,使得三轴马达的体积第一次做到跟传统单轴马达一样小,功耗也得到了良好控制,真正为三轴马达在手机中的应用铺平了 道路。利用分布在镜头周边的若干个相同致动器,分别独立推动镜头在大致平行于光轴的方向上运动,通过控制每个致动器的移动量来实现镜头的对焦和可控倾斜角度,而镜头的倾斜的同时又能产生镜头的等效平移,从而可结合陀螺仪传感控制实现光学防抖的拍摄效果。然而,该款马达具有量产难度相对较大,不易与马达驱动电路相匹配等缺点,因而也未在智能手机中大量推广。
对焦马达通常是采用四个相同的致动器共同推动镜头运动,其中每一个致动器对镜头的对焦和偏转都有贡献,所以需要四个致动器协同配合才能精确控制镜头的姿态。镜头运动时需要将马达对焦位置、X方向偏转角度和Y方向偏转角度这三个控制参量经过复杂的换算,转换成为驱动四个致动器的四个电流参量,才能实现所需要的控制。因此,控制芯片需要植入复杂的转换算法。此种对焦马达中,每个致动器的线圈阻抗偏小,不利于与驱动电路匹配,且需要四个相同的驱动电路,用以控制四个相互独立的致动器。每个驱动电路都承担了控制马达对焦位置和偏转角度的任务,驱动电流为控制对焦的电流与控制偏转的电流的叠加。由于每个驱动电路的电流输出动态范围的限制,对焦电流的大小变化将影响偏转电流的动态范围,因此对焦运动和偏转运动两种运动容易互相牵制。
因此,目前的手机摄像模组,通常情况下像平面和镜头光轴是垂直的,镜头只能沿着对焦方向运动,无法通过转动镜头实现增加手机拍摄画幅和超高像素输出,若想实现增加拍摄画幅,只能通过全景拍照,模式,用户配合水平移动手机进行拍照,只能实现一个方向画幅增加,受限于用户拍照技术,且操作复杂,耗费时间。
发明的公开
本发明的目的是提供一种增加拍摄画幅的拍摄系统及其控制方法,通过使相机自动对焦后,镜头不动时拍摄一张照片,然后通过移轴式马达驱动镜头由中心沿着对角线四个方向高速转动,并在上述四个方向上各拍摄一张照片,通过图像处理器对上述五张照片不同的特征点像素进行拼接,实现在长度方向与宽度方向上的画幅增加的目的。
为了实现以上目的,本发明通过以下技术方案实现:
一种增加拍摄画幅的拍摄系统,包含:处理器,与所述处理器连接的镜头组件,图像传感器,图像处理系统与合成模块;所述主控芯片控制镜头组件中的移轴式光学防抖马达驱动镜头对焦,或者驱动镜头做倾斜运动,实现镜头移轴,并根据所述镜头组件反馈的拍摄命令驱使所述图像传感器对应采集光学图像并输出光学图像模拟信号;所述图像处理系统用于将所述光学模拟图像信号转换成数字图像并输出,所述合成模块用于将对应不同镜头动作的多幅数字图像进行拼接与合成并输出;所述图像处理系统接收经拼接合成后的数字图像并转换压缩成图片格式输出。
优选地,所述拍摄系统还包含一为所述拍摄系统供电的电源模块,所述电源模块包含:充电电池,以及与所述充电电池连接的USB接口,所述充电电池通过所述USB接口进行充电;所述USB接口还与所述处理器的数据读写端连接,读取所述拍摄系统设有的存储模块所存储的数字图像数据。
优选地,所述拍摄系统还包含一与所述处理器连接的快门系统,所述快门系统用于根据所述处理器输出的拍摄命令触发所述图像处理器对当前待拍摄的实景进行拍摄。
优选地,所述拍摄系统还包含一与所述处理器连接的显示模块与存储模块,所述显示模块用于将所述图像处理系统输出的图片格式的拼接合成数字图像进行显示;所述存储模块用于将所述图像处理系统输出的图片格式的拼接合成数字图像进行存储。
优选地,所述图像传感器包括:感光面和光信号转换器,所述感光面为近似矩形,用于接收光学图像;所述光信号转换器与所述感光面连接,用于将所述感光面接收的所述转换成图像信号。
优选地,所述图像处理系统包括:模数转换模块与处理转化模块;所述模数转换模块用于将所述光学图像模拟信号转换成数字图像信号;
所述处理转化模块用于将所述合成模块输出的经拼接合成后的数字图像信号压缩转化成JEPG格式输出。
优选地,所述移轴式光学防抖马达还包括:用于固定安装镜头的镜头座、对焦线圈、偏转线圈和磁石,对焦线圈和偏转线圈分别固定套装在镜头座外侧,磁石排布在对焦线圈和偏转线圈四周,使得对焦线圈能够与磁石相互作用,使对焦线圈带动镜头座前后运动,实现镜头对焦,偏转线圈能够与磁石 相互作用,使偏转线圈带动镜头座做倾斜运动,实现所述镜头的移轴。
优选地,所述合成模块对各个数字图像上不同的特征点像素进行拼接;实现拍摄的画幅在长度方向与宽度方向上的增加,所述合成模块对各个数字图像上相同的特征点像素进行合成,实现增加拍摄画幅的像素。
本发明的第二个技术方案为一种基于上文所述的增加拍摄画幅的拍摄系统的控制方法,包含以下过程:对镜头自动对焦,像平面与镜头光轴垂直,镜头沿着对焦方向运动,直至自动对焦完成,此时,通过图像传感器采集第一光学图像并输出第一光学模拟图像信号;驱动所述镜头相对于多个与所述对焦方向垂直的转轴支点进行倾斜运动,像平面与镜头光轴不垂直,且每当镜头倾斜至倾斜角度阈值时,所述图像传感器对应采集一个光学图像并输出对应的光学模拟图像信号;将所述第一光学模拟图像信号以及多个在像平面与镜头光轴不垂直时所采集的光学模拟图像信号转换成对应的数字图像信号;将第一数字图像信号与多个在像平面与镜头光轴不垂直时的数字图像信号进行拼接与合成;将经拼接合成后的数字图像信号进行压缩转换,并对其进行显示与存储。
优选地,所述控制方法进一步包含:所述镜头分别沿着所述第一光学图像的中心到图像的四个顶点方向进行倾斜,每倾斜至倾斜角度阈值时,各拍摄一幅光学图像得到第二至第五光学图像;对所述第一至第五光学图像的数字图像的不同特征点像素进行拼接,对相同特征点像素进行合成,实现在相对于第一光学图像的长度方向与宽度方向的画幅增加。
本发明与现有技术相比具有以下优点:
通过使相机自动对焦后,镜头不动时拍摄一张照片,然后通过移轴式马达驱动镜头由中心沿着对角线四个方向高速转动,并在上述四个方向上各拍摄一张照片,通过图像处理器对上述五张照片不同的特征点像素进行拼接,实现在长度方向与宽度方向上的画幅增加,本发明的拍摄系统的拍摄范围与现有技术相比可增大3°以上,并且对相同特征点的像素进行合成,可提升画面质量,实现超高像素的输出。
附图的简要说明
图1为现有技术中相机中的光轴与物平面垂直的示意图;
图2为本发明一种增加拍摄画幅的拍摄系统中镜头的光轴与物平面的示意图;
图3为本发明一种增加拍摄画幅的拍摄系统的结构框图;
图4为本发明一种增加拍摄画幅的拍摄系统的电源模块的示意图;
图5为本发明一种增加拍摄画幅的拍摄系统的图像处理系统的示意图;
图6为本发明一种增加拍摄画幅的拍摄系统的镜头组件的结构框图;
图7为本发明一种增加拍摄画幅的拍摄系统的镜头移动方向的示意图;
图8为本发明一种增加拍摄画幅的拍摄系统的镜头组件的结构示意图。
实现本发明的最佳方式
以下结合附图,通过详细说明一个较佳的具体实施例,对本发明做进一步阐述。
结合图2与图3所示,本发明一种增加拍摄画幅的拍摄系统,包含:相机壳体,设置在相机壳体内部的处理器109;分别与上述处理器109连接的镜头组件101,电源模块104,显示模块103,图像传感器102,存储模块105,快门系统106,图像处理系统107与合成模块108。
如图4所示,上述增加拍摄画幅的拍摄系统设有的电源模块104,进一步设有充电电池1040,在本实施例中,上述充电电池1040为充电锂电池。
上述电源模块1040还设有一与所述充电电池1040以及与上述处理器109连接的USB接口1041;当上述充电电池1040需要充电时,上述USB接口1041可以用于为其充电;上述增加拍摄画幅的拍摄系统可以直接使用上述USB接口1041供电。
上述镜头组件101进一步包含镜头1010,分别与镜头连接的自动对焦驱动马达1011以及移轴式光学防抖马达1012,所述移轴式光学防抖马达(Tilt-shift、Optical image stabilization,简称OIS),其与上述自动对焦驱动马达1011不同,上述移轴式光学防抖马达1012设有的弹簧悬挂系统其既能够驱动镜头1010沿着对焦方向运动;又能够驱动镜头1010相对于一个转轴支点沿任意方向做一个微小的侧倾运动,上述倾斜的角度范围可达到或者高于1.5°。
如图7所示,上述对焦方向为O点方向即垂直于纸面的方向,与物平面垂直的方向前近或后退;上述移轴式光学防抖马达1012还可以用于驱动镜头 1010由所述中心0点沿着对角线oa、ob、oc与od这四个方向高速转动,直至转动到预设的角度阈值。
上述自动对焦驱动马达1011用于在拍摄照片前,驱动上述镜头1010对待拍摄的实景100进行自动对焦。
上述处理器109用于控制上述自动对焦驱动马达1011对待拍摄的实景100进行自动对焦,对焦完成后,驱动快门系统106对上述对焦完成后的实景100进行启动拍照,驱动图像传感器102通过其带有的感光面接收或采集光学图像,上述感光面近似正方形;所述图像传感器102还设有一光信号转换器其与感光面连接,用于将上述感光面采集的光学图像转换成图像信号并输出。上述光学图像为第一幅光学图像,图像信号为第一图像信号。
上述处理器109继续控制上述移轴式光学防抖马达1012驱动镜头1010由所述中心0点沿着对角线oa、ob、oc与od这四个方向高速转动,如图7所示,直至转动到预设的角度阈值。即上述镜头1010沿着oa方向高度转动都预设角度,在本实施例中,所述预设角度为1.5°,此时处理器109驱动上述快门系统106进行拍照,上述图像传感器102采集得到第二幅光学图像;并转换成第二图像信号输出。
上述镜头1010沿着ob方向高度转动都预设角度,在本实施例中,所述预设角度为1.5°,此时处理器109驱动上述快门系统106进行拍照,上述图像传感器102采集得到第三幅光学图像;并转换成第三图像信号输出。
上述镜头1010沿着oc出方向高度转动都预设角度,在本实施例中,所述预设角度为1.5°,此时处理器109驱动上述快门系统106进行拍照,上述图像传感器102采集得到第四幅光学图像;并转换成第四图像信号输出。
上述镜头1010沿着od出方向高度转动都预设角度,在本实施例中,所述预设角度为1.5°,此时处理器109驱动上述快门系统106进行拍照,上述图像传感器102采集得到第五幅光学图像;并转换成第五图像信号输出。
上述图像处理系统107用于依次对上述第一至第五图像信号进行图像处理,得到第一至第五数字图像信号。
上述合成模块108用于接收经处理器109反馈的上述图像处理系统107输出的第一至第五数字图像信号,并根据上述第一至第五数字图像相互之间不同特征点处的像素进行拼接,实现在第一光学图像的长度方向以及宽度方向 上的画幅增加,因此其拍摄范围可增加3°以上。根据并根据上述第一至第五数字图像相互之间相同特征点处的像素进行合成,提高画质,实现超高像素输出。
如图5所示,上述图像处理系统107进一步包括模数转换模块1070以及处理转化模块1071;上述模数转换模块1070用于将上述光学图像模拟信号转换成数字图像信号;
上述处理转化模块1071用于将上述合成模块108输出的将上述第一至第五图像合成后的合成数字图像信号压缩转化成JEPG格式输出,并通过上述显示模块103进行显示,最终实现输出显示大画幅超高像素的图像,将上述大画幅超高像素的JEPG格式的图像通过存储模块105进行存储。
实施例二,基于上文所述的一种增加拍摄画幅的拍摄系统,本发明还提出了一种增加拍摄画幅的拍摄系统的控制方法,包含以下过程:
对待拍摄的实景进行通过上述自动对焦马达进行自动对焦,此时镜头的中心轴与实景平面垂直,
按下上述快门系统设有的快门键,触发上述图像传感器采集得到第一幅光学图像;一以当前的对焦实景画面为中心画面,通过上述移轴式光学防抖马达驱动镜头沿着上述第一光学图像的宽度方向或长度方向或对角线方向快速转动四次,当在一个方向上转动预设角度后,通过传感器对应采集一张光学图像,可获得不同的第二至第五幅光学图像。
将上述第一至第五光学图像通过图像处理系统转化成数字图像后,通过合成模块进行合成。
上述合成过程还包含以下过程,对上述第一至第五数字图像中不同特征点像素进行拼接,对上述第一至第五数字图像中相同特征点像素进行合成。
通过图像处理系统将上述合成后的数字图像转化成JEPG格式的图像后通过显示模块进行显示,通过存储模块进行存储。
如图8所示,上述镜头组件中的移轴式光学防抖马达进一步包含:三个互相平行,且大致垂直于光轴(光轴即镜头中成像镜片所确定的光路的中心轴)方向的大致为矩形的线圈,以及在线圈四周精心排布的若干个磁石的组合。本实施例中,线圈设置有三个,具体实施时,也可以根据实际需要具体设置线圈数量。本实施例中的三个线圈中一个为对焦线圈10126,另外两个线圈为 偏转线圈,分别为第一偏转线圈10125和第二偏转线圈10127,其中,对焦线圈10126设置在中间,两个偏转线圈分别设置在两侧。
用于固定安装镜头的镜头座101212、对焦线圈10126、偏转线圈和磁石,对焦线圈10126和偏转线圈分别固定套装在镜头座101212外侧,磁石排布在对焦线圈10126和偏转线圈四周,使得对焦线圈10126能够与磁石相互作用,使对焦线圈10126带动镜头座101212前后运动,实现镜头对焦,偏转线圈能够与磁石相互作用,使偏转线圈带动镜头座101212做倾斜运动,实现镜头的移轴。上述对焦线圈10126设有一个,偏转线圈设有两个,分别为第一偏转线圈10125和第一偏转线圈10127,两个偏转线圈分别设置在对焦线圈10126两侧,对焦线圈10126和偏转线圈相互平行,且对焦线圈10126和偏转线圈分别垂直于镜头座101212内的镜头的光轴设置。
所述的磁设有四个,其中第一磁石10128和第二磁石10129为一组,第一磁石10128和第二磁石10129相对设置,其产生的磁场主要作用于第一偏转线圈10125和对焦线圈10126;第三磁石101210和第四磁石101211为一组,第三磁石101210和第四磁石101211相对设置,其产生的磁场主要作用于第一偏转线圈10127和对焦线圈10126。所述的第二磁石10129对应于对焦线圈10126部分的内侧磁极极性与第一磁石10128内侧磁极极性相同,第二磁石10129对应于第一偏转线圈10125部分的内侧磁极极性与第一磁石10128内侧磁极极性相反;第四磁石101211对应于对焦线圈10126部分的内侧磁极极性与第三磁石101210内侧磁极极性相同,第四磁石101211对应于第一偏转线圈10127部分的内侧磁极极性与第三磁石101210内侧磁极极性相反。
所述的镜头座101212外侧罩装有用于屏蔽内外磁场的金属磁轭10121,磁石固定安装在金属磁轭10121内部。所述的镜头座101212上端设有顶弹簧片,镜头座101212下端设有底弹簧片101213,上述底弹簧片101213安装在底壳201214上。所述底壳201214与金属磁轭20121相互安装在一起,形成一个容置腔,用于将镜头座201212的部件设置在其内部。镜头座101212通过顶弹簧片和底弹簧片101213悬挂在金属磁轭10121内。所述的顶弹簧片上下两侧分别上设有第一与第二绝缘垫圈10122、10124。所述的第二磁石10129和/或第四磁石101211采用平面两级注磁工艺在同一块磁石上实现同一侧相反的两个磁极极化方向,或分别用两个磁极极化方向相反的磁石拼接而成。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

  1. 一种增加拍摄画幅的拍摄系统,其特征在于,包含:
    处理器,与所述处理器连接的镜头组件,图像传感器,图像处理系统与合成模块;
    所述主控芯片控制镜头组件中的移轴式光学防抖马达驱动镜头对焦,或者驱动镜头做倾斜运动,实现镜头移轴,并根据所述镜头组件反馈的拍摄命令驱使所述图像传感器对应采集光学图像并输出光学图像模拟信号;
    所述图像处理系统用于将所述光学模拟图像信号转换成数字图像并输出,所述合成模块用于将对应不同镜头动作的多幅数字图像进行拼接与合成并输出;
    所述图像处理系统接收经拼接合成后的数字图像并转换压缩成图片格式输出。
  2. 如权利要求1所述的增加拍摄画幅的拍摄系统,其特征在于,所述拍摄系统还包含一为所述拍摄系统供电的电源模块,所述电源模块包含:充电电池,以及与所述充电电池连接的USB接口,所述充电电池通过所述USB接口进行充电;所述USB接口还与所述处理器的数据读写端连接,读取所述拍摄系统设有的存储模块所存储的数字图像数据。
  3. 如权利要求1所述的增加拍摄画幅的拍摄系统,其特征在于,
    所述拍摄系统还包含一与所述处理器连接的快门系统,所述快门系统用于根据所述处理器输出的拍摄命令触发所述图像处理器对当前待拍摄的实景进行拍摄。
  4. 如权利要求1所述的增加拍摄画幅的拍摄系统,其特征在于,
    所述拍摄系统还包含一与所述处理器连接的显示模块与存储模块,所述显示模块用于将所述图像处理系统输出的图片格式的拼接合成数字图像进行显示;
    所述存储模块用于将所述图像处理系统输出的图片格式的拼接合成数字图像进行存储。
  5. 如权利要求1所述的增加拍摄画幅的拍摄系统,其特征在于,
    所述图像传感器包括:感光面和光信号转换器,所述感光面为近似矩形,用于接收光学图像;所述光信号转换器与所述感光面连接,用于将所述感光面接收的所述转换成图像信号。
  6. 如权利要求1所述的增加拍摄画幅的拍摄系统,其特征在于,
    所述图像处理系统包括:模数转换模块与处理转化模块;所述模数转换模块用于将所述光学图像模拟信号转换成数字图像信号;
    所述处理转化模块用于将所述合成模块输出的经拼接合成后的数字图像信号压缩转化成JEPG格式输出。
  7. 如权利要求1所述的增加拍摄画幅的拍摄系统,其特征在于,
    所述移轴式光学防抖马达还包括:用于固定安装镜头的镜头座、对焦线圈、偏转线圈和磁石,对焦线圈和偏转线圈分别固定套装在镜头座外侧,磁石排布在对焦线圈和偏转线圈四周,使得对焦线圈能够与磁石相互作用,使对焦线圈带动镜头座前后运动,实现镜头对焦,偏转线圈能够与磁石相互作用,使偏转线圈带动镜头座做倾斜运动,实现所述镜头的移轴。
  8. 如权利要求1所述的增加拍摄画幅的拍摄系统,其特征在于,
    所述合成模块对各个数字图像上不同的特征点像素进行拼接;实现拍摄的画幅在长度方向与宽度方向上的增加,所述合成模块对各个数字图像上相同的特征点像素进行合成,实现增加拍摄画幅的像素。
  9. 一种基于权利要求1~8中任意一项所述的增加拍摄画幅的拍摄系统的控制方法,其特征在于,包含以下过程:
    对镜头自动对焦,像平面与镜头光轴垂直,镜头沿着对焦方向运动,直至自动对焦完成,此时,通过图像传感器采集第一光学图像并输出第一光学模拟图像信号;
    驱动所述镜头相对于多个与所述对焦方向垂直的转轴支点进行倾斜运动,像平面与镜头光轴不垂直,且每当镜头倾斜至倾斜角度阈值时,所述图像传感器对应采集一个光学图像并输出对应的光学模拟图像信号;
    将所述第一光学模拟图像信号以及多个在像平面与镜头光轴不垂直时所采集的光学模拟图像信号转换成对应的数字图像信号;
    将第一数字图像信号与多个在像平面与镜头光轴不垂直时的数字图像信号进行拼接与合成;
    将经拼接合成后的数字图像信号进行压缩转换,并对其进行显示与存储。
  10. 如权利要求9所述的增加拍摄画幅的拍摄系统的控制方法,其特征在于,所述控制方法进一步包含:所述镜头分别沿着所述第一光学图像的中心到图像的四个顶点方向进行倾斜,每倾斜至倾斜角度阈值时,各拍摄一幅光学图像得到第二至第五光学图像;对所述第一至第五光学图像的数字图像的不同特征点像素进行拼接,对相同特征点像素进行合成,实现在相对于第一光学图像的长度方向与宽度方向的画幅增加。
PCT/CN2017/103097 2017-09-25 2017-09-25 一种增加拍摄画幅的拍摄系统及其控制方法 WO2019056340A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780097090.2A CN111373300A (zh) 2017-09-25 2017-09-25 一种增加拍摄画幅的拍摄系统及其控制方法
PCT/CN2017/103097 WO2019056340A1 (zh) 2017-09-25 2017-09-25 一种增加拍摄画幅的拍摄系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/103097 WO2019056340A1 (zh) 2017-09-25 2017-09-25 一种增加拍摄画幅的拍摄系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2019056340A1 true WO2019056340A1 (zh) 2019-03-28

Family

ID=65809976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103097 WO2019056340A1 (zh) 2017-09-25 2017-09-25 一种增加拍摄画幅的拍摄系统及其控制方法

Country Status (2)

Country Link
CN (1) CN111373300A (zh)
WO (1) WO2019056340A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437212A (zh) * 2023-04-12 2023-07-14 中铁隧道局集团有限公司 轨行式隧道结构健康信息采集系统的自动变焦装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115061255A (zh) * 2021-11-02 2022-09-16 新思考电机有限公司 光学部件驱动装置、照相装置以及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1940617A (zh) * 2005-09-30 2007-04-04 鸿富锦精密工业(深圳)有限公司 数码相机镜头模组
CN101344704A (zh) * 2008-07-28 2009-01-14 张宇 一种可进行全景拍摄的移轴摄影系统
CN102062599A (zh) * 2010-11-23 2011-05-18 中国科学院遥感应用研究所 基于移轴原理的拼接成像系统
US20110157387A1 (en) * 2009-12-30 2011-06-30 Samsung Electronics Co., Ltd. Method and apparatus for generating image data
CN202904103U (zh) * 2012-08-20 2013-04-24 爱佩仪光电技术(深圳)有限公司 一种可实现镜头可控倾斜的音圈马达结构
CN103855903A (zh) * 2014-03-18 2014-06-11 深圳市世尊科技有限公司 马达
CN104469157A (zh) * 2014-12-08 2015-03-25 广东欧珀移动通信有限公司 一种相机多人拍摄的方法和装置
CN105430131A (zh) * 2015-12-23 2016-03-23 惠州Tcl移动通信有限公司 一种手机的角度可调式摄像头组件及手机
WO2017052769A1 (en) * 2015-09-24 2017-03-30 Intel Corporation Magnetic fluid optical image stabilization

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639625B1 (en) * 1997-07-16 2003-10-28 Minolta Co., Ltd. Image sensing device
JP4565905B2 (ja) * 2004-06-23 2010-10-20 Hoya株式会社 撮像装置
CN101520541A (zh) * 2008-02-26 2009-09-02 一品光学工业股份有限公司 镜头移位机构
TWI508501B (zh) * 2010-01-21 2015-11-11 Hon Hai Prec Ind Co Ltd 便攜式電子裝置
US9007429B2 (en) * 2011-04-06 2015-04-14 Casio Computer Co., Ltd. Image processing device capable of generating wide-range image
CN102798959B (zh) * 2012-08-20 2014-10-29 爱佩仪光电技术(深圳)有限公司 一种可实现镜头可控倾斜的音圈马达结构
CN105430265A (zh) * 2015-11-27 2016-03-23 努比亚技术有限公司 一种增大摄像头成像范围的方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1940617A (zh) * 2005-09-30 2007-04-04 鸿富锦精密工业(深圳)有限公司 数码相机镜头模组
CN101344704A (zh) * 2008-07-28 2009-01-14 张宇 一种可进行全景拍摄的移轴摄影系统
US20110157387A1 (en) * 2009-12-30 2011-06-30 Samsung Electronics Co., Ltd. Method and apparatus for generating image data
CN102062599A (zh) * 2010-11-23 2011-05-18 中国科学院遥感应用研究所 基于移轴原理的拼接成像系统
CN202904103U (zh) * 2012-08-20 2013-04-24 爱佩仪光电技术(深圳)有限公司 一种可实现镜头可控倾斜的音圈马达结构
CN103855903A (zh) * 2014-03-18 2014-06-11 深圳市世尊科技有限公司 马达
CN104469157A (zh) * 2014-12-08 2015-03-25 广东欧珀移动通信有限公司 一种相机多人拍摄的方法和装置
WO2017052769A1 (en) * 2015-09-24 2017-03-30 Intel Corporation Magnetic fluid optical image stabilization
CN105430131A (zh) * 2015-12-23 2016-03-23 惠州Tcl移动通信有限公司 一种手机的角度可调式摄像头组件及手机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437212A (zh) * 2023-04-12 2023-07-14 中铁隧道局集团有限公司 轨行式隧道结构健康信息采集系统的自动变焦装置及方法

Also Published As

Publication number Publication date
CN111373300A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
JP4441565B2 (ja) 撮像装置
JP6192940B2 (ja) 撮影機器及び連携撮影方法
JP7030442B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US5416557A (en) Camera apparatus having drift detecting unit
JP2009048125A (ja) 撮影装置および撮影装置の制御方法
JP2011259168A (ja) 立体パノラマ画像撮影装置
JP2017103697A (ja) 画像処理装置、撮像装置、画像処理方法およびプログラム
WO2021017683A1 (zh) 一种光学防抖装置及控制方法
JP2010103921A (ja) 撮像装置および撮像装置の制御方法
JP2010026120A (ja) カメラシステム及びアダプタ
JP2012225947A (ja) レンズ鏡筒
WO2019056340A1 (zh) 一种增加拍摄画幅的拍摄系统及其控制方法
JP2009069170A (ja) 撮影装置および撮影装置の制御方法
JP5248951B2 (ja) カメラ装置、画像撮影支援装置、画像撮影支援方法、及び画像撮影支援プログラム
JP2009036985A (ja) 撮影装置および撮影装置の制御方法
JP2009053296A (ja) 撮影装置および撮影装置の制御方法
JP4306341B2 (ja) 画像撮影装置
JP5203155B2 (ja) 撮像装置および撮像装置の制御方法
JP2013062879A (ja) 撮像装置および撮像装置の制御方法
JP6764308B2 (ja) 補正装置及びその制御方法、撮像装置、プログラム並びに記憶媒体
JP2009086036A (ja) 撮影装置および撮影装置の制御方法
JP2009036987A (ja) 撮影装置および撮影装置の制御方法
JP2006220834A (ja) 撮像装置
JP2011211260A (ja) パノラマ画像撮像装置及びそのパノラマ画像合成方法
JP2010124177A (ja) 撮像装置および撮像装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925698

Country of ref document: EP

Kind code of ref document: A1