WO2019056234A1 - 一种自动分析装置及其工作方法 - Google Patents

一种自动分析装置及其工作方法 Download PDF

Info

Publication number
WO2019056234A1
WO2019056234A1 PCT/CN2017/102535 CN2017102535W WO2019056234A1 WO 2019056234 A1 WO2019056234 A1 WO 2019056234A1 CN 2017102535 W CN2017102535 W CN 2017102535W WO 2019056234 A1 WO2019056234 A1 WO 2019056234A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
cuvette
temporary storage
reagent
cup
Prior art date
Application number
PCT/CN2017/102535
Other languages
English (en)
French (fr)
Inventor
鞠文涛
李二圣
翁彦雯
王俊
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2017/102535 priority Critical patent/WO2019056234A1/zh
Priority to CN201780093995.2A priority patent/CN111033263B/zh
Publication of WO2019056234A1 publication Critical patent/WO2019056234A1/zh
Priority to US16/825,947 priority patent/US20200217865A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00524Mixing by agitating sample carrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00564Handling or washing solid phase elements, e.g. beads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0443Rotary sample carriers, i.e. carousels for reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators

Definitions

  • the invention relates to an automatic analysis device and a method of its operation.
  • An automatic analyzer for example, an immunoassay analyzer, which is a type of high-sensitivity and high-specificity analytical instrument, is often used in clinical laboratories to detect blood, urine, or other body fluids.
  • Traditional immunoassays have a variety of implementation principles, such as chemiluminescence, electrochemiluminescence, and the like.
  • chemiluminescence chemiluminescence
  • electrochemiluminescence electrochemiluminescence
  • the main working principle is mainly: when it is necessary to measure a certain component in the sample, the corresponding antibody/antigen can be coated on the magnetic beads to form a magnetic bead reagent.
  • the reagent for measuring an analysis item generally has a plurality of components, such as a magnetic bead reagent component, a labeled reagent component, etc., and different components of the same item may be used. Dispense in different reagent containers or in different chambers of the same reagent container).
  • the test process firstly mixes the sample containing the analyte with the magnetic bead reagent, the labeling reagent and other reagents to form a sample reagent reaction solution (referred to as a reaction solution), and incubates the reaction under certain conditions to form a reaction complex; Bound-free (B/F) technology is used to remove unbound labels and other reagents and sample components in the reaction system; then, a signal reagent is added thereto, and the label on the reaction complex reacts with the signal reagent. (or catalytic signal reagent) luminescence, wherein the signal reagent may be one or more, such as a luminescent substrate solution, a pre-excitation solution and an excitation solution, and a luminescence enhancement solution.
  • a luminescence enhancement solution There are also a variety of specific coating methods. In addition to the magnetic bead cleaning method described above, there are other methods of coating the antibody on the reaction vessel wall, plastic beads, and the like.
  • the existing immunoassay analyzers generally have low test throughput, which has been unable to meet the increasing test volume in the field, thus seriously affecting the efficiency of doctors and the like who need to diagnose according to the sample measurement results.
  • the invention mainly provides an automatic analysis device and a working method thereof.
  • an automatic analysis apparatus including:
  • a cuvette loading mechanism for supplying and carrying the cuvette to the reaction cup
  • a sample dispensing mechanism for sucking the sample and discharging it into a cuvette located at the sample loading position
  • a reagent dispensing mechanism for taking the reagent and discharging it into a cuvette located at the reagent loading position
  • reaction tray is disposed in a disc-like structure, the reaction tray has a plurality of placement positions for placing the reaction cup, and the reaction tray is rotatable and drives the reaction cup in the placement position to rotate , for scheduling the reaction cup in the reaction tray and incubating the reaction liquid in the reaction cup;
  • a measuring unit for measuring the reaction liquid to be tested
  • a magnetic separation unit for performing magnetic separation cleaning on the reaction liquid in the reaction cup
  • a transfer mechanism for scheduling a reaction cup at least between the cuvette loading mechanism, the reaction tray, the mixing mechanism, and the magnetic separation unit;
  • control unit for controlling at least operation and timing of the sample dispensing mechanism, the reagent unit, the reagent dispensing mechanism, the reaction disk, the mixing mechanism, the measuring unit, the magnetic separating unit, and the transfer mechanism;
  • the temporary storage unit is provided separately from the reaction tray for receiving the cuvette dispatched from the reaction tray by the transfer mechanism and temporarily storing it to wait for being dispatched back to the reaction tray again.
  • an embodiment of the present invention provides a method for operating an automatic analysis device, including:
  • reaction cup is dispatched to the sample loading position for loading
  • the reaction cup is added with a preset amount of reagents at a time in the reagent addition position of the reaction tray; when the reaction cup located in the addition test position needs to be added to the reagent group to be larger than the preset amount, the reaction cup is Add a preset amount of the reagent, after which and in the cuvette Before being added to other reagents required for the incubation, the reaction cup is dispatched to a temporary storage area independent of the reaction tray for temporary storage; then the reaction cup is dispatched back to the reaction tray from the temporary storage area to continue to join the present Other reagents required for secondary incubation;
  • any cuvette is a multi-step test item, in any of the other step tests except the last one step test, when the cuvette needs magnetic separation cleaning in the step test, it will be in the reaction.
  • the reaction cup that is completed by the disk is first dispatched to the magnetic separation unit for magnetic separation cleaning, and then the reaction cup that completes the magnetic separation cleaning is dispatched from the magnetic separation unit to a temporary storage area independent of the reaction disk for temporary storage;
  • the reaction cup which is completed in the reaction tray is dispatched from the reaction tray to a temporary storage area independent of the reaction tray for temporary storage; and then temporarily stored in the temporary storage area.
  • the cuvette is dispatched back to the reaction tray to complete subsequent step testing.
  • an embodiment provides an automatic analysis apparatus, including:
  • Dispensing mechanism for aspirating and draining
  • reaction tray is disposed in a disc-like structure, and the reaction tray has a plurality of placement positions for placing the reaction cup, and the reaction tray can rotate and drive the reaction cup in the placement position to rotate Disposing the reaction cup in the reaction tray and incubating the reaction liquid in the reaction cup;
  • Two cleaning liquid placement positions one of which is for carrying a container containing a concentrated cleaning solution, and the other is for carrying a container containing a diluent for diluting the concentration a cleaning liquid; the two cleaning liquid placement positions are disposed on a movement track of the dispensing mechanism;
  • the control unit is configured to control the dispensing mechanism to respectively suck the liquid in the container on the two cleaning liquid placement positions, and discharge the liquid into the reaction cup to prepare the diluted cleaning liquid.
  • the multi-component test project can be divided into a new one-step test process by introducing the temporary storage portion, or the multi-step test flow can be divided into several new steps.
  • the test process re-enters the test sequence and process, so that the organization and unit and control timing can be designed according to the one-step test process, which is very standardized and orderly, thus solving the multi-component test project and the multi-step test process interruption.
  • the problem of the normal process effectively improves the test speed and test throughput of the whole machine.
  • Figure 1 is a test schematic diagram of immunoassay
  • FIG. 2 is a schematic structural view of an automatic analysis device of an embodiment
  • FIG. 3 is a schematic structural view of an automatic analysis device according to another embodiment
  • FIG. 4 is a schematic diagram of a working method of an automatic analysis device of an embodiment
  • Figure 5 is a schematic illustration of the method of operation of an automated analysis device in accordance with another embodiment.
  • Figure 6 is a diagram showing the placement of a fourth-order magnetic separation disk of the magnetic separation unit of Figure 3.
  • Fig. 7 is a schematic structural view of an automatic analyzing device according to still another embodiment.
  • the one-step test item in the present invention means that only one step of incubation is required for one test item; accordingly, the multi-step test item means that one test item requires multiple steps of incubation, such as a two-step test item.
  • the test project requires two steps of incubation, first adding the reagents needed for the first step of incubation to the sample, then performing the first step of incubation, after the first incubation time is reached, and then adding the second step of incubation. The reagent is then subjected to the second step of incubation, and after the second incubation time is reached, magnetic separation is performed again, and then the measurement is performed.
  • a multi-step test project requires magnetic separation after the final step of incubation.
  • a multi-step test project except for the last step, after the other steps are incubated, magnetic separation is not required, depending on factors such as the type of test item.
  • a two-step test project if the first step of the test requires magnetic separation after incubation, the two-step test project can be called a two-step two-separation test project, if the first test is The magnetic separation is not required after incubation, and the two-step test project can be referred to as a two-step, one-separation test project.
  • the number of reagents to be added for each step of incubation or each incubation may be one type or multiple types, which is determined according to factors such as the type of test item.
  • the test item can be called multi-component test. project.
  • magnetic separation cleaning is an inevitable process and link in various test projects. Since magnetic separation cleaning requires a long fixed time, magnetic separation cleaning is also a long-term process. Especially for some multi-step test projects that require multiple magnetic separation cleaning. Moreover, since the cycle of other units or components in the device needs to be consistent with the above-mentioned magnetic separation cleaning, the test speed and test throughput of the device are limited.
  • multi-step test items and multi-component test items are the main reasons that affect test throughput when the immunoassay analyzer is working.
  • the reagent needle of the same cycle needs multiple suction and discharge to complete one test.
  • the components are dispensed.
  • the outer wall of the reagent needle needs to be cleaned between the different components, resulting in the dispensing of the multi-reagent components in the one-step test.
  • test throughput One of the longest-consuming steps in the analysis device affects the test throughput.
  • the immunological analyzer sometimes needs to carry out test procedures such as sample pre-dilution and pre-treatment. These "non-standard" test procedures are also a cause of affecting test throughput.
  • the inventors found that the separation time can be solved from the magnetic separation cleaning, the dispensing time of the multi-component reagents in the multi-component test item, and the multiple magnetic separation process. Simplification, process simplification of the multi-step test project, etc., to solve any of the above problems can achieve the effect of improving test speed and test throughput.
  • reaction cup needs to add one reagent or a plurality of reagents at a time, it takes a cycle time of the reagent needle, that is, 36 seconds, so that even if four parallel reagent needles are cited, the working cycle of the reaction tray is also Only 9 seconds, the overall efficiency is still relatively low.
  • US Patent No. 5,827, 478 which has a plurality of reagent-adding positions on a reaction disk, and then correspondingly arranges a plurality of three-dimensionally moving reagent needles, and sequentially arranges one reaction cup to each reagent-adding position through a reaction disk to complete a plurality of reagent groups.
  • Dispensing which increases the number of scheduling actions of the reaction disk, thus reducing the reliability of the reaction disk transport on the one hand, and lengthening the cycle of the reaction disk on the other hand, making it one of the reasons for restricting the speed of the device. .
  • the solution adopts multiple sets of reagent dispensing units to increase the cost; the scheme adopts multiple sets of reagent dispensing units arranged to the outside of the reaction plate, which will increase the size of the whole machine, and open more reagent holes above the reaction plate, affecting Reaction plate temperature control performance.
  • An analytical device in the prior art which uses two reaction disks and two reagent disks, one of which is responsible for the first test process, and the other reaction disk and reagent disk is responsible for the second test process.
  • This approach increases the hardware cost and volume of the whole machine.
  • a plurality of reagent loading points and reagent needles are provided in each reaction tray to shorten the duty cycle of the reagent addition, but on the one hand, this will increase.
  • the scheduling action of the reaction disk causes the working cycle of the reaction disk to be elongated, which makes it the cause of the speed of the device.
  • the use of multiple reagent needles increases the cost and increases the size of the whole machine.
  • an analysis device is provided with a reagent addition position in the reaction tray, and a reagent is disposed. After the reaction tray is dispatched to the reagent addition position, the reagent needle is added all the required reagents at one time. This will cause the reaction time to wait very slowly after each reaction tray is stopped by the reagent position, for example 21 seconds (corresponding to the reaction period of the reaction disk is 21 seconds), and accordingly, other units and mechanisms are also waiting for the reaction. The disk, which is also in a wait state, is very inefficient.
  • the inventor has conceived an automatic analysis device that introduces a temporary storage unit independent of the reaction disk, which can divide the test items of multiple components into several similar one-step test processes, and can test the multi-step test process. Divided into several new one-step test procedures, re- Entering the test sequence and process, so that the organization and unit and control timing can be designed according to the one-step test process, which is very standardized and orderly, thus solving the problem that the multi-component test project and the multi-step test process disturb the normal process. Effectively improve the test speed and test throughput of the whole machine.
  • an embodiment of the present invention discloses an automatic analysis device including a cuvette loading mechanism 1, a sample unit 33, a sample dispensing mechanism 3, a reagent unit 5, a reagent dispensing mechanism 6, a reaction tray 4, and a mixture.
  • the cuvette loading mechanism 1 is used to supply and carry the cuvette to the split cup position.
  • the split cup position is used by the transfer mechanism to dispatch the cuvette to the sample loading position.
  • the cuvette device mechanism includes a silo 101, a picking mechanism 102, a reversing mechanism 103, and a transport mechanism 104.
  • the silo 101 is used to store the cuvette.
  • Pickup mechanism 102 is used to pick up, transport, and unload the cuvette.
  • the reversing mechanism 103 is coupled to the pick-up mechanism 102, and the reversing mechanism 103 has a transfer groove disposed obliquely downward from the side of the pick-up mechanism 102, the transfer groove having a size allowing the lower portion of the cuvette to extend, and the width of the transfer groove It is smaller than the width of the hanging portion on the reaction cup, and the transfer groove has a first groove bottom wall at least at an end close to the pick-up mechanism 102, and the distance from the first groove bottom wall to the upper edge of the transfer groove is smaller than the distance from the bottommost portion of the reaction cup to the hanging portion.
  • the transfer mechanism 104 is coupled to the reaction cup outlet of the transfer tank, and the transfer mechanism 104 has at least one reaction cup for storing the reaction cup for placing the reaction cup; the movement mechanism 104 has the above-mentioned split cup position, for example, will move One of the reaction cup positions on the mechanism 104 is set to a split cup position.
  • the transport mechanism 104 can be a disc structure.
  • Sample unit 33 is used to carry the sample.
  • the sample unit 33 includes a sample delivery module including a sample distribution module (SDM) and a front end track (not shown).
  • SDM sample distribution module
  • front end track not shown.
  • the sample dispensing mechanism 3 is used to suck the sample and discharge it into the cuvette located in the sample loading position.
  • the sample dispensing mechanism 3 includes a sample needle and the sample needle is one.
  • the entire flow of the sample dispensing mechanism 3 to complete the loading or dispensing is as follows: moving to the sampling position, and then moving to the corresponding cleaning position to clean the outer wall, and then moving to the loading position will absorb The sample is discharged to the reaction cup located at the sample loading position, and finally moved to the corresponding cleaning position for cleaning the inner and outer walls.
  • the cleaning of the sample dispensing mechanism 3 can be performed at the sample needle cleaning unit 32.
  • Reagent unit 5 is used to carry reagents.
  • the reagent unit 5 is disposed in a disc-like structure, and the reagent unit 5 has a plurality of positions for carrying the reagent container, and the reagent unit is rotatable and drives the reagent container carried by the reagent container to rotate, for rotating the reagent container to The reagent is taken up for the reagent dispensing mechanism 6 to take up the reagent.
  • the reagent unit 5 is one, which can be separately disposed outside the reaction disk 4.
  • the reagent dispensing mechanism 6 is for aspirating the reagent and discharging it into a cuvette located at the reagent addition position.
  • the reagent dispensing mechanism 6 includes a reagent needle and the reagent needle is one.
  • the reagent dispensing mechanism 6 completes the entire process of adding the reagent or dispensing as follows: moving to the suction reagent to absorb the reagent, then moving to the corresponding cleaning position for the outer wall cleaning, and then moving to the reagent addition direction
  • the reagent cup located in the reagent-adding position discharges the absorbed reagent, and finally moves to the corresponding cleaning position for cleaning the inner and outer walls.
  • the control reagent needle when the reagent needle is configured to continuously draw a plurality of reagents and then discharge together, the control reagent needle continuously performs a plurality of reagent aspiration operations to absorb the plurality of reagents required; wherein the absorption is required
  • the reagent needle is subjected to external wall cleaning, for example, at the reagent needle cleaning tank unit 61, after the completion of one aspirating reagent operation and before the start of the next reagent aspirating operation.
  • the reaction tray 4 is arranged in a disc-like structure, and the reaction tray 4 has a plurality of placement positions for placing the reaction cup, and the reaction tray can rotate and drive the reaction cup in the placement position to rotate the reaction cup in the reaction tray. And incubate the reaction solution in the cuvette.
  • the reaction disk 4 includes an inner ring portion and an outer ring portion that can be rotated independently or together; the inner ring portion includes one or more orbits, and each track is provided with a plurality of placement positions for the reaction cup.
  • the reaction disk 4 is one.
  • the reaction disk has a measurement position and/or a waste liquid level; the measurement position is used by the measurement unit 10 to determine the reaction cup, that is, the measurement unit 10 measures the cuvette that is dispatched to the measurement position, in one implementation.
  • the measuring position is photo-positioning; and the measuring cuvette in which the measurement is completed is sucked in the waste liquid level.
  • the measurement position and the waste liquid level are disposed on the outer circumference of the reaction disk 4, for example, the measurement position and the waste liquid level are all one placement positions on the outer circumference of the reaction disk 4.
  • the measurement bit 414 and the aspiration waste level 415 in FIG. The measuring reaction cup is taken up in the waste liquid level, and in an embodiment, the automatic analysis device further comprises a liquid suction unit 11 for sucking the reaction liquid in the measuring reaction cup, and sucking the waste liquid unit.
  • the movement path of the suction needle passes through the suction liquid level.
  • the reagent addition site is disposed in the reaction tray, ie, the reaction tray has a reagent addition site.
  • the reagent addition site is disposed on the outer circumference of the reaction disk 4, such as the reagent addition in FIG. Bit 412; in one embodiment, the additive sample is disposed within or outside of the reaction disk 4, such as the sample loading position 31 disposed outside of the reaction disk 4, as shown in FIG.
  • the mixing mechanism 81 is for mixing the reaction liquid which needs to be mixed in the cuvette.
  • the mixing mechanism is one; in an embodiment, referring to FIG. 3, the mixing mechanism may be two, for example, the mixing mechanism 81 and the mixing mechanism 82. In one embodiment, the two mixing mechanisms can also be arranged to receive the cuvette in an odd cycle and receive the cuvette in an even number of cycles.
  • a mixing mechanism is set to receive the cuvette in an odd cycle, This means that as long as there is a cuvette that needs to be dispatched to the mixing mechanism in an odd cycle, the cuvette is dispatched to the mixing mechanism described above that receives the cuvette in an odd cycle, similarly, as long as it is in an even number During the cycle, there is a cuvette that needs to be dispatched to the mixing mechanism. The cuvette is dispatched to the mixing mechanism that receives the cuvette in an even cycle. At the same time, this does not mean that there will be a cycle in each cycle.
  • a cuvette that needs to be dispatched to the mixing mechanism such as a mixing mechanism that receives the cuvette in an odd cycle, does not necessarily receive the cuvette every odd cycle, because there may be some odd cycles and There are no cuvettes that need to be dispatched to the mixing mechanism.
  • the mixing mechanism is separately disposed outside the reaction disk 4.
  • the mixing mechanism can perform the non-mixing operation, the short mixing operation, and the long mixing operation on the reaction cup, that is, the mixing operation of the mixing mechanism includes the non-mixing operation, the short mixing operation, and the long mixing. Evenly operate these three operations.
  • the measuring unit 10 is used for measurement of the reaction liquid to be tested.
  • the measuring unit 10 is a photo measuring unit, for example, detecting the luminous intensity of the reaction liquid to be tested, and calculating the concentration of the component to be tested in the sample by using a calibration curve.
  • the measuring unit 10 is disposed separately from the outside of the reaction disk 4.
  • the magnetic separation unit 91 is for performing magnetic separation cleaning of the reaction liquid in the cuvette.
  • the magnetic separation unit 91 includes a magnetic separation disk disposed in a disk-like configuration having one or more orbits of independent or simultaneous movement on the magnetic separation disk, each track including a plurality of cuvettes for placing the cuvette. In the placement position, the magnetic separation disc is rotatable and drives the cuvette rotation in its placement position for scheduling the cuvette to the fill level and the liquid level in the magnetic separation disc to complete the magnetic separation cleaning.
  • the magnetic separation unit 91 is disposed separately from the outside of the reaction disk 4.
  • the transfer mechanism is for scheduling the cuvette at least between the cuvette loading mechanism 1, the reaction disk 4, the mixing mechanism 81, and the magnetic separation unit 91.
  • the transfer mechanism can include two grippers, such as a first gripper 2 and a second gripper 7.
  • the control unit is used to control at least the operation and timing of the sample dispensing mechanism 3, the reagent unit 5, the reagent dispensing mechanism 6, the reaction disk 4, the mixing mechanism, the measuring unit 10, the magnetic separation unit, and the transfer mechanism.
  • a one-step test project is used to explain the cooperation of the above-mentioned agencies, units, and the like.
  • the transfer mechanism dispatches a cuvette from the split cup position of the cuvette loading mechanism 1 to the loading position, and the sample dispensing mechanism 3 sucks the sample from the sample unit 33 and discharges it into the cuvette located in the sample loading position.
  • the sample loading position can be set in the reaction disk 1, that is, the sample loading position is a placement position in the reaction disk 1, and the sample loading position can also be disposed outside the reaction disk 1.
  • the transfer mechanism dispatches the reaction cup located at the sample loading position and the sample loading is completed to the reaction tray 1, and the reaction cup is discharged by the reagent dispensing mechanism 6 in the reaction tray 1. Then, the reaction cup is again dispatched from the reaction tray 1 to the mixing mechanism for mixing operation, and then the reaction cup is again dispatched from the mixing mechanism to the reaction tray 4 for incubation. After the reaction cup is completed, the transfer mechanism is dispatched from the reaction tray 4 to the magnetic separation unit for magnetic separation and cleaning. After the magnetic separation and cleaning, the reaction cup is dispatched from the magnetic separation unit by the transfer mechanism to perform the final measurement.
  • the reaction disk 4 may have a measurement position, and if the measurement unit 10 is a light measurement unit, the reaction disk 4 has a light position correspondingly. In this case, after the magnetic separation cleaning is completed, the reaction cup is dispatched from the magnetic separation unit back to the reaction tray 4 by the transfer mechanism, and when the reaction tray dispatches the reaction cup to its light positioning position, the photometric unit responds to the reaction cup. Perform a light measurement.
  • the reaction disk 4 has a reagent addition position at the outer ring portion, a first front operation position, a first rear operation position, and a second rear operation position at the inner ring portion, as described in detail below.
  • the first front operating position is used to receive the transfer mechanism to move the reaction cup from the split cup position to the reaction tray 4.
  • first The front operating position is used to receive the reaction cup from the sample loading position to the reaction cup of the reaction tray 4.
  • the first post operating position is for the transfer mechanism to dispatch the cuvette to the mixing mechanism or to receive the transfer cup from the magnetic separation unit to the reaction cup of the reaction tray.
  • the second post operating position is for the transfer mechanism to dispatch the cuvette to the magnetic separation unit.
  • the transfer mechanism may include a first gripper 2 and a second gripper 7.
  • the first gripper 2 is arranged to move the trajectory past the split cup position and the first front operating position, and when the loading position is outside the reaction tray 4, the movement trajectory of the first gripping cup 2 is further After the sample is added.
  • the second gripper 7 is arranged to pass the first rear operating position, the second rear operating position, the mixing mechanism and the magnetic separating unit.
  • the sample loading position When the sample loading position is located in the reaction tray 4, the sample loading position may be the same position as the first front operating position, or may be a different position; when the loading position is outside the reaction tray 4, the reagent position is added.
  • the first front operating position can be the same position or a different position.
  • FIG. 2 illustrates the position between the test steps of a one-step test project. Scheduling and coordination.
  • the first gripper 2 Under the control of the control unit, the first gripper 2 dispatches a cuvette from the split cup position of the cuvette loading mechanism 1 to the loading position 31, and the sample dispensing mechanism 3 draws the sample from the sample unit 33 and will absorb the sample. The sample is discharged to the cuvette on the loading position 31; the first gripper 2 then dispatches the refilled cuvette from the loading position 31 to the first pre-operating position 411 in the reaction tray 4, and the reaction tray 4 will The reaction cup is dispatched from the first pre-operating position 411 to the reagent-adding position 412, and the reagent dispensing mechanism draws the reagent from the aspirating reagent position of the reagent unit 5 and discharges it into the reaction cup of the reagent-adding position 412; the reaction tray 4 then reacts the reaction.
  • the cup is dispatched to the first post-operation position 413, and the second gripper 7 dispatches the cuvette from the first post-operation position 413 of the reaction tray 4 to the mixing mechanism for mixing operation.
  • the mixing mechanism for mixing operation For example, one of the mixing mechanisms 81, 82; after the mixing operation is completed, the second gripping cup 7 then dispatches the cuvette from the mixing mechanism to the second post-operation position 42 of the reaction tray for incubation; the incubation is completed. Thereafter, when the cuvette is not in the second post-operation position 42, the reaction tray 4 is scheduled in the reaction tray, the reaction cup is first dispatched to the second post-operation position 42, and then the second gripper 7 reacts the reaction.
  • the cup is dispatched from the second post-operation position 42 to the magnetic separation unit for magnetic separation cleaning, such as one of the magnetic separation units 91, 92; after the magnetic separation cleaning is completed, the second gripper 7 re-sends the cuvette from the magnetic separation unit Dispatched to the first post-operational position 413 of the reaction tray; thereafter, during a predetermined substrate incubation time, the reaction tray 4 can be just dispatched to the assay site 414 for determination by the assay unit 10; thereafter, the reaction tray 4 will react
  • the cup is dispatched from the measurement station 414 to the aspiration liquid level 415, and the aspiration liquid unit 11 draws the waste liquid in the reaction cup on the waste liquid level 415, and the reaction tray 4 then dispatches the reaction cup from the waste liquid level 415 to the first a front operating position 411, the first catcher 2 then enters the reaction cup Row throwing operation, for example, the first gripper 2 discards the first front operating position 411 of the cuvette to one of the throwing cups 201,
  • the box 202 is also connected to a receiving device for loading the waste cup.
  • the control unit can control the first cup holder 2 to discard the cuvette to be discarded from the first front operating position 411 to the bowling hole 201, and when the cup hole 201 is connected
  • the control unit notifies the user to replace the containment device, and controls the first catcher 2 to discard the cuvette to be discarded from the first front operating position 411 to the bowling hole 202.
  • control unit in the automatic analysis device controls some units and mechanisms to perform corresponding operations in accordance with the timing.
  • the cycle mentioned above according to the operation of each unit and mechanism, for example, after the set period is a specific time, each unit and mechanism needs to complete a complete set of action flow in the unit time period.
  • the cuvette mechanism 1 For the cuvette device 1 to ensure that there is a cup in the cup at each cycle, for example, after the cup of the cycle cup is dispatched, the cuvette mechanism 1 will supply and carry a new cuvette to Cup position.
  • the reagent dispensing mechanism 6 needs to complete at least one set of actions for completing the discharge of the reagent from the aspiration reagent to the reaction cup to the reagent position in one cycle.
  • the reaction tray 4 completes the preset number of rotations of the rotation in one cycle. For example, the reaction tray 4 has at least completed scheduling the reaction cup on the first front operation position 411 to the reagent addition position 413 in one cycle, and then The reaction cup with the added reagent is dispatched from the reagent addition position 413 to the first post operation position 413.
  • the mixing mechanism needs to complete the mixing operation in one cycle.
  • the measuring unit 10 completes the measuring operation in one cycle.
  • each magnetic separation unit needs to advance a cup position in N cycles, for example, rotating the cuvette in its placement position to the next adjacent placement position.
  • each magnetic separation unit needs to advance one cup position in two cycles.
  • the suction and waste liquid unit 11 completes the operation of sucking the waste liquid to the reaction cup of the waste liquid level.
  • the transfer mechanism is used to schedule the cuvettes in accordance with the cycle of each mechanism and unit.
  • the automatic analysis device in Fig. 2 can be used to achieve the shortest cycle of 7.5 seconds in the industry, and the test speed is also very fast and improved.
  • the period of the unit 10 and the waste absorbing unit 11 is 7.5 seconds. Since the two magnetic separation units 91 and 92 are included, each magnetic separation unit can receive one cuvette 15 seconds apart and advance one cup position, so the actual duty cycle of each magnetic separation unit is 15 seconds; At this time, it is a magnetic separation unit, and the period of the magnetic separation unit is also 7.5 seconds.
  • the disk of the magnetic separation unit is relatively large, which increases the processing difficulty and cost, and the magnetic separation performance is difficult to guarantee or even achieve. Since two independent magnetic separation units 91 and 92 can be included in Fig. 2, one receives the cuvette in an odd cycle and one receives the cuvette in an even number of cycles, without a fixed working step limitation, which can be used for the first One-step magnetic separation cleaning can also be used for the second magnetic separation cleaning, which greatly improves the testing speed and test throughput of the whole machine.
  • the temporary storage unit 12 is provided independently of the reaction tray 4 for receiving the cuvettes dispatched from the reaction tray by the transfer mechanism and temporarily storing them to wait for being dispatched back into the reaction tray again.
  • the temporary storage unit is independent of the reaction disk setting 4, and the operation of the temporary storage portion does not interfere with the rotation of the reaction disk 4 itself. In an embodiment, the temporary storage portion is separately disposed outside the reaction disk 4.
  • the reaction tray 4 has a reagent addition position; the reagent dispensing mechanism 6 is configured to discharge a predetermined number of reagents at most to the reaction cup located in the reagent addition position, when located in the reagent addition position
  • the control unit controls the reagent dispensing mechanism 6 to add a predetermined amount of the reagent to the reaction cup, and then the transfer mechanism dispatches the reaction cup to the temporary storage unit.
  • reaction cup 12 is temporarily stored, and then the reaction cup is dispatched from the temporary storage unit 12 back to the reaction tray 4 to continue to add other reagents required for the incubation, of course, if the reaction cup is dispatched back to the reaction tray 4, when the reagent is added.
  • the type of other reagents required for the current incubation is still greater than the above predetermined number.
  • the transfer mechanism dispatches the reaction cup to The temporary storage unit 12 performs temporary storage, and then the reaction cup is dispatched from the temporary storage unit 12 back to the reaction tray 4 to continue to add other reagents required for the incubation, that is, the reaction cup is added to the reagent position.
  • a maximum of a predetermined number of types of reagents are added at a time.
  • the transfer mechanism dispatches the reaction cup to the temporary storage unit for temporary storage. In an embodiment, the reaction is first performed.
  • the cup is dispatched from the reagent position to the mixing mechanism, and is unmixed by the mixing mechanism, and then dispatched back to the incubation position of the reaction tray 4, without the incubation time, but from the reaction tray 4 to the temporary storage portion 12 Temporary storage.
  • the reagent dispensing mechanism 6 includes a reagent needle that can be configured to draw and discharge up to two reagents in one cycle, for example, to connect two reagents and discharge them together.
  • the temporary storage unit is borrowed, and the reaction cup in which the two reagents are added is placed in the temporary storage unit, and then rescheduled back to the reaction tray 4 as a new one-step test entry process, so that The high-speed operation of the automatic analysis device can be ensured, and the addition of multi-component reagents can be realized.
  • the reaction tray is generally disposed in a reaction pot having a reaction tray cover for covering the reaction tray to insulate the incubation position in the reaction tray, etc., and the prior art solution of the plurality of reagent dispensing units Most of them need to open more holes above the reaction disk, which loses the temperature control effect of the reaction disk and increases the energy loss.
  • the transfer mechanism When the test item of any cuvette is a multi-step test item, in any of the other step tests except the last one step test, when the cuvette needs magnetic separation cleaning in the step test, the transfer mechanism will The reaction cup that has been incubated in the reaction tray 4 is first dispatched to the magnetic separation unit 91 for magnetic separation cleaning, and then the reaction cup that has completed the magnetic separation cleaning is dispatched from the magnetic separation unit 91 to the temporary storage portion for temporary storage; When the reaction cup does not need to be subjected to magnetic separation cleaning, the transfer mechanism dispatches the cuvette that has been incubated in the reaction tray 4 from the reaction tray 4 to the temporary storage portion 12 for temporary storage; and temporarily stores the temporary storage portion 12 The cuvette is dispatched back to the reaction tray 4 for subsequent follow-up testing.
  • the transfer mechanism dispatches the cuvette that has completed the magnetic separation cleaning from the magnetic separation unit 91 to the temporary storage portion 12 for temporary storage, which is to first separate the reaction cup from the magnetic separation.
  • the unit 91 is dispatched to the reaction tray 4, and the reaction cup is dispatched from the reaction tray 4 to the temporary storage unit 12.
  • the reagent dispensing mechanism 6 includes a reagent needle that can be configured to draw and discharge up to two reagents in one cycle, for example, to connect two reagents and discharge them together.
  • the temporary storage unit 12 When there are more than two kinds of reagents, the temporary storage unit 12 is borrowed, and the reaction cup in which the two kinds of reagents are added is placed in the temporary storage unit 12, and then rescheduled back to the reaction tray 4 as a new one-step test entry process. In this way, the high-speed operation of the automatic analysis device can be ensured, and the addition of multi-component reagents can be realized.
  • a plurality of reagent dispensing units generally require more liquid suction holes and sample holes above the reagent disk or the reaction disk, which loses the temperature control effect of the reagent disk and the reaction disk, and increases the energy. loss.
  • the multi-component test project can be divided into several processes similar to the one-step test, and the multi-step test process can be divided into several new one-step test processes, and the test sequence and process are re-entered.
  • the mechanism and unit and control timing can be designed according to the one-step test process, which is very standardized and orderly, thus solving the problem that the multi-component test project and the multi-step test process disturb the normal process, effectively improving the whole machine. Test speed and test throughput.
  • the temporary storage unit 12 can also resolve the interruption of the normal flow by the pre-dilution or pre-processing of the sample.
  • the sample loading position is disposed outside the reaction tray 4; after the reaction cup located at the reagent addition position is added to the diluent or the pretreatment liquid by the reagent dispensing mechanism 6, the transfer mechanism removes the reaction cup from the reaction tray 4 dispatched to the temporary storage unit 12 for temporary storage, and the sample dispensing mechanism 3 draws the diluted or pretreated sample from the reaction cup and discharges it into the reaction cup at the loading position at this time, and the transfer mechanism will temporarily The cuvette of the reservoir 12 performs a cupping operation.
  • the temporary storage portion 12 has at least two temporary storage locations, and the temporary storage portion includes a rotatable disk for scheduling the cuvette between the temporary storage locations.
  • the temporary storage unit 12 includes at least two temporary storage locations 121 and 122, where 121 is the first temporary storage location, 122 is the second temporary storage location, and the first temporary storage 121 of the temporary storage unit 12 is taken as an example.
  • the bit is used for receiving the cuvette dispatched from the reaction tray 4 by the transfer mechanism, and the temporary storage unit 12 dispatches the cuvette to the second temporary storage location 122, so that the idle first temporary storage location 121 can continue to receive the transfer.
  • the transfer mechanism dispatches the cuvette of the second temporary storage location 122 back to the reaction disk 4, when the scheduled to the second temporary storage location
  • the reaction cup of 122 is a reaction cup which is previously added to the reagent dispensing mechanism 6 by the reagent dispensing mechanism 6 to the diluent or the pretreatment liquid, and the sample dispensing mechanism 3 draws the diluted or pretreated sample from the reaction cup and discharges it to the reaction cup.
  • the transfer mechanism performs the cupping operation on the reaction cup located in the second temporary storage position 122; or, after a predetermined time, for example, one cycle, the temporary storage portion 12 re-sends the reaction cup.
  • the second temporary storage location 122 is again dispatched back to the first temporary storage location 121.
  • the transfer mechanism dispatches the reaction cup back to the reaction tray, when the reaction cup is in the second temporary storage position.
  • the transfer mechanism performs a cupping operation on the cuvette located at the first temporary storage position, for example, throwing the cuvette into the tortoise cup 202 Or 201.
  • the first front operating position of the reaction disk 4 is also used for the transfer mechanism to dispatch from the outer ring portion to the temporary storage portion.
  • the cuvette is dispatched out, or the receiving transfer mechanism is dispatched from the temporary storage unit 12 to the cuvette of the reaction tray 4.
  • the reaction disk 4 further includes a second front operating position for the transfer mechanism to dispatch the cuvette that needs to be dispatched from the inner ring portion to the temporary storage portion.
  • the first gripper 2 is arranged to move the trajectory through the split cup position, the temporary storage portion, the loading position, the first front operating position and the second front operating position; the second catching cup 7 is set as the motion trajectory After the first rear operating position, the second rear operating position, the mixing mechanism and the magnetic separation unit.
  • the transfer mechanism may be set to move the motion track through one of the temporary storage positions, for example, the first catcher 2 passes the first temporary storage position 121.
  • the incubation position of a cuvette from the reaction tray 4 is scheduled to the temporary storage portion, and the reaction tray 4 first dispatches the reaction cup in the inner ring portion to the first stage.
  • a front operating position such as the first front operating position 41 of Figure 2, the first catcher 2 then dispatches the cuvette from the first pre-operation to the temporary storage.
  • the second gripper 7 can first dispatch the cuvette from the magnetic separation unit to the first post-operation position 413 of the reaction tray 4, and the reaction tray 4 will The cuvette is dispatched from the first rear operating position 413 to the first pre-operating position 411, which in turn dispatches the cuvette from the first pre-operating bit 411 to the temporary storage.
  • the moving mechanism dispatches the cuvette between different units and mechanisms, while the reaction tray 4 dispatches the cuvette between the placement positions inside the reaction tray 4. Therefore, from the viewpoint of the moving mechanism, taking the first grip cup 2 and the second grip cup 7 as an example, when the sample loading position 31 is set outside the reaction tray 4, the first gripper 2 is used.
  • the cuvette is dispatched from the split cup position to the sample loading position 31, and the cuvette is dispatched from the sample loading position 31 to the first pre-operational position 411;
  • the first gripper 2 is also used to place the cuvette in the first pre-operational position 411 Dispatching with the temporary storage unit 12 to dispatch the cuvette from the second front operating position 41 to the temporary storage portion 12;
  • the second gripping cup 7 is for dispatching the cuvette from the first rear operating position 413 to the mixing mechanism, From the mixing mechanism scheduling to the second post operating position 42, scheduling from the second post operating bit 42 to the magnetic separation unit, from the magnetic separation unit to the first post operating bit 413.
  • the automatic analysis device further includes a temporary temporary storage portion
  • the first front operating position is further used by the transfer mechanism to discard the reaction cup that has been determined by the measuring unit 10
  • the control unit controls the transfer mechanism to stop dispatching the cuvette of the temporary storage portion or the sample loading position to the first pre-operational position, when the above determination has been completed and before the first
  • the reaction cup that has not been discarded is dispatched by the reaction tray to the first post-operation position, if the reaction cup with the magnetic separation unit magnetic separation cleaning needs to be dispatched to the reaction tray at this time, the transfer mechanism first cleans the magnetic separation unit. Completed
  • the reaction cup is dispatched to the temporary temporary storage unit.
  • the transfer mechanism dispatches the cuvette on the temporary temporary storage unit to the first post operation position.
  • the automatic analysis device further includes a temporary disposal portion
  • the first front operation position is further used by the transfer mechanism to discard the reaction cup that has been determined by the measurement unit 10
  • the control unit detects that the transfer mechanism is not in the first
  • the control unit controls the transfer mechanism to stop dispatching the cuvette of the temporary storage unit or the sample loading position to the first front operation position, when the above determination has been completed and the first operation is performed
  • the transfer mechanism dispatches the cuvette to the temporary discarding portion for discarding.
  • the component marked by 80 may be a temporary temporary storage part or a temporary temporary disposal part.
  • the invention also discloses a working method of an automatic analyzing device.
  • the automatic analysis device involved in the working method may be an automatic analysis device disclosed in any embodiment of the present invention.
  • the working method of the automatic analysis device includes:
  • reaction cup is dispatched to the sample loading position for loading
  • the reaction cup is added with a preset amount of the reagent at most every time the reagent is added to the reaction tray; when the reagent cup located in the addition test position needs to be added to the reagent to be larger than the preset amount, The reaction cup is added with a preset amount of the reagent, and after that, before the reaction cup is added to other reagents required for the incubation, the reaction cup is dispatched to a temporary storage area independent of the reaction tray for temporary storage; The cuvette is then dispatched back to the reaction tray from the staging area to continue adding the other reagents needed for this incubation.
  • scheduling the cuvette from the staging area back to the reaction tray includes: scheduling the cuvette from the staging area back to the reaction tray in the next cycle.
  • a predetermined amount of the reagent is added to the reaction cup, after which and in the reaction.
  • the cup is added to the other reagents needed for this incubation before the cup is added.
  • the reaction cup After adding a predetermined amount of the reagent to the reaction cup, the reaction cup is dispatched from the reaction tray to the mixing mechanism;
  • the cuvette is dispatched from the staging area back to the reaction tray to continue to add other reagents needed for this incubation.
  • the working method shown in Figure 4 is conceived to divide the multi-component test project into several new one-step test processes, with the staging area as the starting point for each new one-step test, so that the cuvette is re-started from the temporary storage area. Scheduling back to the reaction tray and re-entering the test sequence and process; in general, the multi-component test project is divided into several new one-step test procedures that do not require magnetic separation cleaning and actual mixing and incubation.
  • the process of the first test started last time requires magnetic separation cleaning and mixing and incubation of the reagents, and then ready to be measured.
  • the working method of the automatic analysis device includes:
  • reaction cup is dispatched to the sample loading position for loading
  • any of the cuvettes is a multi-step test item
  • any of the other step tests except the last one step test when the cuvette needs to be magnetically separated and cleaned in the step test,
  • the reaction cup that has been incubated in the reaction tray is first dispatched to the magnetic separation unit for magnetic separation cleaning, and then the reaction cup that completes the magnetic separation cleaning is dispatched from the magnetic separation unit to a temporary storage area independent of the reaction tray for temporary storage;
  • the reaction cup that has been incubated in the reaction tray is dispatched from the reaction tray to a temporary storage area independent of the reaction tray for temporary storage;
  • the cuvette of the storage area is dispatched back to the reaction tray to complete subsequent step testing.
  • scheduling the cuvette from the staging area back to the reaction tray includes: scheduling the cuvette from the staging area back to the reaction tray in the next cycle.
  • the cuvette that completes the magnetic separation cleaning is dispatched from the magnetic separation unit to a temporary storage area independent of the reaction disk for temporary storage, including: scheduling the cuvette that completes the magnetic separation cleaning from the magnetic separation unit to In the reaction tray; the reaction cup is dispatched from the reaction tray to the temporary storage area.
  • the working method shown in Figure 5 is based on the idea that the multi-step test process is divided into several similar one-step test processes, with the staging area as the starting point for each new one-step test, so that the cuvette is rescheduled from the staging area. Returning to the reaction disk and re-entering the test sequence and process can ensure the smooth operation of the automatic analysis device at high speed, and possibly realize the multi-step test project.
  • the multi-component test item and the multi-step test item can be divided into several processes similar to the one-step test, and the test sequence and the process are re-entered, thereby making the institutions and units And control timing can be designed according to the one-step test process, very standardized and orderly.
  • the working method of the automatic analyzing device further comprises: after the reaction cup located at the reagent adding position is added to the diluent or the pretreatment liquid, dispatching the reaction cup to the temporary storage area, and from the reaction cup Draw the diluted or pretreated sample and discharge it into the reaction cup at the loading position. Then, the reaction cup of the temporary storage area is treated as a cup, and the reaction cup of the sampled position is dispatched to the reaction tray for subsequent testing. .
  • the temporary storage area has at least a first temporary storage location and a second temporary storage location, and the cuvette is dispatched between the first temporary storage location and the second temporary storage location by a rotatable disk.
  • the first temporary storage space is configured to receive a reaction cup dispatched from the reaction tray, and the reaction cup is dispatched from the reaction tray to the first temporary storage position, and then the reaction cup is dispatched to the second temporary storage position;
  • the reaction cup of the second temporary storage position is dispatched back to the reaction tray; when the reaction cup scheduled to the second temporary storage position is located before
  • the test chamber is added to the reaction cup of the diluent or the pretreatment liquid, the diluted or pretreated sample is taken from the reaction cup and discharged to the reaction cup at the sample loading position, and then the second The cuvette of the temporary storage position is subjected to a cupping operation.
  • the temporary storage area involved in the operation method of the automatic analysis device may be the temporary storage unit 12 described above.
  • the introduction of the temporary storage department can divide the multi-component test project into several similar one-step test processes, and can divide the multi-step test project into several new one-step test processes and re-enter the test sequence. And processes that enable agencies and units and controls The timing can be designed according to the one-step test process, which is very standardized and orderly, thus solving the problem that the multi-component test project and the multi-step test process disturb the normal process, and effectively improve the test speed and test throughput of the whole machine.
  • Divide multi-component test projects into several one-step test-like processes, and divide the multi-step test process into several new one-step test processes.
  • the introduction of the temporary storage department divides the multi-component test project into several similar one-step test processes, and divides the multi-step test project into several new one-step test processes. These new one-step test processes, It is further subdivided into several operations on the cuvette. These operations in the same cuvette are not all sequential in sequence.
  • the reaction when adding multiple reagents, the reaction is continuously in time series. The cup is separately added to the reagent, and after the invention is introduced into the temporary storage portion, a part of the reagent is first added to the reaction cup, and then the reaction cup is regarded as a one-step test flow, and enters the temporary storage portion after several cycles, and then enters the reaction tray from the temporary storage portion.
  • the reagent is added again, and in the several cycles in the middle of the reaction cup, other reaction cups are successively added with reagents, for example, the first cycle is to add the reagent to the first reaction cup, and the second cycle is the second reaction.
  • the reagent is added to the cup, and the reagent is added to the third reaction cup in the third cycle, ...., and the remaining reagent is added to the first reaction cup in a certain cycle, so that the total timing is
  • Each cycle has added to the cuvette reagents, reagent plus greatly shortened the cycle, improve efficiency plus reagent.
  • the reaction disk 4 is at a relatively central position, and other mechanisms and units are designed around the reaction disk 4, so that the automatic analysis device can be fully utilized. Countertop space. The structure of the reaction disk 4 and its movement in one cycle will be described in detail below.
  • the reaction disk 4 in FIG. 2 has four orbits of tracks, and each track has a placement position of 53 cuvettes (cup position).
  • the outermost one of the tracks is set as the outer ring portion
  • the inner three-turn track is set as the inner ring portion.
  • the four-turn track is integrally formed, using a temperature control unit, and the inner and outer rings are driven by a motor.
  • the inner ring portion includes the three ring tracks 4b, 4c, 4d, it can be seen that the first catcher cup 2 and the second catch cup hand 7 pass through the three turns of the tracks 4b, 4c, 4d.
  • the second pre-operation bit 41 may be one or more; likewise, the second post-operation bit may also be one or more; when the second post-operation bit 42 is multiple, the cuvette is scheduled By the second post-operational bit 42, it is meant that the cuvette is dispatched to any of the plurality of second post-operation bits 42 that are free.
  • the overall movement effect of the reaction tray 4 in one cycle is that the reaction cup located at the first pre-operation position 411 is first dispatched to the reagent addition position 412 for the reagent dispensing mechanism 6 to perform the reagent addition operation, and then the reagent is added.
  • the cuvette is dispatched from the plus reagent position 412 to the first post operating position 413 for the second gripper 7 to dispatch the cuvette from the first post operating position 413 to the mixing mechanism 81 or 82.
  • the overall motion effect of the reaction disk 4 in one cycle is that the cuvette is sequentially adjusted from the first pre-operation bit 411 to the reagent addition bit 412, and then dispatched to the first post-operation bit 413, since it is also required Cooperate with the temporary storage department, etc. Therefore, in this overall movement effect, there are some other stop motions added to the reaction disk to match the temporary storage department, etc., but the other stop motions added by these will not It affects the overall motion effect of the reaction disk 4 in one cycle. To sum up, the reaction disk 4 will have four times of turning action in sequence. Through the four times of turning action, the overall movement effect can be realized, and the cooperation with the temporary storage department and the like can also be realized.
  • the sequence in one cycle is the first stop action, the second turn stop action, the third turnaround action, and the fourth turnaround action. The following four turnaround actions are described below.
  • the reaction tray 4 is first turned down, and the reaction cup on the reagent addition position 412 has been added to the diluent or pretreatment liquid, and is dispatched from the reagent addition position 412 to the first front operation position 411 for the first gripper. 2 dispatching the cuvette from the first pre-operational bit 411 to the temporary storage portion 12;
  • the reaction tray 4 is first turned down, and the cuvette on the inner ring portion that needs to be dispatched to the temporary storage portion 12 is first dispatched to the second front operating position 41 for the first gripping cup 2 to the reaction cup. Dispatched from the second front operating position 41 to the temporary storage portion 12, wherein the inner cup portion needs to be dispatched to the cuvette of the temporary storage portion 12, for example, a reaction cup that needs to add the remaining reagent in the multi-component test item, It can be a reaction cup that needs to enter the subsequent step test in the multi-step test project;
  • the reaction tray 4 is first turned down and will be dispatched by the second gripping hand 7 from the magnetic separation unit to the cuvette of the first rear operating position 413 of the reaction tray 4, from the first rear operating position 413 to the first
  • the front operating position 411 is for the first catcher 2 to dispatch the cuvette from the first front operating position 411 to the temporary storage portion 12; for example, it may be a middle step test in the multi-step test project, which requires magnetic separation After cleaning, the reaction cup is subjected to magnetic separation and cleaning, and further subsequent step tests are required. Therefore, it is necessary to arrange the temporary storage position from the magnetic separation unit, and the intermediate reaction tray is used.
  • the reaction tray After the first reversal action of the reaction tray and before the second reversal operation, the reaction tray is stopped during this period, and the first gripper 2 dispatches the cuvette from the first pre-operational position 411 to the temporary storage.
  • the portion 12, or the first catcher 2 dispatches the cuvette from the second front operating position 41 to the temporary storage portion 12.
  • Case 1 The reaction cup which has been added to the reagent or the pretreatment liquid on the reagent addition position 412 is dispatched from the reagent addition position 412 to the first pre-operational position 411 by the first transfer operation.
  • a grab cup 2 needs to dispatch the cuvette from the first front operating position 411 to the temporary storage portion 12;
  • Case 2 There is a reaction cup on the inner ring portion of the reaction disk 4 that needs to be dispatched to the temporary storage portion 12, and the reaction disk 4 is first dispatched to the second front operation position 41 by the first transfer operation.
  • the cup 2 needs to dispatch the cuvette from the second front operating position 41 to the temporary storage portion 12;
  • Case 3 being dispatched by the second gripping cup 7 from the magnetic separation unit to the reaction cup of the first post-operation position 413 of the reaction tray 4, if the reaction cup still needs to be subjected to a subsequent step test (for example, a reagent is also required) instead of After the measurement, the reaction tray 4 will perform the first stop action, and the reaction cup is dispatched from the first rear operation position 413 to the first front operation position 411, at which time the first catcher 2 needs to take the reaction cup from the first A pre-operation bit 411 is dispatched to the temporary storage unit 12.
  • a subsequent step test for example, a reagent is also required
  • the second reversal action the reaction tray 4 is secondly turned, the reaction cup that has completed the inner ring portion and is about to enter the magnetic separation cleaning is dispatched to the second rear operation position 42 for the second gripper 7 to The cuvette is dispatched from the second post operating position 42 into the magnetic separation unit 91 or 92.
  • the reaction tray 4 ends the second reversal action and before the third reversal action is initiated, the reaction tray is stopped during this time, and the second gripper 7 dispatches the cuvette from the second post-operation position 42. To the magnetic separation unit.
  • the third turn-stop action the reaction tray 4 is turned down for the third time, and the reaction cup of the outer ring waiting for the addition of the reagent is dispatched to the reagent addition position 412 for the reagent dispensing mechanism 6 to perform the reagent addition operation on the reaction cup.
  • the reaction tray 4 ends the third reversal action and before the fourth reversal operation is started, the reaction tray is stopped during this period, and the reagent dispensing mechanism discharges at least the absorbed reagent during this period of time. Go to the cuvette on reagent position 412.
  • the fourth turn-stop action the reaction tray 4 is turned around for the fourth time, and the cuvette located on the reagent-adding position 412 after the third stop is dispatched to the first post-operation position 413 for the second gripper 7 to The cuvette is dispatched to the mixing mechanism.
  • reaction disk In one cycle, if there is a reaction cup to be dispatched to the temporary storage part, the reaction disk will perform the first stop-and-go operation; otherwise, the reaction disk will not perform the first stop-and-go operation;
  • reaction plate In one cycle, if there is a reaction cup to enter the magnetic separation unit from the reaction disk for magnetic separation cleaning, the reaction plate will perform the second rotation operation, and otherwise, the reaction plate will not perform the second rotation operation;
  • reaction tray In one cycle, if there is a reaction cup to be added with reagents, the reaction tray will perform the third stop motion, and vice versa, the reaction tray will not perform the third stop motion;
  • reaction tray will perform the fourth rotation operation. Otherwise, the reaction tray will not Perform the fourth stop action;
  • the reaction cup in each cycle to add reagents and a reagent to be mixed, so there will be a third stop action and a fourth stop action in each cycle.
  • the first stop action and the second stop action are based on the actual demand of the cuvette in each cycle to determine whether to make a stop.
  • the reaction tray 4 Since there is a third stop action and a fourth stop action in each cycle, the cooperation of the two stop actions makes the reaction disk 4 appear before the third turnaround action in this cycle.
  • the reaction tray 4 After a fourth stop action and/or a second stop action, the reaction tray 4 has a progressive cup position after the fourth stop action of the cycle ends, after the fourth stop action of the previous cycle ends.
  • the number of (placement) is fixed, that is, the reaction tray 4 advances a fixed number of cups per cycle. For example, in Fig. 2, the reaction tray 4 has 11 counterclockwise times per cycle than the previous cycle. Cup position (placement).
  • reaction disk 4 advances a fixed number of cup positions per cycle, it is possible to design a timing so that the magnetic separation cleaning is performed from the magnetic separation unit and the cuvette to be measured is dispatched to the first post-operation of the reaction disk 4.
  • the period required to reach the measurement position is also fixed, and the period to the waste liquid level after the measurement position is completed is also fixed. From the waste liquid level to the first pre-operation position 411, the cup is being processed by the cup. The cycle is also fixed.
  • the reaction trays are stopped during this period, and thus the period can be stopped.
  • some of the cuvettes are dispatched from the reaction tray 4, and some of the cuvettes are dispatched from the outside into the reaction tray 4.
  • other units and organizations may perform the following actions:
  • the assay unit 10 will complete the assay of the cuvette during this time;
  • the aspirating liquid unit 11 performs a liquid absorbing operation on the reaction cup;
  • the first cuffing hand 2 dispatches the cuvette from the first pre-operating position 411 to the tossing hole 201 or 202 for cupping; the first gripping cup The hand 2 then re-sends the reaction cup on the sample loading position 31 from the sample loading position 31 to the first front operation position 411, or the first gripping cup 2 will be located in the temporary storage portion and needs to be followed.
  • each cycle may not have a simultaneous "from the loading position" 31 scheduling to the first pre-operational bit 411" and “scheduled from the temporary storage to the first pre-operational bit 411", at most one of the two requirements;
  • the second gripper 7 dispatches the cuvette that has completed the mixing operation from the mixing mechanism to the second rear operating position 42 of the reaction tray;
  • the cup hand 7 dispatches the cuvette located at the first rear operating position 413 to the mixing mechanism;
  • the second gripping hand 7 dispatches the cuvette that has completed the magnetic separation cleaning, from the magnetic separation unit to the first post-operation of the reaction tray 4 Bit 413.
  • This week 4 is after the fourth reversal of the reaction tray, and the reaction tray 4 is before the start of the first reversal of the next cycle.
  • the reaction unit 4 surrounds the reaction tray 4, and the above-mentioned measuring unit and the waste liquid absorbing unit are 11.
  • the first grab cup 2 and the second grab cup 7 are all in parallel.
  • the function of the third turning action and the fourth turning action dispatching the reaction cup requiring the reagent to the reagent adding position, and the reagent cup to the first post operating position,
  • the second grab cup 7 is dispatched to the mixing mechanism;
  • the first stop action is reserved for the multi-component test project and the multi-step test project is divided into several new one-step test processes;
  • the secondary turn-off action is to dispatch a cuvette that requires magnetic separation cleaning to the magnetic separation unit after the completion of the incubation. Therefore, the reaction disk 4 includes two fixed stop actions (the third stop action and the fourth stop action) and the possible two turnaround actions (first turn) from each cycle.
  • the stop action and the second stop action are the same in each cycle of the stop-and-go action, very standard, no other abnormal turn-around, and whether the test flow of a certain step is to be magnetically separated and cleaned. , does not destroy the cycle of each cycle of the reaction disk 4, because the second turn of the reaction disk 4 is reserved for the need for magnetic separation cleaning; in addition, due to the fixed two of the reaction disk 4
  • the secondary turning action (the third turning action and the fourth turning action) are both waiting for the movement of the reagent disk and the reagent dispensing mechanism to draw the reagent accordingly, so the two fixed stop actions of the reaction disk 4 ( The third stop action and the fourth stop action are all performed within a period of time after a cycle, because even at the beginning of a cycle, the third stop action is performed.
  • Disk 4 still has to wait for the reagent dispensing mechanism to absorb the test
  • the inventor takes this into consideration and makes full use of the time during which the reaction tray 4 waits for the reagent dispensing mechanism to take up the reagent, and reserves the time for the first stop motion and the second stop motion. The time of each cycle will not be extended, and the test items and multi-step test items of the multi-component test are completed during the period of each cycle reserved for the first stop action and the second stop action.
  • the working method of the automatic analyzing device further comprises: after starting the test, controlling each magnetic separating unit to receive the cuvette in respective corresponding periods, wherein when the magnetic separating unit is N, then the i-th magnetic
  • the period of the receiving cuvette corresponding to the separating unit is kN+i periods, N is an integer greater than or equal to 2, k is an integer greater than or equal to 0, and i ranges from 1 to N, and i is an integer.
  • the period of the receiving cuvette of the first magnetic separation unit is 1, 4, 7.11.11.
  • the arithmetic progression of the second magnetic separation unit, the period of the receiving cuvette of the second magnetic separation unit is 2, 5, 8, 12, ..., the arithmetic progression of the third magnetic separation unit
  • the period in which the cuvette is received is an arithmetic progression such as 3, 6, 9, 12, ....
  • the period of the receiving cuvette corresponding to the separation unit is an even period.
  • control unit can schedule all the test items according to the relevant algorithm, so that at most one cuvette that completes the incubation and is about to be separated and cleaned in each cycle, or that each cycle has one and only one complete incubation is about to be performed.
  • a cuvette for separation cleaning occurs so that each independently operating magnetic separation unit can be utilized to the fullest extent.
  • the invention adopts the structure and working method of the multi-magnetic separation unit, and its contribution not only to the test speed is critical, but also its flexibility and interchangeability cannot be achieved by other solutions.
  • the working method further comprises: performing a Y-order magnetic separation cleaning on the cuvette after receiving the cuvette, wherein Y is an integer greater than or equal to 1; for any certain order of magnetic separation cleaning, including Adding the separation liquid to the reaction cup, magnetically separating and cleaning the reaction liquid in the reaction cup; then aspirating the reaction cup to complete the magnetic separation cleaning of the current stage; completing the reaction cup of the Y-stage magnetic separation cleaning waiting for the magnetic discharge
  • the separation unit or, adds a substrate to the cuvette that completes the Y-stage magnetic separation cleaning, and waits for the magnetic separation unit to be dispatched.
  • the magnetic separation cleaning of the one-step test project and the magnetic separation cleaning of the last step of the multi-step test project need to be added to the substrate because the next process of the reaction cup is determined, for example, by the photometric unit in the optical position For optical measurement; other magnetic separation cleaning, such as multi-step test, does not include any of the other step tests, such as the last one-step test, the magnetic separation does not require the addition of substrate after cleaning, so the reaction cup is still To perform a subsequent step test.
  • FIG. 6 is a diagram of a fourth-order magnetic separation disk of the magnetic separation unit of FIG.
  • the cup position in Table 1 refers to the placement on the magnetic separation disc. Should be placed in the cup.
  • the invention matches the test period of other units and mechanisms by alternately working two magnetic separation discs, thereby improving the test speed and the reliability of the whole machine.
  • the invention matches the test period of other units and mechanisms by alternately working two magnetic separation discs, thereby improving the test speed and the reliability of the whole machine.
  • the automatic analysis device in FIG. 3 may be taken as an example, respectively, a two-step one-step test project, a three-component one-step test project, a two-step one-separation test project, and a two-step two-separation test.
  • the process of the project is to be specified.
  • the automatic analysis device in FIG. 3 has a period of 7.5 seconds, an even cycle receives the cuvette using the magnetic separation unit 91, an odd cycle uses the magnetic separation unit 92 to receive the cuvette, and an even cycle uses the mixing mechanism 81 to receive the reaction.
  • the cup, the odd cycle uses the mixing mechanism 82 to receive the cuvette; the following is a separate process for the two-component one-step test project, the three-component one-step test project, the two-step one-separation test project, and the two-step two-separation test project. Specific instructions.
  • the flow of the two-component one-step test item will be described first, wherein the reagent dispensing mechanism 6 is set to add two reagents to the reaction cup of the reagent addition position 412 at a time.
  • Cycle 1 the first gripper 2 grabs a new reaction cup from the transfer mechanism 104 and places it on the sample loading position 31, and the sample needle adds a sample to the reaction cup on the sample loading position 31;
  • the first gripping cup 2 dispatches the reaction cup of the sample, from the loading position 31 to the first front operating position 411 of the outer circumference of the reaction disc, and the rotation of the reaction disk will drive the reagent cup to the reagent Position 412; the reagent needle can first absorb the first reagent, after washing through the outer wall, then sucking the second reagent, and then discharging it together to the reaction cup on the reagent addition position 412; the reaction tray is rotated to add the reaction reagent cup Dispatched to the first post-operation bit 413, the cuvette 7 is dispatched by the second gripper 7 from the first post-operation bit 413 to the available mixing mechanism 81 or 82 if the mixing mechanism 81 is set to an even number of periodic receptions Reaction cup, then the reaction cup 81 receives the cuvette at this time, that is, the second gripper 7 dispatches the cuvette from the first post-operation position 413 to the available mixing mechanism 81;
  • Cycle 3 the mixing mechanism 81 performs a mixing operation on the above reaction cup
  • Cycle 4 At the end of this cycle or the previous cycle, the second gripper 7 grabs the mixed cuvette from the mixing mechanism 81 and returns to the second post-operation position 42 of the inner ring portion of the reaction disk to start the incubation;
  • the reaction cup is incubated at the inner circumference of the reaction tray for a predetermined time according to the time required for incubation;
  • the reaction cup is rotated to the second post-operation position 42, and the second gripper 7 grabs it and puts it into the available magnetic separation unit 91 or 92 for magnetic separation cleaning;
  • the substrate is injected and dispatched to the outer ring portion of the reaction disk 4 Operation bit 413. Thereafter, the cuvette advances 11 cups counterclockwise in each cycle of the reaction tray 4, and when a certain period is advanced to the photo-positioning position 414, the substrate is also incubated and the photometry can be performed. It should be noted that, by the timing and the number of cup positions in the inner and outer ring portions of the reaction disk, the reaction cup can be advanced to the light positioning position 414 after being dispatched to the first post-operation position 413, at which time the substrate is Has also been incubated;
  • the reaction cup that completes the photometry will be transferred to the aspiration liquid level 415 in a subsequent cycle, and the aspiration liquid unit 11 sucks up the reaction liquid. After the suction liquid unit 11 is lifted up, the reaction cup continues to follow the reaction disk. And in a subsequent cycle, it will advance to the reaction disk pre-operation position 411, and the first gripper 2 grabs the cup hole 201 or 202 to perform the throwing cup.
  • a one-step project requires the addition of three component reagents, a, b, and c, which can add two components (a+b) for the first time and one component for the second time.
  • a three component reagents
  • a, b, and c which can add two components (a+b) for the first time and one component for the second time.
  • Cycle 1 the first gripper 2 grabs a new cup from the transfer mechanism 104 and places it in the sample loading position 31, and the sample needle adds a sample to the reaction cup on the sample loading position 31;
  • Cycle 2 The first gripping cup 2 dispatches the reaction cup of the sample, from the loading position 31 to the first front operating position 411 of the outer circumference of the reaction disc, and the rotation of the reaction disk will drive the reagent cup to the reagent At position 412, at the same time, the reagent unit 5 rotates the reagent chamber of the desired reagent bottle 51 to the reagent needle 6b, the reagent needle completes the inner and outer wall cleaning, sucks the first component a, and then the reagent needle returns to the reagent needle cleaning pool unit 61.
  • the reagent unit rotates the other cavity b of the reagent bottle 51 to its corresponding reagent.
  • the outer ring portion plus reagent position 412 is dispatched to the first rear operating position 413, and the reaction tray 4 is progressively advanced 11 cups per cycle, and the second cup holder 7 moves the cuvette from the first rear operating position. 413 dispatched to the available mixing mechanism 81 or 82;
  • Cycle 3 the mixing mechanism 81 or 82 does not mix the above reaction cups, only temporarily stored, because the reagents have not been completely added, of course, if the mixing is performed, it is also possible;
  • Cycle 4 At the end of this cycle or the previous cycle, the second gripper 7 grabs the cuvette temporarily stored on the mixing mechanism 81 or 82 and returns it to the inner second rear operating position 42 of the reaction disk 4; during this cycle, The reaction tray is arranged according to the timing, at a specified time point of the cycle, for example, the first stop action of the reaction disk described above, the reaction cup is dispatched to the second front operating position 41, and the first catcher 2 transfers the same.
  • the temporary storage location 121 on the temporary storage unit 12 (or the temporary storage disk 12) is temporarily stored, and the temporary storage disk 12 is rotated to be dispatched to the temporary storage location 122, wherein the temporary rotation of the temporary storage disk 12 is pre-dilution and pre-sampling for the sample.
  • the action of the process design considering that the next cycle may be followed by a dilution or pre-treatment test, where the rotation of the scratch disk 12 is retained;
  • Cycle 5 The sample needle stops starting the new test during the cycle, and the first gripper transfers the reaction cup of the temporary storage position 122 to the first front operation position 411 of the outer ring portion of the reaction disk 4, and the reaction disk rotates to require the reaction cup of the reagent to be added.
  • the reagent unit 5 rotates the c chamber of the desired reagent bottle 51 to the reagent needle suction level 6c, the reagent needle completes the inner and outer wall cleaning, sucks the component c, and then the reagent needle moves to the reaction tray.
  • Cycle 6 the mixing mechanism performs mixing
  • Cycle 7 At the end of this cycle or the previous cycle, the second catcher 7 grabs the mixed cuvette from the mixing mechanism 81 or 82 and returns to the second rear operating position 42 of the inner ring portion of the reaction disk. Incubate
  • the reaction cup is incubated at the inner circumference of the reaction tray for a predetermined time according to the time required for incubation;
  • the reaction cup After the reaction cup is incubated in the reaction tray, the reaction cup is rotated to the second post-operation position 42, and the second gripper 7 grabs it and puts it into the available magnetic separation unit 91 or 92 for magnetic separation cleaning;
  • the substrate is injected and dispatched to the first post-operation position 413 of the outer ring portion of the reaction disk 4. Then, the reaction cup advances 11 cups counterclockwise in each cycle of the reaction tray 4, and when a certain period is advanced to the light positioning position 414, the substrate is also incubated, and the light measurement can be performed;
  • reaction cup that completes the photometry will be transferred to the aspiration liquid level 415 in a subsequent cycle, and the aspiration liquid unit 11 sucks up the reaction liquid. After the suction liquid unit 11 is lifted up, the reaction cup continues to follow the reaction disk. And in a subsequent cycle, it will advance to the reaction disk pre-operation position 411, and the first gripper 2 grabs the cup hole 201 or 202 to perform the throwing cup;
  • the above is a three-component one-step project test process, whether it is a one-step test project, a multi-step test project, or a sample pre-dilution or pre-treatment test process, as long as the reagent group needs to be added in a certain step test. If the reagents of a predetermined number of types (for example, the above two types) are more than the reagent dispensing mechanism 6, the reagents may be subdivided into a plurality of new one-step tests.
  • Cycle 1 The first gripper 2 grabs a new cup from the transfer mechanism 104 and places it in the loading position 31, and the sample is added to the reaction cup on the loading position 31;
  • Cycle 2 The first gripper 2 dispatches the cuvette from which the sample is added from the loading position 31 to the first pre-operative position 411 of the outer circumference of the reaction disc, and then dispatches the cuvette to the reagent addition position 412, and then The cuvette with the added reagent is dispatched from the plus reagent position 412 to the first post operating position 413.
  • case 1 that is, the inner ring of the reaction disk 4 has a reaction cup in the cycle.
  • the second front operating position 41 to the inner ring portion for example, the reaction cup needs to be dispatched from the inner ring portion of the reaction disk 4 to the temporary storage portion, so that the cuvette needs to be dispatched to the second front operating position of the inner ring portion first.
  • the relevant reaction cup is dispatched to the second front operating position 41 of the inner ring portion for the first Grab the cup 2 to grab the temporary storage, and then perform the third reversal action described above, and dispatch the reaction cup of the sample to the reagent addition position 412 of the outer circumference of the reaction disc;
  • Case 2 that is, there is a reaction cup in the inner ring portion of the reaction disk 4 in this cycle, and the reaction cup is dispatched to the second post-operation position 42.
  • the reaction cup is completed, magnetic separation cleaning is required, and thus it needs to be dispatched to the magnetic separation unit.
  • the cuvette needs to be dispatched to the second post-operation position 42 for the second gripper 7 to be dispatched to the magnetic separation unit, so the reaction tray 4 will first perform the second reversal action described above, and the relevant reaction cup will be Dispatching to the second rear operating position 42 of the inner ring portion for dispatching the second gripping cup 7 to the magnetic separating unit, and then performing the third turning operation described above, dispatching the reaction cup with the added sample to the reaction tray a reagent addition position 412 of the circle portion;
  • reaction disk 4 will sequentially perform the first stop action, the second stop action, and the third stop action described above.
  • the third reversal action is performed, after which a fourth reversal action is performed during the cycle, and the reagent cup containing the reagent is dispatched from the reagent addition position 412 to the first post operation position 413.
  • Cycle 3 mixing mechanism 81 or 82 performs mixing
  • Cycle 4 At the end of the current cycle or the previous cycle, the second gripper 7 grabs the mixed reaction cup and grabs it back to the second rear operation position 42 of the inner ring portion of the reaction disk 4 to start the incubation;
  • the reaction cup is incubated at the inner circumference of the reaction tray for a predetermined time according to the time required for incubation;
  • the reaction tray After the reaction cup is incubated in the reaction tray, the reaction tray is arranged in a time sequence (for example, the first rotation of the reaction tray described above), and the reaction cup is dispatched to the second pre-operation position 41, the first gripping cup.
  • the hand 2 takes it out from the inner ring portion of the reaction disk and temporarily stores it in the temporary storage position 121 on the temporary storage disk 12, and the temporary storage disk 12 rotates a cup position;
  • the first cup holder transfers the reaction cup of the temporary storage position 122 to the first front operation position 411 of the outer ring portion of the reaction disk 4, and the rotation of the reaction disk drives the reaction cup to which the reagent is added to the reagent addition position 412.
  • the reaction tray has other scheduling actions (ie, the first stop action and the second stop action of the above reaction disk)
  • the cuvette will be dispatched to other positions in the outer ring and then from other positions.
  • the path is changed to the reagent addition position 412, but the final effect of the schedule is to dispatch the cuvette from the first pre-operating position 411 to the reagent-adding position 412, and the reagent dispensing mechanism 6 adds the reagent to the cuvette.
  • the injection mechanism 6 is lifted after the liquid discharge operation is completed, the reaction tray 4 is rotated counterclockwise, and the reaction cup is dispatched from the reagent addition position 412 to the first rear operation position 413, and at the same time, the reaction tray 4 is advanced counterclockwise by 11 cycles per cycle. Cup position, the second cup holder 7 grabs the reaction cup to the available mixing mechanism 81 or 82;
  • the second gripper grabs the mixed reaction cup and grabs it back into the inner cup position of the second rear operation position 42 of the reaction tray to start the incubation;
  • the reaction cup is incubated at the inner circumference of the reaction tray for a predetermined time according to the time required for incubation;
  • reaction tray 4 dispatches the reaction cup to the second post-operation position 42 (for example, the second reversal action of the reaction tray 4), and the second gripper 7 grabs it and puts it Into the available magnetic separation unit 91 or 92 for magnetic separation cleaning;
  • the substrate is injected and dispatched to the first post-operation position 413 of the outer ring portion of the reaction disk 4. Then, the reaction cup advances 11 cups counterclockwise in each cycle of the reaction tray 4, and when a certain period is advanced to the light positioning position 414, the substrate is also incubated, and the light measurement can be performed;
  • the reaction cup that completes the photometry will be transferred to the aspiration liquid level 415 in a subsequent cycle, and the aspiration liquid unit 11 sucks up the reaction liquid. After the suction liquid unit 11 is lifted up, the reaction cup continues to follow the reaction disk. And in a subsequent cycle, it will advance to the reaction disk pre-operation position 411, and the first gripper 2 grabs the cup hole 201 or 202 to perform the throwing cup.
  • Cycle 1 The first gripper 2 grabs a new cup from the transfer mechanism 104 and places it in the loading position 31, and the sample is added to the reaction cup on the loading position 31;
  • Cycle 2 The first gripper 2 dispatches the cuvette from which the sample is added from the loading position 31 to the first pre-operative position 411 of the outer circumference of the reaction disc, and then dispatches the cuvette to the reagent addition position 412, and then The cuvette with the added reagent is dispatched from the plus reagent position 412 to the first post operating position 413.
  • Case 1 that is, the inner ring portion of the reaction disk 4 in this cycle has a reaction cup that needs to be dispatched to the second front operation position 41 of the inner ring portion, for example, the reaction cup needs to be dispatched from the inner ring portion of the reaction disk 4 to the temporary position.
  • the reaction cup needs to be dispatched to the second front operating position 41 of the inner ring portion for the first gripping cup 2 to grasp, so that the reaction tray 4 first performs the first turning operation described above.
  • reaction disk 4 will sequentially perform the first stop action, the second stop action, and the third stop action described above.
  • the third reversal action is performed, and then a fourth reversal action is performed during the cycle, and the reagent cup with the reagent added is dispatched from the reagent addition position 412 to the first post operation position 413;
  • Cycle 3 mixing mechanism 81 or 82 performs mixing
  • Cycle 4 During the period or at the end of the previous cycle, the second gripper 7 grabs the mixed reaction cup and returns it to the second rear operation position 42 of the inner circumference of the reaction tray 4 to start the incubation;
  • the reaction cup is incubated at the inner circumference of the reaction tray for a predetermined time according to the time required for incubation;
  • the reaction tray After the reaction cup is incubated in the reaction tray, the reaction tray is arranged in a time sequence (for example, the second rotation of the reaction tray 4 described above), and the reaction cup is dispatched to the second post operation position 42, the second capture
  • the cup hand 7 takes it out and puts it into an available magnetic separation unit 91 or 92 for magnetic separation cleaning;
  • the second gripper 7 inserts the cuvette that completes the first magnetic separation cleaning from the magnetic separation disc operation position 911 or 921 into the outer circumference of the reaction disc, the first post-operation position 413, and the reaction tray 4 is compliant.
  • the hour hand rotates to drive the reaction cup to the first front operating position 411, and the first catching hand 2 takes out the reaction cup from the first front operating position 411 of the outer ring portion of the reaction disk and puts it into the temporary storage position 121 of the temporary storage tray 12, and temporarily stores the tray 12 Rotate
  • the first gripper 7 takes the cuvette from the temporary storage position 122 and places it into the first front operating position 411 of the outer circumference of the reaction disk.
  • the rotation of the reaction disk drives the reaction disk to which the reagent needs to be added to the reagent addition position. 412, the reagent needle is added to the reagent; the reaction tray rotates 14 cups counterclockwise to the first rear operation position 413, and the second cup holder 7 grabs the reaction cup to the available mixing mechanism 81 or 82;
  • the second gripper 7 grabs the mixed reaction cup and grabs it back to the second rear operating position 42 of the reaction disk to start the incubation; the reaction cup is The inner ring portion of the reaction disk is incubated for a predetermined time according to the time required for incubation;
  • reaction tray 4 dispatches the reaction cup to the second post-operation position 42 (for example, the second reversal action of the reaction tray 4), and the second gripper 7 grabs it and puts it Into the available magnetic separation unit 91 or 92 for magnetic separation cleaning;
  • the substrate is injected and dispatched to the first post-operation position 413 of the outer ring portion of the reaction disk 4. Then, the reaction cup advances 11 cups counterclockwise in each cycle of the reaction tray 4, and when a certain period is advanced to the light positioning position 414, the substrate is also incubated, and the light measurement can be performed;
  • reaction cup that completes the photometry will be transferred to the aspiration liquid level 415 in a subsequent cycle, and the aspiration liquid unit 11 sucks up the reaction liquid. After the suction liquid unit 11 is lifted up, the reaction cup continues to follow the reaction disk. And in a subsequent cycle, it will advance to the reaction disk pre-operation position 411, and the first gripper 2 grabs the cup hole 201 or 202 to perform the throwing cup;
  • the period is a fixed period of time, but how to divide it from each period Points and end points, which can be divided according to actual conditions. For example, if a period is 2 seconds, the 1st and 2nd seconds can be divided into one cycle, and the 2nd and 3rd seconds can be divided into one cycle, which makes The operations performed in the corresponding cycles are also slightly different. Some examples given above illustrate the actions performed by some organizations and units in each cycle, but only one way of dividing the cycles. Those skilled in the art can understand that as long as the duration of the cycle It is within the concept of the present invention to change the starting point of the cycle and the resulting changes in the actions of the mechanisms and units in each cycle.
  • probes such as sample needles, reagent needles, magnetic separation needles, and liquid injection needles, due to contact with samples, reagents, etc., deposit foreign matter on the surface and inner walls.
  • a cleaning solution with a major component of sodium hypochlorite which disinfects, sterilizes, bleaches and decontaminates.
  • the effective chlorine concentration of the sodium hypochlorite solution is about 0.5% to 1%, the cleaning effect is the best, but at this time, the stability is poor, and it is difficult to store and transport for a long time. Only when the concentration of sodium hypochlorite solution is high, its stability is relatively high. Therefore, the currently produced sodium hypochlorite solution is of a relatively high concentration and needs to be diluted for use.
  • the use of sodium hypochlorite solution on the analytical device takes advantage of its sterilization and decontamination.
  • the commonly used scheme is that the customer manually dilutes the concentrated solution into the concentration required for the probe cleaning in the analysis device according to the requirements of the analytical device manufacturer.
  • a scale is generally provided.
  • the container, the volume of the container to ensure the customer's dilution of the week as a design indicator, requires the customer to add concentrated solution to the mark line, then fill the barrel with deionized water or tap water, then shake the barrel to mix, still Use after a period of time to ensure adequate dilution.
  • the diluted cleaning solution can be dispensed into the sample tube or the reagent bottle daily, by mounting the sample tube to the sample holder, dispatching the sample holder to the probe, or loading the reagent bottle into the reagent tray.
  • the probe is dispensed from the reagent tray. Or directly apply the diluted vat liquid to the machine, and design the complex piping system to dispatch the dilution to the probe for cleaning.
  • the problems existing in the current scheme are: 1) manual dilution, inconvenient operation; 2) poorly stored liquid is diluted, and the amount of dilution is up to one week at a time; 3) manual stepping on the machine after dilution; 4) dilution After the automatic on-board program, the liquid path system is complicated.
  • the inventors considered to provide two cleaning liquid placement positions on the automatic analysis device, wherein one cleaning liquid placement position is for carrying the container containing the concentrated cleaning liquid, and the other cleaning liquid is placed for carrying the load.
  • a diluted cleaning solution is prepared, as specified below.
  • the automatic analysis device may include a dispensing mechanism, a reaction tray 4, a transfer mechanism, a control unit (not shown), and two cleaning liquid placement positions.
  • the dispensing mechanism is used for aspiration and drainage.
  • the reaction disk 4 is disposed in a disc-like structure, and the reaction disk 4 has a plurality of placement positions for placing the reaction cup, and the reaction disk 4 is rotatable and drives the reaction cup in the placement position for rotation in the reaction tray.
  • the reaction cup and the reaction solution in the reaction cuvette are used for aspiration and drainage.
  • the transfer mechanism is used to dispatch the cuvette into the reaction tray 4 or to dispatch the reaction tray 4.
  • the control unit is configured to control the dispensing mechanism to respectively suck the liquid in the containers on the two cleaning liquid placement positions, and discharge them into the reaction cup to prepare the diluted cleaning liquid.
  • the control unit controls the dispensing mechanism to quantitatively absorb the liquid in the containers on the two cleaning liquid placement positions, and discharges the liquid into the reaction cup to prepare a predetermined dilution concentration of the cleaning liquid.
  • the dispensing mechanism includes a sample dispensing mechanism 3 for drawing a sample and discharging it into a cuvette located in the loading position, and a reagent for drawing the reagent and discharging it into a cuvette located at the reagent loading position.
  • Dispensing mechanism 6 the two cleaning placement positions are both disposed on the motion trajectory of the sample dispensing mechanism. In one embodiment, the two cleaning placement positions are both disposed on the motion track of the reagent dispensing mechanism. In one embodiment, one of the two cleaning placement positions is disposed on a motion track of the sample dispensing mechanism, and the other cleaning placement position is disposed on a motion track of the reagent dispensing mechanism.
  • Figure 7 shows one of the solutions in which the two cleaning placements 3a, 3b are disposed on the motion path of the sample dispensing mechanism.
  • the transfer mechanism and/or the reaction tray 4 cooperate to dispatch the reaction cup to the loading position, and the control unit controls the sample dispensing mechanism 3 to absorb the concentrated cleaning.
  • the liquid is discharged to the reaction cup of the sample loading position, and the reaction cup that controls the sample dispensing mechanism to draw the diluent and discharge to the sample loading position.
  • the sample loading position may be provided outside the reaction disk 4 or may be disposed in the reaction disk 4.
  • the transfer mechanism and/or the reaction tray 4 cooperate to dispatch the reaction cup to the reagent addition position, and the control unit controls the reagent dispensing mechanism 6 to absorb the concentration.
  • the cleaning solution is discharged to the reaction cup to which the reagent is added, and the control reagent dispensing mechanism 6 draws the diluent and discharges it to the reaction cup where the reagent is added.
  • the reagent addition position may be provided outside the reaction disk 4 or may be provided in the reaction disk 4.
  • the transfer mechanism and/or The reaction tray cooperates to dispatch the reaction cups to the loading position and the reagent adding position respectively.
  • the control unit controls the sample dispensing mechanism 3 to suck the liquid in the cleaning placement position and discharge it to the loading.
  • Position of the reaction cup when the reaction cup When the reagent position is added, the control unit controls the reagent dispensing mechanism 6 to suck the liquid in the cleaning placement position it has passed and discharge it to the reaction cup to which the reagent is added.
  • the order of sucking and concentrating the cleaning liquid and sucking the diluent is not fixed, and the concentrated cleaning liquid may be sucked first, or the diluent may be sucked first, and if the concentrated cleaning liquid and the suction diluent are respectively separated by the sample dispensing mechanism 3 And one of the reagent dispensing mechanisms 6 draws, then the two mechanisms work even in parallel, one while drawing the concentrated cleaning solution while the other is also drawing the diluent.
  • the automatic analysis device further comprises a mixing mechanism for mixing the reaction liquid in the reaction cup; and the transfer mechanism and/or the reaction tray cooperate to dispatch the reaction cup containing the diluted cleaning liquid to the mixing The organization mixes.
  • the diluted diluted cleaning solution can be used for cleaning.
  • the automatic analysis device further includes a magnetic separation unit for performing magnetic separation cleaning of the reaction liquid in the cuvette.
  • the transfer mechanism and/or the reaction tray 4 cooperate to dispatch a reaction cup containing the diluted cleaning liquid to the magnetic separation unit to clean the magnetic separation injection needle and the liquid suction needle in the magnetic separation unit.
  • the diluted cleaning solution can be dispatched to the loading position to clean the sample needle in the sample dispensing mechanism, and the diluted cleaning liquid is dispatched to the reagent dispensing position in the reagent dispensing mechanism.
  • the reagent needle is cleaned.
  • the remaining amount of the concentrated cleaning solution and the diluent located on the two cleaning placement positions can be detected by the liquid level detection method of the sample needle or the reagent needle, and the remaining amount is displayed on the software consumable interface. Percentage, when the liquid level is ⁇ the height of the bottle mouth, the remaining amount is 100%, and when the liquid level is ⁇ the height corresponding to the dead volume set at the bottom of the bottle, the remaining amount is 0%, and the intermediate height is calculated as a percentage. When the margin is less than the set margin, such as 5%, the imminent control unit gives a reminder that the user is required to add the corresponding liquid. When the margin is equal to 0%, the automatic dilution function is stopped, and the control unit gives an alarm.
  • the user only needs to load the concentrated cleaning solution and the diluent into the position where the analyzer is set up.
  • the device automatically prepares the diluted cleaning solution of the required concentration before cleaning the probe as needed, and gives the margin in real time during use. Display, remind the user to replace the corresponding liquid according to the preset conditions.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: a read only memory, a random access memory, a magnetic disk, an optical disk, a hard disk, etc.
  • the computer executes the program to achieve the above Features.
  • the program is stored in the memory of the device, and when the program in the memory is executed by the processor, all or part of the above functions can be realized.
  • the program may also be stored in a storage medium such as a server, another computer, a magnetic disk, an optical disk, a flash disk or a mobile hard disk, and may be saved by downloading or copying.
  • the system is updated in the memory of the local device, or the system of the local device is updated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种自动分析装置及其工作方法,由于引入暂存部(12),可以将多组份的测试项目分成新的一步法测试的流程,或可以将多步法测试流程分成若干个新的一步法测试流程,重新进入测试序列和流程,从而使得各机构和单元和控制时序可以根据一步法测试流程来设计,规范有序,从而解决了多组份的测试项目和多步法测试流程打扰正常流程的问题,有效地提高了整机的测试速度和测试通量。

Description

一种自动分析装置及其工作方法 技术领域
本发明涉及一种自动分析装置及其工作方法。
背景技术
自动分析装置,不妨以免疫分析仪为例,这是一类高灵敏度及高特异性的分析仪器,在临床实验室中常被用于检测血液、尿液或其它体液的各项分析指标。传统的免疫分析仪有多种实现原理,比如化学发光法、电化学发光法等。以非均相化学发光免疫分析仪为例,请参考图1,其主要工作原理主要为:当需要测量样本中的某成分,可将相应的抗体/抗原包被在磁珠上形成磁珠试剂,将特定的标记物标记在抗体上形成标记试剂(测量某分析项目的试剂一般有多种组份,比如此处的磁珠试剂组份、标记试剂组份等,同一项目的不同组份可分装在不同的试剂容器内或同一试剂容器的不同腔内)。测试过程首先将含有待测物的样本先后和磁珠试剂、标记试剂及其他试剂混合在一起形成样本试剂反应液(简称反应液),并在一定条件下孵育反应形成反应复合物;然后通过清洗分离(Bound-free,一般简称B/F)技术,将反应体系中未结合的标记物及其他试剂、样本成分清除;然后向其中加入信号试剂,则反应复合物上的标记物与信号试剂反应(或催化信号试剂)发光,其中信号试剂可以为一种或多种,如发光底物液、预激发液和激发液以及发光增强液等。具体的包被清洗方式也有多种,除了上述的磁珠清洗方式外,还有将抗体包被在反应容器壁、塑料珠等其他方式。
现有的免疫检测分析仪测试通量普遍偏低,已经不能满足本领域日益增长的测试量,从而严重影响医生等这些需要根据样本测量结果进行诊断的用户的工作效率。
发明内容
本发明主要提供一种自动分析装置及其工作方法。
根据第一方面,一种实施例中提供一种自动分析装置,包括:
反应杯装载机构,用于供应并运载反应杯到反应杯位;
样本单元,用于承载样本;
样本分注机构,用于吸取样本并排放到位于加样位的反应杯中;
试剂单元,用于承载试剂;
试剂分注机构,用于吸取试剂并排放到位于加试剂位的反应杯中;
反应盘,所述反应盘呈圆盘状结构设置,所述反应盘上具有多个用于放置反应杯的放置位,所述反应盘能够转动并带动所述放置位中的所述反应杯转动,用于在反应盘内调度反应杯以及孵育反应杯中的反应液;
混匀机构,用于对反应杯中需要混匀的反应液进行混匀;
测定单元,用于对待测的反应液进行测定;
磁分离单元,用于对反应杯中的反应液进行磁分离清洗;
移送机构,用于至少在反应杯装载机构、反应盘、混匀机构、磁分离单元之间调度反应杯;
控制单元,至少用于控制所述样本分注机构、试剂单元、试剂分注机构、反应盘、混匀机构、测定单元、磁分离单元和移送机构的操作及时序;
暂存部,所述暂存部独立于所述反应盘设置,用于接收由移送机构从反应盘中调度出的反应杯并进行暂存,以等待再次被调度回反应盘中。
根据第二方面,一种实施例中提供一种自动分析装置的工作方法,包括:
先将反应杯调度到加样位进行加样;
将加样完成的反应杯调度到反应盘中的加试剂位进行加试剂;
将加完试剂的反应杯调度到混匀机构;
将反应杯从混匀机构调度到反应盘中用于孵育的位置进行孵育;
将孵育完成的反应杯调度到磁分离机构进行磁分离清洗;
将磁分离清洗完成的反应杯调度回反应盘,反应盘将反应杯在反应盘内调度到光测位进行光测;
其中:
反应杯在反应盘的加试剂位每次最多被加入预设数量的种类的试剂;当位于加试位的反应杯本次孵育需要加的试剂种类大于所述预设数量时,向该反应杯加入预设数量的种类的试剂,在这之后且在该反应杯 被加入本次孵育还需的其他试剂之前,先将该反应杯调度到独立于反应盘的暂存区域进行暂存;之后再从暂存区域将该反应杯调度回反应盘,以继续加入本次孵育还需的其他试剂;
和/或,
当任一反应杯的测试项目为多步法测试项目时,在除最后一步法测试的其他任一步法测试中,当反应杯在该步法测试中需要进行磁分离清洗时,则将在反应盘孵育完成的该反应杯先调度到磁分离单元进行磁分离清洗,再将完成磁分离清洗的该反应杯从磁分离单元调度到独立于反应盘的暂存区域进行暂存;当该步法测试中反应杯不需要进行磁分离清洗时,则将在反应盘孵育完成的该反应杯从反应盘中调度到独立于反应盘的暂存区域进行暂存;之后再将暂存于暂存区域的该反应杯调度回反应盘完成后续其他步法测试。
根据第三方面,一种实施例提供一种自动分析装置,包括:
分注机构,用于吸液以及排液;
反应盘,所述反应盘呈圆盘状结构设置,所述反应盘上具有多个用于放置反应杯的放置位,所述反应盘能够转动并带动所述放置位中的反应杯转动,用于在反应盘内调度反应杯以及孵育反应杯中的反应液;
移送机构,用于将反应杯调度进反应盘或调度出反应盘;
两个清洗液放置位,其中一个清洗液放置位用于承载装有浓缩清洗液的容器,另一个清洗液放置位用于承载装有稀释液的容器,所述稀释液用于稀释所述浓缩清洗液;所述两个清洗液放置位设置于所述分注机构的运动轨迹上;
控制单元,用于控制分注机构分别吸取这两个清洗液放置位上的容器中的液体,并排向反应杯中以配制经稀释的清洗液。
依据上述实施例的自动分析装置及其工作方法,由于引入暂存部,可以将多组份的测试项目分成新的一步法测试的流程,或可以将多步法测试流程分成若干个新的一步法测试流程,重新进入测试序列和流程,从而使得各机构和单元和控制时序可以根据一步法测试流程来设计,十分规范有序,从而解决了多组份的测试项目和多步法测试流程打扰正常流程的问题,有效地提高了整机的测试速度和测试通量。
附图说明
图1为免疫分析的测试原理图;
图2为一种实施例的自动分析装置的结构示意图;
图3为另一种实施例的自动分析装置的结构示意图;
图4为一种实施例的自动分析装置的工作方法的示意图;
图5为另一种实施例的自动分析装置的工作方法的示意图。
图6为图3中的磁分离单元的一个四阶磁分离盘的放置位的图示。
图7为又一实施例的自动分析装置的结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本发明中一步法测试项目指的是,一个测试项目只需要进行一步的孵育;相应地,多步法测试项目指的是,一个测试项目需要进行多步的孵育,例如一个两步法测试项目指的是该测试项目需要进行两步的孵育,先向样本加入第一步孵育所需要的试剂,然后进行第一步孵育,第一步孵育时间到达之后,再加入第二步孵育所需要的试剂,然后进行第二步孵育,第二步孵育时间到达之后,再执行一次磁分离,然后进行测定。一般来讲,一个多步法测试项目,最后一步孵育完成后需要执行磁分离, 然后才能进行测定;而在一个多步法测试项目中,除了最后一步除,其他步孵育之后,需要不需进行磁分离,需要视测试项目种类等因素而定。例如,一个两步法测试项目,如果第一步测试中,其孵育之后需要进行磁分离,则该两步法测试项目可以称之为两步两分离测试项目,如果第一步测试中,其孵育之后不需要进行磁分离,则该两步法测试项目可以称之为两步一分离测试项目。
在一步法测试项目或多步法测试项目中,每步的孵育或者说每次的孵育,其需要加的试剂种类可以是一种也可以是多种,这是根据测试项目种类等因素来确定的;当在一步法测试项目或多步法测试项目中,有一步或多步的测试中,其孵育要加的试剂种类为多种时,可以将这种测试项目称之为多组份测试项目。
发明人研究发现,在各种测试项目中,磁分离清洗都是一个必经的流程和环节,由于磁分离清洗需要较长的固定时间,因此在磁分离清洗也是一个耗时较长的环节,尤其是对一些需要进行多次磁分离清洗的多步法测试项目。并且,由于装置中其他单元或部件的周期均需要与上述磁分离清洗的环节保持一致,从而限制了装置的测试速度和测试通量。
发明人还研究发现,在免疫分析仪工作时,多步法测试项目以及多组份测试项目是影响测试通量的主要原因。以多组份测试项目为例,由于试剂针每次吸排动作所需时间不能无限压缩,并且基于免疫反应的特点,同一周期内试剂针需要多次吸排来完成一个测试的其中一步测试的多试剂组份分注,为了避免试剂针吸不同试剂组份时通过外壁携带引入交叉污染,不同组份吸液之间还需要执行试剂针外壁的清洗,导致一步测试中多试剂组份的分注是分析装置中耗时最长的环节之一,从而影响测试通量。另外,免疫分述仪有些时候还需要先进行样本预稀释、预处理等测试流程,这些“非标准”的测试流程也是影响测试通量的一个原因。
在发现上述问题后,为了提高测试速度和测试通量,发明人研究发现,可以从解决磁分离清洗分离时间,多组份测试项目中多组份试剂的分注时间,多次磁分离的流程简化,多步法测试项目的流程简化等方面来来着手,解决上述任何一个问题都可以达到提高测试速度和测试通量的效果。
在提出本发明之前,先来看一看目前的一些技术方案。
US6825041的美国专利,其加试剂位以及加样位都被设置于反应盘的外面,并引用四根试剂针并行工作,每根试剂针的周期为36秒,任意一根试剂针都在其一个周期内,对该根试剂针下面的反应杯会加完所有试剂,而不管是反应杯该次需要加入一种试剂还是多种试剂。在一个工作周期后,试剂针下面的反应杯才会被重新调度回反应盘。由于引用四 根试剂针并行工作,因此反应盘的工作周期为9秒。可以看到,反应杯一次不管是需要加入一种试剂还是多种试剂,都需要花费试剂针的一个周期的时间,即36秒,导致即使引用四根并行的试剂针,反应盘的工作周期也才为9秒,整机效率还是比较低。
US5795784的美国专利,其引入两根试剂针并且反应盘上设置有两个加试剂位,每根试剂针负责一个加试剂位,并且其中一根试剂针及其负责的一个加试剂位用于一次性添加完第一步测试流程中所需的全部试剂,另一根试剂针及其负责的另一个加试剂位用于一次性添加完第二步测试流程中所需的全部试剂。这种方案,对于一步法测试项目,其负责第二步测试流程的试剂针以及加试剂位都没有发挥作用,在测试过程中被闲置,对于整机的运行速度提升不利。
US5827478的美国专利,其在反应盘上设置多个加试剂位,然后对应布置多根三维运动的试剂针,通过反应盘将一个反应杯依次调度到每个加试剂位,来完成多个试剂组份的分注,这增加了反应盘的调度动作次数,因此一方面降低了反应盘转运的可靠性,另一方面又拉长了反应盘的动作周期,使其成为制约装置速度的原因之一。该方案采用多套试剂分注单元,增加成本;该方案采用多套试剂分注单元布置到反应盘外侧的方案,会增大整机尺寸,且在反应盘上方开较多加试剂孔位,影响反应盘温控性能。
现有技术中的一种分析装置,其采用两个反应盘以及两个试剂盘,其中一个反应盘及试剂盘负责第一步测试流程,另一个反应盘及试剂盘负责第二步测试流程,这种做法使得整机的硬件成本以及体积都增大了许多;另外,在每个反应盘都设置有多个加试剂位以及试剂针,来缩短加试剂的工作周期,但是一方面这会增加了反应盘的调度动作,使得反应盘的工作周期被拉长,使其成为制约装置速度的原因,另一方面采用多根试剂针会增加成本,增大整机尺寸。
现有技术中一种分析装置,其在反应盘设置一个加试剂位,并配置有一根试剂,反应盘每次将反应杯调度到加试剂位后,试剂针一次性加完所需的全部试剂,这样会导致每次反应盘在加试剂位转停后等待的时间十分慢长,例如21秒(相当于反应盘的工作周期为21秒),并且相应地,其他单元和机构由于也等待反应盘,从而也处于等待状态,效率十分低下。
发明人经过构思,提出一种自动分析装置,其引入一个独立于反应盘的暂存部,可以将多组份的测试项目分成若干个类似一步法测试的流程,以及可以将多步法测试流程分成若干个新的一步法测试流程,重新 进入测试序列和流程,从而使得各机构和单元和控制时序可以根据一步法测试流程来设计,十分规范有序,从而解决了多组份的测试项目和多步法测试流程打扰正常流程的问题,有效地提高了整机的测试速度和测试通量。
请参照图2,一实施例中公开了一种自动分析装置,其包括反应杯装载机构1、样本单元33、样本分注机构3、试剂单元5、试剂分注机构6、反应盘4、混匀机构81、测定单元10、磁分离单元91、移送机构以及控制单元(图中未画出)。
反应杯装载机构1用于供应并运载反应杯到分杯位。在一实施例中,分杯位用于供移送机构将反应杯调度到加样位。在一实施例中,反应杯装置机构包括料仓101、拾取机构102、换向机构103、转运机构104。料仓101用于存放反应杯。拾取机构102用以拾取、传送和卸载反应杯。换向机构103衔接于拾取机构102之后,且换向机构103具有自拾取机构102一侧斜向下设置的传送槽,该传送槽具有允许反应杯下部伸入的尺寸,且该传送槽的宽度小于反应杯上悬挂部的宽度,该传送槽至少在靠近拾取机构102的一端具有第一槽底壁,第一槽底壁到传送槽上沿的距离小于反应杯最底部到悬挂部的距离。转运机构104衔接于上述传送槽的反应杯出口处,转运机构104具有至少一个用于存放反应杯的反应杯位,用以放置反应杯;运动机构104具有上述的分杯位,例如,将运动机构104上反应杯位中的某一个设置为分杯位。在一实施例中,该转运机构104可以为盘式结构。
样本单元33用于承载样本。样本单元33包括样本输送模块,样本输送模块包括样本分配模块(SDM,Sample Delivery Module)及前端轨道(图中未画出)。
样本分注机构3用于吸取样本并排放到位于加样位的反应杯中。在一实施例中,样本分注机构3包括样本针,样本针为一根。在一实施例中,样本分注机构3完成一次加样或者说分注的整个动作流程为:移动至吸样位吸取样本,然后移动至相应清洗位清洗外壁,再移动至加样位将吸取的样本排放到位于加样位的反应杯,最后再移动至相应清洗位进行内外壁的清洗,例如对样本分注机构3的清洗可以在样本针清洗单元32处。
试剂单元5用于承载试剂。在一实施例中,试剂单元5呈圆盘状结构设置,试剂单元5具有多个用于承载试剂容器的位置,试剂单元能够转动并带动其承载的试剂容器转动,用于将试剂容器转动到吸试剂位,以供试剂分注机构6吸取试剂。在一实施例中,试剂单元5为一个,其可以分离设置于反应盘4的外面。
试剂分注机构6用于吸取试剂并排放到位于加试剂位的反应杯中。在一实施例中,试剂分注机构6包括试剂针,试剂针为一根。在一实施例中,试剂分注机构6完成一次加试剂或者说分注的整个动作流程为:移动至吸试剂位吸取试剂,然后移动至相应清洗位进行外壁清洗,再移动至加试剂位向位于加试剂位的反应杯排放所吸取的试剂,最后再移动至相应的清洗位进行内外壁的清洗。在一实施例中,当试剂针被设置成连续吸取多种试剂再一起排放时,则控制试剂针连续进行多次吸试剂操作以吸取所需的多种试剂;其中在吸取该所需要的多种试剂的过程中,在完成一次吸试剂操作后且开始下次吸试剂操作之前,要对试剂针进行外壁清洗,例如在试剂针清洗池单元61处清洗。
反应盘4呈圆盘状结构设置,反应盘4上具有多个用于放置反应杯的放置位,反应盘能够转动并带动其放置位中的反应杯转动,用于在反应盘内调度反应杯以及孵育反应杯中的反应液。在一实施例中,反应盘4包括可独立转动或一起转动的内圈部和外圈部;内圈部包括一圈或多圈轨道,每圈轨道设置有若干放置位,用于反应杯的孵育和将反应杯在内圈部的各放置位之间的调度;外圈部包括一圈或多圈轨道,每圈轨道设置有若干放置位,用于将反应杯在外圈部的各放置位之间调度。图2中显示了具有一圈轨道4a的外圈部,以及具有三圈轨道4b、4c、4d的内圈部。在一实施例中,反应盘4为一个。在一实施例中,反应盘具有测定位和/或吸废液位;测定位用于供测定单元10测定反应杯,即测定单元10对被调度到测定位的反应杯进行测定,在一实施例中,当测定单元10为光测单元,则测定位为光测位;测定完成的反应杯在吸废液位被吸取废液。在一实施例中,测定位和吸废液位被设置于反应盘4的外圈部,例如,测定位和吸废液位都是反应盘4外圈部上的一个放置位。例如图2中的测定位414以及吸废液位415。测定完成的反应杯在吸废液位被吸取废液,那么在一实施例中,自动分析装置还包括吸废液单元11,用于吸取测定完成的反应杯中的反应液,吸废液单元包括吸废液针,吸废液针的运动轨迹经过吸废液位。在一实施例中,加试剂位被设置于反应盘内,即反应盘具有加试剂位,在一实施例中,加试剂位设置于反应盘4的外圈部,例如图2中的加试剂位412;在一实施例中,加位样被设置于反应盘4内或外,例如图2中显示了被设置于反应盘4外面的加样位31。
混匀机构81用于对反应杯中需要混匀的反应液进行混匀。图2中混匀机构为一个;在一实施例中,请参照图3,混匀机构可以为两个,例如混匀机构81、混匀机构82。在一实施例中,这两个混匀机构也可以被设置在一个在奇数的周期内接收反应杯,一个在偶数的周期内接收反应杯。需要说明的是,若一个混匀机构被设置在奇数的周期内接收反应杯, 这意味着只要在奇数的周期内出现需要被调度到混匀机构的反应杯,该反应杯都会被调度到上述设置在奇数的周期内接收反应杯的混匀机构,类似地,只要在偶数的周期内出现需要被调度到混匀机构的反应杯,该反应杯都会被调度到设置在偶数的周期内接收反应杯的混匀机构;同时,这并不意味着在每个周期内都会出现有需要被调度到混匀机构的反应杯,例如设置在奇数的周期内接收反应杯的混匀机构,不一定在每个奇数的周期都能够接收到反应杯,因为有可能有一些奇数的周期并没有出现需要被调度到混匀机构的反应杯。在一实施例中,混匀机构被分离地设置于反应盘4的外面。在一实施例中,混匀机构可以对反应杯进行不混匀操作、短混匀操作和长混匀操作,即混匀机构的混匀操作包括不混匀操作、短混匀操作和长混匀操作这三种操作。
测定单元10用于对待测的反应液进行测定。在一实施例中,测定单元10为光测单元,例如对待测的反应液的发光强度进行检测,通过定标曲线,计算样本中待测成分的浓度等。在一实施例中,测定单元10分离设置于反应盘4的外面。
磁分离单元91用于对反应杯中的反应液进行磁分离清洗。在一实施例中,磁分离单元91包括呈圆盘状结构设置的磁分离盘,磁分离盘上具有一圈或多圈独立或同时运动的轨道,各轨道包括多个用于放置反应杯的放置位,磁分离盘能够转动并带动其放置位中的反应杯转动,用于在磁分离盘内调度反应杯到注液位和吸液位以完成磁分离清洗。在一实施例中,磁分离单元91分离设置于反应盘4的外面。
移送机构用于至少在反应杯装载机构1、反应盘4、混匀机构81、磁分离单元91之间调度反应杯。在一实施例中,移送机构可以包括两个抓杯手,例如第一抓杯手2以及第二抓杯手7。
控制单元至少用于控制样本分注机构3、试剂单元5、试剂分注机构6、反应盘4、混匀机构、测定单元10、磁分离单元和移送机构的操作及时序。
以一个一步法测试项目为说明上述各机构、单元等的配合。在控制单元的控制下,移送机构从反应杯装载机构1的分杯位调度一个反应杯到加样位,样本分注机构3从样本单元33吸取样本后排放到位于加样位的反应杯中,其中加样位可以设置在反应盘1内,即加样位为反应盘1中的一个放置位,加样位也可以被设置于反应盘1的外面。当加样位为反应盘1的外面时,那么移送机构将位于加样位且加样完成的反应杯调度到反应盘1,该反应杯在反应盘1内被试剂分注机构6排放试剂,然后该反应杯又会被移送机构从反应盘1调度到混匀机构进行混匀操作,然后该反应杯又会被移送机构从混匀机构调度回反应盘4进行孵育,该 反应杯孵育完成后,又被移送机构从反应盘4调度到磁分离单元进行磁分离清洗,该反应杯完成磁分离清洗后被移送机构从磁分离单元调度出去,进行最后的测定。在一实施例中,反应盘4可以具有测定位,如果测定单元10为光测单元,则相应地反应盘4具有光测位。在这种情况下,上述反应杯在完成磁分离清洗后被移送机构从磁分离单元调度回反应盘4,当反应盘将该反应杯调度到其光测位时,光测单元对该反应杯进行光测。
针对反应杯在整个测试过程中的调度,可以在反应盘4中设置若干个与调度相关的位置,这些位置可以是反应盘4中的放置位。在一实施例中,反应盘4具有位于外圈部的加试剂位、第一前操作位、第一后操作位,以及具有位于内圈部第二后操作位,下面具体说明。
当加样位位于反应盘4内时,则第一前操作位用于接收移送机构将反应杯从分杯位到反应盘4内,当加样位位于反应盘4的外面时,则第一前操作位用于接收移送机构从加样位调度到反应盘4的反应杯。第一后操作位用于供移送机构将反应杯调度到混匀机构,或接收移送机构从磁分离单元调度到反应盘的反应杯。第二后操作位用于供移送机构将反应杯调度到磁分离单元。
为了配合反应盘4中的各个与调度相关的位置等,在一实施例中,移送机构可以包括第一抓杯手2和第二抓杯手7。在一实施例中,第一抓杯手2被设置成运动轨迹经过分杯位和第一前操作位,当加样位位于反应盘4的外面时,第一抓杯手2的运动轨迹还经过加样位。第二抓杯手7被设置成运动轨迹经过第一后操作位、第二后操作位、混匀机构和磁分离单元。
当加样位位于反应盘4内时,加样位可以和第一前操作位可以是同一个位置,也可以是不同的位置;当加样位位于反应盘4的外面时,加试剂位和第一前操作位可以是同一个位置,也可以是不同的位置。
不妨以加样位位于反应盘4的外面时,加试剂位和第一前操作位不是同一个位置为例,例如图2,从一个一步法测试项目的测试流程的角度来说明各位置之间的调度以及配合。
在控制单元的控制下,第一抓杯手2从分反应杯装载机构1的分杯位调度一个反应杯到加样位31,样本分注机构3从样本单元33吸取样本后,将吸取的样本排放到加样位31上的反应杯;第一抓杯手2再将加样完成的反应杯从加样位31调度到反应盘4中的第一前操作位411,反应盘4将该反应杯从第一前操作位411调度到加试剂位412,试剂分注机构从试剂单元5的吸试剂位上吸取试剂后排放到加试剂位412的反应杯内;反应盘4再将该反应杯调度到第一后操作位413,第二抓杯手7将该反应杯从反应盘4的第一后操作位413调度到混匀机构进行混匀操 作,例如混匀机构81、82其中的一个;混匀操作完成后,第二抓杯手7再将该反应杯从混匀机构调度到反应盘的第二后操作位42进行孵育;孵育完成后,当该反应杯不在第二后操作位42时,反应盘4会在反应盘内进行调度,将该反应杯先调度到第二后操作位42,然后第二抓杯手7将该反应杯从第二后操作位42调度到磁分离单元进行磁分离清洗,例如磁分离单元91、92中的一个;磁分离清洗完成后,第二抓杯手7再将该反应杯从磁分离单元调度到反应盘的第一后操作位413;之后在预定的底物孵育时间内,反应盘4可以刚好将该反应杯调度到测定位414供测定单元10进行测定;之后,反应盘4将反应杯从测定位414调度到吸废液位415,吸废液单元11吸取吸废液位415上的反应杯中的废液,反应盘4再将该反应杯从吸废液位415调度到第一前操作位411,第一抓杯手2再将该反应杯进行抛杯操作,例如,第一抓杯手2将该反应杯第一前操作位411抛弃到抛杯洞201、202其中一个,抛杯洞201连通有一个装废杯的收容装置,例如废料箱,202也连通有一个装废杯的收容装置,控制单元可以控制第一抓杯手2将需要抛弃的反应杯从第一前操作位411抛弃到抛杯洞201,当抛杯洞201连通的装废杯的收容装置被装满时,控制单元通知用户更换收容装置,并且控制第一抓杯手2将需要抛弃的反应杯从第一前操作位411抛弃到抛杯洞202。
如上所述,自动分析装置中控制单元控制一些单元、机构按照时序进行相应操作。一般地,是以上述所提到的周期为单位按照各单元、机构的操作,例如设定周期为具体多少时间后,各单元和机构就需要周期这个单位时间内完成一套完整的动作流程。
对于反应杯装置机构1在每个周期都要保证有杯子在分杯位,例如在一个周期分杯位的杯子被调度走后,反应杯装置机构1要将供应并运载一个新的反应杯到分杯位。
对于样本分注机构3在一个周期内需要至少完成从吸样到向加样位的反应杯完成排样的一套动作。
对于试剂单元5在一个周期内需要完成将即将被排放给试剂位上的反应杯的试剂,调度到吸试位,供试剂分注机构6吸取。
试剂分注机构6在一个周期内需要至少完成从吸试剂到向加试剂位的反应杯完成排试剂的一套动作。
反应盘4在一个周期内完成预设的转动的放置位数,例如,反应盘4在一个周期内至少要完成将第一前操作位411上的反应杯调度到加试剂位413,然后再将加完试剂的反应杯从加试剂位413调度到第一后操作位413。
混匀机构在一个周期内需要完成混匀操作。
测定单元10在一个周期内完成测定操作。
磁分离单元为N个时,每个磁分离单元在N个周期内需要递进一个杯位,例如将反应杯在其放置位转动到下一个相邻的放置位。当磁分离单元为2个时,每个磁分离单元在2个周期内需要递进一个杯位。
吸废液单元11完成对吸废液位的反应杯进行吸废液的操作。
移送机构用于配合各机构、单元的周期将反应杯进行调度。
不妨以图2中的自动分析装置为例,其可以做到目前业内最短的周期7.5秒,相应地测试速度也非常快,被提高了。此时反应杯装置机构1、第一抓杯手2、样本分注机构3、反应盘4、试剂单元5、试剂分注机构6、第二抓杯手7、混匀机构81和82、测量单元10、吸废液单元11的周期为7.5秒。而由于包括两个磁分离单元91和92,所以每个磁分离单元可以在相隔15秒接收一个反应杯,以及递进一个杯位,因此每个磁分离单元的实际工作周期为15秒;如果此时是一个磁分离单元,那么该磁分离单元的周期也要为7.5秒,该磁分离单元的盘体都要做得比较大,增加加工难度及成本,且磁分离性能难以保证,甚至不可实现。由于图2中可以包括两个独立工作的磁分离单元91和92,一个在奇数的周期内接收反应杯,一个在偶数的周期内接收反应杯,没有固定的工作步骤限制,既可以用于第一步磁分离清洗,也可以用于第二磁分离清洗,大大提高了整机的测试速度和测试通量。
暂存部12独立于反应盘4设置,用于接收由移送机构从反应盘中调度出的反应杯并进行暂存,以等待再次被调度回反应盘中。暂存部独立于反应盘设置4指的是暂存部的运行并不会干扰到反应盘4本身的转动。在一实施例中,暂存部分离设置于反应盘4的外面。
在一实施例中,反应盘4具有加试剂位;试剂分注机构6被设置成每次最多将预设数量的种类的试剂排放到位于加试剂位的反应杯中,当位于加试剂位的反应杯本次孵育需要加的试剂种类大于上述预设数量时,控制单元控制试剂分注机构6向该反应杯加入预设数量的种类的试剂之后,移送机构将该反应杯调度到暂存部12进行暂存,之后再将该反应杯从暂存部12调度回反应盘4,以继续加入本次孵育所需的其他试剂,当然如果反应杯被调度回反应盘4,在加试剂位时其本次孵育所需的其他试剂的种类仍然大于上述预设数量,那么,控制单元控制试剂分注机构6向该反应杯加入预设数量的种类的试剂之后,移送机构将该反应杯调度到暂存部12进行暂存,之后再将该反应杯从暂存部12调度回反应盘4,以继续加入本次孵育所需的其他试剂,即反应杯在加试剂位 每次最多被加入预设数量的种类的试剂。上述“控制单元控制试剂分注机构6向该反应杯加入预设数量的种类的试剂之后,移送机构将该反应杯调度到暂存部进行暂存”,在一实施例中,是先将反应杯从加试剂位调度到混匀机构,经过混匀机构的不混匀操作,再调度回反应盘4的孵育位置,不需要经过孵育时间,而是再从反应盘4调度到暂存部12进行暂存。通过上述过程,可以将多组份的测试项目分成若干个新的一步法测试的流程,重新进入测试序列和流程,只不过不需要经过磁分离清洗以及实际的混匀和孵育。
而现有的对于多组份试剂测试项目,如上所述,为了缩短分注试剂的时间,大多采用多个试剂分注单元并行或串行的方案,增加了整机成本,增大了整机尺寸,并且对于占多数的两组份项目,多个试剂分注单元也是多余的设计。在一实施例中,试剂分注机构6包括一根试剂针,可以设置在一个周期内最多吸取并排放2种试剂,例如连接吸取2种试剂再一起排放。当试剂多于2种时,则借用暂存部,把完成2种试剂加入的反应杯放入暂存部,然后将其再调度回反应盘4作为一个新的一步法测试进入流程,如此既可以保证自动分析装置高速运行的畅通,又可以实现多组份试剂的加入。反应盘一般是设置在一个反应锅内,该反应锅具有反应盘盖,用于盖住反应盘,从而对反应盘内的孵育位置等进行保温,而现有技术多个试剂分注单元的方案,大多需要在反应盘上方开更多的孔,损失了反应盘的温控效果,增加了能量的损耗。
当任一反应杯的测试项目为多步法测试项目时,在除最后一步法测试的其他任一步法测试中,当反应杯在该步法测试中需要进行磁分离清洗时,则移送机构将在反应盘4孵育完成的该反应杯先调度到磁分离单元91进行磁分离清洗,再将完成磁分离清洗的该反应杯从磁分离单元91调度到暂存部进行暂存;当该步法测试中反应杯不需要进行磁分离清洗时,则移送机构将在反应盘4孵育完成的该反应杯从反应盘4中调度到暂存部12进行暂存;再将暂存部12暂存的该反应杯调度回反应盘4完成后续其他步法测试。当磁分离单元91分离设置于反应盘4的外面时,移送机构将完成磁分离清洗的该反应杯从磁分离单元91调度到暂存部12进行暂存,是先将该反应杯从磁分离单元91调度到反应盘4,再将该反应杯从反应盘4调度到暂存部12。经过上述过程,可以将多步法测试流程分成若干个类似一步法测试流程,重新进入测试序列和流程,可以保证自动分析装置高速运行的畅通,又可能实现多步法测试项目。
而现有的对于多组份试剂测试项目,如上所述,为了缩短分注试剂的时间,大多采用多个试剂分注单元并行或串行的方案,增加了整机成本,增大了整机尺寸,并且对于占多数的两组份项目,多个试剂分注单 元也是多余的设计。在一实施例中,试剂分注机构6包括一根试剂针,可以设置在一个周期内最多吸取并排放2种试剂,例如连接吸取2种试剂再一起排放。当试剂多于2种时,则借用暂存部12,把完成2种试剂加入的反应杯放入暂存部12,然后将其再调度回反应盘4作为一个新的一步法测试进入流程,如此既可以保证自动分析装置高速运行的畅通,又可以实现多组份试剂的加入。而现有技术多个试剂分注单元的方案,大多需要在试剂盘或反应盘上方开更多的吸液孔和加样孔,损失了试剂盘和反应盘的温控效果,增加了能量的损耗。
引入暂存部后,可以将多组份的测试项目分成若干个类似一步法测试的流程,以及可以将多步法测试流程分成若干个新的一步法测试流程,重新进入测试序列和流程,从而使得各机构和单元和控制时序可以根据一步法测试流程来设计,十分规范有序,从而解决了多组份的测试项目和多步法测试流程打扰正常流程的问题,有效地提高了整机的测试速度和测试通量。
暂存部12还可以解决对样本的预稀释或预处理流程对正常流程的打扰。在一实施例中,加样位被设置在反应盘4的外面;当位于加试剂位的反应杯被试剂分注机构6加入稀释液或预处理液之后,移送机构将该反应杯从反应盘4调度到暂存部12进行暂存,样本分注机构3从该反应杯中吸取经过稀释或预处理的样本并排放到此时位于加样位的反应杯中,移送机构再将该位于暂存部12的反应杯进行抛杯操作。
在一实施例中,暂存部12具有至少两个暂存位,暂存部包括一可旋转的圆盘,用于将反应杯在各暂存位之间调度。例如如图2中,暂存部12包括至少两个暂存位121和122,以121为第一暂存位,122为第二暂存位为例,暂存部12的第一暂存121位用于接收移送机构从反应盘4中调度出来的反应杯,暂存部12再将该反应杯调度到第二暂存位122,以使得空闲出来的第一暂存位121可继续接收移送机构从反应盘4中调度出来的反应杯。
当该被调度到第二暂存位122的反应杯还需要进行后续测试时,移送机构将该第二暂存位122的反应杯调度回反应盘4,当该被调度到第二暂存位122的反应杯为之前位于加试位时被试剂分注机构6加入稀释液或预处理液的反应杯,则样本分注机构3从该反应杯中吸取经过稀释或预处理的样本并排放到此时位于加样位的反应杯中,移送机构再将该位于第二暂存位122的反应杯进行抛杯操作;或者,经过预定时间,例如一个周期,暂存部12再将该反应杯从第二暂存位122又调度回第一暂存位121,当该反应杯还需要进行后续测试时,移送机构将该反应杯调度回反应盘,当该反应杯在第二暂存位被吸样后,移送机构将此时位于第一暂存位的该反应杯进行抛杯操作,例如将该反应杯抛到抛杯洞202 或201中。
暂存部12与反应盘4之间存在反应杯的调度关系,在一实施例中,反应盘4的第一前操作位还用于供移送机构将需要从外圈部调度到暂存部的反应杯调度出去,或者,接收移送机构从暂存部12调度到反应盘4的反应杯。在一实施例中,反应盘4还包括第二前操作位,第二前操作位用于供移送机构将需要从内圈部调度到暂存部的反应杯调度出去。相应地,第一抓杯手2被设置成运动轨迹经过分杯位、暂存部、加样位、第一前操作位和第二前操作位;第二抓杯手7被设置成运动轨迹经过第一后操作位、第二后操作位、混匀机构和磁分离单元。当暂存部包括至少两个暂存位时,移送机构可以被设置成运动轨迹经过其中一个暂存位,例如第一抓杯手2经过第一暂存位121。
不妨以图2或图3为例,这样设置后,某一反应杯从反应盘4中孵育位置要被调度到暂存部,则反应盘4先将内圈部中的该反应杯调度到第一前操作位,例如图2中的第一前操作位41,第一抓杯手2再将该反应杯从第一前操作调度到暂存部。某一反应杯从磁分离单元调度到暂存部,则第二抓杯手7可以先将该反应杯从磁分离单元调度到反应盘4的第一后操作位413,反应盘4再将该反应杯从第一后操作位413调度到第一前操作位411,第一抓杯手2再将该反应杯从第一前操作位411调度到暂存部。
移动机构是将反应杯在不同单元、机构之间调度,而反应盘4则是将反应杯在反应盘4内部的放置位之间调度。因此,从移动机构的角度来看,以第一抓杯手2和第二抓杯手7为例,当加样位31被设置在反应盘4的外面时,第一抓杯手2用于将反应杯从分杯位调度到加样位31,将反应杯从加样位31调度到第一前操作位411;第一抓杯手2还用于将反应杯在第一前操作位411和暂存部12之间调度,将反应杯从第二前操作位41调度到暂存部12;第二抓杯手7用于将反应杯从第一后操作位413调度到混匀机构,从混匀机构调度到第二后操作位42,从第二后操作位42调度到磁分离单元,从磁分离单元调度到第一后操作位413。
在一实施例中,自动分析装置还包括临时暂存部,第一前操作位还用于移送机构将已经由测定单元10完成测定的反应杯抛弃,当控制单元检测到移送机构没有在第一前操作位将已经完成测定的反应杯抛弃时,控制单元控制移送机构停止将暂存部或加样位的反应杯调度到所述第一前操作位,当上述已经完成测定且在第一前操作没有被抛弃的反应杯被反应盘调度到第一后操作位时,若此时有磁分离单元磁分离清洗完成的反应杯需要被调度到反应盘,则移送机构先将该磁分离单元清洗完成的 反应杯调度到临时暂存部,当控制单元检测到第一后操作位空闲时,移送机构再将临时暂存部上的反应杯调度到第一后操作位。
在一实施例中,自动分析装置还包括临时抛弃部,第一前操作位还用于移送机构将已经由测定单元10完成测定的反应杯抛弃,当控制单元检测到移送机构没有在第一前操作位将已经完成测定的反应杯抛弃时,控制单元控制移送机构停止将暂存部或加样位的反应杯调度到所述第一前操作位,当上述已经完成测定且在第一前操作没有被抛弃的反应杯被反应盘调度到第一后操作位时,则移送机构将该反应杯调度到临时抛弃部进行抛弃。不妨以图2或图3为例,80所标记的的部件可以为临时暂存部或临时抛弃部。
本发明还公开了一种自动分析装置的工作方法。在一实施例中,该工作方法涉及到的自动分析装置可以为本发明任一实施例所公开的自动分析装置。
请参照图4,在一实施例中,自动分析装置的工作方法包括:
先将反应杯调度到加样位进行加样;
将加样完成的反应杯调度到反应盘中的加试剂位进行加试剂;
将加完试剂的反应杯调度到混匀机构;
将反应杯从混匀机构调度到反应盘中用于孵育的位置进行孵育;
将孵育完成的反应杯调度到磁分离机构进行磁分离清洗;
将磁分离清洗完成的反应杯调度回反应盘,反应盘将反应杯在反应盘内调度到光测位进行光测;
其中,反应杯在反应盘的加试剂位每次最多被加入预设数量的种类的试剂;当位于加试位的反应杯本次孵育需要加的试剂种类大于所述预设数量时,向该反应杯加入预设数量的种类的试剂,在这之后且在该反应杯被加入本次孵育还需的其他试剂之前,先将该反应杯调度到独立于反应盘的暂存区域进行暂存;之后再从暂存区域将该反应杯调度回反应盘,以继续加入本次孵育还需的其他试剂。在一实施例中,从暂存区域将反应杯调度回反应盘,包括:在下一个周期,将反应杯从暂存区域调度回反应盘。
在一实施例中,当位于加试剂位的反应杯本次孵育需要加的试剂种类大于所述预设数量时,向该反应杯加入预设数量的种类的试剂,在这之后且在该反应杯被加入本次孵育还需的其他试剂之前,先将该反应杯 调度到独立于反应盘的暂存区域进行暂存,包括:
向该反应杯加入预设数量的种类的试剂后,将该反应杯从反应盘调度到混匀机构;
将该反应杯从混匀机构调度到反应盘中用于孵育的位置;
将该反应杯从反应盘用于孵育的位置调度到所述暂存区域;
将该反应杯从所述暂存区域调度回反应盘,以继续加入本次孵育还需的其他试剂。
图4所表示的工作方法,其构思是将多组份测试项目分成若干个新一步法测试的流程,以暂存区域为每个新一步法测试的起点,使得反应杯从暂存区域被重新调度回反应盘,重新进入测试序列和流程;一般地,多组份测试项目分成若干个新一步法测试的流程,这新一步法测试的流程不需要经过磁分离清洗以及实际的混匀和孵育,当然最后一次开始的一法测试的流程需要经过磁分离清洗以及试剂的混匀和孵育,接着就准备被测定。
请参照图5,在一实施例中,自动分析装置的工作方法包括:
先将反应杯调度到加样位进行加样;
将加样完成的反应杯调度到反应盘中的加试剂位进行加试剂;
将加完试剂的反应杯调度到混匀机构;
将反应杯从混匀机构调度到反应盘中用于孵育的位置进行孵育;
将孵育完成的反应杯调度到磁分离机构进行磁分离清洗;
将磁分离清洗完成的反应杯调度回反应盘,反应盘将反应杯在反应盘内调度到光测位进行光测;
其中,当任一反应杯的测试项目为多步法测试项目时,在除最后一步法测试的其他任一步法测试中,当反应杯在该步法测试中需要进行磁分离清洗时,则将在反应盘孵育完成的该反应杯先调度到磁分离单元进行磁分离清洗,再将完成磁分离清洗的该反应杯从磁分离单元调度到独立于反应盘的暂存区域进行暂存;当该步法测试中反应杯不需要进行磁分离清洗时,则将在反应盘孵育完成的该反应杯从反应盘中调度到独立于反应盘的暂存区域进行暂存;之后再将暂存于暂存区域的该反应杯调度回反应盘完成后续其他步法测试。在一实施例中,从暂存区域将反应杯调度回反应盘,包括:在下一个周期,将反应杯从暂存区域调度回反应盘。
在一实施例中,将完成磁分离清洗的该反应杯从磁分离单元调度到独立于反应盘的暂存区域进行暂存,包括:将完成磁分离清洗的该反应杯从磁分离单元调度到反应盘中;将该反应杯从反应盘中调度到暂存区域。
图5所表示的工作方法,其构思是将多步法测试流程分成若干个类似一步法测试流程,以暂存区域为每个新一步法测试的起点,使得反应杯从暂存区域被重新调度回反应盘,重新进入测试序列和流程,可以保证自动分析装置高速运行的畅通,又可能实现多步法测试项目。
通过以上说明可以知道,通过暂存区域的引入,可以将多组份测试项目和多步法测试项目都分成若干个类似一步法测试的流程,重新进入测试序列和流程,从而使得各机构和单元和控制时序可以根据一步法测试流程来设计,十分规范有序。
在一实施例中,自动分析装置的工作方法还包括:当位于加试剂位的反应杯被加入稀释液或预处理液之后,将反应杯调度到所述暂存区域,并从该反应杯中吸取经过稀释或预处理的样本并排放到此时位于加样位的反应杯中,然后将暂存区域的反应杯作抛杯处理,将加样位的反应杯调度到反应盘进行后续的测试。
在一实施例中,暂存区域至少具有第一暂存位和第二暂存位,并通过一可旋转的圆盘,将反应杯在第一暂存位和第二暂存位之间调度;所述第一暂存位用于接收从反应盘中调度出来的反应杯,反应杯被从反应盘调度到第一暂存位后,再将该反应杯调度到第二暂存位;当该被调度到第二暂存位的反应杯还需要进行后续测试时,将该第二暂存位的反应杯调度回反应盘;当该被调度到第二暂存位的反应杯为之前位于加试位时被加入稀释液或预处理液的反应杯,则从该反应杯中吸取经过稀释或预处理的样本并排放到此时位于加样位的反应杯中,再将该位于第二暂存位的反应杯进行抛杯操作。
自动分析装置的工作方法中所涉及到的暂存区域可以是上述的暂存部12。
如上所述,暂存部的引入,可以将多组份的测试项目分成若干个类似一步法测试的流程,以及可以将多步法测试项目分成若干个新的一步法测试流程,重新进入测试序列和流程,从而使得各机构和单元和控制 时序可以根据一步法测试流程来设计,十分规范有序,从而解决了多组份的测试项目和多步法测试流程打扰正常流程的问题,有效地提高了整机的测试速度和测试通量。将多组份的测试项目分成若干个类似一步法测试的流程,以及将多步法测试流程分成若干个新的一步法测试流程,虽然这些被分出来的新的一步法测试流程,有些需要经过磁分离清洗,有些不需要经过磁分离清洗,但是由于整个测试过程中,反应盘作是核心的区域,不管某一步法测试流程是否要经过磁分离清洗,都不会打乱反应盘在一个周期内的运动,因而与反应盘相配合的其他机构和单元也就不会被打乱,从而整个机器都是十分有序,可以高速运行。
另外,暂存部的引入,将多组份的测试项目分成若干个类似一步法测试的流程,以及将多步法测试项目分成若干个新的一步法测试流程,这些新的一步法测试流程,还被进一步细分成若干个对反应杯的操作,同一个反应杯的这些操作并不都是在时序上都是连续的,例如传统方案在加多试剂时,都是在时序上连续向反应杯分别加入试剂,而本发明引入暂存部后,先向反应杯加入部分试剂,然后反应杯当作一个一步法测试流程,经过若干周期进入暂存部,然后从暂存部又进入反应盘再被加入试剂,而在该反应杯中间的这若干个周期,其他一些反应杯都会被陆续加入试剂,例如第一个周期为第1个反应杯加入试剂,第二个周期为第2个反应杯加入试剂,第三个周期为第3个反应杯加入试剂,….,某一个周期又为第1个反应杯加入剩余的试剂,这样在总的时序上,各个周期都有反应杯加入试剂,极大缩短了加试剂的周期,提高了加试剂的效率。
以图2中的自动分析装置为例,可以看到,自动分析装置中,反应盘4处于相对中心的位置,其他机构和单元都是围绕反应盘4而设计,这样可以充分利用自动分析装置的台面空间。下面对反应盘4的结构及其在一个周期的运动做一个详细说明。
不妨以图2为例,可以看到,图2中的反应盘4具有4圈轨道,每圈轨道具有53个反应杯的放置位(杯位)。其中最外的一圈轨道被设置为外圈部,内三圈轨道被设置为内圈部。在一实施例中,为了简化结构设计,且保证温控的一致性,四圈轨道一体成型,采用一个温控单元,内外圈采用一个电机驱动。如图2所示,由于内圈部包括三圈轨道4b、4c、4d,可以看到,第一抓杯手2和第二抓杯手7都经过了三圈轨道4b、4c、4d上的一个放置位,因此,第二前操作位41可以为一个或多个;同样,第二后操作位也可以为一个或多个;当第二后操作位42为多个时,将反应杯调度到第二后操作位42,指的是将反应杯调度到这多个第二后操作位42中的任一空闲的放置位。
反应盘4在一个周期内,总体的运动效果是,先将位于第一前操作位411的反应杯调度到加试剂位412,以供试剂分注机构6进行加试剂操作,再将加完试剂的反应杯从加试剂位412调度到第一后操作位413,以供第二抓杯手7将反应杯从第一后操作位413调度到混匀机构81或82。如上所述,反应盘4在一个周期内的总体的运动效果是,将反应杯依次从第一前操作位411调到到加试剂位412,再调度到第一后操作位413,由于还需要和暂存部等配合,因此,在这个总体的运动效果中,还有加入反应盘的一些其他的停转动作,以配合暂存部等,但是这些加入的其他的停转动作,并不会影响到反应盘4一个周期内的总体的运动效果。总结起来,反应盘4依次会有四次转停动作,通过这四次转停动作,在实现总体的运动效果的同时,还可以实现与暂存部等的配合,这四次转停动作,在一个周期内的时序依次为第一次转停动作、第二次转停动作、第三次转停动作、第四次转停动作,下面对这四次转停动作进行一个说明。
第一次转停动作:
反应盘4第一次转停,将位于加试剂位412上已经被加入稀释液或预处理液的反应杯,从加试剂位412调度到第一前操作位411,以供第一抓杯手2将该反应杯从第一前操作位411调度到暂存部12;
或者,反应盘4第一次转停,将内圈部上需要被调度到暂存部12的反应杯,先调度到第二前操作位41,以供第一抓杯手2将该反应杯从第二前操作位41调度到暂存部12,其中内圈部上需要被调度到暂存部12的反应杯,例如可以是多组份测试项目中还需要加入剩余试剂的反应杯,也可以是多步法测试项目中还需要进入后续步测试的反应杯;
或者,反应盘4第一次转停,将被第二抓杯手7从磁分离单元调度到反应盘4的第一后操作位413的反应杯,从第一后操作位413调度到第一前操作位411,以供第一抓杯手2将该反应杯从第一前操作位411调度到暂存部12;例如可以是多步法测试项目中中间某一步测试,其需要经过磁分离清洗,反应杯进行完了磁分离清洗,还需要进行后续其他步测试,因而需要从磁分离单元被调度暂存位,中间借道反应盘来实现。
反应盘结束第一次转停动作之后且开始第二次转停动作之前,这段时间反应盘是停止的,第一抓杯手2将该反应杯从第一前操作位411调度到暂存部12,或者,第一抓杯手2将反应杯从第二前操作位41调度到暂存部12。需要说明的是,通过对所有测试项目的时序安排,可以使得每个周期不会同时出现“从第一前操作位411调度到暂存部12”以及“从第二前操作位41调度到暂存部12”这两个需求,最多只会出现这两个需求中的一个需求;换句话说,下面三种情况,在一个周期内最多只会出现其中一种情况:
情况一:位于加试剂位412上已经被加入稀释液或预处理液的反应杯,被反应盘4通过第一次转停动作从加试剂位412调度到第一前操作位411,此时第一抓杯手2需要将该反应杯从第一前操作位411调度到暂存部12;
情况二:反应盘4的内圈部上有需要被调度到暂存部12的反应杯,被反应盘4通过第一次转停动作先调度到了第二前操作位41,此时第一抓杯手2需要将该反应杯从第二前操作位41调度到暂存部12;
情况三:被第二抓杯手7从磁分离单元调度到反应盘4的第一后操作位413的反应杯,如果该反应杯还需要进行后续步测试(例如还需要加试剂)而不是进行测定,那么反应盘4会进行第一次转停动作,将该反应杯从第一后操作位413调度到第一前操作位411,此时第一抓杯手2需要将该反应杯从第一前操作位411调度到暂存部12。
第二次转停动作:反应盘4第二次转停,将内圈部完成孵育且即将进入磁分离清洗的反应杯调度到第二后操作位42,以供第二抓杯手7将该反应杯从第二后操作位42调度到磁分离单元91或92中。
类似地,反应盘4结束第二次转停动作之后且开始第三次转停动作之前,这段时间反应盘是停止的,第二抓杯手7将反应杯从第二后操作位42调度到磁分离单元。
第三次转停动作:反应盘4第三次转停,将外圈部等待加入试剂的反应杯调度到加试剂位412,以供试剂分注机构6对反应杯进行加试剂操作。
类似地,反应盘4结束第三次转停动作之后且开始第四次转停动作之前,这段时间反应盘是停止的,试剂分注机构在这段时间内至少要将吸取的试剂排入到加试剂位412上的反应杯。
第四次转停动作:反应盘4第四次转停,将第三次转停后位于加试剂位412上的反应杯调度到第一后操作位413,以供第二抓杯手7将该反应杯调度到混匀机构。
上述这四次转停动作,都是在一个周期内完成的。
在一个周期内,如果有反应杯要被调度暂存部,则反应盘会进行第一次转停动作,反之,则反应盘不会进行第一次转停动作;
在一个周期内,如果有反应杯要从反应盘进入到磁分离单元进行磁分离清洗,则反应盘会进行第二次转停动作,反之,则反应盘不会进行第二次转停动作;
在一个周期内,如果有反应杯要进行加试剂,则反应盘会进行第三次转停动作,反之,则反应盘不会进行第三次转停动作;
在一个周期内,如果有加完试剂的反应杯要从反应盘进入混匀机构进行混匀操作,则反应盘会进行第四次转停动作,反之,则反应盘不会 进行第四次转停动作;
一般来讲,装置测试启动后,每个周期都会有反应杯要进行加试剂以及加完试剂后进行混匀操作,所以每个周期都会有第三次转停动作和第四次转停动作,而第一次转停动作和第二次转停动作则是根据每个周期内反应杯的实际需求来确定是否要进行转停。
由于每个周期都会有第三次转停动作和第四次转停动作,这两次转停动作的配合,使得反应盘4无论在本周期是否在第三次转停动作之前有出现了第一次转停动作和/或第二次转停动作,反应盘4在本周期第四次转停动作结束之后,相比上一周期第四次转停动作结束之后,其递进的杯位(放置位)的数量都是固定的,即反应盘4每周期都会递进固定数量的杯位,例如以图2为例,反应盘4每周期都比上一周期逆时针递进了11个杯位(放置位)。由于反应盘4每周期都会递进固定数量的杯位,因而可以设计时序,使得从磁分离单元中完成磁分离清洗且将进行测定的反应杯,当被调度到反应盘4的第一后操作位413时,其到达测定位所需的周期也是固定的,在测定位完成测定后到吸废液位的周期也是固定的,从废液位到达第一前操作位411即将被抛杯处理的周期也是固定。
因此,反应盘4在本周期结束了第四次转停动作之后,且反应盘4在下周期开始第一次转停动作之前,这段时间反应盘都是停止不动的,因而这段时间可以供抓杯手进行调度,将一些反应杯从反应盘4调度出去,以及将一些反应杯从外面调度进反应盘4。在一实施例中,具体在这段时间,其他单元和机构可能会进行如下动作:
如果测定位上有需要测定的反应杯,则测定单元10会在这段时间完成对该反应杯的测定;
如果吸废液位上有已经完成测定的反应杯,则吸废液单元11对该反应杯进行吸废液操作;
如果第一前操作位411上具有已经测定完成的反应杯,第一抓杯手2将该反应杯从第一前操作位411调度到抛杯洞201或202进行抛杯处理;第一抓杯手2再将加样位31上已经完成加样的反应杯,从加样位31调度到第一前操作位411,或者,第一抓杯手2再将位于暂存部的还需要进行后续测试(例如加试剂)反应杯,从暂存部调度到第一前操作位411;需要说明的是,通过对所有测试项目的时序安排,可以使得每个周期不会同时出现“从加样位31调度到第一前操作位411”以及“从暂存部调度到第一前操作位411”这两个需求,最多只会出现这两个需求中的一个需求;
如果有已经完成的混匀操作的反应杯,则第二抓杯手7将已经完成混匀操作的反应杯从混匀机构调度到反应盘的第二后操作位42;第二抓 杯手7将位于第一后操作位413的反应杯调度到混匀机构;第二抓杯手7将已经完成磁分离清洗的反应杯,从磁分离单元调度到反应盘4的第一后操作位413。
本周期4在反应盘结束了第四次转停动作之后,且反应盘4在下周期的第一次转停动作的开始之前。
反应盘4在本周期结束了第四次转停动作之后,且反应盘4在下周期开始第一次转停动作之前,这段时间,围绕着反应盘4,上述的测定单元、吸废液单元11、第一抓杯手2和第二抓杯手7都是并行的。
如上所述,每个周期内一般都会有第三次转停动作和第四次转停动作,而第一次转停动作和第二次转停动作则根据反应杯的需求来动作。
第三次转停动作和第四次转停动作的作用,将需要加试剂的反应杯调度到加试剂位进行加试剂操作,以及将加完试剂的反应杯调度到第一后操作位,以供第二抓杯手7调度到混匀机构;第一次转停动作是为多组份的测试项目和多步法测试项目被分成若干个新的一步法测试流程所预留的;第二次转停动作是为了将孵育完成需要进行磁分离清洗的反应杯调度到磁分离单元。因此,反应盘4从每个周期来看,都是包括两次固定的转停动作(第三次转停动作和第四次转停动作)以及可能的两次转停动作(第一次转停动作和第二次转停动作),其在每个周期的转停动作都是如此,十分规范,不会出现其他异常的转停,并且不管某一步法的测试流程是否要进行磁分离清洗,都不会破坏反应盘4的每个周期的转停动作,因为反应盘4的第二次转停就是为是否需要进行磁分离清洗所预留的;另外,由于反应盘4的固定的两次转停动作(第三次转停动作和第四次转停动作),都是要等待试剂盘运动以及试剂分注机构相应地吸取试剂,因此反应盘4的这两次固定转停动作(第三次转停动作和第四次转停动作),都是在一个周期内靠后的时间段内才进行的,因为即使在一个周期的一开始,就进行第三次转停动作,反应盘4还是要等待试剂分注机构吸取试剂等操作,所以发明人考虑到这个情况,充分利用反应盘4等待试剂分注机构吸取试剂的这段时间,将这段时间预留给第一次转停动作以及第二次转停动作,从而不会延长每个周期的时间,并且在每个周期这段预留给第一次转停动作以及第二次转停动作的时间内,完成多组份的测试项目和多步法测试项目被分成若干个新的一步法测试流程所要进行的一些操作,从各个周期来看,相当于,每个周期都并行地进行加试剂操作以及多组份的测试项目和多步法测试项目被分成若干个新的一步法测试流程所要进行的一些操作,极大提高了效率和速度,也使得反应盘以及其他机构和单元不会因为进行加试剂操作以及多组份的测试项目和多步法测试项目被分成若干个新的一步法测试流程所要进行的一些操作而等待或没能完成其在周期内应该完成的操作。
在一实施例中,自动分析装置的工作方法还包括:启动测试后,控制各磁分离单元在各自对应的周期内接收反应杯,其中当磁分离单元为N个时,则其中第i个磁分离单元对应的接收反应杯的周期为第kN+i个周期,N为大于或等于2的整数,k为大于或等于0的整数,i的取值范围为1至N,且i为整数。例如,有3个磁分离单元,分别为第1个磁分离单元、第2个磁分离单元和第3个磁分离单元,则第1个磁分离单元的接收反应杯的周期为1、4、7、11....这样的等差数列,第2个磁分离单元的接收反应杯的周期为2、5、8、12....这样的等差数列,第3个磁分离单元的接收反应杯的周期为3、6、9、12....这样的等差数列。在一实施例中,磁分离单元为两个,控制这两个磁分离单元在各自对应的周期内接收反应杯,其中一个磁分离单元对应的接收反应杯的周期为奇数的周期,另一个磁分离单元对应的接收反应杯的周期为偶数的周期。在一实施例中,控制单元可以将所有的测试项目,按照相关算法进行时序安排,使得各个周期最多只有一个完成孵育即将进行分离清洗的反应杯出现,或者使得各个周期有且只有一个完成孵育即将进行分离清洗的反应杯出现,从而可以最大程度地利用各个独立工作的磁分离单元。
本发明采用多磁分离单元的结构和工作方法,其不仅对测试速度的贡献是关键性的,而且其灵活性和互换性是其他方案所无法做到的。
下面对磁分离单元具体的磁分离清洗流程进行说明。
在一实施例中,工作方法还包括:磁分离单元接收反应杯后对反应杯进行Y阶磁分离清洗,其中Y为大于或等于1的整数;对于任意某一阶的磁分离清洗,其包括:向反应杯中加入分离液,对反应杯中的反应液进行磁分离清洗;再对反应杯进行吸液以完成本阶的磁分离清洗;完成Y阶磁分离清洗的反应杯等待调度出磁分离单元,或者,向完成Y阶磁分离清洗的反应杯加入底物,并等待被调度出磁分离单元。例如,一步法测试项目的磁分离清洗,以及多步法测试项目最后一步的磁分离清洗,其需要被加入底物,因为反应杯下一个流程就是被测定,例如被光测单元在光测位进行光测;而其他的磁分离清洗,例如多步法测试项目中,不包括最后一步法测试在内的其他任一步法测试,其磁分离清洗后都不需要加入底物,因此反应杯还要进行后续步法测试。
不妨以图3中的磁分离单元91或92为例来说明磁分离单元具体的工作流程。请参照图6和表1,其中图6为图3中的磁分离单元的一个四阶磁分离盘的图示。表1中的杯位,指的是磁分离盘上的用于放置反 应杯的放置位。
表1
Figure PCTCN2017102535-appb-000001
Figure PCTCN2017102535-appb-000002
本发明通过两个磁分离盘交替工作方式与其他单元、机构测试周期相匹配,从而提高了测试速度和整机可靠性。
本发明通过两个磁分离盘交替工作方式与其他单元、机构测试周期相匹配,从而提高了测试速度和整机可靠性。
为了增加对本发明的理解,下面不妨以图3中的自动分析装置为例,分别对两组份一步法测试项目、三组份一步法测试项目、两步一分离测试项目和两步两分离测试项目的流程做一个具体说明。
不妨以图3中自动分析装置为例,周期为7.5秒,偶数的周期使用磁分离单元91接收反应杯,奇数的周期使用磁分离单元92接收反应杯;偶数的周期使用混匀机构81接收反应杯,奇数的周期使用混匀机构82接收反应杯;下面分别对两组份一步法测试项目、三组份一步法测试项目、两步一分离测试项目和两步两分离测试项目的流程做一个具体说明。
请参照图下面的表3,先对两组份一步法测试项目的流程进行说明,其中试剂分注机构6被设置为每次最多向加试剂位412的反应杯加入两种试剂。
周期1:第一抓杯手2从转运机构104抓新反应杯放于加样位31,样本针向加样位31上的反应杯加样本;
周期2:第一抓杯手2把加完样本的反应杯,从加样位31调度到反应盘外圈部第一前操作位411,反应盘旋转将需要加入试剂的反应杯带动到加试剂位412;试剂针可以先吸取第一种试剂,经过外壁清洗后,再吸取第二种试剂,然后一起排放到加试剂位412上的反应杯中;反应盘再旋转将加完试剂的反应杯调度到第一后操作位413,由第二抓杯手7将反应杯从第一后操作位413调度到可用的混匀机构81或82,如果混匀机构81是被设置为偶数的周期接收反应杯,那么此时由混匀机构81接收反应杯,即第二抓杯手7将反应杯从第一后操作位413调度到可用的混匀机构81;
周期3:混匀机构81对上述反应杯进行混匀操作;
周期4:在本周期或上一个周期末,第二抓杯手7将执行完混匀的反应杯从混匀机构81抓回反应盘的内圈部的第二后操作位42,开始孵育;
反应杯在反应盘的内圈部根据其需要孵育的时间,孵育预定的时间;
在反应盘中孵育结束后,将反应杯旋转到第二后操作位42,第二抓杯手7将其抓出,放入可用的磁分离单元91或92,进行磁分离清洗;
磁分离清洗完成后被注入底物,并被调度到反应盘4外圈部第一后 操作位413。之后该反应杯在反应盘4在每个周期内逆时针递进11个杯位,当某一个周期被递进到光测位414,此时底物也孵育完成,可以进行光测。需要说明的是,通过时序及反应盘内外圈部的杯位的数量设置,可以使得反应杯在被调度到第一后操作位413后,当被递进到光测位414,此时底物也已经孵育完成;
完成光测的反应杯在后续某个周期会被递进到吸废液位415,吸废液单元11吸走反应液,吸废液单元11抬起后,反应杯继续跟随反应盘递进,并且在又后续的某个周期会递进到反应盘前操作位411,第一抓杯手2抓出到抛杯洞201或202,执行抛杯。
再对三组份一步法测试项目的流程进行说明。不妨以一个一步法项目为例,其需要加入三个组份试剂,分别为a、b和c,其第一次可以加入2个组份(a+b),第二次加入1个组份(c),流程如下:
周期1:第一抓杯手2从转运机构104抓新杯放于加样位31,样本针向加样位31上的反应杯加样本;
周期2:第一抓杯手2把加完样本的反应杯,从加样位31调度到反应盘外圈部第一前操作位411,反应盘旋转将需要加入试剂的反应杯带动到加试剂位412,与此同时试剂单元5将所需试剂瓶51的a腔旋转试剂针吸液位6a,试剂针完成内外壁清洗,吸第一组份a,然后试剂针回试剂针清洗池单元61,为了防止将第一个组份带入下一个组份的试剂腔中,污染了试剂,执行外壁清洗,与此同时,试剂单元将试剂瓶51的另外一个腔体b旋转到其对应的试剂针吸液位6b,试剂针吸b,然后试剂针运动到反应盘4上方,将试剂a+b排入反应盘4加试剂位412的反应杯中;反应盘逆时针旋转,将反应杯从外圈部加试剂位412调度到第一后操作位413,并实现了反应盘4每个周期逆时针递进11个杯位,由第二抓杯手7将反应杯从第一后操作位413调度到可用的混匀机构81或82;
周期3:混匀机构81或82不会对上述反应杯进行混匀,仅暂存,因为试剂还没有完全加入,当然如果执行了混匀,也是可以的;
周期4:在本周期或上一个周期末,第二抓杯手7将混匀机构81或82上暂存的反应杯抓回反应盘4内圈部第二后操作位42;本周期内,反应盘按照时序的安排,在本周期的指定时间点,例如上述的反应盘的第一次转停动作,将该反应杯调度到第二前操作位41,第一抓杯手2将其转运到暂存部12(或者说暂存盘12)上的暂存位121暂存,暂存盘12旋转,将其调度到暂存位122,其中此处暂存盘12旋转动作是为样本预稀释和预处理流程设计的动作,考虑到下一个周期可能紧跟着一个稀释或预处理测试,此处保留了暂存盘12的旋转动作;
周期5:该周期样本针停止启动新测试,第一抓杯手将暂存位122的反应杯转运到反应盘4外圈部第一前操作位411,反应盘旋转将需要加入试剂的反应杯带动到加试剂位412,与此同时试剂单元5将所需试剂瓶51的c腔旋转到试剂针吸液位6c,试剂针完成内外壁清洗,吸组份c,然后试剂针运动到反应盘4上方,将c排入反应盘4加试剂位412的反应杯中;反应盘逆时针旋转,将反应杯从外圈加试剂位412调度到第一后操作位413,并实现了反应盘4每个周期逆时针递进11个杯位,由第二抓杯手7将反应杯抓取到可用的混匀机构81或82;
周期6:混匀机构执行混匀;
周期7:在本周期或上一个周期末,第二抓杯手7将执行完混匀的反应杯从混匀机构81或82抓回反应盘的内圈部的第二后操作位42,开始孵育;
反应杯在反应盘的内圈部根据其需要孵育的时间,孵育预定的时间;
反应杯在反应盘中孵育结束后,将反应杯旋转到第二后操作位42,第二抓杯手7将其抓出,放入可用的磁分离单元91或92,进行磁分离清洗;
磁分离清洗完成后被注入底物,并被调度到反应盘4外圈部第一后操作位413。之后该反应杯在反应盘4在每个周期内逆时针递进11个杯位,当某一个周期被递进到光测位414,此时底物也孵育完成,可以进行光测;
完成光测的反应杯在后续某个周期会被递进到吸废液位415,吸废液单元11吸走反应液,吸废液单元11抬起后,反应杯继续跟随反应盘递进,并且在又后续的某个周期会递进到反应盘前操作位411,第一抓杯手2抓出到抛杯洞201或202,执行抛杯;
以上就是一个三组份一步法项目的测试流程,无论是一步法测试项目、还是多步法测试项目,或者是样本预稀释或预处理的测试流程,只要某一步测试中所需要加入的试剂组份多于试剂分注机构6的预设数量的种类的试剂(例如上述的2种),则可以采用将其再分成若干个新的一步法测试的流程来分多次加入试剂。
再对两步一分离测试项目的流程进行说明。
周期1:第一抓杯手2从转运机构104抓新杯放于加样位31,样本针对加样位31上的反应杯进行加样本;
周期2:第一抓杯手2把加完样本的反应杯从加样位31调度到反应盘外圈部第一前操作位411,再将该反应杯调度到加试剂位412,以及再将加完试剂的反应杯从加试剂位412调度到第一后操作位413。
如果出现情况1,即本周期内反应盘4的内圈部有反应杯需要调度 到内圈部的第二前操作位41,例如有反应杯需要从反应盘4的内圈部被调度到暂存部,因而该反应杯需要先被调度到内圈部的第二前操作位41,以供第一抓杯手2进行抓取,因此反应盘4会先执行上述的第一次转停动作,将相关反应杯调度到内圈部的第二前操作位41以供第一抓杯手2进行抓取到暂存部,然后再进行上述的第三次转停动作,将加完样本的反应杯调度到反应盘外圈部的加试剂位412;
如果出现情况2,即本周期内有反应盘4的内圈部有反应杯被调度到第二后操作位42,例如有反应杯孵育完成需要进行磁分离清洗因而需要被调度到磁分离单元,因而该反应杯需要先被调度到第二后操作位42,以供第二抓杯手7调度到磁分离单元,因此反应盘4会先执行上述的第二次转停动作,将相关反应杯调度到内圈部的第二后操作位42以供第二抓杯手7调度到磁分离单元,然后再进行上述的第三次转停动作,将加完样本的反应杯调度到反应盘外圈部的加试剂位412;
如果上述情况1和2都出现了,那么反应盘4会依次执行上述的第一次转停动作、第二次转停动作和第三次转停动作。
不管哪种情况,进行完了第三次转停动作,之后在该周期内还会进行第四次转停动作,将加完试剂的反应杯从加试剂位412调度到第一后操作位413。
周期3:混匀机构81或82执行混匀;
周期4:在本周期或上一个周期末,第二抓杯手7将执行完混匀的反应杯抓取回反应盘4内圈部第二后操作位42,开始孵育;
反应杯在反应盘的内圈部根据其需要孵育的时间,孵育预定的时间;
反应杯在反应盘中孵育结束后,反应盘反应盘按照时序的安排(例如上述的反应盘的第一次转停动作),将该反应杯调度到第二前操作位41,第一抓杯手2将其从反应盘内圈部取出放入暂存盘12上的暂存位121进行暂存,暂存盘12旋转一个杯位;
接着下一个周期:第一抓杯手将暂存位122的反应杯转运到反应盘4外圈部第一前操作位411,反应盘旋转将需要加入试剂的反应杯带动到加试剂位412,同样的,如果反应盘还有其他调度动作(即上述反应盘的第一次转停动作和第二次转停动作)则该反应杯将被调度到外圈部其他位置,然后再从其他位置调度到加试剂位412,路径会有所变化,但是调度的最终效果还是将反应杯从第一前操作位411调度到了加试剂位412,试剂分注机构6往反应杯中加入试剂,试剂分注机构6完成排液动作后抬起,反应盘4逆时针旋转,将反应杯从加试剂位412调度到第一后操作位413,同时实现了反应盘4每个周期逆时针递进11个杯位,由第二抓杯手7将反应杯抓取到可用的混匀机构81或82;
再下一个周期:混匀机构81或82执行混匀;
再下一个周期:在该周期内或上一个周期末,第二抓杯手将执行完混匀的反应杯抓取回反应盘第二后操作位42内圈杯位,开始孵育;
反应杯在反应盘的内圈部根据其需要孵育的时间,孵育预定的时间;
反应杯在反应盘中孵育结束后,反应盘4将反应杯调度到第二后操作位42(例如反应盘4的第二次转停动作),第二抓杯手7将其抓出,放入可用的磁分离单元91或92,进行磁分离清洗;
磁分离清洗完成后被注入底物,并被调度到反应盘4外圈部第一后操作位413。之后该反应杯在反应盘4在每个周期内逆时针递进11个杯位,当某一个周期被递进到光测位414,此时底物也已经孵育完成,可以进行光测;
完成光测的反应杯在后续某个周期会被递进到吸废液位415,吸废液单元11吸走反应液,吸废液单元11抬起后,反应杯继续跟随反应盘递进,并且在又后续的某个周期会递进到反应盘前操作位411,第一抓杯手2抓出到抛杯洞201或202,执行抛杯。
再对两步两分离测试项目的流程进行说明。
周期1:第一抓杯手2从转运机构104抓新杯放于加样位31,样本针对加样位31上的反应杯进行加样本;
周期2:第一抓杯手2把加完样本的反应杯从加样位31调度到反应盘外圈部第一前操作位411,再将该反应杯调度到加试剂位412,以及再将加完试剂的反应杯从加试剂位412调度到第一后操作位413。
如果出现情况1,即本周期内反应盘4的内圈部有反应杯需要调度到内圈部的第二前操作位41,例如有反应杯需要从反应盘4的内圈部被调度到暂存部,因而该反应杯需要先被调度到内圈部的第二前操作位41,以供第一抓杯手2进行抓取,因此反应盘4会先执行上述的第一次转停动作,将相关反应杯调度到内圈部的第二前操作位41以供第一抓杯手2进行抓取到暂存部,然后再进行上述的第三次转停动作,将加完样本的反应杯调度到反应盘外圈部的加试剂位412;
如果出现情况2,即本周期内有反应盘4的内圈部有反应杯被调度到第二后操作位42,例如有反应杯孵育完成需要进行磁分清洗因而需要被调度到磁分离单元,因而该反应杯需要先被调度到第二后操作位42,以供第二抓杯手7调度到磁分离单元,因此反应盘4会先执行上述的第二次转停动作,将相关反应杯调蓄到内圈部的第二后操作位42以供第二抓杯手7调度到磁分离单元,然后再进行上述的第三次转停动作,将加完样本的反应杯调度到反应盘外圈部的加试剂位412;
如果上述情况1和2都出现了,那么反应盘4会依次执行上述的第一次转停动作、第二次转停动作和第三次转停动作。
不管哪种情况,进行完了第三次转停动作,之后在该周期内还会进行第四次转停动作,将加完试剂的反应杯从加试剂位412调度到第一后操作位413;
周期3:混匀机构81或82执行混匀;
周期4:在该周期内或上一个周期末,第二抓杯手7将执行完混匀的反应杯抓取回反应盘4内圈部第二后操作位42,开始孵育;
反应杯在反应盘的内圈部根据其需要孵育的时间,孵育预定的时间;
反应杯在反应盘中孵育结束后,反应盘反应盘按照时序的安排(例如上述的反应盘4的第二次转停动作),将该反应杯调度到第二后操作位42,第二抓杯手7将其取出,放入可用的磁分离单元91或92,进行磁分离清洗;
磁分离清洗完成后,第二抓杯手7将该完成第一次磁分离清洗的反应杯从磁分离盘操作位911或921放入反应盘外圈部第一后操作位413反应盘4顺时针旋转带动反应杯到第一前操作位411,第一抓杯手2将反应杯从反应盘外圈部第一前操作位411取出放入到暂存盘12的暂存位121,暂存盘12旋转;
接着下一个周期:第一抓杯手7将反应杯从暂存位122取出放入到反应盘外圈部第一前操作位411,反应盘旋转将需要加入试剂的反应盘带动到加试剂位412,试剂针加入试剂;反应盘逆时针旋转14个杯位到第一后操作位413,由第二抓杯手7将反应杯抓取到可用的混匀机构81或82;
再下一个周期:混匀机构执行混匀;
再下一个周期:在该周期内或上一个周期末,第二抓杯手7将执行完混匀的反应杯抓取回反应盘内圈部第二后操作位42,开始孵育;反应杯在反应盘的内圈部根据其需要孵育的时间,孵育预定的时间;
反应杯在反应盘中孵育结束后,反应盘4将反应杯调度到第二后操作位42(例如反应盘4的第二次转停动作),第二抓杯手7将其抓出,放入可用的磁分离单元91或92,进行磁分离清洗;
磁分离清洗完成后被注入底物,并被调度到反应盘4外圈部第一后操作位413。之后该反应杯在反应盘4在每个周期内逆时针递进11个杯位,当某一个周期被递进到光测位414,此时底物也孵育完成,可以进行光测;
完成光测的反应杯在后续某个周期会被递进到吸废液位415,吸废液单元11吸走反应液,吸废液单元11抬起后,反应杯继续跟随反应盘递进,并且在又后续的某个周期会递进到反应盘前操作位411,第一抓杯手2抓出到抛杯洞201或202,执行抛杯;
需要说明的是,周期是一个固定的时长,但是怎么分每个周期的起 点以及终点,这都可以根据实际情况来划分的,例如若一个周期为2秒,则可以将第1和2秒划分为一个周期,也可以将第2和3秒划分为一个周期,这使得相应的周期内进行的操作也稍有不同,以上举出的一些例子说明每个周期一些机构和单元所进行的动作,只是周期的一种划分方式,本领域技术人员可以理解,只要周期的时长不变,怎么划分周期的起点,以及由此带来各个周期内机构和单元所进行的动作的变化,这都是在本发明的构思内的。
另外,生化、免疫类分析装置中,样本针、试剂针、磁分离吸液针和注液针等探针,由于接触到样本、试剂等物质,其表面和内壁会沉积一些异物,因此需要定期(例如每天启动测试项目前)对其使用专用的清洁液进行清洗,以保证其表面性状和吸液性能。例如,很多情况下会用到一种主要成分为次氯酸钠的清洁液,它具有消毒、灭菌、漂白和去污的作用。次氯酸钠溶液的有效氯浓度在0.5%~1%左右时,清洁效果最好,但此时其稳定性较差,难以长时间储运。只有次氯酸钠溶液浓度较高时,其稳定性比较高,因此目前产品化的次氯酸钠溶液都是较高浓度的,需要稀释后使用。
分析装置上使用次氯酸钠溶液,正是利用了其灭菌和去污的作用。目前常采用的方案是客户按照分析装置生产厂家的要求,手动将浓溶液稀释成分析装置中探针清洁所需的浓度,为了保证客户稀释的准确度和便利性,一般会提供一个带有刻度的容器,该容器的体积以保证客户一周的稀释液用量为设计指标,要求客户将浓溶液添加到刻度线处,然后用去离子水或自来水将桶装满,然后摇晃桶来混匀,静止一段时间后使用,保证充分稀释。使用时,可以每日将稀释后的清洗液分装到样本管或试剂瓶中,通过将样本管安装到样本架,由样本架调度到给探针吸取,或者将试剂瓶加载到试剂盘,由试剂盘调度给探针吸取。或者直接将稀释后的大桶液体上机,通过设计复杂的管路系统,将稀释液调度给探针进行清洗。由此可见,当前方案存在的问题有:1)手动稀释,操作不方便;2)稀释后的液体不好存放,一次最多稀释一周的用量;3)稀释后手动上机步骤多;4)稀释后自动上机方案,液路系统复杂。针对上述问题,发明人考虑在自动分析装置上设置两个用于清洗液放置位,其中一个清洗液放置位用于承载装有浓缩清洗液的容器,另一个清洗液放置位用于承载装有稀释液的容器,所述稀释液用于稀释所述浓缩清洗液,然后通过分注机构,例如样本针和/或试剂针,来完成定量的吸取,并排放到同一个反应杯中,从而完成配制经稀释的清洗液,下面具体说明。
请参照图7,在一实施例中,自动分析装置可以包括分注机构、反应盘4、移送机构、控制单元(图中未画出)以及两个清洗液放置位。
分注机构用于吸液以及排液。反应盘4呈圆盘状结构设置,反应盘4上具有多个用于放置反应杯的放置位,反应盘4能够转动并带动所述放置位中的反应杯转动,用于在反应盘内调度反应杯以及孵育反应杯中的反应液。
移送机构用于将反应杯调度进反应盘4或调度出反应盘4。
上述两个清洗液放置位,其中一个清洗液放置位用于承载装有浓缩清洗液的容器,另一个清洗液放置位用于承载装有稀释液的容器,所述稀释液用于稀释所述浓缩清洗液;两个清洗液放置位设置于所述分注机构的运动轨迹上。
控制单元用于控制分注机构分别吸取这两个清洗液放置位上的容器中的液体,并排向反应杯中以配制经稀释的清洗液。在一实施例例中,控制单元控制分注机构分别定量吸取这两个清洗液放置位上的容器中的液体,并排向反应杯中以配制预设稀释浓度的清洗液。
在一实施例中,分注机构包括用于吸取样本并排放到位于加样位的反应杯中的样本分注机构3,及用于吸取试剂并排放到位于加试剂位的反应杯中的试剂分注机构6。在一实施例中,上述两个清洗放置位都设置于样本分注机构的运动轨迹上。在一实施例中,上述两个清洗放置位都设置于试剂分注机构的运动轨迹上。在一实施例中,上述两个清洗放置位中的其中一个清洗放置位设置于样本分注机构的运动轨迹上,另一个清洗放置位设置于试剂分注机构的运动轨迹上。图7显示的是其中一个方案,即上述两个清洗放置位3a、3b都设置于样本分注机构的运动轨迹上。
如果上述两个清洗放置位都设置于样本分注机构3的运动轨迹上,则移送机构和/或反应盘4配合将反应杯调度到加样位,控制单元控制样本分注机构3吸取浓缩清洗液并排放到加样位的反应杯,以及控制样本分注机构吸取稀释液并排放到加样位的该反应杯。加样位可以被设置于反应盘4的外面,也可以设置在反应盘4内。
如果所述两个清洗放置位都设置于试剂分注机构6的运动轨迹上,则移送机构和/或反应盘4配合将反应杯调度到加试剂位,控制单元控制试剂分注机构6吸取浓缩清洗液并排放到加试剂位的反应杯,以及控制试剂分注机构6吸取稀释液并排放到加试剂位的该反应杯。加试剂位可以被设置于反应盘4的外面,也可以设置在反应盘4内。
如果上述两个清洗放置位中的其中一个清洗放置位设置于样本分注机构3的运动轨迹上,另一个清洗放置位设置于试剂分注机构6的运动轨迹上时,则移送机构和/或反应盘配合将反应杯分别调度到加样位和加试剂位,当该反应杯位于加样位时,控制单元控制样本分注机构3吸取其经过的清洗放置位上的液体并排放到加样位的反应杯,当该反应杯位 于加试剂位时,控制单元控制试剂分注机构6吸取其经过的清洗放置位上的液体并排放到加试剂位的反应杯。
需要说明的是,上述吸取浓缩清洗液,以及吸取稀释液的顺序不是固定,可以先吸取浓缩清洗液,也可以先吸取稀释液,如果浓缩清洗液和吸取稀释液是分别由样本分注机构3和试剂分注机构6中的一者吸取,那么这两个机构甚至并行工作,一者在吸取浓缩清洗液同时,另一者也在吸取稀释液。
在一实施例中,自动分析装置还包括混匀机构,用于对反应杯中反应液进行混匀;移送机构和/或反应盘配合将装有经稀释的清洗液的反应杯调度到混匀机构进行混匀。混匀后的经稀释的清洗液,就可以被用于清洁了。
在一实施例中,自动分析装置还包括用于对反应杯中的反应液进行磁分离清洗的磁分离单元。移送机构和/或反应盘4配合将装有经稀释的清洗液的反应杯调度到磁分离单元,以对磁分离单元中的磁分离注液针以及吸液针进行清洗。
在具体清洗过程中,可以将经稀释的清洗液调度到加样位来对样本分注机构中的样本针进行清洗,将经稀释的清洗液调度到加试剂位来对试剂分注机构中的试剂针进行清洗。
在一实施例中,对位于两个清洗放置位上的浓缩清洗液和稀释液的余量,可以通过过样本针或试剂针的液面检测方式进行检测,在软件耗材界面上显示其余量的百分比,定义液面高度≥瓶口高度时,余量为100%,液面高度≤瓶底设定的死体积对应的高度时,则余量为0%,中间高度依次计算出百分比。当余量小于设定余量,比如5%时,迫近控制单元给出提醒,要求用户添加相应的液体,当余量等于0%时,则停止进行自动稀释功能,控制单元给出报警。
用户仅需要将浓缩清洁液和稀释液加载到分析仪制定位置上,装置会根据需要,在进行探针清洁前,自动制备清洁所需浓度的稀释清洁液,并且使用过程中实时给出余量显示,按照预设条件提醒用户更换相应液体即可。通过对装置现有功能模块的简单调度,解决了其他方案的操作便利性问题,也不需要独立设计负责配制稀释的清洗剂的稀释液路系统,简化了设计方案,充分发挥了现有分析装置的功能,降低了整机成本。具有一定的实用价值和经济价值。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分功能可以通过硬件的方式实现,也可以通过计算机程序的方式实现。当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘、光盘、硬盘等,通过计算机执行该程序以实现上述 功能。例如,将程序存储在设备的存储器中,当通过处理器执行存储器中程序,即可实现上述全部或部分功能。另外,当上述实施方式中全部或部分功能通过计算机程序的方式实现时,该程序也可以存储在服务器、另一计算机、磁盘、光盘、闪存盘或移动硬盘等存储介质中,通过下载或复制保存到本地设备的存储器中,或对本地设备的系统进行版本更新,当通过处理器执行存储器中的程序时,即可实现上述实施方式中全部或部分功能。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (33)

  1. 一种自动分析装置,其特征在于,包括:
    反应杯装载机构,用于供应并运载反应杯到反应杯位;
    样本单元,用于承载样本;
    样本分注机构,用于吸取样本并排放到位于加样位的反应杯中;
    试剂单元,用于承载试剂;
    试剂分注机构,用于吸取试剂并排放到位于加试剂位的反应杯中;
    反应盘,所述反应盘呈圆盘状结构设置,所述反应盘上具有多个用于放置反应杯的放置位,所述反应盘能够转动并带动所述放置位中的所述反应杯转动,用于在反应盘内调度反应杯以及孵育反应杯中的反应液;
    混匀机构,用于对反应杯中需要混匀的反应液进行混匀;
    测定单元,用于对待测的反应液进行测定;
    磁分离单元,用于对反应杯中的反应液进行磁分离清洗;
    移送机构,用于至少在反应杯装载机构、反应盘、混匀机构、磁分离单元之间调度反应杯;
    控制单元,至少用于控制所述样本分注机构、试剂单元、试剂分注机构、反应盘、混匀机构、测定单元、磁分离单元和移送机构的操作及时序;
    暂存部,所述暂存部独立于所述反应盘设置,用于接收由移送机构从反应盘中调度出的反应杯并进行暂存,以等待再次被调度回反应盘中。
  2. 如权利要求1所述的自动分析装置,其特征在于:
    所述反应盘具有加试剂位;
    所述试剂分注机构被设置成每次最多将预设数量的种类的试剂排放到位于加试剂位的反应杯中;
    当位于加试剂位的反应杯本次孵育需要加的试剂种类大于所述预设数量时,控制单元控制试剂分注机构向该反应杯加入预设数量的种类的试剂之后,移送机构将该反应杯调度到所述暂存部进行暂存,之后再将该反应杯从暂存部调度回反应盘,以继续加入本次孵育所需的其他试剂。
  3. 如权利要求1所述的自动分析装置,其特征在于:
    当任一反应杯的测试项目为多步法测试项目时,在除最后一步法测试的其他任一步法测试中,当反应杯在该步法测试中需要进行磁分离清洗时,则移送机构将在反应盘孵育完成的该反应杯先调度到磁分离单元进行磁分离清洗,再将完成磁分离清洗的该反应杯从磁分离单元调度到所述暂存部进行暂存;当该步法测试中反应杯不需要进行磁分离清洗时,则移送机构将在反应盘孵育完成的该反应杯从反应盘中调度到暂存位进行暂存;
    再将暂存部暂存的该反应杯调度回反应盘完成后续其他步法测试。
  4. 如权利要求3所述的自动分析装置,其特征在于:
    所述磁分离单元分离设置于所述反应盘的外面;
    移送机构将完成磁分离清洗的该反应杯从磁分离单元调度到所述暂存部进行暂存,是先将该反应杯从磁分离单元调度到反应盘,再将该反应杯从反应盘调度到暂存部。
  5. 如权利要求1至4中任一项所述的自动分析装置,其特征在于:
    所述加样位被设置在所述反应盘的外面;
    当位于加试剂位的反应杯被试剂分注机构加入稀释液或预处理液之后,移送机构将该反应杯从反应盘调度到所述暂存部进行暂存,样本分注机构从该反应杯中吸取经过稀释或预处理的样本并排放到此时位于加样位的反应杯中,移送机构再将该位于暂存部的反应杯进行抛杯操作。
  6. 如权利要求5所述的自动分析装置,其特征在于:所述暂存部至少具有第一暂存位和第二暂存位,所述暂存部包括一可旋转的圆盘,用于将反应杯在第一暂存位和第二暂存位之间调度。
  7. 如权利要求1所述的自动分析装置,其特征在于:所述暂存部分离设置于所述反应盘的外面。
  8. 如权利要求6所述的自动分析装置,其特征在于:
    暂存部的第一暂存位用于接收移送机构从反应盘中调度出来的反应杯,暂存部再将该反应杯调度到第二暂存位,以使得空闲出来的第一暂存位可继续接收移送机构从反应盘中调度出来的反应杯;
    当该被调度到第二暂存位的反应杯还需要进行后续测试时,移送机构将该第二暂存位的反应杯调度回反应盘,当该被调度到第二暂存位的反应杯为之前位于加试位时被试剂分注机构加入稀释液或预处理液的 反应杯,则样本分注机构从该反应杯中吸取经过稀释或预处理的样本并排放到此时位于加样位的反应杯中,移送机构再将该位于第二暂存位的反应杯进行抛杯操作;或者,经过预定时间,暂存部再将该反应杯从第二暂存位又调度回第一暂存位,当该反应杯还需要进行后续测试时,移送机构将该反应杯调度回反应盘,当该反应杯在第二暂存位被吸样后,移送机构将此时位于第一暂存位的该反应杯进行抛杯操作。
  9. 如权利要求1所述的自动分析装置,其特征在于,所述反应盘包括可独立转动或一起转动的内圈部和外圈部;所述内圈部包括一圈或多圈轨道,每圈轨道设置有若干所述放置位,至少用于反应杯的孵育;所述外圈包括一圈或多圈轨道,每圈轨道设置有若干所述放置位;所述反应盘用于将反应杯在内圈部的各放置位之间调度,以及将反应杯在外圈部的各放置位之间调度;所述反应盘具有位于外圈部的加试剂位、第一前操作位、第一后操作位,以及具有位于内圈部的第二前操作位、第二后操作位;其中所述第一前操作位用于供移送机构将需要从外圈部调度到暂存部的反应杯调度出去,或者接收移送机构从暂存部调度到反应盘的反应杯,所述加样位为反应盘中的放置位或者所述加样位被设置在所述反应盘的外面,当所述加样位被设置在所述反应盘的外面时,所述第一前操作还用于接收移送机构从加样位调度到反应盘的反应杯;所述第一后操作位用于供移送机构将反应杯调度到混匀机构,或接收移送机构从磁分离单元调度到反应盘的反应杯;所述第二前操作位用于供移送机构将需要从内圈部调度到暂存部的反应杯调度出去;所述第二后操作位用于供移送机构将反应杯调度到磁分离单元。
  10. 如权利要求9所述的自动分析装置,其特征在于,所述移送机构包括第一抓杯手和第二抓杯手,所述第一抓杯手被设置成运动轨迹经过所述分杯位、暂存部、第一前操作位和第二前操作位,当所述加样位被设置在所述反应盘的外面时,所述第一抓杯手的运动轨迹还经过所述加样位;所述第二抓杯手被设置成运动轨迹经过所述第一后操作位、第二后操作位、混匀机构、磁分离单元。
  11. 如权利要求10所述的自动分析装置,其特征在于:
    当所述加样位被设置在所述反应盘的外面时,所述第一抓杯手用于将反应杯从分杯位调度到加样位,将反应杯从加样位调度到所述第一前操作位;
    所述第一抓杯手还用于将反应杯在第一前操作位和暂存部之间调度,将反应杯从第二前操作位调度到暂存部;
    所述第二抓杯手用于将反应杯从第一后操作位调度到混匀机构,从混匀机构调度到第二后操作位,从第二后操作位调度到磁分离单元,从磁分离单元调度到第一后操作位。
  12. 如权利要求9所述的自动分析装置,其特征在于,还包括临时暂存部,所述第一前操作位还用于所述移送机构将已经由测定单元完成测定的反应杯抛弃;当控制单元检测到移送机构没有在第一前操作位将已经完成测定的反应杯抛弃时,控制单元控制移送机构停止将暂存部或加样位的反应杯调度到所述第一前操作位,当所述已经完成测定且在第一前操作没有被抛弃的反应杯被反应盘调度到第一后操作位时,若此时有磁分离单元磁分离清洗完成的反应杯需要被调度到反应盘,则移送机构先将该磁分离单元清洗完成的反应杯调度到临时暂存部,当控制单元检测到第一后操作位空闲时,移送机构再将临时暂存部上的反应杯调度到第一后操作位。
  13. 如权利要求8所述的自动分析装置,其特征在于,还包括临时抛弃部,所述第一前操作位还用于所述移送机构将已经由测定单元完成测试的反应杯抛弃;当控制单元检测到移送机构没有在第一前操作位将已经完成测定的反应杯抛弃时,控制单元控制移送机构停止将暂存部或加样位的反应杯调度到所述第一前操作位,当所述已经完成测定且在第一前操作没有被抛弃的反应杯被反应盘调度到第一后操作位时,则移送机构将该反应杯调度到所述临时抛弃部进行抛弃。
  14. 如权利要求1所述的自动分析装置,其特征在于,所述磁分离单元至少为两个,各磁分离单元之间独立工作,用于对反应杯中的反应液进行磁分离清洗。
  15. 如权利要求14所述的自动分析装置,其特征在于,所述磁分离单元包括呈圆盘状结构设置的磁分离盘,所述磁分离盘上具有一圈或多圈独立或同时运动的轨道,各轨道包括多个用于放置反应杯的放置位,所述磁分离盘能够转动并带动所述放置位中的所述反应杯转动,用于在磁分离盘内调度反应杯到加液位和吸液位以完成磁分离清洗,所述 磁分离单元分离设置于所述反应盘的外面。
  16. 如权利要求14所述的自动分析装置,其特征在于,各磁分离单元之间分立地设置;或者各磁分离单元同轴且被独立驱动地设置。
  17. 如权利要求14所述的自动分析装置,其特征在于,所述磁分离单元为两个。
  18. 如权利要求1所述的自动分析装置,其特征在于,所述样本分注机构包括样本针,样本针为一根;和/或,所述试剂分注机构包括试剂针,试剂针为一根。
  19. 如权利要求1所述的自动分析装置,其特征在于,还包括:两个清洗液放置位,其中一个清洗液放置位用于承载装有浓缩清洗液的容器,另一个清洗液放置位用于承载装有稀释液的容器,所述稀释液用于稀释所述浓缩清洗液;所述两个清洗放置位都设置于样本分注机构的运动轨迹上,或都设置于试剂分注机构的运动轨迹上,或者,所述两个清洗放置位中的其中一个清洗放置位设置于样本分注机构的运动轨迹上,另一个清洗放置位设置于试剂分注机构的运动轨迹上。
  20. 一种自动分析装置的工作方法,其特征在于,包括:
    先将反应杯调度到加样位进行加样;
    将加样完成的反应杯调度到反应盘中的加试剂位进行加试剂;
    将加完试剂的反应杯调度到混匀机构;
    将反应杯从混匀机构调度到反应盘中用于孵育的位置进行孵育;
    将孵育完成的反应杯调度到磁分离机构进行磁分离清洗;
    将磁分离清洗完成的反应杯调度回反应盘,反应盘将反应杯在反应盘内调度到光测位进行光测;
    其中:
    反应杯在反应盘的加试剂位每次最多被加入预设数量的种类的试剂;当位于加试位的反应杯本次孵育需要加的试剂种类大于所述预设数量时,向该反应杯加入预设数量的种类的试剂,在这之后且在该反应杯被加入本次孵育还需的其他试剂之前,先将该反应杯调度到独立于反应盘的暂存区域进行暂存;之后再从暂存区域将该反应杯调度回反应盘,以继续加入本次孵育还需的其他试剂;
    和/或,
    当任一反应杯的测试项目为多步法测试项目时,在除最后一步法测 试的其他任一步法测试中,当反应杯在该步法测试中需要进行磁分离清洗时,则将在反应盘孵育完成的该反应杯先调度到磁分离单元进行磁分离清洗,再将完成磁分离清洗的该反应杯从磁分离单元调度到独立于反应盘的暂存区域进行暂存;当该步法测试中反应杯不需要进行磁分离清洗时,则将在反应盘孵育完成的该反应杯从反应盘中调度到独立于反应盘的暂存区域进行暂存;之后再将暂存于暂存区域的该反应杯调度回反应盘完成后续其他步法测试。
  21. 如权利要求20所述的工作方法,其特征在于,所述当位于加试剂位的反应杯本次孵育需要加的试剂种类大于所述预设数量时,向该反应杯加入预设数量的种类的试剂,在这之后且在该反应杯被加入本次孵育还需的其他试剂之前,先将该反应杯调度到独立于反应盘的暂存区域进行暂存,包括:
    向该反应杯加入预设数量的种类的试剂后,将该反应杯从反应盘调度到混匀机构;
    将该反应杯从混匀机构调度到反应盘中用于孵育的位置;
    将该反应杯从反应盘用于孵育的位置调度到所述暂存区域;
    将该反应杯从所述暂存区域调度回反应盘,以继续加入本次孵育还需的其他试剂。
  22. 如权利要求20所述的工作方法,其特征在于,所述将完成磁分离清洗的该反应杯从磁分离单元调度到独立于反应盘的暂存区域进行暂存,包括:
    将完成磁分离清洗的该反应杯从磁分离单元调度到反应盘中;
    将该反应杯从反应盘中调度到暂存区域。
  23. 如权利要求20至22中任一项所述的工作方法,其特征在于,还包括:当位于加试剂位的反应杯被加入稀释液或预处理液之后,将反应杯调度到所述暂存区域,并从该反应杯中吸取经过稀释或预处理的样本并排放到此时位于加样位的反应杯中,然后将暂存区域的反应杯作抛杯处理,将加样位的反应杯调度到反应盘进行后续的测试。
  24. 如权利要求23所述的工作方法,其特征在于,所述暂存区域至少具有第一暂存位和第二暂存位,并通过一可旋转的圆盘,将反应杯在第一暂存位和第二暂存位之间调度;所述第一暂存位用于接收从反应盘中调度出来的反应杯,反应杯被从反应盘调度到第一暂存位后,再将 该反应杯调度到第二暂存位;当该被调度到第二暂存位的反应杯还需要进行后续测试时,将该第二暂存位的反应杯调度回反应盘;当该被调度到第二暂存位的反应杯为之前位于加试位时被加入稀释液或预处理液的反应杯,则从该反应杯中吸取经过稀释或预处理的样本并排放到此时位于加样位的反应杯中,再将该位于第二暂存位的反应杯进行抛杯操作。
  25. 如权利要求20所述的工作方法,所述自动分析装置包括至少两个磁分离单元,各磁分离单元之间独立工作,用于对反应杯中的反应液进行磁分离清洗;所述工作方法还包括:启动测试后,控制各磁分离单元在各自对应的周期内接收反应杯,其中当磁分离单元为N个时,则其中第i个磁分离单元对应的接收反应杯的周期为第kN+i个周期,N为大于或等于2的整数,k为大于或等于0的整数,i的取值范围为1至N。
  26. 如权利要求25所述的工作方法,其特征在于,所述磁分离单元为两个,控制这两个磁分离单元在各自对应的周期内接收反应杯,其中一个磁分离单元对应的接收反应杯的周期为奇数的周期,另一个磁分离单元对应的接收反应杯的周期为偶数的周期。
  27. 如权利要求21所述的工作方法,其特征在于,从暂存区域将反应杯调度回反应盘,包括:在下一个周期,将反应杯从暂存区域调度回反应盘。
  28. 一种自动分析装置,其特征在于,包括:
    分注机构,用于吸液以及排液;
    反应盘,所述反应盘呈圆盘状结构设置,所述反应盘上具有多个用于放置反应杯的放置位,所述反应盘能够转动并带动所述放置位中的反应杯转动,用于在反应盘内调度反应杯以及孵育反应杯中的反应液;
    移送机构,用于将反应杯调度进反应盘或调度出反应盘;
    两个清洗液放置位,其中一个清洗液放置位用于承载装有浓缩清洗液的容器,另一个清洗液放置位用于承载装有稀释液的容器,所述稀释液用于稀释所述浓缩清洗液;所述两个清洗液放置位设置于所述分注机构的运动轨迹上;
    控制单元,用于控制分注机构分别吸取这两个清洗液放置位上的容器中的液体,并排向反应杯中以配制经稀释的清洗液。
  29. 如权利要求28所述的自动分析装置,其特征在于,所述控制 单元控制分注机构分别定量吸取这两个清洗液放置位上的容器中的液体,并排向反应杯中以配制预设稀释浓度的清洗液。
  30. 如权利要求28所述的自动分析装置,其特征在于,所述分注机构包括用于吸取样本并排放到位于加样位的反应杯中的样本分注机构,及用于吸取试剂并排放到位于加试剂位的反应杯中的试剂分注机构;所述两个清洗放置位都设置于样本分注机构的运动轨迹上,或都设置于试剂分注机构的运动轨迹上,或者,所述两个清洗放置位中的其中一个清洗放置位设置于样本分注机构的运动轨迹上,另一个清洗放置位设置于试剂分注机构的运动轨迹上。
  31. 如权利要求30所述的自动分析装置,其特征在:
    如果所述两个清洗放置位都设置于样本分注机构的运动轨迹上,则移送机构和/或反应盘配合将反应杯调度到加样位,控制单元控制样本分注机构吸取浓缩清洗液并排放到加样位的反应杯,以及控制样本分注机构吸取稀释液并排放到加样位的该反应杯;
    如果所述两个清洗放置位都设置于试剂分注机构的运动轨迹上,则移送机构和/或反应盘配合将反应杯调度到加试剂位,控制单元控制试剂分注机构吸取浓缩清洗液并排放到加试剂位的反应杯,以及控制试剂分注机构吸取稀释液并排放到加试剂位的该反应杯;
    如果所述两个清洗放置位中的其中一个清洗放置位设置于样本分注机构的运动轨迹上,另一个清洗放置位设置于试剂分注机构的运动轨迹上时,则移送机构和/或反应盘配合将反应杯分别调度到加样位和加试剂位,当该反应杯位于加样位时,控制单元控制样本分注机构吸取其经过的清洗放置位上的液体并排放到加样位的反应杯,当该反应杯位于加试剂位时,控制单元控制试剂分注机构吸取其经过的清洗放置位上的液体并排放到加试剂位的反应杯。
  32. 如权利要求28所述的自动分析装置,其特征在于,还包括混匀机构,用于对反应杯中反应液进行混匀;所述移送机构和/或反应盘配合将装有经稀释的清洗液的反应杯调度到混匀机构进行混匀。
  33. 如权利要求28所述的自动分析装置,其特征在于,还包括磁分离单元,用于对反应杯中的反应液进行磁分离清洗;所述移送机构和/或反应盘配合将装有经稀释的清洗液的反应杯调度到磁分离单元,以对磁分离单元中的注液针以及吸液针进行清洗。
PCT/CN2017/102535 2017-09-20 2017-09-20 一种自动分析装置及其工作方法 WO2019056234A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/102535 WO2019056234A1 (zh) 2017-09-20 2017-09-20 一种自动分析装置及其工作方法
CN201780093995.2A CN111033263B (zh) 2017-09-20 2017-09-20 一种自动分析装置及其工作方法
US16/825,947 US20200217865A1 (en) 2017-09-20 2020-03-20 Automatic analysis apparatus and operating method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/102535 WO2019056234A1 (zh) 2017-09-20 2017-09-20 一种自动分析装置及其工作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/825,947 Continuation US20200217865A1 (en) 2017-09-20 2020-03-20 Automatic analysis apparatus and operating method therefor

Publications (1)

Publication Number Publication Date
WO2019056234A1 true WO2019056234A1 (zh) 2019-03-28

Family

ID=65810980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102535 WO2019056234A1 (zh) 2017-09-20 2017-09-20 一种自动分析装置及其工作方法

Country Status (3)

Country Link
US (1) US20200217865A1 (zh)
CN (1) CN111033263B (zh)
WO (1) WO2019056234A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147185A1 (zh) * 2020-01-21 2021-07-29 深圳迎凯生物科技有限公司 分析装置
EP4043886A4 (en) * 2020-01-12 2022-11-30 Lansion Biotechnology Co., Ltd FULLY AUTOMATIC CHEMOLUMINESCENCE IMMUNITY ANALYZER
CN117129699A (zh) * 2023-10-27 2023-11-28 上海品峰医疗科技有限公司 一种反应盘及其容置孔清空方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112094734A (zh) * 2019-06-18 2020-12-18 广州市汉威信息科技有限公司 一种用于癌症细胞基因突变研究的高通量基因测序装置
CN112858709A (zh) * 2021-01-18 2021-05-28 桂林优利特医疗电子有限公司 一种化学发光免疫分析仪抓吸一体机构及使用方法
CN113125785B (zh) * 2021-03-29 2024-02-27 深圳市科曼医疗设备有限公司 高浓度样本的检测和时序调用方法
CN114778871A (zh) * 2022-06-13 2022-07-22 深圳市帝迈生物技术有限公司 样本检测装置及样本检测方法
CN116500254B (zh) * 2023-06-29 2023-09-26 山东康华生物医疗科技股份有限公司 一种全自动荧光免疫分析仪的混匀杯进出组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200989905Y (zh) * 2006-10-30 2007-12-12 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析仪的液路系统
JP2010145284A (ja) * 2008-12-19 2010-07-01 Toshiba Corp 自動分析装置
CN102906572A (zh) * 2010-05-20 2013-01-30 株式会社日立高新技术 自动分析装置
CN102998473A (zh) * 2012-12-19 2013-03-27 北京利德曼生化股份有限公司 全自动化学发光免疫分析仪
CN104345158A (zh) * 2013-07-30 2015-02-11 苏州浩欧博生物医药有限公司 自动分析装置及自动分析方法
CN106199026A (zh) * 2016-03-09 2016-12-07 深圳雷杜生命科学股份有限公司 全自动化学发光免疫分析仪
CN206450697U (zh) * 2017-01-25 2017-08-29 江苏柯伦迪医疗技术有限公司 全自动生化分析仪

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842237B1 (en) * 2000-01-12 2010-11-30 Hitachi, Ltd. Automatic analyzer and rack transfer device
CN1963527B (zh) * 2005-11-10 2011-12-14 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析仪及其分析方法
CN101419240B (zh) * 2007-10-23 2013-07-17 深圳迈瑞生物医疗电子股份有限公司 样本分析装置和样本分析方法
JP2010032386A (ja) * 2008-07-29 2010-02-12 Olympus Corp 反応テーブル、分析装置および攪拌方法
CN102378915B (zh) * 2009-04-09 2014-11-26 株式会社日立高新技术 自动分析装置以及分注装置
JP5872816B2 (ja) * 2011-08-03 2016-03-01 シスメックス株式会社 検体分析装置
CN104111343B (zh) * 2013-04-16 2018-01-23 深圳迈瑞生物医疗电子股份有限公司 一种样本试剂分注装置、免疫分析仪及其方法
JP2019074311A (ja) * 2016-02-19 2019-05-16 株式会社日立ハイテクノロジーズ 自動分析装置および分注プローブの洗浄方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200989905Y (zh) * 2006-10-30 2007-12-12 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析仪的液路系统
JP2010145284A (ja) * 2008-12-19 2010-07-01 Toshiba Corp 自動分析装置
CN102906572A (zh) * 2010-05-20 2013-01-30 株式会社日立高新技术 自动分析装置
CN102998473A (zh) * 2012-12-19 2013-03-27 北京利德曼生化股份有限公司 全自动化学发光免疫分析仪
CN104345158A (zh) * 2013-07-30 2015-02-11 苏州浩欧博生物医药有限公司 自动分析装置及自动分析方法
CN106199026A (zh) * 2016-03-09 2016-12-07 深圳雷杜生命科学股份有限公司 全自动化学发光免疫分析仪
CN206450697U (zh) * 2017-01-25 2017-08-29 江苏柯伦迪医疗技术有限公司 全自动生化分析仪

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043886A4 (en) * 2020-01-12 2022-11-30 Lansion Biotechnology Co., Ltd FULLY AUTOMATIC CHEMOLUMINESCENCE IMMUNITY ANALYZER
WO2021147185A1 (zh) * 2020-01-21 2021-07-29 深圳迎凯生物科技有限公司 分析装置
CN117129699A (zh) * 2023-10-27 2023-11-28 上海品峰医疗科技有限公司 一种反应盘及其容置孔清空方法
CN117129699B (zh) * 2023-10-27 2024-01-02 上海品峰医疗科技有限公司 一种反应盘及其容置孔清空方法

Also Published As

Publication number Publication date
CN111033263B (zh) 2024-04-09
CN111033263A (zh) 2020-04-17
US20200217865A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2019056234A1 (zh) 一种自动分析装置及其工作方法
CN207816996U (zh) 一种自动分析装置
WO2019056233A1 (zh) 一种自动分析装置及其工作方法
US5846491A (en) Device for automatic chemical analysis
WO2018126773A1 (zh) 自动分析装置及样本分析方法
JP2018151401A (ja) 前処理カルーセルを有する診断分析装置および関連方法
US9709502B2 (en) Measurement device and measurement method
CN210090481U (zh) 一种化学发光免疫分析仪
EP1538446A2 (en) Automatic analyzer and analysis method
US9442128B2 (en) Automated analyzer
NZ544536A (en) Automated multi-detector analyzer
JP2004522979A (ja) タイプに従って分析を仕分けることによって臨床検査用自動分析装置の処理能力を向上させること
WO2019183745A1 (zh) 化学发光分析仪及其分析方法
JPH0351762A (ja) 自動免疫測定装置及びその使用方法
CN114019178A (zh) 一种全自动免疫生化一体分析仪及使用方法
JP5337600B2 (ja) 自動分析装置及び自動分析装置の制御方法
CN109298196A (zh) 一种全自动化学发光免疫分析仪及自动分析方法
JP4175916B2 (ja) 自動分析装置
CN111033265B (zh) 一种自动分析装置及其工作方法
JPH0577981B2 (zh)
CN113711053A (zh) 自动分析装置
CN218546775U (zh) 自动分析装置
CN217688992U (zh) 样本分析装置
CN216696352U (zh) 一种全自动免疫生化一体分析仪
WO2019056235A1 (zh) 一种自动分析装置及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (06.11.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17925992

Country of ref document: EP

Kind code of ref document: A1