WO2019056230A1 - 多叶准直器及放射治疗头 - Google Patents

多叶准直器及放射治疗头 Download PDF

Info

Publication number
WO2019056230A1
WO2019056230A1 PCT/CN2017/102523 CN2017102523W WO2019056230A1 WO 2019056230 A1 WO2019056230 A1 WO 2019056230A1 CN 2017102523 W CN2017102523 W CN 2017102523W WO 2019056230 A1 WO2019056230 A1 WO 2019056230A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
blade
layer
leaf collimator
leaf
Prior art date
Application number
PCT/CN2017/102523
Other languages
English (en)
French (fr)
Inventor
李金升
Original Assignee
西安大医集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团有限公司 filed Critical 西安大医集团有限公司
Priority to PCT/CN2017/102523 priority Critical patent/WO2019056230A1/zh
Priority to US16/649,347 priority patent/US11446518B2/en
Priority to CN201790001103.7U priority patent/CN210131259U/zh
Publication of WO2019056230A1 publication Critical patent/WO2019056230A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • A61N5/1047X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT with movement of the radiation head during application of radiation, e.g. for intensity modulated arc therapy or IMAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment

Definitions

  • the invention relates to the field of medical instruments, in particular to a multi-leaf collimator and a radiation therapy head.
  • the radiation therapy head generally includes a radiation source and a field alignment system, and the multi-leaf collimator is part of a field alignment system.
  • the source of radiation may be an accelerator
  • the accelerator is used to emit X-rays
  • the multi-leaf collimator is used to produce a desired field
  • the field refers to the area and shape of the X-ray illumination, defining a range of radiation exposure.
  • the X-rays emitted by the accelerator are irradiated to the tumor lesion area through the field generated by the multi-leaf collimator.
  • the multi-leaf collimator as shown in FIG. 1, includes two sets of blades 1, a transmission rod 4, a motor 3, a controller (not shown in FIG. 1), and a guide frame 2.
  • the two sets of blades are arranged in the same layer, each set of blades comprises a plurality of arrays of arranged blades, and a gap for the passage of rays is formed between the two sets of blades, the rays are emitted by the radiation source 10, and the guide frame 2 is provided with Two sets of guide rails corresponding to the two sets of blades, each set of guide rails comprising a plurality of guide rails arranged in parallel, one vane vertically placed on each guide rail for the vane to slide on the guide rail, and one end of each vane away from the gap is driven
  • the rod 4 is connected to the motor 3.
  • the controller controls the motor 3 to drive the transmission rod 4 according to the treatment plan, so that the corresponding blade moves along the guide rail through the transmission rod 4 to form a field.
  • the multi-leaf collimator includes only one layer of blades, the height of the blades is large, and the mass is large, the blades are not easily driven by the driving member, and the moving speed of the blades is small, so that, on the one hand, the driving member for driving the blades is The strength requirement is high, and the driving member is not easily processed; on the other hand, the number of blades is small, so the shape of the formed field is small.
  • the invention provides a multi-leaf collimator and a radiation treatment head, which can solve the related art, wherein the multi-leaf collimator includes only one layer of blades, and the driving member for driving the blade has high strength requirement, and the driving component is not required. It is easy to be processed and manufactured, and the number of blades is small, and the shape of the formed field is small.
  • the technical solution is as follows:
  • a multi-leaf collimator comprising an n-layer blade set, a drive member and a controller, n being an integer greater than or equal to 2,
  • Each set of blades comprises a set or opposite set of two sets of blades, each set of blades comprising a plurality of blades, each of said blades comprising opposing front and rear end faces, each of said blades being movable to cause a plurality of sets of blades
  • the front end face of the blade is adapted to form a beam of different shapes that can pass through the area;
  • a rear end surface of the blade is coupled to the driving member, and the controller is configured to control the driving member to drive the blade to move.
  • At least one of the set of n-layered blades comprises two sets of oppositely disposed blades.
  • the blades of the same layer of blades have the same direction of motion, and the blades of different layers of blades have different directions of motion.
  • the moving directions of the blades of any two-layer blade group are the same, and the orthographic projections of the blades of the different layer blade groups in the beam direction do not overlap or partially overlap.
  • the heights of the blades of the same layer of the blade group in the n-layer blade group are the same, and the heights of the blades of the different layer blade groups are different.
  • the thickness of the blades of each of the blade sets of each layer is less than 5 mm.
  • the height of the blade of each layer of the blade group is one tenth of the ray half-thin layer to four times the ray half-thin layer.
  • any two adjacent blade groups of the n-layer blade group are detachably connected.
  • the multi-leaf collimator further includes a rail and a rail frame, the vane is disposed on the rail and movable along the rail,
  • Each of the set of blades is disposed in a rail frame, and the guide rail frames of any two adjacent sprue groups of the n-layer vane group are detachably connected;
  • the n-layer blade group is disposed in a rail frame, and the guide rails of each of the blade groups are detachably connected to the rail frame.
  • the driving component comprises a transmission rod and a motor.
  • a rear end surface of each blade is coupled to the motor through the transmission rod, and the controller is configured to control the motor to drive the transmission rod to drive the blade movement.
  • a radiation therapy head comprising: a radiation source and a field direct collimation system
  • the source of radiation is for emitting a beam
  • the portal collimation system comprises the multi-leaf collimator of any of the first aspects.
  • a method of driving a multi-leaf collimator for use in the multi-leaf collimator of the first aspect comprising:
  • the blade motion is controlled in accordance with the target drive mode.
  • the target driving mode is used to indicate that different layers of blades move at different speeds
  • the controlling the blade motion according to the target driving manner comprises:
  • the blades of the different layer blade groups are controlled to move at different speeds according to the target driving mode.
  • the target driving mode is used to indicate that the blades of the same layer blade group reciprocate in the same direction, and the blades of the different layer blade groups reciprocate according to different directions.
  • the controlling the blade motion according to the target driving manner comprises:
  • the blades of the same layer blade group are controlled to reciprocate in the same direction, and the blades of the different layer blade groups are controlled to perform reciprocating motion according to different directions.
  • each blade group corresponds to one sub-controller
  • the controlling the blade motion according to the target driving manner comprises:
  • the blade motion of the blade group of the corresponding layer is controlled by the sub-controller according to the target driving mode.
  • controlling the blade motion according to the target driving manner includes:
  • a driving device for a multi-leaf collimator comprising:
  • a memory for storing executable instructions of the processor
  • processor is configured to:
  • the blade motion is controlled in accordance with the target drive mode.
  • a storage medium is provided, the storage medium being stored And instructing, when the storage medium is run on the terminal, the terminal to execute the driving method of the multi-leaf collimator provided by the above third aspect.
  • a terminal program product comprising instructions for causing a terminal to execute the driving method of the multi-leaf collimator provided by the above third aspect when the terminal program product is run on the terminal.
  • n is an integer greater than or equal to 2
  • each layer of the blade group includes one or two sets of blades.
  • the multi-leaf collimator includes a 2-layer blade group, the first-layer blade group includes one group of blades, and the second-layer blade group includes two groups of blades, each group of blades including a plurality of blades, and each layer is multi-layered because the blades are multi-layered
  • the blade has a small blade height, a small mass, the blade is more easily driven, and the blade has a higher moving speed, which makes the processing of the driving member less difficult, and the size of the driving member is smaller, the thickness of the blade is smaller, and the number of blades is larger. Therefore, the field formed by the blades is finer, and the shape of the field is formed more, thereby improving the flexibility of the field.
  • the multi-layer blade can also achieve the purpose of adjusting the radiation intensity and adjusting the radiation dose.
  • FIG. 1 is a schematic structural view of a multi-leaf collimator in the related art
  • FIG. 2 is a schematic diagram of an implementation environment according to an embodiment of the present invention.
  • 3-1 is a schematic structural diagram of a multi-leaf collimator according to an embodiment of the present invention.
  • Figure 3-2 is a front elevational view of the two-layer blade set shown in Figure 3-1;
  • 3-3 is a schematic diagram of a 2-layer blade group according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a 3-layer blade group according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a 2-layer blade group according to an embodiment of the present invention.
  • 6-1 is a schematic structural view of a single-piece guide rail according to an embodiment of the present invention.
  • FIG. 6-2 is a flowchart of a driving method of a multi-leaf collimator according to an embodiment of the present invention.
  • the implementation environment can include a rack 110 and a treatment couch 120.
  • a radiation therapy head (not shown in FIG. 2) is disposed on the frame 110, and the radiation therapy head is rotatable with the frame 110.
  • the rack 110 may be a drum rack, or may be a C-arm, a cantilever type, a semi-arc shape or the like.
  • the radiation therapy head typically includes a source of radiation and a portal collimation system, which may be an X-ray source (generally an accelerator source) or an isotope source (generally a cobalt source).
  • the accelerator is exemplified below, the accelerator is used to emit X-rays, the field collimation system includes a multi-leaf collimator, and the multi-leaf collimator is used to generate a desired field.
  • the X-rays emitted by the accelerator are illuminated by the field generated by the multi-leaf collimator to the tumor area of the patient.
  • FIG. 3-1 a schematic structural diagram of a multi-leaf collimator 100 according to an embodiment of the present invention is shown.
  • the multi-leaf collimator 100 includes an n-layer blade set (FIG. 3-1 is exemplified by a two-layer blade set), a drive member 103 and a controller (not shown in FIG. 3-1), and n is greater than or equal to 2. Integer.
  • Each set of blades comprises a set or a plurality of sets of oppositely disposed blades, each set of blades comprising a plurality of blades 102, each blade 102 comprising an opposite front end face m1 and a rear end face m2, each blade 102 being movable to cause a plurality of blades
  • the front end face m1 of the set of blades is adapted to form a beam of different shapes through which the beam P can pass.
  • the rear end surface m2 of the blade 102 is coupled to the driving member 103, and the controller is used to control the driving member 103 to drive the blade 102 to move.
  • FIG 3-1 a two-layer blade group is taken as an example.
  • Figure 3-2 shows a front view of the two-layer blade group shown in Figure 3-1.
  • the two blade groups are respectively Blade set 102A and blade set 102B.
  • Each set of blades includes two sets of blades disposed opposite each other, each set including a plurality of blades 102.
  • the first-layer blade group 102A may include two sets of oppositely disposed blades 102A1 and 102A2, and the second-layer blade group 102B may Including one set of blades, the front end faces of the blades of the two-layer blade sets 102A and 102B are adapted to form different shapes of beam traversable regions; or, the first layer of blade sets includes two sets of blades, and the second set of blade sets also includes 2 sets of blades, the front end faces of the 2 sets of blades included in each set of blades are adapted to form different shapes of beam traversable regions; or the first set of blade sets includes one set of blades, and the second set of blade sets also includes 1 Group of blades, the positions of the two groups of blades are staggered from each other, and the front end faces of the two groups of blades are formed into different shapes.
  • the beam can pass through the area.
  • the multi-layer blade group 102A may include two sets of oppositely disposed blades 102A1 and 102A2
  • the beam formed by the leading end face of the blade can be adapted to the field of the treatment plan by corresponding changes in the shape of the region.
  • the multi-leaf collimator provided by the embodiment of the invention comprises a multi-blade group, the blades of the multi-leaf collimator are multi-layered, so that the blade height of each layer of the blade is small, so that the blade quality is small and the blade is easier Driven by the driving member, the driving member can move the blade movement faster, and the blade movement speed is larger.
  • the strength of the driving member for driving the blade is lower, which facilitates the processing of the driving member; on the other hand, the driving
  • the size of the piece is small, so that the blade can be made thinner, the thickness of the blade is smaller, so the number of blades is larger, and the more the number of blades, the finer the field formed by the blade, and the more the shape of the field is formed.
  • the purpose of adjusting the intensity of the passing rays and adjusting the radiation dose can also be achieved. Therefore, when driving the blade motion of the multi-leaf collimator, the position of the blade can be adjusted correspondingly according to the dose distribution at different positions.
  • the number of layers of the blade group can be adjusted according to the treatment plan.
  • the embodiment of the present invention does not limit the number of layers of the blade group, that is, the size of n.
  • the multi-leaf collimator provided by the embodiment of the present invention, since the multi-leaf collimator includes an n-layer blade group, n is an integer greater than or equal to 2, and each layer of the blade group includes 1 group or a relative arrangement. 2 sets of leaves.
  • the multi-leaf collimator comprises a 2-layer blade set
  • the first-layer blade set comprises a set of blades
  • the second-layer blade set comprises 2 sets of blades, each set of blades comprising a plurality of blades, since the blades are multi-layered,
  • the blade height of each layer of blades is small, the mass is small, the blades are more easily driven, the blade movement speed is larger, the processing difficulty of the driving member is reduced, and the size of the driving member is small, the thickness of the blade is small, and the number of blades is small.
  • the multi-layer blade can also achieve the purpose of adjusting the radiation intensity and adjusting the radiation dose.
  • At least one of the n-layer blade sets includes two sets of oppositely disposed blades, such that two sets of blades located in the same layer may conform to form a beam traversable area, and the other layers of the blade may be One group can also be two groups, which can be used to adjust the dose.
  • 4 is a side view of a multi-leaf collimator according to an embodiment of the present invention, which exemplarily shows a structural diagram of a three-layer blade set. As shown in FIG. 4, the first layer of blade sets includes two sets of blades. The second set of blades includes two sets of blades, and the third set of blades includes A set of blades, each set comprising a plurality of blades 102.
  • the plurality of blades of each set of blades are parallel to each other, and the front end face of the blade is adapted to form a beam P of different shapes that can pass through the region.
  • the first layer of blade groups may form a beam traversable region, and the second layer of blade groups and the third layer of blade groups may be adjusted by the blade motion. It should be noted that each blade in FIG. 4 only draws one blade, and the remaining blades in the group are parallel to the blade.
  • the heights of the blades of the same layer of blade groups in the n-layer blade group are the same, and the heights of the blades of the different layer blade groups may be the same or different.
  • 4 is an example in which the heights of the blades of the same layer blade group in the n-layer blade group are the same, and the heights of the blades of the different layer blade groups are also the same.
  • the height of each blade may be 5 mm to 40 mm.
  • the purpose of adjusting the intensity of the rays can be achieved by adjusting the position of the blades; when the heights of the blades of the different layers of the blade group are different, the attenuation of the rays by the different layers of the blades is different, The purpose of adjusting the ray intensity can be further achieved.
  • any two adjacent blade sets of the n-layer blade set are detachably connected.
  • different leaf groups can be replaced according to the treatment needs before treatment to more optimal treatment for different patients.
  • the intensity of the radiation is usually adjusted by controlling the radiation source. Specifically, the amount of radiation emitted by the radiation source can be controlled, or the time when the radiation source emits radiation can be controlled, and the multi-leaf collimator can be controlled. The purpose of adjusting the intensity of the rays cannot be achieved.
  • the multi-leaf collimator since the multi-leaf collimator includes a plurality of stacked blades, the multi-leaf collimator can achieve the purpose of adjusting the ray intensity by adjusting the superposed thickness of the plurality of blades. For example, when the heights of the blades of the different layers of the blade group are the same, and the movement positions of the blades of the different layer of the blade group are different, the intensity of the rays emitted by the radiation source at different positions may be differently attenuated at different positions, thereby realizing the modulation radiation intensity distribution. Effect.
  • the heights of the blades of different layers of the blade group are not the same, more changes can be brought to the thickness of the blade superposition at different positions, thereby achieving more choices of the degree of adjustment of the ray intensity.
  • modulating the intensity of the ray to modulate the intensity of the ray, it is distributed in the field, and the intensity-modulated treatment is completed.
  • the treatment time is shorter and the treatment efficiency is more. High, the total amount of radiation emitted by the source is lower.
  • the thickness of the blades of each layer of blades may be less than 5 mm.
  • the thickness of the blades of the same layer of blade groups may be the same or different, and the thickness of the blades of the different layer of blade groups may be the same or different. This embodiment of the present invention does not limit this.
  • the height of the blades of each layer of the blade group may be one tenth of the ray half-decay layer to four times that of the ray half-thin layer, while the height of the blade of the multi-leaf collimator of the related art is generally greater than the radiation half-life. Six times the layer.
  • the multi-leaf collimator further includes a guide rail (not shown in FIG. 3-1) and a guide rail frame 101.
  • the vane 102 is disposed on the guide rail and can move along the guide rail, and each layer of the blade group They are respectively disposed in one rail frame, and the guide rail frames of any two adjacent blade groups in the n-layer blade group are detachably connected. In this way, it is convenient to replace the blade set of the multi-leaf collimator to meet different treatment needs.
  • the rails may be disposed in the rail frame, or the rails and the rail frame may be connected by a fixed connection.
  • the n-layer blade set may also be disposed in a rail frame, and the guide rails of each layer of the blade group are detachably connected to the rail frame. Any two adjacent guide rail frames are detachably connected. In this way, the rail frame can be removed according to the treatment plan, the number of blade layers can be reduced, or the rail frame can be added according to the treatment plan, and the number of blade layers can be increased.
  • the number of the guide rail frames is not limited in the embodiment of the present invention.
  • any two of the n-layer blade groups The moving directions of the blades of the layer blade group are the same, and the orthographic projections of the blades of the different layer blade groups in the beam direction do not overlap or partially overlap. That is, the gaps between the blades of the different layer blade groups are not directly opposite, and the blades of the different layer blade groups are staggered. For example, FIG.
  • FIG. 5 is a schematic cross-sectional view of a multi-leaf collimator according to an embodiment of the present invention, which shows a structural diagram of two layers of blades, and FIG. 5 has the same thickness of the blades of the same layer of blades, and different layers of blades The thickness of the blades of the group is also the same as an example.
  • the orthographic projection of the blades of the upper blade group Y1 in the beam direction overlaps with the orthographic projection of the blades of the lower blade group Y2 in the beam direction, that is, the blade positions are staggered, so that the rays transmitted by the upper blade gap can be next.
  • the spatial resolution of the multi-leaf collimator depends on the thickness of the blade.
  • the blade thickness always has a limit. Therefore, in order to improve the spatial resolution of the field, in the embodiment of the present invention, the orthographic projections of the blades of the different layer blade groups in the n-layer blade group in the beam direction do not overlap or partially overlap.
  • the orthographic projection of the blades of the upper blade group Y1 in the beam direction overlaps with the orthographic projection of the blades of the lower blade group Y2 in the beam direction.
  • the degree of interlacing of the different layers of the blade can be used to improve the spatial resolution of the edge of the field, making the size of the field more precise, which is more conducive to avoiding surrounding sensitive healthy tissue when treating the tumor.
  • the blades of the same layer of blades have the same direction of motion, and the blades of the different layers of blades are transported.
  • the direction of movement is different.
  • the blades of the same blade group of the multi-leaf collimator can move in the same direction, and the blades of different blade groups can move in the same direction or in different directions.
  • the blades of the same layer of blades can be moved in the same direction, and the blades of the different layers of blades move in different directions.
  • the blades of different layers of blades move in different directions, and can realize any shape of the field, and can also form a plurality of sub-fields.
  • the multi-leaf collimator has the same direction of the same layer of the guide rails, and the different layers of the guide rails have different directions, for example, may be 90° vertically, or 30°, 60°, or the like.
  • this arrangement of the guide rails also helps to adjust the ray intensity and improve the spatial resolution of the field.
  • the connection angle corresponding to the blade group may be a preset angle with a certain angle.
  • the guide rails of the two blades located in the same plane among the blades of the adjacent two-layer blade group may be a single piece, so that the number of the guide rail layers can be reduced.
  • the multi-leaf collimator includes two layers of blade sets, and the upper and lower sides of the guide rail are respectively provided with rails, that is, the guide rails 01 corresponding to the blades 1021 and the blades 1022 are integrally formed.
  • Fig. 6-1 is an illustration of the difference in heights of the blades of the different layer blade groups.
  • the driving component 103 includes a transmission rod 1031 and a motor 1032.
  • the rear end surface of each blade 102 is connected to the motor 1032 through a transmission rod 1031.
  • the controller is used to control the motor 1032 to drive the transmission rod 1031.
  • Each of the blades of the multi-leaf collimator can be independently moved under the control of the controller and the drive member.
  • the controller of the multi-leaf collimator may pre-store the correspondence between the field and the driving mode, and one field corresponds to at least one driving mode, and the driving mode is used to indicate when the corresponding field is formed.
  • the motion parameters of each of the n-layer blade sets which may include motion speed and motion displacement.
  • the plurality of driving modes may include a driving manner in which the adjustment of the dose is realized by the moving speed of the blade, or a driving manner in which the adjustment of the dose is realized by the displacement of the blade.
  • the driving method of the multi-leaf collimator may include: the controller determines a field to be formed according to the treatment plan, and then, the controller stores from the pre-stored In the correspondence between the field and the driving mode, the determined driving mode corresponding to the field to be formed is searched for. Thereafter, the controller controls the driving member to drive the blade to move along the guide rail according to the searched driving manner.
  • the controller selects one of a plurality of driving modes.
  • the multi-leaf collimator provided by the embodiment of the invention comprises a plurality of blades, the blade height is small, so that the blade quality is small, the blade is more easily driven by the driving member, and the blade movement speed is large, so that the blade is used to drive the blade.
  • the strength of the drive member is relatively low; the size of the drive member is small, so that the thickness of the blade is small, so the number of blades is large, and the heights of the blades of different layers of the blade group may be different, and the blades of different layers of the blade group may Displaced with each other, the direction of movement of the blades of different layers of the blade group can be different, through which the one-dimensional wedge-shaped ray intensity distribution and dose distribution, and the two-dimensional wedge-shaped ray intensity distribution and dose distribution can be formed, so that the treatment plan With more room for optimization, it can produce better treatment plans for treatment, providing greater possibilities for improving the quality of treatment plans and therapeutic effects.
  • the multi-leaf collimator provided by the embodiment of the present invention, since the multi-leaf collimator includes an n-layer blade group, n is an integer greater than or equal to 2, and each layer of blade groups includes 1 or 2 sets of blades.
  • the multi-leaf collimator includes a 2-layer blade set
  • the first-layer blade group includes one set of blades
  • the second-layer blade group includes two sets of blades, each set of blades including a plurality of blades, since the blades are multi-layered, each The blade height of the layer blade is small, the mass is small, the blade is more easily driven, the blade movement speed is larger, the processing difficulty of the driving member is reduced, and the size of the driving member is small, the thickness of the blade is small, and the number of blades is relatively small. There are many, so that the field formed by the blades is finer and the shape of the field is formed more, thus improving the flexibility of the field. At the same time, it is also possible to adjust the ray intensity and adjust the dose of radiation.
  • the embodiment of the invention further provides a radiation treatment head, comprising: a radiation source and a field alignment system,
  • the field direct collimation system includes the multi-leaf collimator shown in Figure 3-1.
  • the source of radiation may be an X-ray source or a gamma-ray source, and a multi-leaf collimator is used to generate a desired field.
  • the radiation from the source is illuminated by the field generated by the multi-leaf collimator to the tumor area of the patient.
  • the embodiment of the invention further provides a driving method of the multi-leaf collimator, which is used for the multi-leaf collimator shown in FIG. 3-1, and the method can be executed by the controller of the multi-leaf collimator, as shown in the figure.
  • the method includes:
  • Step 601 Determine a target field to be formed according to the treatment plan.
  • Step 602 Query a target driving mode corresponding to the target field from the correspondence between the preset field and the driving mode.
  • one type of field corresponds to a plurality of driving modes, and any one of the plurality of driving modes can be selected as the target driving mode.
  • the plurality of driving modes may include a driving manner in which the adjustment of the dose is realized by the moving speed of the blade, or a driving manner in which the adjustment of the dose is realized by the displacement of the blade.
  • Step 603 Control the blade motion according to the target driving mode.
  • the driving method of the multi-leaf collimator provided by the embodiment of the present invention can determine the target field to be formed according to the treatment plan, and query the target field from the corresponding relationship between the preset field and the driving mode.
  • Corresponding target driving mode then controlling the blade motion according to the target driving mode, compared with the related technology, can form more shapes of the field, and improve the flexibility of the field.
  • Steps 601 through 603 can be performed by a controller of the multi-leaf collimator.
  • step 603 includes: controlling the driving member to drive the blade to move along the guide rail according to the target driving manner.
  • the target driving manner may be used to indicate that the blades of the different layer blade groups move at different speeds.
  • step 603 may include: controlling the blades of the different layer blade groups to move at different speeds according to the target driving manner.
  • the multi-leaf collimator includes a rail frame and a 2-layer blade group, and the two-layer blade group is located in the rail frame, and each layer of the blade group includes two groups of blades, and the leaf movement can be controlled according to the target driving mode.
  • the blades in one layer of the blade group move at a speed v1, and the blades in the second group of blades are controlled to move at a speed v2, and v2 and v1 may be the same or different.
  • the target driving mode may be used to indicate that the blades of the same layer blade group reciprocate in the same direction, and the blades of the different layer blade groups reciprocate in different directions.
  • step 603 may include: controlling the same layer according to the target driving mode.
  • the blades of the blade group are reciprocated in the same direction, and the blades of the different blade groups are controlled to make a reciprocating motion according to different directions.
  • the blades of the same layer blade group can move in the same direction, and the blades of the different layer blade groups can move in different directions or can move in the same direction.
  • the controller may directly control each layer of the blade group, or the controller may control each layer of the blade group through the sub-controller.
  • Each of the blade groups corresponds to one sub-controller.
  • step 603 may include: controlling the blade motion of the blade group of the corresponding layer by the sub-controller according to the target driving mode. All sub-controllers are controlled by a single controller.
  • the multi-leaf collimator includes a rail frame and a 2-layer blade group, each blade group includes 2 sets of blades, and the multi-leaf collimator includes 2 layers of blades, wherein the blade corresponding to the first layer of blade groups corresponds to sub-control The controller C10, the blade of the second layer blade group corresponds to the sub-controller C20, and when the controller controls the blade motion according to the target driving mode, the blade motion of the first layer blade group can be controlled by the sub-controller C10, and is controlled by the sub-controller C20 The blade motion of the second layer of blades.
  • each blade may correspond to one sub-controller, and each blade of each layer of the blade group may independently move under the action of the controller and the sub-controller.
  • the driving method of the multi-leaf collimator provided by the embodiment of the present invention can determine the target field to be formed according to the treatment plan, and query the target field from the corresponding relationship between the preset field and the driving mode.
  • Corresponding target driving method, then controlling the blade motion according to the target driving mode, compared with the related technology, can form more shapes of the field, improve the flexibility of the field, and can achieve the effect of adjusting the radiation intensity, the treatment efficiency Higher, the higher spatial resolution of the field, allows the treatment plan to have more room for optimization, can produce better treatment plans for treatment, and provide greater possibilities for improving the quality of treatment plans and treatment effects.
  • the embodiment of the invention further provides a driving device for a multi-leaf collimator, the device comprising:
  • a memory for storing executable instructions of the processor
  • processor is configured to:
  • the blade motion is controlled in accordance with the target drive mode.
  • the embodiment of the present invention further provides a storage medium, where the storage medium stores instructions, and when the storage medium runs on the terminal, causes the terminal to execute the driving method of the multi-leaf collimator shown in FIG. 6-2.
  • the embodiment of the present invention further provides a terminal program product including instructions.
  • the terminal program product runs on the terminal, the terminal is caused to execute the driving method of the multi-leaf collimator shown in FIG. 6-2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种多叶准直器(100)及放射治疗头,属于医疗器械领域。多叶准直器(100)包括n层叶片组、驱动件(103)和控制器,n为大于或等于2的整数,每层叶片组包括一组或相对设置的两组叶片(102),每组叶片(102)包括多个叶片(102),每个叶片(102)包括相对的前端面(m1)和后端面(m2),每个叶片(102)能够运动以使得多层叶片组的叶片(102)的前端面(m1)形成不同形状的射束(P)可穿过区域;叶片(102)的后端面(m2)与驱动件(103)连接,控制器用于控制驱动件(103)带动叶片(102)运动,解决了多叶准直器(100)仅包括一层叶片(102),导致用于带动叶片(102)的驱动件(103)的强度要求较高,驱动件(103)不易被加工制造,且叶片(102)数量较少,形成的射野的形状较少的问题,实现了驱动件(103)易被加工,提高成野的灵活性的效果,用于放射治疗。

Description

多叶准直器及放射治疗头 技术领域
本发明涉及医疗器械领域,特别涉及一种多叶准直器及放射治疗头。
背景技术
在现代医学中,放射治疗是治疗恶性肿瘤的一种重要手段。放射治疗是指采用高能放射线杀死肿瘤,目前主要利用放射治疗头进行放射治疗。该放射治疗头一般包括射线源和射野准直系统,多叶准直器是射野准直系统的一部分。示例的,射线源可以为加速器,加速器用于发出X射线,多叶准直器用于产生满足要求的射野,射野指的是X射线照射的面积和形状,定义了射线照射的一个范围。加速器发出的X射线经过多叶准直器产生的射野照射至肿瘤病灶区。
相关技术中,多叶准直器如图1所示,包括两组叶片1、传动杆4、电机3、控制器(图1中未示出)和导轨框2。其中,该两组叶片是同层设置的,每组叶片包括多个阵列排布的叶片,两组叶片之间形成供射线通过的间隙,射线由射线源10发出,导轨框2内设置有与两组叶片一一对应的两组导轨,每组导轨包括多个平行排布的导轨,每个导轨上竖直放置一个叶片,供该叶片在导轨上滑动,每个叶片远离间隙的一端通过传动杆4与电机3连接。控制器根据治疗计划控制电机3驱动传动杆4,从而通过传动杆4带动相应的叶片沿导轨运动,形成射野。
在实现本发明的过程中,发明人发现上述技术至少存在以下问题:
多叶准直器仅包括一层叶片,叶片的高度较大,从而质量较大,叶片不易被驱动件驱动,叶片运动速度较小,这样一来,一方面,用于带动叶片的驱动件的强度要求较高,驱动件不易被加工制造;另一方面,叶片数量较少,所以形成的射野的形状较少。
发明内容
本发明提供了一种多叶准直器及放射治疗头,可以解决相关技术中多叶准直器仅包括一层叶片,导致用于带动叶片的驱动件的强度要求较高,驱动件不 易被加工制造,且叶片数量较少,形成的射野的形状较少的问题。所述技术方案如下:
根据本发明实施例的第一方面,提供一种多叶准直器,所述多叶准直器包括n层叶片组、驱动件和控制器,n为大于或等于2的整数,
每层叶片组包括一组或相对设置的两组叶片,每组叶片包括多个叶片,每个所述叶片包括相对的前端面和后端面,每个所述叶片能够运动以使得多层叶片组的叶片的前端面适形成不同形状的射束可穿过区域;
所述叶片的后端面与所述驱动件连接,所述控制器用于控制所述驱动件带动所述叶片运动。
可选的,所述n层叶片组中的至少一层叶片组包括相对设置的两组叶片。
可选的,同一层叶片组的叶片的运动方向相同,不同层叶片组的叶片的运动方向不相同。
可选的,所述n层叶片组中,任意两层叶片组的叶片的运动方向相同,且不同层叶片组的叶片在射束方向的正投影不重叠或部分重叠。
可选的,所述n层叶片组中同层叶片组的叶片的高度相同,不同层叶片组的叶片的高度不相同。
可选的,每层所述叶片组的叶片的厚度小于5毫米。
可选的,所述每层叶片组的叶片的高度为射线半衰层的十分之一至射线半衰层的四倍。
可选的,所述n层叶片组中任意相邻的两层叶片组可拆卸连接。
可选的,所述多叶准直器还包括导轨和导轨框,所述叶片设置在所述导轨上并能够沿所述导轨运动,
每层所述叶片组分别设置在一个导轨框内,所述n层叶片组中任意相邻的两层叶片组的导轨框之间可拆卸连接;
或者,所述n层叶片组设置在一个导轨框内,每层所述叶片组的导轨与所述导轨框可拆卸连接。
可选的,所述驱动件包括传动杆和电机,
每个叶片的后端面通过所述传动杆与所述电机连接,所述控制器用于控制所述电机驱动所述传动杆,以带动叶片运动。
根据本发明实施例的第二方面,提供了一种放射治疗头,包括:射线源和射野准直系统,
所述射线源用于发出射束,所述射野准直系统包括第一方面任一所述的多叶准直器。
根据本发明实施例的第三方面,提供了一种多叶准直器的驱动方法,用于第一方面所述的多叶准直器,所述方法包括:
根据治疗计划确定待形成的目标射野;
从预设的射野和驱动方式的对应关系中查询所述目标射野对应的目标驱动方式;
按照所述目标驱动方式控制叶片运动。
可选的,所述目标驱动方式用于指示不同层叶片以不同的速度运动,
所述按照所述目标驱动方式控制叶片运动,包括:
按照所述目标驱动方式控制不同层叶片组的叶片以不同的速度运动。
可选的,所述目标驱动方式用于指示同层叶片组的叶片按照同一方向往返运动,不同层叶片组的叶片按照不同方向往返运动,
所述按照所述目标驱动方式控制叶片运动,包括:
按照所述目标驱动方式控制同层叶片组的叶片按照同一方向做往返运动,并控制不同层叶片组的叶片按照不同方向做往返运动。
可选的,每层叶片组对应一个子控制器,
所述按照所述目标驱动方式控制叶片运动,包括:
按照所述目标驱动方式通过子控制器控制对应层的叶片组的叶片运动。
可选的,所述按照所述目标驱动方式控制叶片运动,包括:
按照所述目标驱动方式控制驱动件带动叶片沿着导轨运动。
根据本发明实施例的第四方面,提供了一种多叶准直器的驱动装置,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
根据治疗计划确定待形成的目标射野;
从预设的射野和驱动方式的对应关系中查询所述目标射野对应的目标驱动方式;
按照所述目标驱动方式控制叶片运动。
根据本发明实施例的第五方面,提供一种存储介质,该存储介质中存储有 指令,当该存储介质在终端上运行时,使得终端执行上述第三方面所提供的多叶准直器的驱动方法。
根据本发明实施例的第六方面,提供一种包含指令的终端程序产品,当该终端程序产品在终端上运行时,使得终端执行上述第三方面所提供的多叶准直器的驱动方法。
本发明实施例提供的技术方案的有益效果是:
本发明实施例提供的多叶准直器及放射治疗头,由于该多叶准直器包括n层叶片组,n为大于或等于2的整数,每层叶片组包括1组或2组叶片,比如多叶准直器包括2层叶片组,第一层叶片组包括1组叶片,第二层叶片组包括2组叶片,每组叶片包括多个叶片,由于叶片是多层的,所以每层叶片的叶片高度较小,质量较小,叶片更容易被驱动,叶片运动速度较大,使得驱动件的加工难度降低,且驱动件的尺寸较小,叶片的厚度较小,使得叶片数量较多,从而使通过叶片形成的射野更精细,形成射野的形状更多,因此,提高了成野的灵活性。同时,多层叶片还可以达到调整射线强度,调节射线剂量的目的。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中的一种多叶准直器的结构示意图;
图2是本发明实施例所涉及的实施环境示意图;
图3-1是本发明实施例提供的一种多叶准直器的结构示意图;
图3-2是图3-1所示的2层叶片组的正视图;
图3-3是本发明实施例提供的2层叶片组的示意图;
图4是本发明实施例提供的3层叶片组的结构示意图;
图5是本发明实施例提供的2层叶片组的结构示意图;
图6-1是本发明实施例提供的一体件导轨的结构示意图;
图6-2是本发明实施例提供的一种多叶准直器的驱动方法的流程图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参考图2,其示出了一种本发明实施例所涉及的实施环境示意图。该实施环境可以包括:机架110和治疗床120。放射治疗头(图2中未画出)设置于机架110上,放射治疗头能够随着机架110转动。其中,机架110可以为滚筒式机架,也可以是C形臂、悬臂式、半弧形等机架。放射治疗头一般包括射线源和射野准直系统,射线源可以为X射线源(一般可以是加速器射线源)或者为同位素射线源(一般可以是钴源)。以下以加速器为例,加速器用于发出X射线,射野准直系统包括多叶准直器,多叶准直器用于产生满足要求的射野。加速器发出的X射线经过多叶准直器产生的射野照射至患者的肿瘤病灶区。
请参考图3-1,其示出了本发明实施例提供的一种多叶准直器100的结构示意图。该多叶准直器100包括n层叶片组(图3-1以两层叶片组为例)、驱动件103和控制器(图3-1中未示出),n为大于或等于2的整数。
每层叶片组包括一组或相对设置的两组叶片,每组叶片包括多个叶片102,每个叶片102包括相对的前端面m1和后端面m2,每个叶片102能够运动以使得多层叶片组的叶片的前端面m1适形成不同形状的射束P可穿过区域。
叶片102的后端面m2与驱动件103连接,控制器用于控制驱动件103带动叶片102运动。
图3-1中以2层叶片组为例进行说明,图3-2示出了图3-1所示的2层叶片组的正视图,参见图3-2,这两层叶片组分别为叶片组102A和叶片组102B。每层叶片组包括相对设置的两组叶片,每组均包括多个叶片102。
示例的,以多叶准直器包括2层叶片组为例,如图3-3所示,第一层叶片组102A可以包括2组相对设置的叶片102A1和102A2,第二层叶片组102B可以包括1组叶片,两层叶片组102A和102B的叶片的前端面适形成不同形状的射束可穿过区域;也可以是,第一层叶片组包括2组叶片,第二层叶片组也包括2组叶片,每层叶片组包括的2组叶片的前端面适形成不同形状的射束可穿过区域;也可以是,第一层叶片组包括1组叶片,第二层叶片组也包括1组叶片,这2组叶片的位置相互错开,这2组叶片的前端面适形成不同形状的 射束可穿过区域。当然,多叶准直器也可以是包括3层或4层叶片组,每层叶片组可以是包括一组或两组叶片,这里不再举例赘述。
随着叶片的运动,叶片的前端面形成的射束可穿过区域的形状相应的变化即可形成适配于治疗计划的射野。
本发明实施例提供的多叶准直器包括多层叶片组,该多叶准直器的叶片是多层的,所以,每层叶片的叶片高度较小,从而叶片质量较小,叶片更容易被驱动件驱动,驱动件能够较快地带动叶片运动,叶片运动速度较大,最终,一方面,用于带动叶片的驱动件的强度要求较低,方便驱动件的加工;另一方面,驱动件的尺寸较小,从而可以将叶片做的更薄,叶片的厚度较小,所以叶片数量较多,而叶片数量越多,通过叶片形成的射野就越精细,形成射野的形状就越多,相较于相关技术,示例的,无需将凹形射野拆分为多个子射野,提高了成野的灵活性。且较多数量的叶片也有助于调整射线强度。另外,当不同层叶片的运动状况不同比如运动位置不同时,还可以达到调整穿过射线的强度,调节射线剂量的目的。所以,在驱动多叶准直器的叶片运动时,可以根据不同位置的剂量分布来对应调节叶片的位置。
在实际应用中,可以根据治疗计划来调整叶片组的层数,本发明实施例对叶片组的层数即(n的大小)不做限定。
综上所述,本发明实施例提供的多叶准直器,由于该多叶准直器包括n层叶片组,n为大于或等于2的整数,每层叶片组包括1组或相对设置的2组叶片。示例的,多叶准直器包括2层叶片组,第一层叶片组包括1组叶片,第二层叶片组包括2组叶片,每组叶片包括多个叶片,由于叶片是多层的,所以每层叶片的叶片高度较小,质量较小,叶片更容易被驱动,叶片运动速度较大,使得驱动件的加工难度降低,且驱动件的尺寸较小,叶片的厚度较小,使得叶片数量较多,从而使通过叶片形成的射野更精细,形成射野的形状更多,因此,提高了成野的灵活性。同时,多层叶片还可以达到调整射线强度,调节射线剂量的目的。
可选的,所述n层叶片组中的至少一层叶片组包括相对设置的两组叶片,从而,位于同一层的两组叶片可以适形形成射束可穿过区域,其他层叶片可以是一组也可以是两组,其可用于调节剂量。图4为本发明实施例提供的一种多叶准直器的侧视图,其示例性示出了三层叶片组的结构示意图,如图4所示,第一层叶片组包括2组叶片,第二层叶片组包括2组叶片,第三层叶片组包括 1组叶片,每组叶片包括多个叶片102。每组叶片的多个叶片相互平行,叶片的前端面适形成不同形状的射束P可穿过区域。其中,第一层叶片组可以形成射束可穿过区域,第二层叶片组和第三层叶片组可以是通过叶片运动来调节剂量。需要说明的是,图4中每组叶片仅画出了一个叶片,该组叶片中的其余叶片均与该叶片平行。
实际应用中,为了实现更多形状的射野,n层叶片组中同层叶片组的叶片的高度相同,不同层叶片组的叶片的高度可以相同,也可以不相同。图4是以n层叶片组中同层叶片组的叶片的高度相同,不同层叶片组的叶片的高度也相同为例进行说明的。示例的,当同层叶片组的叶片的高度相同,不同层叶片组的叶片的高度也相同时,每个叶片的高度可以为5毫米~40毫米。
当不同层叶片组的叶片的高度相同时,可以通过调整叶片的位置来达到调整射线的强度的目的;当不同层叶片组的叶片的高度不相同时,不同层叶片对射线的衰减不同,也可以进一步达到调整射线强度的目的。
可选的,n层叶片组中任意相邻的两层叶片组可拆卸连接。在实际应用中,根据不同的患者肿瘤情况,在治疗前,可以根据治疗需求拆换不同的叶片组,以对不同的患者进行更加优化的治疗。
还需要说明的是,相关技术中通常是通过控制射线源来调整射线的强度,具体的,可以控制射线源发出射线的射线量,或者,可以控制射线源发出射线的时间,多叶准直器无法实现调整射线的强度的目的。
而在本发明实施例中,由于多叶准直器包括组合叠加的多层叶片,所以该多叶准直器能够通过调整多层叶片的叠加厚度实现调整射线强度的目的。比如,当不同层叶片组的叶片的高度相同,不同层叶片组的叶片的运动位置不同时,叶片能够对射线源发出的射线的强度在不同位置产生不同程度的衰减,进而实现调制射线强度分布的效果。又比如,当不同层叶片组的叶片的高度不相同时,可以为不同位置的叶片叠加厚度带来更多变化,进而实现射线强度调节程度的更多选择。这种通过对射线强度衰减来调制射线强度在射野内分布,完成调强治疗,和通过多个不同形状子射野叠加来完成射野调强的方式相比,治疗时间更短,治疗效率更高,由射源发出的总辐射量更低。
示例的,每层叶片组的叶片的厚度可以小于5毫米。此外,同层叶片组的叶片的厚度可以相同,也可以不相同,不同层叶片组的叶片的厚度可以相同,也可以不相同。本发明实施例对此不做限定。
示例的,每层叶片组的叶片的高度可以为射线半衰层的十分之一至射线半衰层的四倍,而相关技术中的多叶准直器的叶片的高度通常大于射线半衰层的六倍。
进一步的,如图3-1所示,多叶准直器还包括导轨(图3-1中未画出)和导轨框101,叶片102设置在导轨上并能够沿导轨运动,每层叶片组分别设置在一个导轨框内,n层叶片组中任意相邻的两层叶片组的导轨框之间可拆卸连接。这样一来,便于对多叶准直器的叶片组进行拆换,以满足不同的治疗需求。其中,导轨框内可以设置导轨,或者,导轨与导轨框也可以是通过固定连接。
或者,n层叶片组也可以设置在一个导轨框内,每层叶片组的导轨与导轨框可拆卸连接。任意相邻的两个导轨框可拆卸连接。这样一来,可以根据治疗计划拆卸导轨框,减少叶片层数,或者可以根据治疗计划增添导轨框,增加叶片层数。本发明实施例对导轨框的数量不做限定。
可选的,为了避免射线源发出的射线从上层叶片间的空隙漏射而对治疗效果造成影响,在本发明实施例中,为了减弱叶片间射线漏射现象,n层叶片组中,任意两层叶片组的叶片的运动方向相同,且不同层叶片组的叶片在射束方向的正投影不重叠或部分重叠。也即是,不同层叶片组的叶片间的空隙不是正对的,不同层叶片组的叶片交错排列。示例的,图5为本发明实施例提供的一种多叶准直器的截面示意图,其示出了2层叶片的结构示意图,图5以同层叶片组的叶片的厚度相同,不同层叶片组的叶片的厚度也相同为例进行说明。参见图5,上层叶片组Y1的叶片在射束方向的正投影与下层叶片组Y2的叶片在射束方向的正投影部分重叠,即叶片位置错开,从而上层叶片间隙透射的射线能够被下一层叶片屏蔽,避免叶片间射线漏射。
此外,在放射治疗技术领域中,多叶准直器的成野空间分辨率决定于叶片厚度,叶片厚度越薄,成野空间分辨率(也即是射野边缘的空间分辨率)越高,但叶片厚度总是有个极限值。所以为了提高成野空间分辨率,在本发明实施例中,n层叶片组中不同层叶片组的叶片在射束方向的正投影不重叠或部分重叠。示例的,参见图5,上层叶片组Y1的叶片在射束方向的正投影与下层叶片组Y2的叶片在射束方向的正投影部分重叠。这种不同层叶片的交错重叠程度可以用于提高射野边缘的空间分辨率,使得射野的大小更精准,这样一来,在对肿瘤进行治疗时更有利于避开周围的敏感健康组织。
可选的,同一层叶片组的叶片的运动方向相同,不同层叶片组的叶片的运 动方向不相同。该多叶准直器的同层叶片组的叶片可以沿同一方向运动,不同层叶片组的叶片可以沿同一方向运动,也可以沿不同方向运动。为了进一步形成更多形状的射野,可以使同层叶片组的叶片沿同一方向运动,不同层叶片组的叶片沿不同方向运动。不同层叶片组的叶片沿不同方向运动,可以实现任意形状的射野,还可以形成多个子射野。在一种可实现方式中,该多叶准直器同一层导轨方向相同,不同层导轨方向不同,例如,可以是垂直90°,或夹角30°、60°等。此外,导轨的这种设置方式还有助于调整射线强度,提高成野空间分辨率。在另一种可实现方式中,叶片组对应的连接角度可以为具有一定夹角的预设角度。
进一步的,为了降低多叶准直器的结构复杂度,相邻两层叶片组的叶片中位于同一平面的两个叶片对应的导轨可以为一体件,这样一来,可以减少导轨层数。示例的,如图6-1所示,假设多叶准直器包括2层叶片组,导轨的上下两侧分别设置有轨道,即叶片1021和叶片1022对应的导轨01为一体件。图6-1是以不同层叶片组的叶片的高度不相同为例进行说明。
可选的,如图3-1所示,驱动件103包括传动杆1031和电机1032,每个叶片102的后端面通过传动杆1031与电机1032连接,控制器用于控制电机1032驱动传动杆1031,以带动叶片102运动。多叶准直器中各个叶片可以在控制器和驱动件的控制下独立运动。
在本发明实施例中,多叶准直器的控制器可以预先存储有射野和驱动方式的对应关系,一个射野对应至少一种驱动方式,该驱动方式用于指示在形成对应射野时n层叶片组中每个叶片的运动参数,该运动参数可以包括运动速度和运动位移。示例的,该多种驱动方式,可以包括通过叶片的运动速度来实现剂量的调整的驱动方式,也可以是通过叶片的位移来实现对剂量的调整的驱动方式。
在使用本发明实施例提供的多叶准直器进行放射治疗时,该多叶准直器的驱动方法可以包括:控制器根据治疗计划确定待形成的射野,然后,控制器从预先存储的射野和驱动方式的对应关系中查找确定的待形成的射野对应的驱动方式。之后,控制器按照查找的驱动方式控制驱动件带动叶片沿着导轨运动。当查找的驱动方式为多种时,控制器从多种驱动方式中任选一种。
本发明实施例提供的多叶准直器包括多层叶片,叶片高度较小,从而叶片质量较小,叶片更容易被驱动件驱动,叶片运动速度较大,使得用于带动叶片 的驱动件的强度要求较低;驱动件的尺寸较小,使得叶片的厚度较小,所以叶片数量较多,同时,不同层叶片组的叶片的高度可以不相同,不同层叶片组的叶片可以相互错开,不同层叶片组的叶片的运动方向可以不同,通过该多叶准直器能够形成一维的楔形射线强度分布和剂量分布,以及二维的楔形射线强度分布和剂量分布,使得治疗计划具有更大的优化空间,可以产生用于治疗的更好的治疗计划,为提高治疗计划质量和治疗效果提供更大的可能性。
综上所述,本发明实施例提供的多叶准直器,由于该多叶准直器包括n层叶片组,n为大于或等于2的整数,每层叶片组包括1组或2组叶片,比如多叶准直器包括2层叶片组,第一层叶片组包括1组叶片,第二层叶片组包括2组叶片,每组叶片包括多个叶片,由于叶片是多层的,所以每层叶片的叶片高度较小,质量较小,叶片更容易被驱动,叶片运动速度较大,使得驱动件的加工难度降低,且驱动件的尺寸较小,叶片的厚度较小,使得叶片数量较多,从而使通过叶片形成的射野更精细,形成射野的形状更多,因此,提高了成野的灵活性。同时,还可以达到调整射线强度,调节射线剂量的目的。
本发明实施例还提供了一种放射治疗头,包括:射线源和射野准直系统,
射线源用于发出射束;
射野准直系统包括图3-1所示的多叶准直器。
射线源可以为X射线源或γ射线源,多叶准直器用于产生满足要求的射野。射线源发出的射线经过多叶准直器产生的射野照射至患者的肿瘤病灶区。
本发明实施例还提供了一种多叶准直器的驱动方法,用于图3-1所示的多叶准直器,该方法可以由多叶准直器的控制器来执行,如图6-2所示,该方法包括:
步骤601、根据治疗计划确定待形成的目标射野。
步骤602、从预设的射野和驱动方式的对应关系中查询目标射野对应的目标驱动方式。示例的,一种射野对应有多种驱动方式,可以从该多种驱动方式中选择任意一种作为目标驱动方式。示例的,该多种驱动方式,可以包括通过叶片的运动速度来实现剂量的调整的驱动方式,也可以是通过叶片的位移来实现对剂量的调整的驱动方式。
步骤603、按照目标驱动方式控制叶片运动。
综上所述,本发明实施例提供的多叶准直器的驱动方法,能够根据治疗计划确定待形成的目标射野,并从预设的射野和驱动方式的对应关系中查询目标射野对应的目标驱动方式,之后,按照目标驱动方式控制叶片运动,相较于相关技术,能够形成更多形状的射野,提高了成野的灵活性。
步骤601至步骤603可以由多叶准直器的控制器来执行。
其中,步骤603,包括:按照目标驱动方式控制驱动件带动叶片沿着导轨运动。
可选的,目标驱动方式可以用于指示不同层叶片组的叶片以不同的速度运动,相应的,步骤603可以包括:按照目标驱动方式控制不同层叶片组的叶片以不同的速度运动。
示例的,多叶准直器包括1个导轨框和2层叶片组,2层叶片组位于该导轨框内,每层叶片组包括2组叶片,按照目标驱动方式控制叶片运动时,可以控制第一层叶片组中的叶片以速度v1运动,控制第二层叶片组中的叶片以速度v2运动,v2和v1可以相同或不同。
可选的,目标驱动方式可以用于指示同层叶片组的叶片按照同一方向往返运动,不同层叶片组的叶片按照不同方向往返运动,相应的,步骤603可以包括:按照目标驱动方式控制同层叶片组的叶片按照同一方向做往返运动,并控制不同层叶片组的叶片按照不同方向做往返运动。在本发明实施例中,同层叶片组的叶片可以沿同一方向运动,不同层叶片组的叶片可以沿不同方向运动,也可以沿同一方向运动。
在本发明实施例中,可以是控制器直接控制各层叶片组,也可以是控制器通过子控制器控制各层叶片组。每层叶片组对应一个子控制器,相应的,步骤603可以包括:按照目标驱动方式通过子控制器控制对应层的叶片组的叶片运动。所有子控制器由一个控制器来控制。示例的,多叶准直器包括1个导轨框和2层叶片组,每层叶片组包括2组叶片,多叶准直器包括2层叶片,其中,第一层叶片组的叶片对应子控制器C10,第二层叶片组的叶片对应子控制器C20,控制器按照目标驱动方式控制叶片运动时,可以通过子控制器C10控制第一层叶片组的叶片运动,并通过子控制器C20控制第二层叶片组的叶片运动。
另外,可以是每个叶片对应一个子控制器,各层叶片组的各个叶片可以在控制器和子控制器的作用下独立运动。
需要说明的是,本发明实施例提供的多叶准直器的驱动方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
综上所述,本发明实施例提供的多叶准直器的驱动方法,能够根据治疗计划确定待形成的目标射野,并从预设的射野和驱动方式的对应关系中查询目标射野对应的目标驱动方式,之后,按照目标驱动方式控制叶片运动,相较于相关技术,能够形成更多形状的射野,提高了成野的灵活性,且能够实现调整射线强度的效果,治疗效率更高,成野空间分辨率更高,使得治疗计划具有更大的优化空间,可以产生用于治疗的更好的治疗计划,为提高治疗计划质量和治疗效果提供更大的可能性。
本发明实施例还提供了一种多叶准直器的驱动装置,该装置包括:
处理器;
用于存储该处理器的可执行指令的存储器;
其中,该处理器被配置为:
根据治疗计划确定待形成的目标射野;
从预设的射野和驱动方式的对应关系中查询目标射野对应的目标驱动方式;
按照目标驱动方式控制叶片运动。
本发明实施例还提供了一种存储介质,该存储介质中存储有指令,当该存储介质在终端上运行时,使得终端执行图6-2所示的多叶准直器的驱动方法。
本发明实施例还提供了一种包含指令的终端程序产品,当该终端程序产品在终端上运行时,使得终端执行图6-2所示的多叶准直器的驱动方法。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种多叶准直器,其特征在于,所述多叶准直器包括n层叶片组、驱动件和控制器,所述n为大于或等于2的整数,
    每层叶片组包括一组或相对设置的两组叶片,每组叶片包括多个叶片,每个所述叶片包括相对的前端面和后端面,每个所述叶片能够运动以使得多层叶片组的叶片的前端面适形成不同形状的射束可穿过区域;
    所述叶片的后端面与所述驱动件连接,所述控制器用于控制所述驱动件带动所述叶片运动。
  2. 根据权利要求1所述的多叶准直器,其特征在于,所述n层叶片组中的至少一层叶片组包括相对设置的两组叶片。
  3. 根据权利要求1所述的多叶准直器,其特征在于,同一层叶片组的叶片的运动方向相同,不同层叶片组的叶片的运动方向不相同。
  4. 根据权利要求1所述的多叶准直器,其特征在于,所述n层叶片组中,任意两层叶片组的叶片的运动方向相同,且不同层叶片组的叶片在射束方向的正投影不重叠或部分重叠。
  5. 根据权利要求1所述的多叶准直器,其特征在于,
    所述n层叶片组中同层叶片组的叶片的高度相同,不同层叶片组的叶片的高度不相同。
  6. 根据权利要求1所述的多叶准直器,其特征在于,
    每层所述叶片组的叶片的厚度小于5毫米。
  7. 根据权利要求1所述的多叶准直器,其特征在于,
    每层所述叶片组的叶片的高度为射线半衰层的十分之一至射线半衰层的四倍。
  8. 根据权利要求1所述的多叶准直器,其特征在于,
    所述n层叶片组中任意相邻的两层叶片组可拆卸连接。
  9. 根据权利要求5所述的多叶准直器,其特征在于,所述多叶准直器还包括导轨和导轨框,所述叶片设置在所述导轨上并能够沿所述导轨运动;
    每层所述叶片组分别设置在一个导轨框内,所述n层叶片组中任意相邻的两层叶片组的导轨框之间可拆卸连接;或者,
    所述n层叶片组设置在一个导轨框内,每层所述叶片组的导轨与所述导轨框可拆卸连接。
  10. 一种放射治疗头,其特征在于,包括:射线源和射野准直系统,所述射线源用于发出射束,所述射野准直系统包括权利要求1至9任一所述的多叶准直器。
PCT/CN2017/102523 2017-09-20 2017-09-20 多叶准直器及放射治疗头 WO2019056230A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/102523 WO2019056230A1 (zh) 2017-09-20 2017-09-20 多叶准直器及放射治疗头
US16/649,347 US11446518B2 (en) 2017-09-20 2017-09-20 Multi-leaf collimator and radiation therapy head
CN201790001103.7U CN210131259U (zh) 2017-09-20 2017-09-20 多叶准直器及放射治疗头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/102523 WO2019056230A1 (zh) 2017-09-20 2017-09-20 多叶准直器及放射治疗头

Publications (1)

Publication Number Publication Date
WO2019056230A1 true WO2019056230A1 (zh) 2019-03-28

Family

ID=65810974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102523 WO2019056230A1 (zh) 2017-09-20 2017-09-20 多叶准直器及放射治疗头

Country Status (3)

Country Link
US (1) US11446518B2 (zh)
CN (1) CN210131259U (zh)
WO (1) WO2019056230A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408065B (zh) * 2020-03-18 2022-07-26 上海联影医疗科技股份有限公司 多叶准直器、双层多叶准直器和医疗设备
US11511130B2 (en) * 2020-04-15 2022-11-29 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for adjusting multi-leaf collimator
WO2022170532A1 (zh) * 2021-02-09 2022-08-18 西安大医集团股份有限公司 一种治疗头及放射治疗设备
CN113368413B (zh) * 2021-07-13 2022-11-01 山东第一医科大学附属肿瘤医院(山东省肿瘤防治研究院、山东省肿瘤医院) 一种叶片组、联动型多叶准直器及其联动方法
CN115300810B (zh) * 2022-08-05 2024-02-09 中科超精(南京)科技有限公司 一种驱动增强叶片快速移动多叶准直器装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139580A (zh) * 1995-06-30 1997-01-08 西门子医疗系统公司 多层多叶片准直仪
CN101927061A (zh) * 2009-06-18 2010-12-29 东莞市益普生医疗设备发展有限公司 一种矩阵调强准直器
CN102915784A (zh) * 2012-08-24 2013-02-06 山东新华医疗器械股份有限公司 双层多叶准直器
CN103079643A (zh) * 2010-08-23 2013-05-01 瓦里安医疗系统公司 多级多叶准直器
CN103272338A (zh) * 2013-05-20 2013-09-04 清华大学 放射治疗设备及具有该放射治疗设备的放射治疗系统
CN105703526A (zh) * 2016-03-14 2016-06-22 清华大学 一种基于电路板的多叶准直器电机引线固定结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526123B2 (en) * 1997-09-29 2003-02-25 Moshe Ein-Gal Multiple layer multileaf collimator
JP3779878B2 (ja) * 2001-01-30 2006-05-31 株式会社日立製作所 マルチリーフコリメータ
US10026517B2 (en) * 2015-09-18 2018-07-17 Varian Medical Systems, Inc. Multileaf collimator assembly with reduced extra-focal leakage
US10441814B2 (en) * 2015-09-25 2019-10-15 Varian Medical Systems International Ag Method and apparatus to employ a multi-layer multi-leaf collimator when administering a radiation therapy treatment
US9966160B2 (en) * 2015-11-24 2018-05-08 Viewray Technologies, Inc. Radiation beam collimating systems and methods
CN106730421A (zh) * 2017-02-24 2017-05-31 广东中能加速器科技有限公司 一种双层的多叶光栅
US10549117B2 (en) * 2017-07-21 2020-02-04 Varian Medical Systems, Inc Geometric aspects of radiation therapy planning and treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1139580A (zh) * 1995-06-30 1997-01-08 西门子医疗系统公司 多层多叶片准直仪
CN101927061A (zh) * 2009-06-18 2010-12-29 东莞市益普生医疗设备发展有限公司 一种矩阵调强准直器
CN103079643A (zh) * 2010-08-23 2013-05-01 瓦里安医疗系统公司 多级多叶准直器
CN102915784A (zh) * 2012-08-24 2013-02-06 山东新华医疗器械股份有限公司 双层多叶准直器
CN103272338A (zh) * 2013-05-20 2013-09-04 清华大学 放射治疗设备及具有该放射治疗设备的放射治疗系统
CN105703526A (zh) * 2016-03-14 2016-06-22 清华大学 一种基于电路板的多叶准直器电机引线固定结构

Also Published As

Publication number Publication date
CN210131259U (zh) 2020-03-10
US11446518B2 (en) 2022-09-20
US20200230437A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
WO2019056230A1 (zh) 多叶准直器及放射治疗头
US11931602B2 (en) Radiation therapy systems and methods
JP6412020B2 (ja) 電磁作動式のマルチリーフコリメーター
US10022563B2 (en) Image-guided radiotherapy
US20060193441A1 (en) Method and apparatus for modulating a radiation beam
WO2019196137A1 (zh) 放射治疗头及放射治疗装置
US11504553B2 (en) Radiation therapy device and system
JP2021532939A (ja) 高速マルチリーフコリメータを介した高速スライディングウィンドウ送出
CN209734772U (zh) 多叶准直装置
WO2019136763A1 (zh) 多叶准直器及放射治疗头
KR101739648B1 (ko) 다엽 콜리메이터
US20230263489A1 (en) Imaging system for a radiotherapy device
CN112546458A (zh) 一种调节多叶准直器的系统和方法
WO2007008899A2 (en) Variable feathering field splitting for intensity modulated fields of large size
JP2018099247A (ja) 放射線治療装置
JP2000271237A (ja) 放射線照射装置
CN115103707A (zh) 放射治疗头、设备、方法、控制装置及非易失性存储介质
CN118141398A (zh) 放射治疗系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926074

Country of ref document: EP

Kind code of ref document: A1