WO2019056222A1 - 定位格架及燃料组件 - Google Patents

定位格架及燃料组件 Download PDF

Info

Publication number
WO2019056222A1
WO2019056222A1 PCT/CN2017/102497 CN2017102497W WO2019056222A1 WO 2019056222 A1 WO2019056222 A1 WO 2019056222A1 CN 2017102497 W CN2017102497 W CN 2017102497W WO 2019056222 A1 WO2019056222 A1 WO 2019056222A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
clamping
unit
slot
strip
Prior art date
Application number
PCT/CN2017/102497
Other languages
English (en)
French (fr)
Inventor
庞铮铮
张玉相
李伟才
冀士哲
Original Assignee
岭澳核电有限公司
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岭澳核电有限公司, 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 岭澳核电有限公司
Priority to CN201780001991.7A priority Critical patent/CN107980163B/zh
Priority to PCT/CN2017/102497 priority patent/WO2019056222A1/zh
Priority to EP17925989.0A priority patent/EP3686900B1/en
Priority to GB2005603.2A priority patent/GB2581891B/en
Publication of WO2019056222A1 publication Critical patent/WO2019056222A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • G21C3/352Spacer grids formed of assembled intersecting strips
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • G21C3/356Spacer grids being provided with fuel element supporting members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to the field of nuclear reactor technology, and in particular, to a positioning grid and a fuel assembly.
  • a fuel rod is held in a skeleton by means of an elastic member in a positioning grid.
  • Conventional positioning grids are typically formed by the intersection of two orthogonally oriented strips forming an egg tart structure with elastic gripping members in each of the cells of the egg tart. These elastic gripping members are usually stamped and formed on the strip itself, and some are fixed to the strip by welding or the like.
  • the traditional positioning grid is characterized by: There is no relative movement between the elastic clamping members and the strips within the cells.
  • the skeleton is formed by connecting a positioning grid and a control rod guide tube.
  • the initial guiding tube is subjected to a large tensile stress to accelerate the growth of the component, and the growth of the same fuel rod is restricted by the positioning grid, which may reduce the straightness of the fuel rod.
  • the positioning grid For the floating connection of the positioning grid and the guiding tube, the lateral rigidity of the fuel assembly is low, and the fuel assembly is prone to bend under normal operating conditions. In the event of an accident such as an earthquake, the grid is subjected to a large impact force, threatening the fuel rod. Cooling.
  • the technical problem to be solved by the present invention is to provide a positioning grid that improves the economy, reliability and safety of a fuel assembly and a fuel assembly using the same.
  • the technical solution adopted by the present invention to solve the technical problem is: providing a positioning grid, comprising two grid units and a clamping unit; two of the grid units are arranged opposite each other, the clamping unit Plug in Between the two grid units, and movable up and down relative to the grid unit.
  • the grid unit comprises a plurality of parallel spaced first strips and a plurality of parallel spaced second strips, the first strips and the second strips intersecting each other to form a networked portion Grid unit
  • the clamping unit includes a plurality of annular clamping subunits, and the plurality of clamping subunits are respectively received in the cells of the grid unit.
  • the first strip is provided with a plurality of first slots spaced along the length thereof, and a first clamping slot disposed at two sides of the first slot, the first The slot and the first clamping slot are located on the same side of the first strip, and the mouths of the two are aligned;
  • the second strip is provided with a second slot spaced along the length thereof, and a second clamping slot disposed at two sides of the second slot; the second slot and the second slot Two clamping grooves are located on opposite sides of the second strip, and the mouths of the two are opposite;
  • the first slot is mated with the mouth of the second slot by the mouth thereof; the first clamping slot and the second clamping slot respectively clamp the clamping subunit .
  • the first strip is provided with a plurality of spaced convex first mixing wings; the first mixing wings are obliquely bent in the lateral direction and protrude into the cells of the grating unit ;
  • the second strip is provided with a plurality of spaced second protruding mixing wings; the second mixing wings are obliquely bent in the lateral direction and protrude into the cells of the grating unit.
  • a plurality of the clamping subunits are cross-spliced on the same plane to form an integrated clamping unit.
  • each of the side walls of the clamping subunit is provided with a splicing groove with a spigot facing one side, and the adjacent clamping subunits are turned upside down to insert the splicing slot into the mouth.
  • a splicing groove with a spigot facing one side, and the adjacent clamping subunits are turned upside down to insert the splicing slot into the mouth.
  • each of the clamping subunits is cross-spliced with at least two of the clamping subunits.
  • the positioning grid further comprises an outer frame disposed at two outer sides of the grating unit.
  • the positioning grid further comprises a connecting structure for fixing the guiding tube and disposed on the grating unit.
  • the connecting structure comprises a tongue protruding from the two upper and lower grid units.
  • connection structure includes a connection fixedly disposed in a cell of the upper and lower two grid cells
  • connection structure also provides a fuel assembly comprising the spacer grid of any of the above.
  • the grid unit is layered up and down, and the clamping unit is arranged in a floating manner therebetween, which can reduce the stress of the guiding tube in the fuel assembly, reduce the growth of the assembly, and ensure the lateral rigidity of the fuel assembly.
  • fuel component bending and control rod insertion difficulties improve the strength of the positioning grid, improve the impact force margin of the positioning grid under accident conditions and the stability of the coolant circulation channel under accident conditions, and ensure the control rod guide
  • the tube will not be excessively deformed to prevent the control rod from being inserted and affecting the shutdown, ensuring that the positioning grid is not excessively deformed and the flow area between the fuel rods is reduced.
  • FIG. 1 is a schematic structural view of a positioning grid according to an embodiment of the present invention.
  • FIG. 2 is a schematic top plan view of a positioning grid according to an embodiment of the invention.
  • FIG. 3 is a schematic diagram of a mating structure of a grid unit and a clamping unit in a positioning grid according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of the grid unit of FIG.
  • FIG. 5 and FIG. 6 are respectively schematic structural views of a first strip and a second strip in the grid unit shown in FIG. 4;
  • FIG. 7 is a schematic structural view of the two grid units of FIG. 3 arranged symmetrically up and down;
  • FIG. 8 is a schematic structural view of the clamping unit of FIG. 3;
  • FIG. 9 is a schematic structural view of a clamping subunit of FIG. 8.
  • a positioning grid includes two grid units 10 and a clamping unit 20.
  • the two grid units 10 are disposed opposite to each other and are divided into upper and lower layers.
  • the clamping unit 20 is inserted between the two grid units 10 and can move up and down with respect to the grid unit 10 to form between the grid units 10. Floating Dynamic connection, reducing the stress of the guide tube in the fuel assembly, preventing the fuel rod from bending and reducing the component growth
  • each grid unit 10 may include a plurality of parallel spaced first strips 11 and a plurality of parallel spaced second strips 12, a first strip 11 and a second strip.
  • the strips 12 intersect each other (e.g., vertically intersecting each other) to form a grid-like grid unit 10.
  • the plurality of cells 100 formed in the grid unit 10 may be a square array or a hexagonal array or the like, which are respectively used for fuel rods, guide tubes, etc., and the clamping unit 20 mainly clamps the fuel rods in the cells 100. Fixed. As shown in FIG.
  • the first strip 11 may be provided with a plurality of first slots 111 spaced along its length, and first slots 112 disposed on opposite sides of the first slot 111;
  • the slot 111 is for mating with the second strap 12, and the first clamping slot 112 is for mating with the clamping unit 20.
  • the first slot 111 and the first clamping groove 112 are located on the same side of the first strip 11, and the mouths of the two are aligned.
  • the second strip 12 is provided with a second slot 121 spaced along the length thereof, and a second clamping slot 122 disposed at two sides of the second slot 121;
  • the slot 121 is for mating with the first strip 11
  • the second clamping slot 122 is for mating with the clamping unit 20 to insert the second slot 121 and the second clamping slot 122 at the second strip 12 .
  • On opposite sides, and the mouths of the two are opposite.
  • the first strip 11 and the second strip 12 cross each other, and the first slot 111 is mated with the mouth of the second slot 121 by its mouth;
  • the crescent-shaped solder joint regions shown in 5 and 6 are welded to fix the first strip 11 and the second strip 12 together.
  • the openings of the first holding groove 112 and the second holding groove 122 are oriented the same for the insertion of the holding unit 20.
  • the four walls of the cells of the grid unit 10 (excluding the outermost peripheral cells) are respectively formed by the first strip 11 and the second strip 12, and each wall surface may have two clamping grooves to fit the clamping unit 20,
  • the two clamping grooves of one wall are all the first clamping slots 112 or both are the second clamping slots 122.
  • the first strip 11 and the second strip 12 are made of a zirconium alloy, and the widths of the two are uniform.
  • the width of the grid unit 10 formed at the intersection is the same as the width of the first strip 11 and the second strip 12.
  • the two grid units 10 are vertically symmetrically arranged, and the upper and lower corresponding grids 100 are connected, as shown in FIG.
  • the first clamping groove 112 of the upper grating unit 10 and the opening of the second clamping groove 122 face downward
  • the first clamping groove of the lower grating unit 10 The mouths of the second clamping groove 122 and the second clamping groove 122 face downward and are respectively clamped on the upper and lower sides of the clamping unit 20.
  • the clamping unit 20 It can move up and down within its range along the first clamping slot 112 and the second clamping slot 122, as shown in FIG.
  • the first strip 11 may also be provided with a plurality of spaced convex first mixing wings.
  • the first mixing wing is obliquely bent in the lateral direction and protrudes into the cell 100 of the grid unit 10; the second strip 12 may also be provided with a plurality of spaced protruding second mixing wings ( Not shown); the second mixing wing extends obliquely in the lateral direction into the cell 100 of the grid unit 10.
  • the setting of the mixing wing increases the coolant mixing efficiency and increases the critical heat flux density of the fuel. Since there is no interference component on the first strip 11 and the second strip 12, a mixing structure such as a mixing wing having a larger projection area can be provided, the critical heat flux density of the fuel is increased, the reactor thermal margin is improved, and the safety and economy are improved. Sex.
  • the clamping unit 20 is formed independently of the grid unit 10, and does not need to be press-formed on the strip of the grid unit 10, greatly reducing the strip type and simplifying the manufacturing.
  • the height of the spacer grid can be lowered to reduce drag.
  • the clamping unit 20 has a larger flow area than the conventional holding member, so that the positioning grid resistance is lowered.
  • the clamping unit 20 is used to clamp the fuel rod and the control rod in the cell 100, respectively.
  • the clamping unit 20 includes a plurality of annular clamping subunits 21, and the plurality of clamping subunits 21 are respectively received in the cells of the grid unit 10, the first clamp.
  • the holding groove 112 and the second clamping groove 122 are respectively inserted into the clamping subunit 21 to clamp and position it.
  • the diameter of the inner ring of the clamping subunit 21 for holding the fuel rod or the control rod is equal to or slightly smaller than the outer diameter of the fuel rod or the control rod, so as to elastically clamp the fixed fuel rod or The purpose of the control rod.
  • the first clamping slot 112 and the second clamping slot 122 of the upper grid unit 10 are respectively inserted at the upper end of the side wall of the clamping subunit 21, and the first clamping of the lower grid unit 10
  • the slot 112 and the second clamping slot 122 are respectively inserted at the lower ends of the side walls of the clamping subunit 21, as shown in FIG.
  • the clamping subunit 21 may be formed by stamping a zirconium alloy tube, or may be formed by crimping a zirconium alloy strip, and the transverse cross-sectional shape may be a quadrangular shape, an octagonal shape, a triangular shape or the like.
  • the clamping subunit 21 can also use other materials such as a nickel-based alloy with a different material such as a low creep rate to the grid unit 10 to meet specific functional requirements, ensuring that the fuel rod can be effectively clamped during the whole life, and the fuel rod is lowered. Fretting wear damage risk.
  • a plurality of clamping subunits 21 are cross-spliced on the same plane to form an integrated clamping unit 20.
  • each of the clamping subunits 21 is provided with a splicing groove 211 with a spigot facing one side, adjacent clamping
  • the sub-unit 21 is turned upside down so that the splicing groove 211 is facing the mating engagement.
  • Each of the clamping subunits 21 is cross-spliced with at least two clamping subunits 21.
  • the clamping subunit 21 of the outer ring of the clamping unit 20 is cross-spliced with two adjacent or three clamping subunits 21, and is located on each side of the clamping subunit 21 of the inner ring. Both of them are cross-spliced with one clamping sub-unit 21, that is, cross-splicing with the four clamping sub-units 21, and then sequentially cross-splicing to form an integrated clamping unit 20, which can be in a Chinese-style structure. After the nip unit 21 is cross-spliced, the welding is performed at the intersection to form a fixed structure.
  • the clamping unit 20 can also be integrally formed by additive manufacturing techniques.
  • the grid unit 10 is inserted into the clamping subunit 21 with its first clamping slot 112 and the second clamping slot 122 due to the cross stitching of the clamping subunits 21.
  • the upper jaw is mainly inserted into the intersection of the clamping subunits 21 such that each of the first clamping slots 112 and each of the second clamping slots 122 can be inserted into the adjacent two clamping subunits 21 side walls on.
  • the cooperation of the clamping unit 20 and the grid unit 10 provides additional support for the corners of the positioning grid to improve the impact strength of the positioning grid.
  • the spacer grid of the present invention further includes an outer frame 30 disposed at the periphery of the two grid units 10.
  • the outer frame 30 is welded and fixed to the outer circumference of the grid unit 10 and the outer circumference of the holding unit 20, and the grid unit 10 and the holding unit 20 are enclosed in the inner ring.
  • the outer frame 30 may be provided with slots for welding the sides of the first strip 11 and the second strip 12 respectively.
  • the outer frame 30 may be a frame formed by a plurality of surrounding plates, or a frame formed by bending a plurality of surrounding plates.
  • the spacer grid of the present invention further includes a connection structure for fixing the guide tubes and spaced apart from the grid unit 10.
  • the joint structure is welded to the guide tube to ensure the lateral rigidity of the fuel assembly, so that the fuel assembly can improve the bending resistance under normal operating conditions, and improve the impact force margin of the positioning frame under the accident condition.
  • the connecting structure includes the tongues 40 which are oppositely disposed on the upper and lower grid units 10.
  • the welding tongue 40 is provided with four pieces, which are respectively located on the adjacent two first strips 11 and the adjacent two second strips 12, and are enclosed on one of the cells 100 of the grid unit 10. , used for welding and fixing of the guide tube.
  • connection structure may also include a cell 10 that is fixedly disposed through the upper and lower grid cells 10
  • the connecting pipe in 0 is used for the guiding pipe to be fixed.
  • the fuel assembly of the present invention includes the above described positioning grid.
  • the fuel assembly further includes opposite upper and lower headers, a plurality of guide tubes, a control rod, and a plurality of fuel rod sets.
  • a plurality of positioning grids are axially spaced between the upper and lower headers along the fuel assembly.
  • the guide tubes pass through the positioning grid and are installed between the upper and lower headers, and the control rods and the fuel rods are clamped.
  • the guiding tube penetrates into the positioning grid, passes through the upper grid unit 10, the clamping unit 20 and the lower grid unit 10 in sequence, and is welded and fixed with the connection structure on the grid unit 10 to ensure the fuel assembly.
  • the lateral stiffness makes the fuel assembly improve the bending resistance under normal operating conditions and improve the impact grid margin under the accident conditions.
  • the non-fixed connection of the clamping unit 20 and the grid unit 10 reduces the stress of the guide tube, prevents the fuel rod from bending, and reduces the growth of the assembly.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Fuel Cell (AREA)
  • Supports For Pipes And Cables (AREA)

Abstract

一种定位格架及燃料组件,定位格架包括两个格栅单元(10)以及夹持单元(20);两个所述格栅单元(10)上下相对设置,所述夹持单元(20)插接在两个所述格栅单元(10)之间,并可相对所述格栅单元(10)上下移动。该定位格架在燃料组件中可降低导向管应力,降低组件生长,保证燃料组件的横向刚度,防止正常运行时燃料组件弯曲以及控制棒下插困难,提高定位格架强度与事故工况下冷却剂流通通道的稳定性。

Description

发明名称:定位格架及燃料组件
技术领域
[0001] 本发明涉及核反应堆技术领域, 尤其涉及一种定位格架及燃料组件。
背景技术
[0002] 燃料组件中, 燃料棒依靠定位格架中的弹性部件夹持在骨架中。 传统的定位格 架通常由两个正交方向的条带交叉插入形成蛋篓式结构, 蛋篓的每个栅元内具 有弹性夹持部件。 这些弹性夹持部件通常在条带本身上冲压成形, 也有的通过 焊接等其它方式固定在条带上。 传统定位格架的特点是: 栅元内的弹性夹持部 件与条带之间无相对移动。
[0003] 骨架是由定位格架与控制棒导向管连接形成。 定位格架与控制棒导向管的连接 主要有两大类: 1) 固定式连接, 定位格架焊接或胀接在控制棒导向管上, 定位 格架与导向管之间不可相对滑动; 2) 浮动式连接, 定位格架套在导向管上, 定 位格架两侧在导向管上固定有轴向限位装置, 定位格架可在轴向限位装置范围 内沿导向管轴向滑动。
[0004] 然而, 对于固定式连接的定位格架和导向管, 寿期初导向管受到较大的拉应力 , 加快组件生长, 同吋燃料棒生长受到定位格架约束可能使燃料棒直线度降低 。 对于浮动式连接的定位格架和导向管, 燃料组件的横向刚度低, 在正常运行 工况下容易发生燃料组件弯曲, 在地震等事故工况定位格架受到较大的撞击力 , 威胁燃料棒的冷却。
技术问题
[0005] 本发明要解决的技术问题在于, 提供一种提高燃料组件经济性、 可靠性和安全 性的定位格架及使用该定位格架的燃料组件。
问题的解决方案
技术解决方案
[0006] 本发明解决其技术问题所采用的技术方案是: 提供一种定位格架, 包括两个格 栅单元以及夹持单元; 两个所述格栅单元上下相对设置, 所述夹持单元插接在 两个所述格栅单元之间, 并可相对所述格栅单元上下移动。
[0007] 优选地, 所述格栅单元包括多个平行间隔的第一条带和多个平行间隔的第二条 带, 所述第一条带和第二条带相互交叉形成网络状的所述格栅单元;
[0008] 所述夹持单元包括数个环形的夹持子单元, 数个所述夹持子单元分别容置在所 述格栅单元的栅元内。
[0009] 优选地, 所述第一条带上设有数个沿其长度方向间隔分布的第一插槽、 以及设 置在所述第一插槽两侧的第一夹持槽, 所述第一插槽和第一夹持槽位于所述第 一条带的同一侧, 且两者的幵口朝向一致;
[0010] 所述第二条带上设有沿其长度方向间隔分布的第二插槽、 以及设置在所述第二 插槽两侧的第二夹持槽; 所述第二插槽和第二夹持槽位于所述第二条带的相对 两侧, 且两者的幵口朝向相反;
[0011] 所述第一插槽以其幵口与所述第二插槽的幵口相向配合插接; 所述第一夹持槽 和第二夹持槽分别夹持所述夹持子单元。
[0012] 优选地, 所述第一条带上设有多个间隔的凸出的第一搅混翼; 所述第一搅混翼 在横向上倾斜弯折伸入所述格栅单元的栅元内;
[0013] 所述第二条带上设有多个间隔的凸出的第二搅混翼; 所述第二搅混翼在横向上 倾斜弯折伸入所述格栅单元的栅元内。
[0014] 优选地, 数个所述夹持子单元在同一平面上相交叉拼接形成一体化的所述夹持 单元。
[0015] 优选地, 每一个所述夹持子单元的侧壁均幵设有幵口朝向一侧的拼接槽, 相邻 的所述夹持子单元上下颠倒以所述拼接槽幵口相向插接配合。
[0016] 优选地, 每一个所述夹持子单元与至少两个所述夹持子单元相交叉拼接。
[0017] 优选地, 所述定位格架还包括设置在两个所述格栅单元外围的外框。
[0018] 优选地, 所述定位格架还包括用于固定导向管、 设置在所述格栅单元上的连接 结构。
[0019] 优选地, 所述连接结构包括相背凸出设置在上下两个所述格栅单元上的焊舌。
[0020] 优选地, 所述连接结构包括固定穿设在上下两个所述格栅单元的栅元内的连接 [0021] 本发明还提供一种燃料组件, 包括以上任一项所述的定位格架。 发明的有益效果
有益效果
[0022] 本发明的有益效果: 格栅单元上下分层设置, 夹持单元以浮动式设置在两者之 间, 在燃料组件中可降低导向管应力, 降低组件生长, 保证燃料组件的横向刚 度, 防止正常运行吋燃料组件弯曲以及控制棒下插困难, 提高定位格架强度、 提高事故工况下定位格架撞击力裕量与事故工况下冷却剂流通通道的稳定性, 保证控制棒导向管不会过度变形阻止控制棒下插影响停堆, 保证定位格架无过 大变形导致燃料棒间流通面积减小。
对附图的简要说明
附图说明
[0023] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0024] 图 1是本发明一实施例的定位格架的结构示意图;
[0025] 图 2是本发明一实施例的定位格架的俯视结构示意图;
[0026] 图 3是本发明一实施例的定位格架中格栅单元和夹持单元的配合结构示意图; [0027] 图 4是图 3中格栅单元的结构示意图;
[0028] 图 5、 图 6分别是图 4所示格栅单元中第一条带和第二条带的结构示意图;
[0029] 图 7是图 3两个格栅单元上下对称设置的结构示意图;
[0030] 图 8是图 3中夹持单元的结构示意图;
[0031] 图 9是图 8中夹持子单元的结构示意图。
本发明的实施方式
[0032] 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图详细说 明本发明的具体实施方式。
[0033] 如图 1-图 3所示, 本发明一实施例的定位格架, 包括两个格栅单元 10以及夹持 单元 20。 两个格栅单元 10上下相对设置, 分为上下两层; 夹持单元 20插接在两 个格栅单元 10之间, 并可相对格栅单元 10上下移动, 在格栅单元 10之间形成浮 动式连接, 在燃料组件中可降低导向管应力, 防止燃料棒弯曲, 降低组件生长
[0034] 如图 3、 图 4所示, 每一个格栅单元 10可包括多个平行间隔的第一条带 11和多个 平行间隔的第二条带 12, 第一条带 11和第二条带 12相互交叉 (如相垂直交叉) 形成网络状的格栅单元 10。 格栅单元 10中形成的数个栅元 100可为正方形阵列或 六边形阵列等, 分别用于燃料棒、 导向管等穿设, 夹持单元 20主要在栅元 100中 对燃料棒进行夹持固定。 如图 5所示, 第一条带 11上可设有数个沿其长度方向间 隔分布的第一插槽 111、 以及设置在第一插槽 111两侧的第一夹持槽 112; 第一插 槽 111用于与第二条带 12配合插接, 第一夹持槽 112用于与夹持单元 20配合插接 。 第一插槽 111和第一夹持槽 112位于第一条带 11的同一侧, 且两者的幵口朝向 一致。
[0035] 如图 6所示, 第二条带 12上设有沿其长度方向间隔分布的第二插槽 121、 以及设 置在第二插槽 121两侧的第二夹持槽 122; 第二插槽 121用于与第一条带 11配合插 接, 第二夹持槽 122用于与夹持单元 20配合插接第二插槽 121和第二夹持槽 122位 于第二条带 12的相对两侧, 且两者的幵口朝向相反。
[0036] 第一条带 11和第二条带 12相互交叉吋, 第一插槽 111以其幵口与第二插槽 121的 幵口相向配合插接; 插接后在交叉处 (如图 5、 6中所示的月牙形焊点区) 进行 焊接, 从而将第一条带 11和第二条带 12固定在一起。 在一个格栅单元 10中, 第 一夹持槽 112和第二夹持槽 122的幵口朝向相同, 以供夹持单元 20的插接。 格栅 单元 10的栅元的四壁 (除去最外周的栅元) 分别由第一条带 11和第二条带 12形 成, 每一壁面可具有两个夹持槽以配合夹持单元 20, 一个壁面的两个夹持槽均 为第一夹持槽 112或均为第二夹持槽 122。
[0037] 第一条带 11和第二条带 12采用锆合金制成, 两者的宽度一致。 在相交叉形成的 格栅单元 10的宽度与第一条带 11、 第二条带 12的宽度一致。
[0038] 在定位格架中, 两个格栅单元 10上下对称设置, 上下对应的栅元 100相连通, 如图 7所示。 当两个格栅单元 10上下对称放置吋, 上方的格栅单元 10的第一夹持 槽 112和第二夹持槽 122的幵口朝下, 下方的格栅单元 10的第一夹持槽 112和第二 夹持槽 122的幵口朝下, 分别夹持在夹持单元 20的上下两侧。 并且, 夹持单元 20 可沿着第一夹持槽 112和第二夹持槽 122在其范围内上下移动, 如图 3所示。
[0039] 另外, 在格栅单元 10中, 第一条带 11上还可设有多个间隔的凸出的第一搅混翼
(未图示) ; 第一搅混翼在横向上倾斜弯折伸入格栅单元 10的栅元 100内; 第二 条带 12上还可设有多个间隔的凸出的第二搅混翼 (未图示) ; 第二搅混翼在横 向上倾斜弯折伸入格栅单元 10的栅元 100内。 搅混翼的设置, 提高冷却剂搅混效 率, 提高燃料临界热流密度。 由于第一条带 11和第二条带 12上不存在干涉部件 , 因此可设置投影面积更大的搅混翼等搅混结构, 提高燃料临界热流密度, 提 高反应堆热工裕量, 提高安全性与经济性。
[0040] 本发明中, 夹持单元 20独立于格栅单元 10制成, 无需在格栅单元 10的条带上冲 压成型, 大大减少条带类型, 简化制造。 此外, 可降低定位格架的高度, 从而 降低阻力。 夹持单元 20相较于传统的夹持部件具有更大的流通面积, 使得定位 格架阻力降低。
[0041] 夹持单元 20在栅元 100内分别用于夹固燃料棒和控制棒。
[0042] 如图 3、 图 8所示, 夹持单元 20包括数个环形的夹持子单元 21, 数个夹持子单元 21分别容置在格栅单元 10的栅元内, 第一夹持槽 112和第二夹持槽 122分别插接 夹持子单元 21以将其夹持定位。 夹持子单元 21用于夹持燃料棒或控制棒的内圈 的直径与燃料棒或控制棒的外径相当或略小于燃料棒或控制棒的外径, 以达到 弹性夹持固定燃料棒或控制棒的目的。
[0043] 位于上方的格栅单元 10的第一夹持槽 112和第二夹持槽 122分别插接在夹持子单 元 21侧壁的上端, 位于下方的格栅单元 10的第一夹持槽 112和第二夹持槽 122分 别插接在夹持子单元 21侧壁的下端, 如图 3所示。
[0044] 夹持子单元 21可通过锆合金管材冲压形成, 也可通过锆合金带材卷曲形成, 其 横向截面形状可为四边形、 八边形、 三角形等形状。 夹持子单元 21也可使用与 格栅单元 10不同材料如低蠕变率的镍基合金等其它材料来满足特定功能要求, 保证全寿期内燃料棒都能够得到有效夹持, 降低燃料棒微动磨蚀破损风险。
[0045] 如图 8所示, 本实施例中, 数个夹持子单元 21在同一平面上相交叉拼接形成一 体化的夹持单元 20。
[0046] 每一个夹持子单元 21的侧壁均幵设有幵口朝向一侧的拼接槽 211, 相邻的夹持 子单元 21上下颠倒以拼接槽 211幵口相向插接配合。
[0047] 每一个夹持子单元 21与至少两个夹持子单元 21相交叉拼接。 如图 2、 8所示, 夹 持单元 20外圈的夹持子单元 21与相邻的两个或者三个夹持子单元 21相交叉拼接 , 位于内圈的夹持子单元 21每一侧均与一个夹持子单元 21相交叉拼接, 即与四 个夹持子单元 21相交叉拼接, 依此依次相交叉拼接形成一体化的夹持单元 20, 可呈中国节式结构。 夹持子单元 21在相交叉拼接后, 在交叉点上实施焊接, 形 成固定结构。
[0048] 夹持单元 20也可通过增材制造技术整体加工形成。
[0049] 其中, 如图 2、 3所示, 由于夹持子单元 21相交叉拼接, 格栅单元 10以其第一夹 持槽 112和第二夹持槽 122插接到夹持子单元 21上吋, 主要插接到夹持子单元 21 的交叉处, 使得每一个第一夹持槽 112和每一个第二夹持槽 122可插接到相邻的 两个夹持子单元 21侧壁上。 夹持单元 20和格栅单元 10的配合方式, 可为定位格 架栅元角部提供了额外支撑, 提高定位格架冲击强度。
[0050] 进一步地, 又如图 1、 2所示, 本发明的定位格架还包括设置在两个格栅单元 10 外围的外框 30。 外框 30与格栅单元 10的外周和夹持单元 20的外周焊接固定, 将 格栅单元 10及夹持单元 20围闭在其内圈。 外框 30上可设有槽孔, 分别供第一条 带 11和第二条带 12的侧边配合进行焊接。
[0051] 外框 30可由多个围板相接围成的框体, 也可由一个围板经多次弯折形成的框体
[0052] 本发明的定位格架还包括用于固定导向管、 间隔设置在格栅单元 10上的连接结 构。 通过连接结构与导向管焊接连接, 保证了燃料组件的横向刚度, 使得燃料 组件在正常运行情况下可提高抗弯曲性能, 在事故工况下提高定位格架撞击力 裕量。
[0053] 如图 1、 3所示, 本实施例中, 连接结构包括相背凸出设置在上下两个格栅单元 10上的焊舌 40。 优选地, 焊舌 40设有四片, 分别位于相邻的两个第一条带 11和 相邻的两个第二条带 12上, 相围接在格栅单元 10的一个栅元 100上, 用于导向管 的焊接固定。
[0054] 在其他实施例中, 连接结构也可包括固定穿设在上下两个格栅单元 10的栅元 10 0内的连接管, 供导向管穿接固定。
[0055] 本发明的燃料组件, 包括上述的定位格架。
[0056] 燃料组件还包括相对设置的上管座和下管座、 数个导向管、 控制棒以及数个燃 料棒组。 数个定位格架沿燃料组件轴向间隔设置在上管座和下管座之间, 导向 管穿过定位格架并安装在上管座和下管座之间, 控制棒、 燃料棒夹持于定位格 架的栅元 100之中。 其中, 导向管穿进定位格架吋, 依次穿过上方的格栅单元 10 、 夹持单元 20和下方的格栅单元 10, 并且与格栅单元 10上的连接结构焊接固定 , 以保证燃料组件的横向刚度, 使得燃料组件在正常运行情况下可提高抗弯曲 性能, 在事故工况下提高定位格架撞击力裕量。 夹持单元 20与格栅单元 10的非 固定连接方式, 降低导向管应力, 防止燃料棒弯曲, 降低组件生长。
[0057] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
[权利要求 1] 一种定位格架, 其特征在于, 包括两个格栅单元 (10) 以及夹持单元
(20) ; 两个所述格栅单元 (10) 上下相对设置, 所述夹持单元 (20 ) 插接在两个所述格栅单元 (10) 之间, 并可相对所述格栅单元 (10
) 上下移动。
[权利要求 2] 根据权利要求 1所述的定位格架, 其特征在于, 所述格栅单元 (10) 包括多个平行间隔的第一条带 (11) 和多个平行间隔的第二条带 (12 ) , 所述第一条带 (11) 和第二条带 (12) 相互交叉形成网络状的所 述格栅单元 (10) ;
所述夹持单元 (20) 包括数个环形的夹持子单元 (21) , 数个所述夹 持子单元 (21) 分别容置在所述格栅单元 (10) 的栅元 (100) 内。
[权利要求 3] 根据权利要求 2所述的定位格架, 其特征在于, 所述第一条带 (11) 上设有数个沿其长度方向间隔分布的第一插槽 (111) 、 以及设置在 所述第一插槽 (111) 两侧的第一夹持槽 (112) , 所述第一插槽 (11 1) 和第一夹持槽 (112) 位于所述第一条带 (11) 的同一侧, 且两者 的幵口朝向一致;
所述第二条带 (12) 上设有沿其长度方向间隔分布的第二插槽 (121 ) 、 以及设置在所述第二插槽 (121) 两侧的第二夹持槽 (122) ; 所 述第二插槽 (121) 和第二夹持槽 (122) 位于所述第二条带 (12) 的 相对两侧, 且两者的幵口朝向相反;
所述第一插槽 (111) 以其幵口与所述第二插槽 (121) 的幵口相向配 合插接; 所述第一夹持槽 (112) 和第二夹持槽 (122) 分别夹持所述 夹持子单元 (21) 。
[权利要求 4] 根据权利要求 3所述的定位格架, 其特征在于, 所述第一条带 (11) 上设有多个间隔的凸出的第一搅混翼; 所述第一搅混翼在横向上倾斜 弯折伸入所述格栅单元 (10) 的栅元 (100) 内; 所述第二条带 (12) 上设有多个间隔的凸出的第二搅混翼; 所述第二 搅混翼在横向上倾斜弯折伸入所述格栅单元 (10) 的栅元 (100) 内 [权利要求 5] 根据权利要求 2所述的定位格架, 其特征在于, 数个所述夹持子单元
(21) 在同一平面上相交叉拼接形成一体化的所述夹持单元 (20) 。
[权利要求 6] 根据权利要求 5所述的定位格架, 其特征在于, 每一个所述夹持子单 元 (21) 的侧壁均幵设有幵口朝向一侧的拼接槽 (211) , 相邻的所 述夹持子单元 (21) 上下颠倒以所述拼接槽 (211) 幵口相向插接配 合。
[权利要求 7] 根据权利要求 6所述的定位格架, 其特征在于, 每一个所述夹持子单 元 (21) 与至少两个所述夹持子单元 (21) 相交叉拼接。
[权利要求 8] 根据权利要求 1-7任一项所述的定位格架, 其特征在于, 所述定位格 架还包括设置在两个所述格栅单元 (10) 外围的外框 (30) 。
[权利要求 9] 根据权利要求 1-7任一项所述的定位格架, 其特征在于, 所述定位格 架还包括用于固定导向管、 设置在所述格栅单元 (10) 上的连接结构
[权利要求 10] 根据权利要求 9所述的定位格架, 其特征在于, 所述连接结构包括相 背凸出设置在上下两个所述格栅单元 (10) 上的焊舌 (40) 。
[权利要求 11] 根据权利要求 9所述的定位格架, 其特征在于, 所述连接结构包括固 定穿设在上下两个所述格栅单元 (10) 的栅元内的连接管。
[权利要求 12] —种燃料组件, 其特征在于, 包括权利要求 1-11任一项所述的定位格 架。
PCT/CN2017/102497 2017-09-20 2017-09-20 定位格架及燃料组件 WO2019056222A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780001991.7A CN107980163B (zh) 2017-09-20 2017-09-20 定位格架及燃料组件
PCT/CN2017/102497 WO2019056222A1 (zh) 2017-09-20 2017-09-20 定位格架及燃料组件
EP17925989.0A EP3686900B1 (en) 2017-09-20 2017-09-20 Positioning grid and fuel assembly
GB2005603.2A GB2581891B (en) 2017-09-20 2017-09-20 Spacer grid and fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/102497 WO2019056222A1 (zh) 2017-09-20 2017-09-20 定位格架及燃料组件

Publications (1)

Publication Number Publication Date
WO2019056222A1 true WO2019056222A1 (zh) 2019-03-28

Family

ID=62006236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102497 WO2019056222A1 (zh) 2017-09-20 2017-09-20 定位格架及燃料组件

Country Status (4)

Country Link
EP (1) EP3686900B1 (zh)
CN (1) CN107980163B (zh)
GB (1) GB2581891B (zh)
WO (1) WO2019056222A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524616A (zh) * 2020-05-14 2020-08-11 吉林农业大学 一种基于增材制造工艺的整体式定位格架

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920561B (zh) * 2019-02-27 2020-09-29 广东核电合营有限公司 燃料组件及定位格架
CN110993128A (zh) * 2019-12-02 2020-04-10 吉林农业大学 一种压水堆燃料组件用的格架
CN113000840A (zh) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 一种锆合金格架激光增材制造方法
CN112820428A (zh) * 2020-11-27 2021-05-18 中核北方核燃料元件有限公司 一种燃料元件格架条带刚度检测夹持工装及使用方法
CN114334202A (zh) * 2021-12-31 2022-04-12 江苏核工业格林水处理有限责任公司 一种燃料贮存格架及其组装方法
CN115171923B (zh) * 2022-06-24 2024-06-07 上海核工程研究设计院股份有限公司 一种燃料组件栅格结构及定位格架
CN115775640A (zh) * 2022-12-16 2023-03-10 中广核研究院有限公司 燃料棒夹持环及燃料组件支撑格架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87104308A (zh) * 1986-05-20 1988-02-24 法玛通公司 具有防蚀格架的燃料组件
US5666389A (en) * 1993-11-02 1997-09-09 Abb Atom Ab Fuel assembly and spacer for a nuclear reactor
JP2004003982A (ja) * 2002-03-06 2004-01-08 Westinghouse Electric Co Llc 改良型グリッドを備えた原子炉
CN101055775A (zh) * 2006-04-13 2007-10-17 韩国原子力研究所 用于增大与燃料棒的共形接触面积的定位格架弹簧
CN105023618A (zh) * 2015-07-06 2015-11-04 中科华核电技术研究院有限公司 一种独立弹簧、保持格栅以及核燃料组件
CN204884578U (zh) * 2015-07-06 2015-12-16 中科华核电技术研究院有限公司 双层复合型保持格栅及带有该保持格栅的燃料组件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE785939A (fr) * 1971-07-07 1973-01-08 Atomic Energy Authority Uk Perfectionnements aux elements combustibles de reacteurs nucleaires
DE2941320C2 (de) * 1979-10-11 1983-03-03 Kraftwerk Union AG, 4330 Mülheim Abstandshalter zu Zentrierung der Brennstäbe von Brennelementen wassergekühlter Kernreaktoren
US20060222140A1 (en) * 2005-04-04 2006-10-05 Westinghouse Electric Company Llc Eccentric support grid for nuclear fuel assembly
KR101071287B1 (ko) * 2009-07-08 2011-10-07 한국수력원자력 주식회사 와이어 스프링형 지지격자체 내부구조
EP2741297A1 (en) * 2012-12-04 2014-06-11 Areva NP Fuel rod support insert for a nuclear fuel assembly spacer grid, spacer grid and nuclear fuel assembly
CN104036831B (zh) * 2014-06-20 2017-04-26 中广核研究院有限公司 轻水反应堆燃料组件的插槽式定位格架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87104308A (zh) * 1986-05-20 1988-02-24 法玛通公司 具有防蚀格架的燃料组件
US5666389A (en) * 1993-11-02 1997-09-09 Abb Atom Ab Fuel assembly and spacer for a nuclear reactor
JP2004003982A (ja) * 2002-03-06 2004-01-08 Westinghouse Electric Co Llc 改良型グリッドを備えた原子炉
CN101055775A (zh) * 2006-04-13 2007-10-17 韩国原子力研究所 用于增大与燃料棒的共形接触面积的定位格架弹簧
CN105023618A (zh) * 2015-07-06 2015-11-04 中科华核电技术研究院有限公司 一种独立弹簧、保持格栅以及核燃料组件
CN204884578U (zh) * 2015-07-06 2015-12-16 中科华核电技术研究院有限公司 双层复合型保持格栅及带有该保持格栅的燃料组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686900A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111524616A (zh) * 2020-05-14 2020-08-11 吉林农业大学 一种基于增材制造工艺的整体式定位格架
CN111524616B (zh) * 2020-05-14 2023-09-01 吉林农业大学 一种基于增材制造工艺的整体式定位格架

Also Published As

Publication number Publication date
EP3686900A4 (en) 2020-10-07
GB2581891A (en) 2020-09-02
EP3686900A1 (en) 2020-07-29
CN107980163B (zh) 2020-05-22
GB202005603D0 (en) 2020-06-03
EP3686900B1 (en) 2023-05-03
CN107980163A (zh) 2018-05-01
GB2581891B (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2019056222A1 (zh) 定位格架及燃料组件
KR100965989B1 (ko) 원자로에 사용된 연료 조립체 및 그에 사용된 그리드
US10388415B2 (en) Spacer grid
EP1845533A1 (en) Spacer grid spring for increasing the conformal contact area with fuel rod
JP6463691B2 (ja) 核燃料集合体のスペーサグリッド用燃料棒支持インサート、スペーサグリッド、及び核燃料集合体
US20100166135A1 (en) Debris filtering bottom spacer grid with louvers for preventing uplift of fuel rods
JP2008096435A (ja) 原子炉用燃料集合体
US3423287A (en) Nuclear reactor fuel element support
JPH0529879B2 (zh)
US20100246747A1 (en) Nuclear fuel rod spacer grid and framework and assembly comprising such a grid
US5263072A (en) Thermohydraulic grid and nuclear fuel assembly
CN104318962A (zh) 具有流线型低压降流道的定位格架及燃料组件
JP2006292755A (ja) 4点接触構造のスペーサ・グリッド
KR100900917B1 (ko) 교차점 지지체를 이용한 이중냉각 핵연료봉의 지지격자체
US8483349B2 (en) Spacer grid for dual-cooling nuclear fuel rods using intersectional support structures
CN105023618B (zh) 一种独立弹簧、保持格栅以及核燃料组件
US20220328201A1 (en) Nuclear Fuel Assembly with a Reinforcement Device
JP2008275615A (ja) 燃料バンドルおよびスペーサバンド
CN111613350B (zh) 一种可增强燃料元件间导热的压水堆燃料组件
KR101663125B1 (ko) 온-오프 특성이 개선된 상단고정체용 누름스프링 유닛 및, 이를 포함하는 핵연료 집합체용 상단고정체
KR101729155B1 (ko) 핵연료 집합체의 지지격자
JP2001141866A (ja) 燃料集合体
WO2018053812A1 (zh) 外条带、核反应堆燃料组件的定位格架及核反应堆燃料组件
JPH02231596A (ja) 核燃料集合体
KR101673876B1 (ko) 횡방향 진동을 저감하기 위한 코어핀 홀더캡이 구비된 핵연료 집합체용 상단고정체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202005603

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170920

ENP Entry into the national phase

Ref document number: 2017925989

Country of ref document: EP

Effective date: 20200420