WO2019052498A1 - 光纤扫描成像系统、设备及其畸变检测与矫正系统 - Google Patents

光纤扫描成像系统、设备及其畸变检测与矫正系统 Download PDF

Info

Publication number
WO2019052498A1
WO2019052498A1 PCT/CN2018/105413 CN2018105413W WO2019052498A1 WO 2019052498 A1 WO2019052498 A1 WO 2019052498A1 CN 2018105413 W CN2018105413 W CN 2018105413W WO 2019052498 A1 WO2019052498 A1 WO 2019052498A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
image
optical fiber
optical
fiber
Prior art date
Application number
PCT/CN2018/105413
Other languages
English (en)
French (fr)
Inventor
姚长呈
Original Assignee
成都理想境界科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理想境界科技有限公司 filed Critical 成都理想境界科技有限公司
Publication of WO2019052498A1 publication Critical patent/WO2019052498A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a fiber scanning imaging system, an optical fiber scanning imaging device, and a fiber scanning imaging device distortion detecting and correcting system.
  • Laser scanning imaging systems such as fiber-optic scanning projection displays, etc.
  • an optical amplification system is often introduced, and the introduction of the optical system inevitably causes distortion, and accordingly corrective measures are required.
  • the distortion generated by the optical system is generally corrected by the optical system, and the optical system correcting the distortion increases the size or design difficulty of the system, and the image source of the optical fiber scanning display is curved, and the distortion correction is performed.
  • the design of the optical system is more demanding, the design and processing are very difficult, and the yield rate cannot be guaranteed.
  • the object of the present invention is to provide a fiber scanning imaging system, an optical fiber scanning imaging device, and a fiber scanning imaging device distortion detecting and correcting system, which solves the optical distortion problem caused by the laser scanning imaging system introduced into the optical amplifying system by non-optical correction. .
  • the present invention provides a fiber scanning imaging system including a light source, a scanning fiber, a controller, and an optical amplifying component, wherein the controller stores a scanning duration corresponding to each effective scanning pixel, each effective The scan duration corresponding to the scan pixel is non-uniformly distributed; the controller is connected to the scan driver of the scan fiber and the light source, and is configured to control the scan duration according to each valid scan pixel stored in the controller.
  • the light source emits light and controls the scanning fiber to perform scanning; the optical amplifying component is disposed at an exit end of the scanning fiber.
  • the scanning optical fiber is deformed in opposite directions from the optical distortion of the optical amplifying component according to an image distortion scanned by a scanning duration corresponding to each of the effective scanning pixels stored in the controller.
  • the scanning fiber is offset from the optical distortion of the optical amplifying component according to an image distortion scanned by a scanning duration corresponding to each of the effective scanning pixels stored in the controller.
  • the correspondence between each valid scanning pixel and the scanning duration stored in the controller is obtained by a calibration method, and the correspondence is stored in the controller in advance.
  • an optical fiber scanning imaging apparatus including:
  • An image input interface for receiving image data
  • the optical fiber scanning imaging system is connected to the image input interface for outputting an image corresponding to the image data by means of fiber scanning.
  • the present invention also provides a distortion detecting and correcting system for the foregoing fiber scanning imaging device, comprising a test image output device, an image collector and a processor:
  • the test image output device is configured to output a predetermined test image to the fiber scanning imaging device
  • the image collector is configured to collect a projection image output by the fiber scanning imaging device
  • the processor is configured to compare the collected projection image with a standard image of a predetermined test image to obtain projection image distortion data; and calculate reverse distortion data according to the projection image distortion data; and according to the reverse distortion data
  • the scanning duration of each of the effective scanning pixels of the fiber scanning imaging system included in the fiber scanning imaging device is calculated.
  • the test image outputter outputs a plurality of predetermined test images in a small to large or large to small manner.
  • the system further comprises a fiber scanning imaging device resolution input/selection module for inputting/selecting the resolution of the optical fiber scanning imaging device to be corrected.
  • the system further comprises a fiber scanning imaging device resolution detecting module for detecting the resolution of the fiber scanning imaging device to be corrected.
  • the system further comprises a correction parameter outputter for outputting a correction parameter table, wherein the correction parameter table includes a scan duration corresponding to each valid scan pixel.
  • the present invention has the following beneficial effects.
  • the present invention pre-corrects the image source by the modulation algorithm to compensate the distortion of the optical lens, and can effectively reduce the distortion of the optical amplification system compared with the conventional optical method. burden.
  • FIG. 1 is a schematic diagram of a pixel grid of a normal adjustment scan of a fiber scanning imaging system according to an embodiment of the present invention
  • FIG. 2 is a partial enlarged view of the pixel grid of FIG. 1;
  • FIG. 3 is a schematic diagram of distortion and correction modulation effects of the present invention.
  • FIG. 1 is a schematic diagram of a pixel grid of a normal adjustment scan of a fiber scanning imaging system according to an embodiment of the present invention.
  • the trajectory tracking error at the discontinuous point is large, so the area actually used for displaying the image is as shown in the portion of the solid line 1 in FIG.
  • a portion of the area that can be modulated is artificially reserved for distortion correction (ie, the image area that can be used for display in principle is the dotted line 2 frame selection area).
  • the pixel density in FIG. 1 is large, and FIG. 2 is a partially enlarged schematic view of the pixel grid.
  • the present invention is directed to a fiber-optic scanning imaging system incorporating an optical amplifying system. Since the introduction of the optical system inevitably causes distortion, corresponding corrective measures are required. The traditional correction ideas are corrected by optical lenses. Such optical correction schemes not only increase the difficulty of optical design, but also increase the size of the optical system, which is not conducive to the miniaturization of optical scanning imaging systems.
  • the invention cooperates with the modulation algorithm to recalculate the look-up table parameters of the fiber scanning imaging system through the correction system, and pre-modulates the image source into a distortion opposite to the optical amplification system, thereby canceling the distortion of the lens of the optical amplifying component.
  • Embodiment 1 Optical fiber scanning imaging system
  • the optical fiber scanning imaging system of the embodiment of the invention comprises a light source, a scanning optical fiber, a controller and an optical amplifying component. Light emitted by the light source is coupled into the scanning fiber.
  • a query table is stored in the controller, and the query table includes a scan duration corresponding to each valid scan pixel, and a scan duration corresponding to each valid scan pixel is non-uniformly distributed.
  • the effective scanning pixel refers to the pixel actually used to display the imaging, and the scanning duration can also be understood as the laser modulation duration of each pixel.
  • the controller is connected to the scan driver of the scanning fiber and the light source, and is configured to control the light emitted by the light source and control the scanning fiber according to a scan duration corresponding to each valid scan pixel stored in the controller. Scan. Since the scanning duration corresponding to each effective scanning pixel is non-uniformly distributed, the scanned image of the scanning fiber is a distorted image before passing through the optical amplifying component, and the image distortion is opposite to the optical distortion of the optical amplifying component. The deformation.
  • the optical amplifying component is disposed at an exit end of the scanning fiber, and the distorted image scanned by the scanning fiber is cancelled or completely cancelled by the optical amplifying component and the optical distortion component of the optical amplifying component.
  • the correspondence between each valid scan pixel and the scan duration stored in the controller may be obtained by a calibration method, and the correspondence is pre-stored in the controller.
  • Embodiment 2 Optical fiber scanning imaging device
  • the optical fiber scanning imaging device of the embodiment of the present invention further includes an image input interface for receiving image data, including the fiber scanning imaging system of Embodiment 1.
  • the image input interface is coupled to the fiber optic scanning imaging system of Embodiment 1.
  • the fiber scanning imaging system is configured to output an image corresponding to the image data by means of fiber scanning.
  • Embodiment 3 Distortion detection and correction system for optical fiber scanning imaging equipment
  • the embodiment of the invention is used for performing distortion detection and correction on the fiber scanning imaging device in Embodiment 2.
  • the distortion detection and correction system includes a test image outputter, an image collector, and a processor.
  • the test image outputter is configured to output a predetermined test image, such as a rectangular image, to the fiber scanning imaging device.
  • a predetermined test image such as a rectangular image
  • the test image output device can output a plurality of predetermined test images in a small to large or large to small manner, and the multiple image modes can better compare the distortion of each pixel region. .
  • the image collector is configured to collect a projection image output by the fiber scanning imaging device, and the image collector may be a camera.
  • the processor is configured to compare the collected projection image with a standard image of a predetermined test image to obtain projection image distortion data; and calculate reverse distortion data according to the projection image distortion data; and according to the reverse distortion data
  • the correction parameter is calculated.
  • the correction parameter refers to the scanning duration corresponding to each effective scanning pixel of the fiber scanning imaging system included in the fiber scanning imaging device.
  • the collected projection image is compared with the standard image of the predetermined test image, and the correspondence between each effective scanning pixel and the scanning duration is obtained through a series of calculations, which may be referred to as a calibration process.
  • the image modulation display when actually displayed, when the image modulation display is performed, the image is deformed in the opposite direction, that is, the rectangular image area is modulated into a barrel-shaped distortion image. (The dotted line 3 area in the figure) can cancel out the distortion of the lens itself and realize the rectangular display (the solid line 1 area in the figure).
  • the pixel grid of the image is not limited by the physical physical pixel size, but is determined by the laser driving signal and the laser modulation signal. Therefore, it is convenient to control each pixel by limiting the scanning time of each pixel.
  • the size of each effective scanning pixel corresponding to the non-uniform distribution of scanning time can make the pixel size of the entire picture appear non-uniformly distributed.
  • the pixel driving direction can be gradually increased from the central pixel to the edge pixel, so that the scanning picture is presented as Barrel distortion can be.
  • the image can be pre-modulated into a form surrounded by the broken line 4, thereby canceling out the distortion of the lens.
  • the fiber scanning imaging device distortion detecting and correcting system can also be provided with a fiber scanning imaging device resolution input module for recording the resolution of the fiber scanning imaging device to be corrected.
  • the resolution input module can be replaced by a resolution selection module, that is, a plurality of resolutions are selected in the fiber scanning imaging device distortion detection and correction system, and the user selects the correction by the resolution selection module.
  • the resolution of the fiber optic scanning imaging device can be replaced by a resolution selection module, that is, a plurality of resolutions are selected in the fiber scanning imaging device distortion detection and correction system, and the user selects the correction by the resolution selection module.
  • the resolution of the fiber optic scanning imaging device can be replaced by a resolution selection module, that is, a plurality of resolutions are selected in the fiber scanning imaging device distortion detection and correction system, and the user selects the correction by the resolution selection module.
  • the resolution input module can be replaced with a resolution detection module for detecting the resolution of the optical fiber scanning imaging device to be corrected, and the detection mode can be directly read from the optical imaging imaging device to be corrected.
  • the fiber scanning imaging device distortion detecting and correcting system may further be provided with a parameter output device for outputting a correction parameter table, the correction parameter table It contains the scan duration corresponding to each valid scan pixel.
  • the distortion detection and correction system of the optical fiber scanning imaging device proposed by the embodiment of the invention is programmed and modulated by the algorithm, and the correction parameter table for adjusting the optical distortion is calculated conveniently and quickly before each optical fiber scanning imaging device leaves the factory.
  • the correction parameter table is stored in the controller of the fiber scanning imaging device as a look-up table parameter, and the controller can control the light source modulation and control the scanning fiber to scan and query.
  • the invention pre-corrects the image source by the modulation algorithm to compensate the distortion of the optical lens, and solves the distortion of the optical amplification system compared with the conventional optical method, thereby effectively reducing the burden of the optical system.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种光纤扫描成像系统,包括光源、扫描光纤、控制器和光学放大组件,控制器内存储有每一个有效扫描像素对应的扫描时长,每个有效扫描像素对应的扫描时长非均匀分布。控制器与扫描光纤的扫描驱动器和光源相连,用于根据控制器内存储的每一个有效扫描像素对应的扫描时长,控制光源出射光线以及控制扫描光纤进行扫描。光学放大组件设置在扫描光纤的出射端。相应地,一种对应的光纤扫描成像设备,及光纤扫描成像设备畸变检测与矫正系统。通过调制算法对图像源进行预矫正,补偿光学镜头的畸变,相比于传统光学方式解决光学放大系统畸变,可有效减轻光学系统的负担。

Description

光纤扫描成像系统、设备及其畸变检测与矫正系统
本申请要求享有2017年9月18日提交的名称为“光纤扫描成像系统、设备及其畸变检测与矫正系统”的中国专利申请CN201710841342.X的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及电子技术领域,尤其涉及一种光纤扫描成像系统、光纤扫描成像设备,及光纤扫描成像设备畸变检测与矫正系统。
背景技术
激光扫描成像系统如光纤扫描投影显示等,为了增大投影尺寸,往往会引入光学放大系统,而光学系统的引入必不可少地会产生畸变,因此需要相应的矫正措施。在现有技术中,对光学系统产生的畸变,一般会通过光学系统进行矫正,而光学系统矫正畸变则会增加系统尺寸或设计难度,加之光纤扫描显示的图像源是弧面的,对畸变矫正光学系统的设计则要求更高,设计和加工难度均非常大,良品率无法保证。
发明内容
本发明的目的是提供一种光纤扫描成像系统、光纤扫描成像设备,及光纤扫描成像设备畸变检测与矫正系统,通过非光学矫正的方式解决激光扫描成像系统引入光学放大系统后产生的光学畸变问题。
为了实现上述发明目的,本发明提供了一种光纤扫描成像系统,包括光源、扫描光纤、控制器和光学放大组件,所述控制器内存储有每一个有效扫描像素对应的扫描时长,每个有效扫描像素对应的扫描时长非均匀分布;所述控制器与所述扫描光纤的扫描驱动器和所述光源相连,用于根据所述控制器内存储的每一个有效扫描像素对应的扫描时长,控制所述光源出射光线以及控制所述扫描光纤进行扫描;所述光学放大组件设置在扫描光纤的出射端。
优选的,所述扫描光纤根据控制器内存储的每一个有效扫描像素对应的扫描时长所扫 描出的图像畸变与所述光学放大组件的光学畸变互为相反方向的变形。
优选的,所述扫描光纤根据控制器内存储的每一个有效扫描像素对应的扫描时长所扫描出的图像畸变与所述光学放大组件的光学畸变相互抵消。
优选的,所述控制器内存储的每一个有效扫描像素与扫描时长的对应关系是通过标定方式取得的,该对应关系预先存储于控制器内。
相应的,本发明还提供一种光纤扫描成像设备,包括:
图像输入接口,用于接收图像数据;
前述光纤扫描成像系统,与所述图像输入接口相连,用于通过光纤扫描的方式输出所述图像数据对应的图像。
相应的,本发明还提供一种前述光纤扫描成像设备的畸变检测与矫正系统,包括测试图像输出器、图像采集器和处理器:
所述测试图像输出器,用于向光纤扫描成像设备输出预定测试图像;
所述图像采集器,用于采集光纤扫描成像设备输出的投影图像;
所述处理器,用于将采集到的投影图像与预定测试图像的标准图像进行对比,得到投影图像畸变数据;并根据投影图像畸变数据,计算反向畸变数据;以及根据所述反向畸变数据计算光纤扫描成像设备包括的光纤扫描成像系统每一个有效扫描像素对应的扫描时长。
优选的,所述测试图像输出器按照由小到大或由大到小的方式输出若干张预定测试图像。
优选的,所述系统还包括光纤扫描成像设备分辨率录入/选择模块,用于录入/选择待矫正光纤扫描成像设备的分辨率。
优选的,所述系统还包括光纤扫描成像设备分辨率检测模块,用于检测待矫正光纤扫描成像设备的分辨率。
优选的,所述系统还包括矫正参数输出器,用于输出矫正参数表,所述矫正参数表中包含有每一个有效扫描像素对应的扫描时长。
与现有技术相比,本发明具有如下有益效果,本发明通过调制算法对图像源进行预矫正,补偿光学镜头的畸变,相比于传统光学方式解决光学放大系统畸变,可有效减轻光学系统的负担。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图:
图1为本发明实施例中光纤扫描成像系统正常调整扫描的像素网格示意图;
图2为图1中像素网格的局部放大示意图;
图3为本发明畸变及矫正调制效果示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,为本发明实施例中光纤扫描成像系统正常调整扫描的像素网格示意图。光纤扫描成像系统中,由于对不连续轨迹的控制,会导致不连续点处的轨迹跟踪误差较大,因此实际用以显示成像的区域如图1中实线1框中的部分所示,同时人为地预留一部分可以进行调制的区域用来进行畸变矫正(即原则上可以用来显示的图像区域为虚线2框选区域)。图1中像素密度较大,图2为像素网格的局部放大示意图。
本发明针对的是引入光学放大系统的光纤扫描成像系统,由于光学系统的引入必不可少地会产生畸变,因此需要相应的矫正措施。而传统矫正思路均是通过光学镜头进行矫正,这样的光学矫正方案不仅会增加光学设计难度,同时会增大光学系统的尺寸,不利于光纤扫描成像系统小型化发展。本发明配合调制算法,通过矫正系统重新计算光纤扫描成像系统的查询表参数,将图像源预先调制成与光学放大系统反向的畸变,从而抵消光学放大组件镜头的畸变。
实施例1:光纤扫描成像系统
本发明实施例光纤扫描成像系统,包括光源、扫描光纤、控制器和光学放大组件。所述光源出射的光线耦合到所述扫描光纤中。所述控制器内存储有查询表,查询表中包含每 一个有效扫描像素对应的扫描时长,每个有效扫描像素对应的扫描时长非均匀分布。有效扫描像素指实际用以显示成像的像素,扫描时长也可以理解为每个像素激光调制时长。
所述控制器与所述扫描光纤的扫描驱动器和所述光源相连,用于根据所述控制器内存储的每一个有效扫描像素对应的扫描时长,控制所述光源出射光线以及控制所述扫描光纤进行扫描。由于每个有效扫描像素对应的扫描时长非均匀分布,扫描光纤扫描出的图像在未经过光学放大组件之前为带有畸变的图像,该图像畸变与所述光学放大组件的光学畸变互为相反方向的变形。所述光学放大组件设置在扫描光纤的出射端,所述扫描光纤扫描出的带畸变的图像经所述光学放大组件后被光学放大组件自带的光学畸变部分抵消或全部抵消。
在本发明实施例中,所述控制器内存储的每一个有效扫描像素与扫描时长的对应关系可以是通过标定方式取得的,该对应关系预先存储于控制器内。
实施例2:光纤扫描成像设备
本发明实施例光纤扫描成像设备在包括实施例1中的光纤扫描成像系统的基础上,还包括:图像输入接口,用于接收图像数据。所述图像输入接口与实施例1中的光纤扫描成像系统相连。该光纤扫描成像系统用于通过光纤扫描的方式输出所述图像数据对应的图像。
实施例3:光纤扫描成像设备畸变检测与矫正系统
本发明实施例用于对实施例2中的光纤扫描成像设备进行畸变检测与矫正。该畸变检测与矫正系统包括测试图像输出器、图像采集器和处理器。
具体地,所述测试图像输出器,用于向光纤扫描成像设备输出预定测试图像,如矩形图像。在本发明一优选的实施例中,所述测试图像输出器可以按照由小到大或由大到小的方式输出若干张预定测试图像,多张图像方式可以更好地对比出各像素区域畸变。
所述图像采集器,用于采集光纤扫描成像设备输出的投影图像,图像采集器可以为摄像头。
所述处理器,用于将采集到的投影图像与预定测试图像的标准图像进行对比,得到投影图像畸变数据;并根据投影图像畸变数据,计算反向畸变数据;以及根据所述反向畸变数据计算矫正参数,矫正参数指光纤扫描成像设备包括的光纤扫描成像系统每一个有效扫描像素对应的扫描时长。采集到的投影图像与预定测试图像的标准图像进行对比,再通过一系列计算得到每一个有效扫描像素与扫描时长的对应关系,这一过程可以称为标定过 程。
下面举例说明矫正参数计算过程:
如图3,当实际显示时若图像存在枕型畸变(图中虚线4区域),则在进行图像调制显示时,使图像发生相反方向的变形,即将矩形的图像区域调制成桶型畸变的图像(图中虚线3区域),则可以抵消掉镜头本身的畸变,实现矩形显示(图中实线1区域)。
由于激光扫描成像的特点,图像的像素网格不受实体物理像素尺寸的限制,而是由激光驱动信号和激光调制信号共同决定的,因此可以方便通过限定每个像素扫描时长来控制每个像素的尺寸,每个有效扫描像素对应的扫描时长非均匀分布,则可以使整个画面的像素尺寸呈现非均匀分布。依据光学畸变的实际情况,如针对中心区域畸变小,边缘区域畸变明显的枕性光学畸变,则可以相应的从中心像素向边缘像素方向,每个像素驱动时长逐步变大,使扫描画面呈现为桶形畸变即可。
光学桶型畸变亦是如此,假设虚线3区域是未经过畸变矫正而含光学畸变的画面,则可将图像预先调制成虚线4所围成的形式,从而抵消掉镜头的畸变。
为了可以通用矫正不同分辨率的光纤扫描成像设备,所述光纤扫描成像设备畸变检测与矫正系统还可以设置一个光纤扫描成像设备分辨率录入模块,用于录入待矫正光纤扫描成像设备的分辨率。
另一种实施方式中,分辨率录入模块可以替换为分辨率选择模块,即在光纤扫描成像设备畸变检测与矫正系统中存入多种分辨率供选择,用户通过分辨率选择模块选定即将矫正的光纤扫描成像设备的分辨率。
另一种实施方式中,分辨率录入模块可以替换为分辨率检测模块,用于检测待矫正光纤扫描成像设备的分辨率,检测方式可以为直接从待矫正光纤扫描成像设备中读取。
为了方便直接将矫正参数输出甚至直接存储到待矫正光纤扫描成像设备中,所述光纤扫描成像设备畸变检测与矫正系统还可以设置一个参数输出器,用于输出矫正参数表,所述矫正参数表中包含有每一个有效扫描像素对应的扫描时长。
本发明实施例提出的光纤扫描成像设备畸变检测与矫正系统,通过算法调制,在每台光纤扫描成像设备出厂前,非常方便快捷地为其计算出调整光学畸变的矫正参数表,只需要在出厂前将该矫正参数表存储于光纤扫描成像设备的控制器中作为查询表参数,供控制器控制光源调制以及控制扫描光纤进行扫描时查询调用即可。
本发明通过调制算法对图像源进行预矫正,补偿光学镜头的畸变,相比于传统光学方 式解决光学放大系统畸变,可有效减轻光学系统的负担。
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (10)

  1. 一种光纤扫描成像系统,包括光源、扫描光纤、控制器和光学放大组件,其特征在于,所述控制器内存储有每一个有效扫描像素对应的扫描时长,每个有效扫描像素对应的扫描时长非均匀分布;
    所述控制器与所述扫描光纤的扫描驱动器和所述光源相连,用于根据所述控制器内存储的每一个有效扫描像素对应的扫描时长,控制所述光源出射光线以及控制所述扫描光纤进行扫描;
    所述光学放大组件设置在所述扫描光纤的出射端。
  2. 如权利要求1所述的光纤扫描成像系统,其特征在于,所述扫描光纤根据控制器内存储的每一个有效扫描像素对应的扫描时长所扫描出的图像畸变与所述光学放大组件的光学畸变互为相反方向的变形。
  3. 如权利要求2所述的光纤扫描成像系统,其特征在于,所述扫描光纤根据控制器内存储的每一个有效扫描像素对应的扫描时长所扫描出的图像畸变与所述光学放大组件的光学畸变相互抵消。
  4. 如权利要求1至3任一项所述的光纤扫描成像系统,其特征在于,所述控制器内存储的每一个有效扫描像素与扫描时长的对应关系是通过标定方式取得的,该对应关系预先存储于所述控制器内。
  5. 一种光纤扫描成像设备,其特征在于,包括:
    图像输入接口,用于接收图像数据;
    如权利要求1至4中任一项所述的光纤扫描成像系统,与所述图像输入接口相连,用于通过光纤扫描的方式输出所述图像数据对应的图像。
  6. 一种用于如权利要求5所述的光纤扫描成像设备的畸变检测与矫正系统,其特征在于,包括测试图像输出器、图像采集器和处理器:
    所述测试图像输出器,用于向所述光纤扫描成像设备输出预定测试图像;
    所述图像采集器,用于采集所述光纤扫描成像设备输出的投影图像;
    所述处理器,用于将采集到的投影图像与所述预定测试图像的标准图像进行对比,得到投影图像畸变数据;并根据所述投影图像畸变数据,计算反向畸变数据;以及根据所述反向畸变数据计算所述光纤扫描成像设备每一个有效扫描像素对应的扫描时长。
  7. 如权利要求6所述的系统,其特征在于,所述测试图像输出器按照由小到大或由大到小的方式输出若干张预定测试图像。
  8. 如权利要求6所述的系统,其特征在于,所述系统还包括光纤扫描成像设备分辨率录入/选择模块,用于录入/选择待矫正光纤扫描成像设备的分辨率。
  9. 如权利要求6所述的系统,其特征在于,所述系统还包括光纤扫描成像设备分辨率检测模块,用于检测待矫正光纤扫描成像设备的分辨率。
  10. 如权利要求6至9任一项所述的系统,其特征在于,所述系统还包括矫正参数输出器,用于输出矫正参数表,所述矫正参数表中包含有每一个有效扫描像素对应的扫描时长。
PCT/CN2018/105413 2017-09-18 2018-09-13 光纤扫描成像系统、设备及其畸变检测与矫正系统 WO2019052498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710841342.XA CN108803006B (zh) 2017-09-18 2017-09-18 光纤扫描成像系统、设备及其畸变检测与矫正系统
CN201710841342.X 2017-09-18

Publications (1)

Publication Number Publication Date
WO2019052498A1 true WO2019052498A1 (zh) 2019-03-21

Family

ID=64094514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105413 WO2019052498A1 (zh) 2017-09-18 2018-09-13 光纤扫描成像系统、设备及其畸变检测与矫正系统

Country Status (2)

Country Link
CN (1) CN108803006B (zh)
WO (1) WO2019052498A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446019B (zh) * 2019-07-17 2022-02-01 成都理想境界科技有限公司 一种光纤扫描投影系统及其调制方法
CN110596720A (zh) * 2019-08-19 2019-12-20 深圳奥锐达科技有限公司 距离测量系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019028A1 (ja) * 2004-08-19 2006-02-23 Brother Kogyo Kabushiki Kaisha 瞳孔検出装置およびそれを備えた画像表示装置
CN101636632A (zh) * 2007-01-26 2010-01-27 特里伯耶拿有限公司 用于获得距离和图像信息的光学仪器和方法
CN102648431A (zh) * 2009-10-15 2012-08-22 日本电气株式会社 图像投影设备、图像投影方法、距离测量设备和距离测量方法
CN103969829A (zh) * 2014-05-16 2014-08-06 西安电子科技大学 基于mems微扫描镜的单探测器光学成像系统及方法
CN106019587A (zh) * 2016-06-23 2016-10-12 深圳市虚拟现实科技有限公司 一种可以自动调焦的近眼显示装置及方法
CN107132646A (zh) * 2017-05-09 2017-09-05 浙江大学 基于干涉增强的快速高效自适应光学成像补偿方法与系统

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8526934U1 (de) * 1985-09-20 1987-12-23 Dr.-Ing. Rudolf Hell Gmbh, 2300 Kiel Abtasteinrichtung für Halbton-Durchsichtsvorlagen
US5596339A (en) * 1992-10-22 1997-01-21 University Of Washington Virtual retinal display with fiber optic point source
US6795221B1 (en) * 1999-08-05 2004-09-21 Microvision, Inc. Scanned display with switched feeds and distortion correction
KR100414083B1 (ko) * 1999-12-18 2004-01-07 엘지전자 주식회사 영상왜곡 보정방법 및 이를 이용한 영상표시기기
US6856712B2 (en) * 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
FR2849218B1 (fr) * 2002-12-20 2005-03-04 Mauna Kea Technologies Tete optique confocale, notamment miniature, a balayage integre et systeme d'imagerie confocale mettant en oeuvre ladite tete
FR2866123B1 (fr) * 2004-02-10 2007-10-12 Zile Liu Procede et dispositif pour la creation d'images retiniennes utilisant le stigmatisme des deux foyers d'un dioptre sensiblement elliptique
CN1721910A (zh) * 2004-07-14 2006-01-18 吴镝 一种ld(激光二极管)线阵列激光投影系统
EP3552534A3 (en) * 2004-10-01 2020-04-15 University of Washington Remapping methods to reduce distortions in images
TWI511122B (zh) * 2006-08-11 2015-12-01 Geo Semiconductor Inc 校正相機之影像失真的校準方法與系統
EP1890168A1 (de) * 2006-08-18 2008-02-20 Leica Geosystems AG Laserscanner
US7522813B1 (en) * 2007-10-04 2009-04-21 University Of Washington Reducing distortion in scanning fiber devices
JP5276943B2 (ja) * 2008-09-29 2013-08-28 株式会社日立製作所 表示装置
JP2011123465A (ja) * 2009-11-13 2011-06-23 Seiko Epson Corp 光走査型プロジェクター
US8891147B2 (en) * 2011-05-27 2014-11-18 Hitachi-Lg Data Storage, Inc. Optical beam scanning device and image display device using the same
EP2574969B1 (en) * 2011-09-30 2016-07-06 The Commonwealth of Australia as represented by The Department of Innovation, Industry, Science and Research Optical fibre positioning system
EP2756790B1 (en) * 2012-06-01 2019-06-05 Olympus Corporation Endoscopic system
JP5910440B2 (ja) * 2012-09-28 2016-04-27 ソニー株式会社 画像出力装置、画像出力方法、およびプログラム
CN104363816B (zh) * 2012-10-22 2017-05-24 奥林巴斯株式会社 扫描型内窥镜系统
KR102274413B1 (ko) * 2013-01-15 2021-07-07 매직 립, 인코포레이티드 초고해상도 스캐닝 섬유 디스플레이
JP6120611B2 (ja) * 2013-02-27 2017-04-26 日立マクセル株式会社 ビーム走査型表示装置
JP6289126B2 (ja) * 2014-01-29 2018-03-07 オリンパス株式会社 走査型内視鏡装置とその制御方法
CN104990495B (zh) * 2015-07-24 2017-07-28 哈尔滨工业大学 高分辨率频率扫描干涉仪中基于峰值演化消畸变的色散相位补偿方法
CN105959787A (zh) * 2016-05-13 2016-09-21 京东方科技集团股份有限公司 视频信号传输方法、多媒体播放器及系统
CN106920475B (zh) * 2017-04-25 2020-03-06 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019028A1 (ja) * 2004-08-19 2006-02-23 Brother Kogyo Kabushiki Kaisha 瞳孔検出装置およびそれを備えた画像表示装置
CN101636632A (zh) * 2007-01-26 2010-01-27 特里伯耶拿有限公司 用于获得距离和图像信息的光学仪器和方法
CN102648431A (zh) * 2009-10-15 2012-08-22 日本电气株式会社 图像投影设备、图像投影方法、距离测量设备和距离测量方法
CN103969829A (zh) * 2014-05-16 2014-08-06 西安电子科技大学 基于mems微扫描镜的单探测器光学成像系统及方法
CN106019587A (zh) * 2016-06-23 2016-10-12 深圳市虚拟现实科技有限公司 一种可以自动调焦的近眼显示装置及方法
CN107132646A (zh) * 2017-05-09 2017-09-05 浙江大学 基于干涉增强的快速高效自适应光学成像补偿方法与系统

Also Published As

Publication number Publication date
CN108803006B (zh) 2021-01-05
CN108803006A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
JP3871061B2 (ja) 画像処理システム、プロジェクタ、プログラム、情報記憶媒体および画像処理方法
US10088742B2 (en) Laser projection display system configured to execute scanning with laser light in accordance with image signals
JP2008148055A (ja) 画像処理装置、画像処理方法、表示装置、および投射型表示装置
US7457458B1 (en) Method and apparatus for defining and correcting image data
JP2009092984A (ja) 画像補正装置、画像表示システム、及び画像補正方法
WO2019052498A1 (zh) 光纤扫描成像系统、设备及其畸变检测与矫正系统
JP2954810B2 (ja) コンバーゼンス補正方法及びその装置
JP2024079747A (ja) 制御装置、制御方法及び制御プログラム
JP2007208698A (ja) 映像照射装置
KR100400011B1 (ko) 프로젝션 텔레비전 및 이의 컨버젼스 조정 방법
JP2006050255A (ja) 大画面表示システムおよびその輝度補正法
JP5250980B2 (ja) プロジェクタおよび当該プロジェクタの画像補正方法
US11109002B2 (en) Projection control apparatus, image projection apparatus, and projection control method
KR100188193B1 (ko) 투사형 프로젝터의 보정량생성장치
JP2001197332A (ja) 画像再生システムの欠陥を判定し且つ少なくとも部分的に補正する方法及び該方法を実施するための装置
JP6525612B2 (ja) 画像投射装置
US7145733B2 (en) Projector and exposure adjustment method
KR100416547B1 (ko) 프로젝션 텔레비전에서 컨버젼스를 자동으로 조정하는방법 및 장치
JP2015115801A (ja) 画像投射装置および画像投射方法並びにプログラム
JP2009223040A (ja) 画像表示装置及び画像表示方法
US9615070B2 (en) Video signal processing device and projection-type display device
JP2005150859A (ja) 画像投影装置
KR100518826B1 (ko) 프로젝션 tv의 광학적 왜곡보정에 따른 영상 보정장치및 보정방법
JP3730979B2 (ja) 傾斜角度測定装置を有するプロジェクタ
JP2017203920A (ja) 画像投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855522

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18855522

Country of ref document: EP

Kind code of ref document: A1