WO2019052491A1 - 阳极靶、射线光源、计算机断层扫描设备及成像方法 - Google Patents

阳极靶、射线光源、计算机断层扫描设备及成像方法 Download PDF

Info

Publication number
WO2019052491A1
WO2019052491A1 PCT/CN2018/105381 CN2018105381W WO2019052491A1 WO 2019052491 A1 WO2019052491 A1 WO 2019052491A1 CN 2018105381 W CN2018105381 W CN 2018105381W WO 2019052491 A1 WO2019052491 A1 WO 2019052491A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
anode target
anode
ray
electron beam
Prior art date
Application number
PCT/CN2018/105381
Other languages
English (en)
French (fr)
Inventor
谭承君
黄文会
唐传祥
靳清秀
张东生
罗群
刘东海
张路明
吴沛东
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to EP18856120.3A priority Critical patent/EP3686913A4/en
Priority to US16/627,531 priority patent/US11456146B2/en
Publication of WO2019052491A1 publication Critical patent/WO2019052491A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4021Arrangements for generating radiation specially adapted for radiation diagnosis involving movement of the focal spot
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/405Source units specially adapted to modify characteristics of the beam during the data acquisition process
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/153Spot position control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/02Electrical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/083Bonding or fixing with the support or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/086Target geometry

Definitions

  • the present invention relates to the field of radiographic imaging technology, and in particular to an anode target, a ray source, a computed tomography apparatus, and an imaging method.
  • X-rays have a wide range of applications in industrial non-destructive testing, safety inspection, medical diagnosis and treatment.
  • an X-ray fluoroscopic imaging apparatus made by utilizing the high penetration ability of X-rays plays an important role in all aspects of people's daily life.
  • a film-type planar fluoroscopy imaging device Early in this type of equipment was a film-type planar fluoroscopy imaging device.
  • the current advanced technology is a digital, multi-view and high-resolution stereo imaging device, such as a CT (computed tomography) imaging device, which can achieve high definition. 3D graphics or sliced images are advanced high-end applications.
  • CT computed tomography
  • the moving speed of the X-ray generating device is usually very high, resulting in a decrease in the reliability and stability of the entire device, and further, the motion is improved.
  • the speed limit, CT inspection speed is also limited, so the inspection efficiency is low.
  • the X-ray source of such equipment moves on the slip ring, resulting in an equivalent X-ray source focus, resulting in motion artifacts in the imaged image, poor definition, and leakage for some minor contraband.
  • the possibility of inspection. And such devices can only check for stationary (or slow moving) objects, and for moving objects, it is almost impossible to form a three-dimensional map.
  • a hot cathode is used as an electron-emitting unit, and the hot cathode is arrayed, and the voltage between the hot cathode gates is used to control the emission of electrons, thereby controlling each cathode to emit electrons in sequence, and correspondingly on the anode.
  • the sequential position bombards the target and becomes a distributed X-ray source.
  • the X-ray source can be quickly generated from multiple angles of view, thereby enabling rapid imaging from an angle.
  • This method can greatly improve the inspection efficiency compared with the previous method; And the scheme is simple in structure, stable in system and high in reliability.
  • the high-energy ray output of the CT device can only be a single energy level beam, which does not satisfy more usage requirements.
  • the present invention provides an anode target, a ray source, a computed tomography apparatus, and an imaging method, which are capable of providing dual-energy distributed ray imaging data and improving the imaging quality of the ray system.
  • an anode target comprising: a first anode target for causing an electron beam emitted from a cathode to be a target of the first anode target by a first voltage carried thereon Generating a first ray at a point; a second anode target for generating a second ray on the target of the second anode target by a second voltage carried thereon; and a ceramic body, And isolating the first anode target and the second anode target.
  • a cooling oil pipe for cooling the first anode target and the second anode target; and a shielding layer for generating the anode target The rays are shielded.
  • the ceramic body includes: a ceramic body that is metallized.
  • the first anode target, the second anode target, and the metallized ceramic body are connected by gold-copper welding.
  • the cathode is staggered at both ends of the anode target.
  • a ray source comprising: a cathode assembly for emitting an electron beam; and an anode assembly for receiving the electron beam from the cathode assembly to generate a ray source;
  • the anode assembly comprises an anode target, the anode target comprising: a first anode target for passing an electron beam emitted from the cathode on a target of the first anode target by a first voltage carried thereon Generating a first ray; a second anode target for generating a second ray on the target of the second anode target by a second voltage carried thereon; and a ceramic body for The first anode target and the second anode target are isolated.
  • the cathode assembly is staggered across the anode target of the anode assembly.
  • a computed tomography apparatus comprising: a cathode assembly for emitting an electron beam; and an anode assembly for receiving the electron beam from the cathode assembly, generating a ray source; wherein the anode assembly includes an anode target, the anode target including: a first anode target for passing an electron beam emitted from the cathode to the first anode target by a first voltage carried thereon Generating a first ray on the target; the second anode target for generating a second ray on the target of the second anode target by the second voltage carried thereon; and the ceramic body And for isolating the first anode target and the second anode target; and an imaging device for performing radiography through the first ray and the second ray.
  • the radiographic imaging includes dual energy ray imaging.
  • an imaging method of a computed tomography apparatus comprising: a computed tomography apparatus generating a ray, the ray comprising a first ray and a second ray; a ray is applied to the object to be measured to generate first test data; the second ray is applied to the object to be measured to generate second test data; and radiographic imaging is performed by the first test data and the second test data;
  • the computed tomography apparatus comprises: a cathode assembly for emitting an electron beam; an anode assembly for receiving the electron beam from the cathode assembly to generate a ray source; wherein the anode assembly comprises an anode a target, the anode target comprising: a first anode target for generating a first ray on a target of the first anode target by a first voltage carried thereon; a second anode; a target for generating, by a second voltage carried thereon,
  • the radiographic imaging includes dual energy ray imaging.
  • the ray source According to the anode target, the ray source, the computed tomography apparatus and the imaging method of the present invention, it is possible to provide dual-energy distributed ray imaging data and improve the imaging quality of the ray system.
  • the invention also provides an anode target, a ray source, a computed tomography apparatus and an imaging method, which can make the X-rays emitted from the cathodes arranged on both sides of the anode target are distributed on a straight line on the target of the anode target.
  • Improve the intensity of the light source improve the imaging quality of the ray system, and simplify the complexity of the imaging system.
  • an anode target comprising: a plurality of target structures for receiving an electron beam emitted from a cathode to generate radiation, the plurality of targets being a three-dimensional structure having a slope a copper heat sink for carrying the target structure, the copper heat sink comprising an oxygen-free copper heat sink; a cooling oil pipe for cooling the anode target; and a shielding layer for generating a shielding effect, the shielding layer Includes a tungsten shield.
  • the method includes: interlacing between two adjacent ones of the plurality of target structures.
  • the inclined surface of two adjacent ones of the plurality of target structures are oriented in opposite directions.
  • the targets of the target structures staggered are in the same straight line.
  • the plurality of target structures are soldered to the copper heat sink by brazing.
  • a ray source comprising: a cathode assembly for emitting an electron beam; and an anode assembly for receiving the electron beam from the cathode assembly to generate a ray source;
  • the anode assembly comprises an anode target, the anode target comprising: a plurality of target structures for receiving an electron beam emitted by the cathode to generate radiation, the plurality of targets being a three-dimensional structure having a slope; copper a cooling body for carrying the target structure, the copper heat sink comprising an oxygen-free copper heat sink; a cooling oil pipe for cooling the anode target; a shielding layer for generating a shielding effect, the shielding layer comprising a tungsten shield Floor.
  • the cathode is staggered at both ends of the anode target.
  • adjacent ones of the plurality of target structures are staggered.
  • the targets of the target structures staggered are in the same straight line.
  • a computed tomography apparatus comprising: a cathode assembly for emitting an electron beam; and an anode assembly for receiving the electron beam from the cathode assembly, generating a ray source; wherein the anode assembly comprises an anode target, the anode target comprising: a plurality of target structures for receiving an electron beam emitted by the cathode to generate radiation, the plurality of targets being slanted a structure; a copper heat sink for carrying the target structure, the copper heat sink comprising an oxygen-free copper heat sink; a cooling oil pipe for cooling the anode target; a shielding layer for generating a shielding effect, the shielding layer A tungsten shielding layer is included; an imaging device for radiographic imaging by the radiation.
  • an imaging method of a computed tomography apparatus comprising: a computed tomography apparatus generating a ray; the ray acting on the object to be measured, generating test data; The test data is directly subjected to radiography; wherein the computed tomography apparatus comprises: a cathode assembly for emitting an electron beam; and an anode assembly for receiving the electron beam from the cathode assembly to generate a ray source
  • the anode assembly includes an anode target, the anode target comprising: a cathode assembly for emitting an electron beam; and an anode assembly for receiving the electron beam from the cathode assembly to generate a radiation source
  • the anode assembly includes an anode target, the anode target including: a plurality of target structures for receiving an electron beam emitted from the cathode to generate radiation, the plurality of targets being a three-dimensional structure having a slope; copper cooling
  • the anode target, the distributed X-ray source, the computed tomography apparatus and the imaging method according to the present invention enable the electrons emitted from the cathodes arranged at both ends of the anode target to be distributed in a straight line on the target points of the anode target, thereby improving the radiation.
  • the imaging quality of the system simplifies the complexity of the imaging system.
  • FIG. 1 is a schematic view of a single row of arranged anode targets in the prior art.
  • FIG. 2 is a schematic view of a double row arrangement anode target in the prior art.
  • FIG. 3 is a schematic diagram of an anode target according to an exemplary embodiment.
  • FIG. 4 is a schematic diagram of a ray source according to an exemplary embodiment.
  • FIG. 5 is a schematic diagram of a computed tomography apparatus according to an exemplary embodiment.
  • FIG. 6 is a flowchart of an imaging method of a computed tomography apparatus according to an exemplary embodiment.
  • FIG. 7 is a schematic diagram of an anode target according to an exemplary embodiment.
  • FIG. 8 is a schematic side view of an anode target, according to an exemplary embodiment.
  • FIG 9 is a top plan view of an anode target, according to an exemplary embodiment.
  • FIG. 10 is a schematic diagram of a ray source according to an exemplary embodiment.
  • FIG. 11 is a schematic diagram of a computed tomography apparatus according to an exemplary embodiment.
  • FIG. 12 is a flowchart of an imaging method of a computed tomography apparatus according to an exemplary embodiment.
  • FIG. 1 is a schematic view of a single row of arranged anode targets in the prior art.
  • Fig. 1 shows the structure of a conventional distributed X-ray source.
  • the anode target is made of oxygen-free copper as a base, and the tungsten-free target is welded on an oxygen-free copper.
  • the target, the oxygen-free copper substrate has a cooling circuit for cooling the anode target.
  • the electron gun is evenly arranged on one side of the anode target, and the electron beam emitted from the electron gun drifts toward the anode under the acceleration of the anode electric field, and finally hits the tantalum tungsten target to generate X-rays.
  • 2 is a schematic view of a double row arrangement anode target in the prior art.
  • the number of light sources in the distributed light source is usually required to be several tens to several hundreds (determined as needed).
  • the minimum diameter of the cathode assembly is currently about 16 mm, leaving a little margin, and the cathode assembly is usually arranged at a pitch of 20 mm.
  • a 50 cathode assembly can be arranged in a 1 m long light source, and a cathode assembly produces a target on the anode target, thereby producing 50 light sources.
  • the cathodes can be staggered at both ends of the anode target, and the electron beams emitted by the cathodes are struck on both sides of the anode target, thereby doubling the density of the source.
  • the electron gun can be arranged at both ends of the anode target, as shown in Fig. 2, the structure can double the intensity of the light source to meet the requirements of most occasions.
  • FIG. 3 is a schematic diagram of an anode target according to an exemplary embodiment.
  • an imaging device is required to simultaneously output two energy X-ray sources, ie, to provide dual energy distribution.
  • An X-ray source to increase the resolution of the X-ray imaging system.
  • an anode target 10 is proposed, the anode target comprising:
  • the first anode target 102 is configured to cause a first ray to be generated on the target of the first anode target by the first voltage carried thereon.
  • the first voltage may be, for example, a high voltage of 90 kV
  • the first ray generated by the electron beam emitted from the cathode on the first anode target may be, for example, an X-ray having a first energy level.
  • the second anode target 104 is configured to generate a second ray on the target of the second anode target by the second voltage carried thereon.
  • the second voltage may be, for example, a high voltage of 180 kV
  • the second radiation generated by the electron beam emitted from the cathode on the second anode target may be, for example, an X-ray having a second energy level.
  • the first voltage and the second voltage may also be high voltages of the same magnitude, and the invention is not limited thereto.
  • the ceramic body 106 is configured to isolate the first anode target 102 and the second anode target 104.
  • the ceramic body 106 includes a ceramic body that is metallized.
  • the first anode target 102, the second anode target 104 and the metallized ceramic body are connected by gold-copper welding.
  • the first anode 102 target and the second anode target 104 and the metallized ceramic are welded by gold and copper, and are solidified into one unit, which is convenient for installation and debugging.
  • the method further includes cooling the oil pipe 108 for cooling the first anode target and the second anode target.
  • a shielding layer (not shown) for shielding the rays generated by the anode target.
  • the cathodes are staggered at both ends of the anode target.
  • the anode target of the present invention is divided into two parts by ceramic isolation, and the anode targets on both sides can be respectively applied with different high voltages, and the electron beams emitted from the cathodes at both ends of the anode target are struck at both ends of the anode target to generate two X-rays of different energies.
  • the anode target is divided into two parts by ceramic isolation, and the anode targets on both sides can be respectively applied with different high voltages, and the electron beams emitted from the cathodes at both ends of the anode target are struck at both ends of the anode target to generate two X-rays of different energies.
  • FIG. 4 is a schematic diagram of a ray source according to an exemplary embodiment.
  • the ray source 20 includes:
  • the cathode assembly 202 is for emitting an electron beam that is directed toward the anode assembly 204 by attraction of a voltage.
  • the anode assembly 204 is for receiving an electron beam from the cathode assembly, the electron beam interacting with the anode target to generate a source of radiation.
  • anode assembly comprises an anode target 10
  • the anode target comprising:
  • the first anode target 102 by the first voltage, causes the electron beam emitted by the cathode to generate a first ray on the target of the first anode target.
  • the first voltage may be, for example, a high voltage of 90 kV
  • the first ray generated by the electron beam emitted from the cathode on the first anode target may be, for example, an X-ray having a first energy level.
  • the second anode target 104 passes the second voltage so that the electron beam emitted from the cathode generates a second ray on the target of the second anode target.
  • the second voltage may be, for example, a high voltage of 180 kV
  • the second radiation generated by the electron beam emitted from the cathode on the second anode target may be, for example, an X-ray having a second energy level.
  • the first voltage and the second voltage may also be high voltages of the same magnitude, and the invention is not limited thereto.
  • the ceramic body 106 is configured to isolate the first anode target 102 and the second anode target 104.
  • the ceramic body 106 includes a cermet body.
  • the first anode target 102, the second anode target 104 and the metallized ceramic body are connected by gold-copper welding.
  • the first anode 102 target and the second anode target 104 and the cermet are welded by gold and copper, and are solidified into one unit for easy installation and debugging.
  • the cathode assembly is staggered across the anode target of the anode assembly.
  • an electron beam is generated by the cathode assembly, and an electron beam is received by the anode assembly, wherein the anode assembly is separated by ceramics, and the anode target is divided into two parts, and the anode targets on both sides can be respectively applied with different high voltages, anode targets
  • the electron beams emitted from the cathodes at both ends are struck at both ends of the anode target to generate X-rays of two different energies.
  • FIG. 5 is a schematic diagram of a computed tomography apparatus according to an exemplary embodiment.
  • the computed tomography apparatus 30 includes:
  • the cathode assembly 202 is for emitting an electron beam that is directed toward the anode assembly 204 by attraction of a voltage.
  • the anode assembly 204 is for receiving an electron beam from the cathode assembly, the electron beam interacting with the anode target to generate a source of radiation.
  • anode assembly comprises an anode target 10
  • the anode target comprising:
  • the first anode target 102 by the first voltage, causes the electron beam emitted by the cathode to generate a first ray on the target of the first anode target.
  • the first voltage may be, for example, a high voltage of 90 kV
  • the first ray generated by the electron beam emitted from the cathode on the first anode target may be, for example, an X-ray having a first energy level.
  • the second anode target 104 passes the second voltage so that the electron beam emitted from the cathode generates a second ray on the target of the second anode target.
  • the second voltage may be, for example, a high voltage of 180 kV
  • the second radiation generated by the electron beam emitted from the cathode on the second anode target may be, for example, an X-ray having a second energy level.
  • the first voltage and the second voltage may also be high voltages of the same magnitude, and the invention is not limited thereto.
  • the ceramic body 106 is configured to isolate the first anode target 102 and the second anode target 104.
  • the ceramic body 106 includes a cermet body.
  • the first anode target 102, the second anode target 104 and the cermet body are connected by gold-copper welding.
  • the first anode 102 target and the second anode target 104 and the cermet are welded by gold and copper, and are solidified into one unit for easy installation and debugging.
  • the cathode assembly is staggered across the anode target of the anode assembly.
  • the imaging device 302 is configured to perform radiographic imaging by the first ray and the second ray.
  • the radiography performed by the imaging device includes dual energy ray imaging.
  • an electron beam is generated by a cathode assembly, and an electron beam is received by the anode assembly, wherein the anode assembly is separated by ceramics, and the anode target is divided into two parts, and the anode targets on both sides can be respectively applied with different high voltages.
  • An electron beam emitted from a cathode at both ends of the anode target strikes both ends of the anode target to generate X-rays of two different energies. Thereby generating dual-energy distributed X-rays, and then performing imaging by imaging device, which can provide dual-energy ray imaging and improve the imaging quality of the ray system.
  • FIG. 6 is a flowchart of an imaging method of a computed tomography apparatus according to an exemplary embodiment.
  • the computed tomography apparatus generates radiation, the ray comprising a first ray and a second ray; wherein the computed tomography apparatus comprises: a cathode assembly for emitting an electron beam; and an anode assembly for receiving from Generating a ray source in the electron beam of the cathode assembly; wherein the anode assembly comprises an anode target, the anode target comprising: a first anode target, the electron beam emitted by the cathode is passed through the first voltage Generating a first ray on a target of the first anode target; generating a second ray on the target of the second anode target by a second voltage through a second voltage; and a ceramic body And for isolating the first anode target and the second anode target.
  • the first ray acts on the object to be measured to generate first test data.
  • the second ray acts on the object to be measured to generate second test data.
  • radiography is performed by the first test data and the second test data.
  • the imaging device in the computerized tomography apparatus can be imaged, for example, and can be imaged, for example, by other imaging devices, and the invention is not limited thereto.
  • the radiography includes dual energy ray imaging. The imaging calculation can be performed, for example, by the dual energy imaging method in the prior art, and the invention is not limited thereto.
  • modules may be distributed in the device according to the description of the embodiments, or may be correspondingly changed in one or more devices different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into multiple sub-modules.
  • the exemplary embodiments described herein may be implemented by software, or may be implemented by software in combination with necessary hardware. Therefore, the technical solution according to the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.) or on a network.
  • a non-volatile storage medium which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a number of instructions are included to cause a computing device (which may be a personal computer, server, mobile terminal, or network device, etc.) to perform a method in accordance with an embodiment of the present invention.
  • an anode target a ray source, a computed tomography apparatus, and an imaging method according to embodiments of the present invention have one or more of the following advantages.
  • the anode target of the present invention divides the anode target into two parts by ceramic isolation, and the anode targets on both sides can be respectively applied with different high voltages, and the electron beams emitted from the cathodes at both ends of the anode target are hit on the anode target.
  • the ends thus produce X-rays of two different energies. Thereby generating dual-energy distributed X-rays, which can provide dual-energy distributed ray imaging data and improve the imaging quality of the ray system.
  • the computed tomography apparatus of the present invention generates an electron beam through a cathode assembly, receives an electron beam through the anode assembly, and performs imaging toward the imaging device, thereby providing dual-energy imaging and improving imaging quality of the radiation system.
  • FIG. 7 is a schematic diagram of an anode target according to an exemplary embodiment.
  • an anode target 10 is provided, the anode target comprising:
  • a plurality of target structures 102 are configured to receive electron beams emitted by the cathode to generate radiation, the plurality of targets being a three-dimensional structure having a slope; and two adjacent ones of the plurality of target structures are staggered. The slopes of two adjacent target structures 102 of the plurality of target structures 102 are oriented in opposite directions. The targets in the interposed target structures 102 are in the same straight line.
  • the target structure can be, for example, a tantalum tungsten target.
  • the target structure 102 is used to carry a high voltage voltage that causes the electron beam to generate radiation at a target point of the target structure 102.
  • the high voltage power can be, for example, a high voltage of 90 kV, and can also be, for example, a high voltage of 180 kV, and the invention is not limited thereto.
  • the radiation generated by the target structure 102 may be, for example, X-rays, and the generated X-rays have different energy levels corresponding to different high-voltage voltages, and the invention is not limited thereto.
  • a copper heat sink (not shown) is used to carry the target structure, the copper heat sink comprises an oxygen-free copper heat sink, and the plurality of target structures 102 can be soldered to the copper heat sink, for example by brazing. One-time soldering can be performed on the oxygen-free copper heat sink, for example, on the back or bottom surface of the target structure 102.
  • Cooling oil line 104 is used to cool the anode target.
  • a shielding layer (not shown) is used to create a shielding effect, and the shielding layer includes a tungsten shielding layer.
  • the tungsten shielding layer is fixed in the incident direction of the electron beam, on the one hand, the electric field gradient on the surface of the anode target is lowered, and on the other hand, the X-rays emitted by the anode target are shielded to ensure that the X-rays are only emitted directly upward, and the X-ray doses in other directions are as small as possible. It is difficult to reduce the radiation shielding work of the entire radiation source in the later stage.
  • the electron beam is accelerated by the high voltage of the anode, passes through the tungsten shielding layer, and is struck on the tantalum tungsten target to generate X-rays.
  • FIG. 8 is a schematic side view of an anode target according to an exemplary embodiment
  • FIG. 9 is a top view of an anode target according to an exemplary embodiment.
  • two adjacent tantalum tungsten targets 102 are staggered, and the slopes are respectively directed in two opposite directions for receiving electrons emitted from the electron guns at both ends of the anode target.
  • the centers of the two anode targets 102 which are staggered are in a straight line, and the position of the electron beam hitting the anode target is also exactly the center position of the anode target 102, so that a distributed X-ray source having a focus in a straight line can be generated.
  • This method allows the targets that are shot when the electron gun is placed across the anode target in the same line.
  • the electrons emitted from the cathodes arranged at both ends of the anode target can be distributed on the anode target.
  • the targets that are shot when the electron gun is arranged at both ends of the anode target are also on the same straight line.
  • FIG. 10 is a schematic diagram of a ray source according to an exemplary embodiment.
  • the ray source 20 includes a cathode assembly 202 for emitting an electron beam that is directed toward the anode assembly 204 by attraction of a voltage.
  • the anode assembly 204 is for receiving an electron beam from the cathode assembly, the electron beam interacting with the anode target to generate a source of radiation.
  • anode assembly comprises an anode target 10
  • the anode target comprising:
  • a plurality of target structures 102 are configured to receive electron beams emitted by the cathode to generate radiation, the plurality of targets being a three-dimensional structure having a slope; and two adjacent ones of the plurality of target structures are staggered. The slopes of two adjacent target structures 102 of the plurality of target structures 102 are oriented in opposite directions. The targets in the interposed target structures 102 are in the same straight line.
  • the target structure can be, for example, a tantalum tungsten target.
  • the target structure 102 is used to carry a high voltage voltage that causes the electron beam to generate radiation at a target point of the target structure 102.
  • the high voltage power can be, for example, a high voltage of 90 kV, and can also be, for example, a high voltage of 180 kV, and the invention is not limited thereto.
  • the radiation generated by the target structure 102 may be, for example, X-rays, and the generated X-rays have different energy levels corresponding to different high-voltage voltages, and the invention is not limited thereto.
  • a copper heat sink is used to carry the target structure, the copper heat sink includes an oxygen-free copper heat sink, and a plurality of target structures 102 can be soldered to the copper heat sink, for example, by soldering. One-time soldering can be performed on the oxygen-free copper heat sink, for example, on the back or bottom surface of the target structure 102.
  • Cooling oil line 104 is used to cool the anode target.
  • a shielding layer (not shown) is used to create a shielding effect, and the shielding layer includes a tungsten shielding layer.
  • the tungsten shielding layer is fixed in the incident direction of the electron beam, on the one hand, the electric field gradient on the surface of the anode target is lowered, and on the other hand, the X-rays emitted by the anode target are shielded to ensure that the X-rays are only emitted directly upward, and the X-ray doses in other directions are as small as possible. It is difficult to reduce the radiation shielding work of the entire radiation source in the later stage.
  • an electron beam is generated by a cathode assembly, and an electron beam is received by the anode assembly, wherein all target points on the anode target can be distributed by a target structure having a slanted steric structure and staggering the target structure
  • the targets that are produced when the electron guns are arranged at both ends of the anode target are also on the same straight line.
  • FIG. 11 is a schematic diagram of a computed tomography apparatus according to an exemplary embodiment.
  • the computed tomography apparatus 30 includes:
  • the cathode assembly 202 is for emitting an electron beam that is directed toward the anode assembly 204 by attraction of a voltage.
  • the anode assembly 204 is for receiving an electron beam from the cathode assembly, the electron beam interacting with the anode target to generate a source of radiation.
  • anode assembly comprises an anode target 10
  • the anode target comprising:
  • a plurality of target structures 102 are configured to receive electron beams emitted by the cathode to generate radiation, the plurality of targets being a three-dimensional structure having a slope; and two adjacent ones of the plurality of target structures are staggered. The slopes of two adjacent target structures 102 of the plurality of target structures 102 are oriented in opposite directions. The targets in the interposed target structures 102 are in the same straight line.
  • the target structure can be, for example, a tantalum tungsten target.
  • the target structure 102 is used to carry a high voltage voltage that causes the electron beam to generate radiation at a target point of the target structure 102.
  • the high voltage power can be, for example, a high voltage of 90 kV, and can also be, for example, a high voltage of 180 kV, and the invention is not limited thereto.
  • the radiation generated by the target structure 102 may be, for example, X-rays, and the generated X-rays have different energy levels corresponding to different high-voltage voltages, and the invention is not limited thereto.
  • a copper heat sink is used to carry the target structure, the copper heat sink includes an oxygen-free copper heat sink, and a plurality of target structures 102 can be soldered to the copper heat sink, for example, by soldering. One-time soldering can be performed on the oxygen-free copper heat sink, for example, on the back or bottom surface of the target structure 102.
  • Cooling oil line 104 is used to cool the anode target.
  • a shielding layer (not shown) is used to create a shielding effect, and the shielding layer includes a tungsten shielding layer.
  • the tungsten shielding layer is fixed in the incident direction of the electron beam, on the one hand, the electric field gradient on the surface of the anode target is lowered, and on the other hand, the X-rays emitted by the anode target are shielded to ensure that the X-rays are only emitted directly upward, and the X-ray doses in other directions are as small as possible. It is difficult to reduce the radiation shielding work of the entire radiation source in the later stage.
  • the imaging device 302 is configured to perform radiographic imaging by the first ray and the second ray.
  • the radiography performed by the imaging device includes dual energy ray imaging.
  • an electron beam is generated by a cathode assembly, and an electron beam is received by an anode assembly, wherein all target points on the anode target can be made by a target structure having a beveled three-dimensional structure and staggering the target structure They are all distributed in a straight line, so that the targets that are shot when the electron guns are arranged at both ends of the anode target are also on the same straight line.
  • the imaging of the imaging device can improve the imaging quality of the ray system and simplify the complexity of the imaging system.
  • FIG. 12 is a flowchart of an imaging method of a computed tomography apparatus according to an exemplary embodiment.
  • the computed tomography device generates radiation.
  • the computed tomography apparatus comprises: a cathode assembly for emitting an electron beam; an anode assembly for receiving the electron beam from the cathode assembly to generate a ray source; wherein the anode assembly comprises an anode a target, the anode target comprising: a cathode assembly for emitting an electron beam; and an anode assembly for receiving the electron beam from the cathode assembly to generate a radiation source; wherein the anode assembly comprises an anode target,
  • the anode target includes: a plurality of target structures for receiving an electron beam emitted from a cathode to generate radiation, the plurality of targets being a three-dimensional structure having a slope; and a copper heat sink for carrying the target structure
  • the copper heat sink includes an oxygen-free copper heat sink; a cooling oil pipe for cooling the anode target; and a shielding layer for generating a shielding effect, the shielding layer including a tungsten
  • the radiation acts on the object to be measured, and test data is generated.
  • the radiographic imaging device is directly performed by the test data, wherein the imaging device can be imaged, for example, by an imaging device in a computed tomography apparatus, and can also be imaged, for example, by other imaging devices, and the invention is not limited thereto.
  • modules may be distributed in the device according to the description of the embodiments, or may be correspondingly changed in one or more devices different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into multiple sub-modules.
  • the exemplary embodiments described herein may be implemented by software, or may be implemented by software in combination with necessary hardware. Therefore, the technical solution according to the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.) or on a network.
  • a non-volatile storage medium which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a number of instructions are included to cause a computing device (which may be a personal computer, server, mobile terminal, or network device, etc.) to perform a method in accordance with an embodiment of the present invention.
  • an anode target a ray source, a computed tomography apparatus, and an imaging method according to embodiments of the present invention have one or more of the following advantages.
  • the anode target of the present invention through the target structure having a slanted three-dimensional structure and staggering the target structure, enables all the target points on the anode target to be distributed in a straight line, thereby causing the electron gun to be in the anode target
  • the targets that are shot when the ends are arranged are also on the same line.
  • the ray source of the present invention generates an electron beam through a cathode assembly, and receives an electron beam through the anode assembly, wherein all of the anode target can be made by a target structure having a slanted steric structure and staggering the target structure
  • the targets are all distributed in a straight line, so that the targets that are emitted when the electron gun is arranged at both ends of the anode target are also on the same line.
  • the computed tomography apparatus of the present invention generates an electron beam through a cathode assembly, and receives an electron beam through the anode assembly, wherein the anode target can be made by a target structure having a beveled three-dimensional structure and staggering the target structure All the targets are distributed in a straight line, so that the targets that are shot when the electron guns are arranged at both ends of the anode target are also on the same line.
  • the imaging of the imaging device through the imaging device can improve the imaging quality of the ray system and simplify the complexity of the imaging system.
  • the anode target structure of the present invention can double the intensity of the light source and improve the imaging quality of the system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种阳极靶、射线光源、计算机断层扫描设备及成像方法。涉及射线处理技术领域,该阳极靶包括:第一阳极靶,用于通过其上承载的第一电压使得由阴极发射出的电子束在第一阳极靶的靶点上产生第一射线;第二阳极靶,用于通过其上承载的第二电压使得由阴极发射出的电子束在第二阳极靶的靶点上产生第二射线;以及陶瓷板,用于隔离第一阳极靶与第二阳极靶。该阳极靶、射线光源、计算机断层扫描设备及成像方法,能够提供双能分布式射线成像数据,提高射线系统的成像质量。

Description

阳极靶、射线光源、计算机断层扫描设备及成像方法 技术领域
本发明涉及射线成像技术领域,具体而言,涉及一种阳极靶、射线光源、计算机断层扫描设备及成像方法。
背景技术
X射线在工业无损检测、安全检查、医学诊断和治疗等领域具有广泛的应用。特别是,利用X射线的高穿透能力制成的X射线透视成像设备在人们日常生活的方方面面发挥着重要作用。这类设备早期的是胶片式的平面透视成像设备,目前的先进技术是数字化、多视角并且高分辨率的立体成像设备,例如CT(computed tomography,计算机断层)成像设备,可以获得高清晰度的三维立体图形或切片图像,是先进的高端应用。在现有的CT设备中,X射线发生装置需要在滑环上运动,为了提高检查速度,通常X射线发生装置的运动速度非常高,导致设备整体的可靠性和稳定性降低,此外,受运动速度的限制,CT的检查速度也受到了限制,因此检查效率较低。另外,此类设备的X射线源在滑环上运动,导致等效的X射线源焦点变大,从而使得的成像的图片存在运动伪影,清晰度差,对一些较小的违禁品存在漏检的可能性。并且此类设备只能检查静止(或者缓慢运动)的物体,对于运动的物体,几乎无法成三维立体图。
现有技术中,采用热阴极作为电子发射单元,并且对热阴极进行阵列排布,利用热阴极栅极间的电压控制电子的发射,从而控制每一个阴极按顺序发射电子,在阳极上按相应顺序位置轰击靶点,成为分布式X射线源。通过电控开关代替螺旋CT的机械旋转,可以在多个视角快速产生X射线源,从而从过个角度进行快速成像,该方法相比较以往的方法可大大的提高检查效率;提高图像的清晰度;并且该方案结构简单、系统稳定、可靠性高。但是由于现有技术中CT设备输出高能射线只能为单一能量级的射线束,不满足更多使用需求。
因此,需要一种新的阳极靶、射线光源、计算机断层扫描设备及成像方法。
在所述背景技术部分公开的上述信息仅用于加强对本发明的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
有鉴于此,本发明提供一种阳极靶、射线光源、计算机断层扫描设备及成像方法,能够提供双能分布式射线成像数据,提高射线系统的成像质量。
本发明的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本发明的实践而习得。
根据本发明的一方面,提出一种阳极靶,该阳极靶包括:第一阳极靶,用于通过其上 承载的第一电压使得由阴极发射出的电子束在所述第一阳极靶的靶点上产生第一射线;第二阳极靶,用于通过其上承载的第二电压使得由阴极发射出的电子束在所述第二阳极靶的靶点上产生第二射线;以及陶瓷体,用于隔离所述第一阳极靶与所述第二阳极靶。
在本公开的一种示例性实施例中,还包括:冷却油管,用于对所述第一阳极靶与所述第二阳极靶进行冷却;以及屏蔽层,用于对所述阳极靶产生的射线进行屏蔽。
在本公开的一种示例性实施例中,所述陶瓷体包括:被金属化的陶瓷体。
在本公开的一种示例性实施例中,所述第一阳极靶,所述第二阳极靶与所述金属化的陶瓷体通过金铜焊接相连。
在本公开的一种示例性实施例中,所述阴极在所述阳极靶的两端错开排布。
根据本发明的一方面,提出一种射线光源,该射线光源包括:阴极组件,用于发射电子束;以及阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:第一阳极靶,用于通过其上承载的第一电压使得由阴极发射出的电子束在所述第一阳极靶的靶点上产生第一射线;第二阳极靶,用于通过其上承载的第二电压使得由阴极发射出的电子束在所述第二阳极靶的靶点上产生第二射线;以及陶瓷体,用于隔离所述第一阳极靶与所述第二阳极靶。
在本公开的一种示例性实施例中,所述阴极组件在所述阳极组件的所述阳极靶的两端错开排布。
根据本发明的一方面,提出一种计算机断层扫描设备,该计算机断层扫描设备包括:阴极组件,用于发射电子束;阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:第一阳极靶,用于通过其上承载的第一电压使得由阴极发射出的电子束在所述第一阳极靶的靶点上产生第一射线;第二阳极靶,用于通过其上承载的第二电压使得由阴极发射出的电子束在所述第二阳极靶的靶点上产生第二射线;以及陶瓷体,用于隔离所述第一阳极靶与所述第二阳极靶;以及成像装置,用于通过所述第一射线与所述第二射线进行射线成像。
在本公开的一种示例性实施例中,所述射线成像包括双能射线成像。
根据本发明的一方面,提出一种计算机断层扫描设备的成像方法,该计算机断层扫描设备的成像方法包括:计算机断层扫描设备产生射线,所述射线包括第一射线与第二射线;所述第一射线作用于被测物体,产生第一测试数据;所述第二射线作用于被测物体,产生第二测试数据;以及通过所述第一测试数据与所述第二测试数据进行射线成像;其中,所述计算机断层扫描设备,包括:阴极组件,用于发射电子束;阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:第一阳极靶,用于通过其上承载的第一电压使得由阴极发射出的电子束在所述第一阳极靶的靶点上产生第一射线;第二阳极靶,用于通过其上承载的第二电压使得由阴极发射出的电子束在所述第二阳极靶的靶点上产生第二射线;以及陶瓷体,用于隔离所述第一阳极靶与所述第二阳极靶;以及成像装置,用于通过所述第一测试数据与所述第二测试 数据进行所述射线成像。
在本公开的一种示例性实施例中,所述射线成像包括双能射线成像。
根据本发明的阳极靶、射线光源、计算机断层扫描设备及成像方法,能够提供双能分布式射线成像数据,提高射线系统的成像质量。
本发明还提供一种阳极靶、射线光源、计算机断层扫描设备及成像方法,能够使得在阳极靶两边排布的阴极发射出的X射线在阳极靶上打出的靶点均分布在一条直线上,提高光源的密集程度,提高射线系统的成像质量,简化成像系统的复杂性。
本发明的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本发明的实践而习得。
根据本发明的一方面,提出一种阳极靶,该阳极靶包括:多个靶结构,用于接收由阴极发射出的电子束,以产生射线,所述多个靶点为具有斜面的立体结构;铜冷却体,用于承载所述靶结构,所述铜冷却体包括无氧铜冷却体;冷却油管,用于对阳极靶进行冷却;以及屏蔽层,用于产生屏蔽作用,所述屏蔽层包括钨屏蔽层。
在本公开的一种示例性实施例中,包括:所述多个靶结构中的相邻两个靶结构之间交错放置。
在本公开的一种示例性实施例中,包括:所述多个靶结构中的相邻两个靶结构的斜面朝向相反方向。
在本公开的一种示例性实施例中,包括:交错放置的所述靶结构的靶点处于同一直线。
在本公开的一种示例性实施例中,所述多个靶结构通过钎焊方式焊接在所述铜冷却体上。
根据本发明的一方面,提出一种射线光源,该射线光源包括:阴极组件,用于发射电子束;以及阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:多个靶结构,用于接收由阴极发射出的电子束,以产生射线,所述多个靶点为具有斜面的立体结构;铜冷却体,用于承载所述靶结构,所述铜冷却体包括无氧铜冷却体;冷却油管,用于对阳极靶进行冷却;屏蔽层,用于产生屏蔽作用,所述屏蔽层包括钨屏蔽层。
在本公开的一种示例性实施例中,所述阴极在所述阳极靶的两端错开排布。
在本公开的一种示例性实施例中,所述多个靶结构中的相邻两个靶结构之间交错放置。
在本公开的一种示例性实施例中,交错放置的所述靶结构的靶点处于同一直线。
根据本发明的一方面,提出一种计算机断层扫描设备,该计算机断层扫描设备包括:阴极组件,用于发射电子束;阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:多个靶结构,用于接收由阴极发射出的电子束,以产生射线,所述多个靶点为具有斜面的立体结构;铜冷却体,用于承载所述靶结构,所述铜冷却体包括无氧铜冷却体;冷却油管,用于对阳极靶进行冷 却;屏蔽层,用于产生屏蔽作用,所述屏蔽层包括钨屏蔽层;成像装置,用于通过所述射线进行射线成像。
根据本发明的一方面,提出一种计算机断层扫描设备的成像方法,该计算机断层扫描设备的成像方法包括:计算机断层扫描设备产生射线;所述射线作用于被测物体,产生测试数据;以及通过所述测试数据直接进行射线成像;其中,所述计算机断层扫描设备,包括:阴极组件,用于发射电子束;阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:阴极组件,用于发射电子束;以及阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:多个靶结构,用于接收由阴极发射出的电子束,以产生射线,所述多个靶点为具有斜面的立体结构;铜冷却体,用于承载所述靶结构,所述铜冷却体包括无氧铜冷却体;冷却油管,用于对阳极靶进行冷却;以及屏蔽层,用于产生屏蔽作用,所述屏蔽层包括钨屏蔽层;成像装置,用于通过所述射线进行射线成像。
根据本发明的阳极靶、分布式X射线光源、计算机断层扫描设备及成像方法能够使得阳极靶两端排布的阴极发射出的电子在阳极靶打出的靶点均分布在一条直线上,提高射线系统的成像质量,简化成像系统的复杂性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本发明。
附图说明
通过参照附图详细描述其示例实施例,本发明的上述和其它目标、特征及优点将变得更加显而易见。下面描述的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中单列排布阳极靶示意图。
图2是现有技术中双列排布阳极靶示意图。
图3是根据一示例性实施例示出的一种阳极靶示意图。
图4是根据一示例性实施例示出的一种射线光源示意图。
图5是根据一示例性实施例示出的一种计算机断层扫描设备示意图。
图6是根据一示例性实施例示出的一种计算机断层扫描设备的成像方法的流程图。
图7是根据一示例性实施例示出的一种阳极靶示意图。
图8是根据一示例性实施例示出的一种阳极靶侧面示意图。
图9是根据一示例性实施例示出的一种阳极靶俯视图。
图10是根据一示例性实施例示出的一种射线光源示意图。
图11是根据一示例性实施例示出的一种计算机断层扫描设备示意图。
图12是根据一示例性实施例示出的一种计算机断层扫描设备的成像方法的流程图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本发明将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本发明的各方面。
附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应理解,虽然本文中可能使用术语第一、第二、第三等来描述各种组件,但这些组件不应受这些术语限制。这些术语乃用以区分一组件与另一组件。因此,下文论述的第一组件可称为第二组件而不偏离本公开概念的教示。如本文中所使用,术语“及/或”包括相关联的列出项目中的任一个及一或多者的所有组合。
本领域技术人员可以理解,附图只是示例实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的,因此不能用于限制本发明的保护范围。
下面结合附图对本公开示例实施方式进行详细说明。
图1是现有技术中单列排布阳极靶示意图。
在现有技术中,单列排布的阳极靶如图1所示,图1给出了传统分布式X射线光源的结构,阳极靶采用无氧铜为基体,无氧铜上焊接铼钨靶作为靶材,无氧铜基体上有冷却回路为阳极靶进行冷却。电子枪在阳极靶的一边均匀排列,电子枪发射出的电子束在阳极电场的加速下向阳极漂移,最终打在铼钨靶上,产生X射线。图2是现有技术中双列排布阳极靶示意图。
如上文所述的现有技术中CT成像设备的结构,为了提高分布式光源的成像质量,通常要求分布式光源中的光源数量在几十到几百个(根据需要确定)。受阴极尺寸和阴极组件加工工艺的影响,目前阴极组件的最小直径大约在16mm左右,保留一点余量,通常按照20mm的间距排布阴极组件。在1m长的光源中能够排布50个阴极组件,一个阴极组件在阳极靶上打出一个靶点,从而产生50个光源。如果需要更多的光源数量,可以使阴极在阳极靶的两端错开排布,阴极发射的电子束打在阳极靶的两边,从而使得光源的密 集程度提高一倍。为了提高光源的密度,可以把电子枪排布在阳极靶的两端,如图2所示,该结构可以将光源的密集程度提高一倍,满足大多数场合的使用要求。
图3是根据一示例性实施例示出的一种阳极靶示意图。
基于上文所述的双列排布阳极靶,在一些实施例中,本申请的申请人发现,在有些情况中,需要成像设备能同时输出两种能量的X射线源,即提供双能分布式X射线源,以便提高X射线成像系统的分辨率。根据本发明的一方面,提出一种阳极靶10,该阳极靶包括:
第一阳极靶102,用于通过其上承载的第一电压使得由阴极发射出的电子束在第一阳极靶的靶点上产生第一射线。其中第一电压可例如为90KV的高压,阴极发射出的电子束在第一阳极靶上产生的第一射线可例如为具有第一能量级的X射线。
第二阳极靶104,用于通过其上承载的第二电压使得由阴极发射出的电子束在第二阳极靶的靶点上产生第二射线。其中,第二电压可例如为180KV的高压,阴极发射出的电子束在第二阳极靶上产生的第二射线可例如为具有第二能量级的X射线。
其中,第一电压与第二电压也可以为相同幅值的高压,本发明不以此为限。
陶瓷体106,用于隔离第一阳极靶102与第二阳极靶104。陶瓷体106包括:被金属化的陶瓷体。第一阳极靶102,第二阳极靶104与金属化的陶瓷体通过金铜焊接相连。第一阳极102靶与第二阳极靶104与金属化的陶瓷采用金铜焊接,固化为一个整体,便于安装调试。
在本公开的一种示例性实施例中,还包括:冷却油管108用于对第一阳极靶与第二阳极靶进行冷却。
屏蔽层(图中未示出),用于对阳极靶产生的射线进行屏蔽。
在本公开的一种示例性实施例中,阴极在阳极靶的两端错开排布。
根据本发明的阳极靶,通过陶瓷隔离,将阳极靶分成两部分,两边的阳极靶可分别加上不同的高压,阳极靶两端的阴极发射出的电子束打在阳极靶的两端从而产生两种不同能量的X射线。从而产生双能的分布式X射线,进而能够提供双能分布式射线成像数据,提高射线系统的成像质量。
图4是根据一示例性实施例示出的一种射线光源示意图。
如图4所示,该射线光源20包括:
阴极组件202用于发射电子束,该电子束通过电压的吸引射向阳极组件204。
阳极组件204用于接收来自于阴极组件的电子束,电子束与阳极靶相互作用,进而生成射线光源。
其中,阳极组件包括阳极靶10,阳极靶包括:
第一阳极靶102,通过第一电压使得由阴极发射出的电子束在第一阳极靶的靶点上产生第一射线。其中第一电压可例如为90KV的高压,阴极发射出的电子束在第一阳极靶上产生的第一射线可例如为具有第一能量级的X射线。
第二阳极靶104,通过第二电压使得由阴极发射出的电子束在第二阳极靶的靶点上产生第二射线。其中,第二电压可例如为180KV的高压,阴极发射出的电子束在第二阳极靶上产生的第二射线可例如为具有第二能量级的X射线。
其中,第一电压与第二电压也可以为相同幅值的高压,本发明不以此为限。
陶瓷体106,用于隔离第一阳极靶102与第二阳极靶104。陶瓷体106包括:金属陶瓷体。第一阳极靶102,第二阳极靶104与金属化的陶瓷体通过金铜焊接相连。第一阳极102靶与第二阳极靶104与金属陶瓷采用金铜焊接,固化为一个整体,便于安装调试。在本公开的一种示例性实施例中,阴极组件在阳极组件的阳极靶的两端错开排布。
根据本发明的射线光源,通过阴极组件产生电子束,通过阳极组件接收电子束,其中,阳极组件通过陶瓷隔离,将阳极靶分成两部分,两边的阳极靶可分别加上不同的高压,阳极靶两端的阴极发射出的电子束打在阳极靶的两端从而产生两种不同能量的X射线。从而产生双能的分布式X射线,进而能够提供双能分布式射线源,提高射线系统的成像质量。
图5是根据一示例性实施例示出的一种计算机断层扫描设备示意图。
如图5所示,计算机断层扫描设备30包括:
阴极组件202用于发射电子束,该电子书通过电压的吸引射向阳极组件204。
阳极组件204用于接收来自于阴极组件的电子束,电子束与阳极靶相互作用,进而生成射线光源。
其中,阳极组件包括阳极靶10,阳极靶包括:
第一阳极靶102,通过第一电压使得由阴极发射出的电子束在第一阳极靶的靶点上产生第一射线。其中第一电压可例如为90KV的高压,阴极发射出的电子束在第一阳极靶上产生的第一射线可例如为具有第一能量级的X射线。
第二阳极靶104,通过第二电压使得由阴极发射出的电子束在第二阳极靶的靶点上产生第二射线。其中,第二电压可例如为180KV的高压,阴极发射出的电子束在第二阳极靶上产生的第二射线可例如为具有第二能量级的X射线。
其中,第一电压与第二电压也可以为相同幅值的高压,本发明不以此为限。
陶瓷体106,用于隔离第一阳极靶102与第二阳极靶104。陶瓷体106包括:金属陶瓷体。第一阳极靶102,第二阳极靶104与金属陶瓷体通过金铜焊接相连。第一阳极102靶与第二阳极靶104与金属陶瓷采用金铜焊接,固化为一个整体,便于安装调试。在本公开的一种示例性实施例中,阴极组件在阳极组件的阳极靶的两端错开排布。
成像装置302用于通过第一射线与第二射线进行射线成像。其中,成像装置进行的射线成像包括双能射线成像。
根据本发明的计算机断层扫描设备,通过阴极组件产生电子束,通过阳极组件接收电子束,其中,阳极组件通过陶瓷隔离,将阳极靶分成两部分,两边的阳极靶可分别加上不同的高压,阳极靶两端的阴极发射出的电子束打在阳极靶的两端从而产生两种不同能量的 X射线。从而产生双能的分布式X射线,再通过成像设备进行射向成像,能够提供双能射线成像,提高射线系统的成像质量。
应清楚地理解,本发明描述了如何形成和使用特定示例,但本发明的原理不限于这些示例的任何细节。相反,基于本发明公开的内容的教导,这些原理能够应用于许多其它实施例。
图6是根据一示例性实施例示出的一种计算机断层扫描设备的成像方法的流程图。
在S602中,计算机断层扫描设备产生射线,所述射线包括第一射线与第二射线;其中,所述计算机断层扫描设备,包括:阴极组件,用于发射电子束;阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:第一阳极靶,通过第一电压使得由阴极发射出的电子束在所述第一阳极靶的靶点上产生第一射线;第二阳极靶,通过第二电压使得由阴极发射出的电子束在所述第二阳极靶的靶点上产生第二射线;以及陶瓷体,用于隔离所述第一阳极靶与所述第二阳极靶。
在S604中,所述第一射线作用于被测物体,产生第一测试数据。
在S606中,所述第二射线作用于被测物体,产生第二测试数据。
在S608中,通过所述第一测试数据与所述第二测试数据进行射线成像。其中,可例如通过计算机机断层扫描设备中的成像装置成像,还可例如通过其他成像装置进行成像,本发明不以此为限。所述射线成像包括双能射线成像。可例如通过现有技术中的双能成像方法进行成像计算,本发明不以此为限。
本领域技术人员可以理解实现上述实施例的全部或部分步骤被实现为由CPU执行的计算机程序。在该计算机程序被CPU执行时,执行本发明提供的上述方法所限定的上述功能。所述的程序可以存储于一种计算机可读存储介质中,该存储介质可以是只读存储器,磁盘或光盘等。
此外,需要注意的是,上述附图仅是根据本发明示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
本领域技术人员可以理解上述各模块可以按照实施例的描述分布于装置中,也可以进行相应变化唯一不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
通过以上的实施例的描述,本领域的技术人员易于理解,这里描述的示例实施例可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本发明实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本发明实施例的方法。
通过以上的详细描述,本领域的技术人员易于理解,根据本发明实施例的阳极靶、射线光源、计算机断层扫描设备及成像方法具有以下优点中的一个或多个。
根据一些实施例,本发明的阳极靶,通过陶瓷隔离,将阳极靶分成两部分,两边的阳极靶可分别加上不同的高压,阳极靶两端的阴极发射出的电子束打在阳极靶的两端从而产生两种不同能量的X射线。从而产生双能的分布式X射线,进而能够提供双能分布式射线成像数据,提高射线系统的成像质量。
根据另一些实施例,本发明的计算机断层扫描设备,通过阴极组件产生电子束,通过阳极组件接收电子束,再通过成像设备进行射向成像,能够提供双能射线成像,提高射线系统的成像质量。
图7是根据一示例性实施例示出的一种阳极靶示意图。
基于上文所述的双列排布阳极靶,根据本发明的一方面,提出一种阳极靶10,该阳极靶包括:
多个靶结构102用于接收由阴极发射出的电子束,以产生射线,多个靶点为具有斜面的立体结构;多个靶结构中的相邻两个靶结构之间交错放置。多个靶结构102中的相邻两个靶结构102的斜面朝向相反方向。交错放置的靶结构102的靶点中的处于同一直线。靶结构可例如为铼钨靶。靶结构102用于承载高压电压,通过高压电压使得电子束在靶结构102的靶点上产生射线。其中高压电可例如为90KV的高压,还可例如为180KV的高压,本发明不以此为限。靶结构102产生的射线可例如为X射线,对应于高压电压的不同,产生的X射线具有不同的能量级,本发明不以此为限。
铜冷却体(图中未示出)用于承载靶结构,铜冷却体包括无氧铜冷却体,多个靶结构102可例如通过钎焊方式焊接在铜冷却体上。可例如在靶结构102的背面或者底面进行一次性焊接在无氧铜冷却体上。无氧铜的冷却体和导热体将靶材上沉积的热量传递给冷却介质带走。
冷却油管104用于对阳极靶进行冷却。
屏蔽层(图中未示出)用于产生屏蔽作用,屏蔽层包括钨屏蔽层。钨屏蔽层固定在电子束的入射方向,一方面降低阳极靶表面的电场梯度,另一方面屏蔽阳极靶打出的X射线,保证X射线只向正上方出束,其他方位的X射线剂量尽量小,降低后期对整个射线源的辐射屏蔽工作的难度。
电子束通过阳极高压的加速,穿过钨屏蔽层后,打在铼钨靶上,产生X射线。
图8是根据一示例性实施例示出的一种阳极靶侧面示意图,图9是根据一示例性实施例示出的一种阳极靶俯视图。由图可知,相邻两个铼钨靶102之间交错放置,斜面分别朝着两个相反的方向,用以接受从阳极靶两端电子枪发射出来的电子。交错放置的两个阳极靶102的中心在一条直线上,电子束打在阳极靶的位置也正好是阳极靶102的中心位置,因此可以产生焦点在一条直线上的分布式X射线光源。这种方法可以使当电子枪在阳极 靶两端排布时打出的靶点也在同一直线上。
根据本发明的阳极靶,通过具有斜面的立体结构的靶结构以及将靶结构交错放置,能够使得阳极靶两端排布的阴极发射出的电子能够在阳极靶上打出的靶点均分布在一条直线上,进而使得电子枪在阳极靶两端排布时打出的靶点也在同一直线上。提高射线系统的成像质量,简化成像系统的复杂性。
图10是根据一示例性实施例示出的一种射线光源示意图。
如图10所示,该射线光源20包括:阴极组件202用于发射电子束,该电子书通过电压的吸引射向阳极组件204。
阳极组件204用于接收来自于阴极组件的电子束,电子束与阳极靶相互作用,进而生成射线光源。
其中,阳极组件包括阳极靶10,阳极靶包括:
多个靶结构102用于接收由阴极发射出的电子束,以产生射线,多个靶点为具有斜面的立体结构;多个靶结构中的相邻两个靶结构之间交错放置。多个靶结构102中的相邻两个靶结构102的斜面朝向相反方向。交错放置的靶结构102的靶点中的处于同一直线。靶结构可例如为铼钨靶。靶结构102用于承载高压电压,通过高压电压使得电子束在靶结构102的靶点上产生射线。其中高压电可例如为90KV的高压,还可例如为180KV的高压,本发明不以此为限。靶结构102产生的射线可例如为X射线,对应于高压电压的不同,产生的X射线具有不同的能量级,本发明不以此为限。
铜冷却体用于承载靶结构,铜冷却体包括无氧铜冷却体,多个靶结构102可例如通过钎焊方式焊接在铜冷却体上。可例如在靶结构102的背面或者底面进行一次性焊接在无氧铜冷却体上。无氧铜的冷却体和导热体将靶材上沉积的热量传递给冷却介质带走。
冷却油管104用于对阳极靶进行冷却。
屏蔽层(图中未示出)用于产生屏蔽作用,屏蔽层包括钨屏蔽层。钨屏蔽层固定在电子束的入射方向,一方面降低阳极靶表面的电场梯度,另一方面屏蔽阳极靶打出的X射线,保证X射线只向正上方出束,其他方位的X射线剂量尽量小,降低后期对整个射线源的辐射屏蔽工作的难度。
根据本发明的射线光源,通过阴极组件产生电子束,通过阳极组件接收电子束,其中,通过具有斜面的立体结构的靶结构以及将靶结构交错放置,能够使得阳极靶上所有的靶点均分布在一条直线上,进而使得电子枪在阳极靶两端排布时打出的靶点也在同一直线上。提高射线系统的成像质量,简化成像系统的复杂性。
图11是根据一示例性实施例示出的一种计算机断层扫描设备示意图。
如图11所示,计算机断层扫描设备30包括:
阴极组件202用于发射电子束,该电子书通过电压的吸引射向阳极组件204。
阳极组件204用于接收来自于阴极组件的电子束,电子束与阳极靶相互作用,进而生成射线光源。
其中,阳极组件包括阳极靶10,阳极靶包括:
多个靶结构102用于接收由阴极发射出的电子束,以产生射线,多个靶点为具有斜面的立体结构;多个靶结构中的相邻两个靶结构之间交错放置。多个靶结构102中的相邻两个靶结构102的斜面朝向相反方向。交错放置的靶结构102的靶点中的处于同一直线。靶结构可例如为铼钨靶。靶结构102用于承载高压电压,通过高压电压使得电子束在靶结构102的靶点上产生射线。其中高压电可例如为90KV的高压,还可例如为180KV的高压,本发明不以此为限。靶结构102产生的射线可例如为X射线,对应于高压电压的不同,产生的X射线具有不同的能量级,本发明不以此为限。
铜冷却体用于承载靶结构,铜冷却体包括无氧铜冷却体,多个靶结构102可例如通过钎焊方式焊接在铜冷却体上。可例如在靶结构102的背面或者底面进行一次性焊接在无氧铜冷却体上。无氧铜的冷却体和导热体将靶材上沉积的热量传递给冷却介质带走。
冷却油管104用于对阳极靶进行冷却。
屏蔽层(图中未示出)用于产生屏蔽作用,屏蔽层包括钨屏蔽层。钨屏蔽层固定在电子束的入射方向,一方面降低阳极靶表面的电场梯度,另一方面屏蔽阳极靶打出的X射线,保证X射线只向正上方出束,其他方位的X射线剂量尽量小,降低后期对整个射线源的辐射屏蔽工作的难度。
成像装置302用于通过第一射线与第二射线进行射线成像。其中,成像装置进行的射线成像包括双能射线成像。
根据本发明的计算机断层扫描设备,通过阴极组件产生电子束,通过阳极组件接收电子束,其中,通过具有斜面的立体结构的靶结构以及将靶结构交错放置,能够使得阳极靶上所有的靶点均分布在一条直线上,进而使得电子枪在阳极靶两端排布时打出的靶点也在同一直线上。再通过成像设备进行射向成像,能够提高射线系统的成像质量,简化成像系统的复杂性。
应清楚地理解,本发明描述了如何形成和使用特定示例,但本发明的原理不限于这些示例的任何细节。相反,基于本发明公开的内容的教导,这些原理能够应用于许多其它实施例。
图12是根据一示例性实施例示出的一种计算机断层扫描设备的成像方法的流程图。
在S802中,计算机断层扫描设备产生射线。其中,所述计算机断层扫描设备,包括:阴极组件,用于发射电子束;阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:阴极组件,用于发射电子束;以及阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;其中,所述阳极组件包括阳极靶,所述阳极靶包括:多个靶结构,用于接收由阴极发射出的电子束,以产生射线,所述多个靶点为具有斜面的立体结构;铜冷却体,用于承载所述靶结构,所述铜冷却体包括无氧铜冷却体;冷却油管,用于对阳极靶进行冷却;以及屏蔽层,用于产生屏蔽作用,所述屏蔽层包括钨屏蔽层。
在S804中,所述射线作用于被测物体,产生测试数据。
在S806中,通过所述测试数据直接进行射线成像成像装置,其中,可例如通过计算机机断层扫描设备中的成像装置成像,还可例如通过其他成像装置进行成像,本发明不以此为限。
本领域技术人员可以理解实现上述实施例的全部或部分步骤被实现为由CPU执行的计算机程序。在该计算机程序被CPU执行时,执行本发明提供的上述方法所限定的上述功能。所述的程序可以存储于一种计算机可读存储介质中,该存储介质可以是只读存储器,磁盘或光盘等。
此外,需要注意的是,上述附图仅是根据本发明示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
本领域技术人员可以理解上述各模块可以按照实施例的描述分布于装置中,也可以进行相应变化唯一不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
通过以上的实施例的描述,本领域的技术人员易于理解,这里描述的示例实施例可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本发明实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本发明实施例的方法。
通过以上的详细描述,本领域的技术人员易于理解,根据本发明实施例的阳极靶、射线光源、计算机断层扫描设备及成像方法具有以下优点中的一个或多个。
根据一些实施例,本发明的阳极靶,通过具有斜面的立体结构的靶结构以及将靶结构交错放置,能够使得阳极靶上所有的靶点均分布在一条直线上,进而使得电子枪在阳极靶两端排布时打出的靶点也在同一直线上。提高射线系统的成像质量,简化成像系统的复杂性。
根据另一些实施例,本发明的射线光源,通过阴极组件产生电子束,通过阳极组件接收电子束,其中,通过具有斜面的立体结构的靶结构以及将靶结构交错放置,能够使得阳极靶上所有的靶点均分布在一条直线上,进而使得电子枪在阳极靶两端排布时打出的靶点也在同一直线上。提高射线系统的成像质量,简化成像系统的复杂性。
根据再一些实施例,本发明的计算机断层扫描设备,通过阴极组件产生电子束,通过阳极组件接收电子束,其中,通过具有斜面的立体结构的靶结构以及将靶结构交错放置,能够使得阳极靶上所有的靶点均分布在一条直线上,进而使得电子枪在阳极靶两端排布时打出的靶点也在同一直线上。再通过成像设备进行射向成像,能够提高射线系统的成像质 量,简化成像系统的复杂性。
本发明的阳极靶结构可以将光源的密集程度提高一倍,提高系统的成像质量。
以上具体地示出和描述了本发明的示例性实施例。应可理解的是,本发明不限于这里描述的详细结构、设置方式或实现方法;相反,本发明意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。
此外,本说明书说明书附图所示出的结构、比例、大小等,均仅用以配合说明书所公开的内容,以供本领域技术人员了解与阅读,并非用以限定本公开可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本公开所能产生的技术效果及所能实现的目的下,均应仍落在本公开所公开的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“第一”、“第二”及“一”等的用语,也仅为便于叙述的明了,而非用以限定本公开可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当也视为本发明可实施的范畴。

Claims (11)

  1. 一种阳极靶,包括:
    第一阳极靶,用于通过其上承载的第一电压使得由阴极发射出的电子束在所述第一阳极靶的靶点上产生第一射线;
    第二阳极靶,用于通过其上承载的第二电压使得由阴极发射出的电子束在所述第二阳极靶的靶点上产生第二射线;以及
    陶瓷体,用于隔离所述第一阳极靶与所述第二阳极靶。
  2. 如权利要求1所述的阳极靶,还包括:
    冷却油管,用于对所述第一阳极靶与所述第二阳极靶进行冷却;以及
    屏蔽层,用于对所述阳极靶产生的射线进行屏蔽。
  3. 如权利要求1所述的阳极靶,所述陶瓷板包括:
    被金属化的陶瓷体。
  4. 如权利要求3所述的阳极靶,所述第一阳极靶,所述第二阳极靶与所述被金属化的陶瓷体通过金铜焊接相连。
  5. 如权利要求1所述的阳极靶,所述阴极在所述阳极靶的两端错开排布。
  6. 一种射线光源,包括:
    阴极组件,用于发射电子束;以及
    阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;
    其中,所述阳极组件包括阳极靶,所述阳极靶包括:
    第一阳极靶,用于通过其上承载的第一电压使得由阴极发射出的电子束在所述第一阳极靶的靶点上产生第一射线;
    第二阳极靶,用于通过其上承载的第二电压使得由阴极发射出的电子束在所述第二阳极靶的靶点上产生第二射线;以及
    陶瓷体,用于隔离所述第一阳极靶与所述第二阳极靶。
  7. 如权利要求6所述的射线光源,所述阴极组件在所述阳极组件的所述阳极靶的两端错开排布。
  8. 一种计算机断层扫描设备,包括:
    阴极组件,用于发射电子束;
    阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;
    其中,所述阳极组件包括阳极靶,所述阳极靶包括:
    第一阳极靶,用于通过其上承载的第一电压使得由阴极发射出的电子束在所述第一阳极靶的靶点上产生第一射线;
    第二阳极靶,用于通过其上承载的第二电压使得由阴极发射出的电子束在所述第二阳极靶的靶点上产生第二射线;以及
    陶瓷体,用于隔离所述第一阳极靶与所述第二阳极靶;以及
    成像装置,用于通过所述第一射线与所述第二射线进行射线成像。
  9. 如权利要求8所述的计算机断层扫描设备,其特征在于,所述射线成像包括双能射线成像。
  10. 一种计算机断层扫描设备的成像方法,包括:
    计算机断层扫描设备产生射线,所述射线包括第一射线与第二射线;
    所述第一射线作用于被测物体,产生第一测试数据;
    所述第二射线作用于被测物体,产生第二测试数据;以及
    通过所述第一测试数据与所述第二测试数据进行射线成像;
    其中,所述计算机断层扫描设备,包括:
    阴极组件,用于发射电子束;
    阳极组件,用于接收来自于所述阴极组件的所述电子束,生成射线光源;
    其中,所述阳极组件包括阳极靶,所述阳极靶包括:
    第一阳极靶,用于通过其上承载的第一电压使得由阴极发射出的电子束在所述第一阳极靶的靶点上产生第一射线;
    第二阳极靶,用于通过其上承载的第二电压使得由阴极发射出的电子束在所述第二阳极靶的靶点上产生第二射线;以及
    陶瓷体,用于隔离所述第一阳极靶与所述第二阳极靶;以及
    成像装置,用于通过所述第一测试数据与所述第二测试数据进行所述射线成像。
  11. 如权利要求10所述的成像方法,所述射线成像包括双能射线成像。
PCT/CN2018/105381 2017-09-18 2018-09-13 阳极靶、射线光源、计算机断层扫描设备及成像方法 WO2019052491A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18856120.3A EP3686913A4 (en) 2017-09-18 2018-09-13 ANODE TARGET, LIGHT RADIATION SOURCE, COMPUTED COMPUTER AND IMAGING PROCESS
US16/627,531 US11456146B2 (en) 2017-09-18 2018-09-13 Anode target, ray light source, computed tomography device, and imaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710842782.7A CN107481912B (zh) 2017-09-18 2017-09-18 阳极靶、射线光源、计算机断层扫描设备及成像方法
CN201710842782.7 2017-09-18

Publications (1)

Publication Number Publication Date
WO2019052491A1 true WO2019052491A1 (zh) 2019-03-21

Family

ID=60584459

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/089509 WO2019052232A1 (zh) 2017-09-18 2018-06-01 阳极靶、射线光源、计算机断层扫描设备及成像方法
PCT/CN2018/105381 WO2019052491A1 (zh) 2017-09-18 2018-09-13 阳极靶、射线光源、计算机断层扫描设备及成像方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089509 WO2019052232A1 (zh) 2017-09-18 2018-06-01 阳极靶、射线光源、计算机断层扫描设备及成像方法

Country Status (4)

Country Link
US (2) US11315750B2 (zh)
EP (2) EP3686914A4 (zh)
CN (2) CN107481912B (zh)
WO (2) WO2019052232A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107481912B (zh) * 2017-09-18 2019-06-11 同方威视技术股份有限公司 阳极靶、射线光源、计算机断层扫描设备及成像方法
CN111211027A (zh) * 2020-01-16 2020-05-29 清华大学 一种平面辐照x射线光源及辐照设备
CN111243916B (zh) * 2020-01-19 2021-10-29 中国科学院电子学研究所 阳极及其制备方法以及阴极发射测试装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125167A (en) * 1998-11-25 2000-09-26 Picker International, Inc. Rotating anode x-ray tube with multiple simultaneously emitting focal spots
CN104882350A (zh) * 2015-06-11 2015-09-02 杭州与盟医疗技术有限公司 一种提供多能量和更大覆盖范围x射线球管系统
CN107481912A (zh) * 2017-09-18 2017-12-15 同方威视技术股份有限公司 阳极靶、射线光源、计算机断层扫描设备及成像方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438605A (en) * 1992-01-06 1995-08-01 Picker International, Inc. Ring tube x-ray source with active vacuum pumping
JPH06215710A (ja) 1993-01-19 1994-08-05 Rigaku Corp 異種波長x線を発生可能なx線発生装置
JP2000340149A (ja) * 1999-05-25 2000-12-08 Hitachi Medical Corp X線管装置
WO2002067779A1 (fr) * 2001-02-28 2002-09-06 Mitsubishi Heavy Industries, Ltd. Appareil de tomodensitometrie emettant des rayons x depuis une source de rayonnement multiple
US6545854B2 (en) 2001-05-25 2003-04-08 Presidio Components, Inc. Fringe-field non-overlapping-electrodes discoidal feed-through ceramic filter capacitor with high breakdown voltage
GB0812864D0 (en) 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
US7003077B2 (en) 2003-10-03 2006-02-21 General Electric Company Method and apparatus for x-ray anode with increased coverage
US7649981B2 (en) 2003-10-15 2010-01-19 Varian Medical Systems, Inc. Multi-energy x-ray source
US7197116B2 (en) * 2004-11-16 2007-03-27 General Electric Company Wide scanning x-ray source
US20100189223A1 (en) * 2006-02-16 2010-07-29 Steller Micro Devices Digitally addressed flat panel x-ray sources
CN101346034B (zh) * 2007-07-09 2011-11-23 清华大学 双能或多能静电场电子加速装置和方法
JP5288839B2 (ja) 2008-03-05 2013-09-11 国立大学法人長岡技術科学大学 軟x線発生装置及び該軟x線発生装置を用いた除電装置
US8953746B2 (en) 2008-08-29 2015-02-10 Analogic Corporation Multi-cathode X-ray tubes with staggered focal spots, and systems and methods using same
US7844032B2 (en) * 2008-10-16 2010-11-30 General Electric Company Apparatus for providing collimation in a multispot X-ray source and method of making same
US7976218B2 (en) * 2008-10-16 2011-07-12 General Electric Company Apparatus for providing shielding in a multispot x-ray source and method of making same
EP2370990A1 (en) 2008-11-25 2011-10-05 Philips Intellectual Property & Standards GmbH X-ray anode
CN101465260B (zh) * 2009-01-14 2010-11-10 布莱格科技(北京)有限公司 一种x光管阳极靶及其制备方法与应用的x光管
JP2011029072A (ja) * 2009-07-28 2011-02-10 Canon Inc X線発生装置及びそれを備えたx線撮像装置。
US9271689B2 (en) 2010-01-20 2016-03-01 General Electric Company Apparatus for wide coverage computed tomography and method of constructing same
JP2011173778A (ja) 2010-01-28 2011-09-08 Kyocera Corp 金属層付きセラミックス部材、金属−セラミックス接合体、金属層付きセラミックス部材の製造方法
AT12862U1 (de) 2011-08-05 2013-01-15 Plansee Se Anode mit linearer haupterstreckungsrichtung
DE102012103974A1 (de) 2011-12-09 2013-06-13 Werth Messtechnik Gmbh Vorrichtung und Verfahren zur Erzeugung zumindest eines Röntgenstrahlen abgebenden Brennflecks
JP6080610B2 (ja) 2013-02-26 2017-02-15 キヤノン株式会社 マルチ放射線発生装置および放射線撮影システム
SI24350A (sl) 2013-04-08 2014-10-30 ISKRA ZAŠčITE d.o.o. Ploščati plinski odvodnik
KR101855931B1 (ko) * 2013-09-18 2018-05-10 칭화대학교 X선장치 및 이를 구비하는 ct장비
CN104470177B (zh) * 2013-09-18 2017-08-25 同方威视技术股份有限公司 X射线装置及具有该x射线装置的ct设备
CN104470172B (zh) 2013-09-18 2017-08-15 清华大学 X射线装置以及具有该x射线装置的ct设备
CN203563254U (zh) * 2013-09-18 2014-04-23 同方威视技术股份有限公司 X射线装置及具有该x射线装置的ct设备
CN104470176B (zh) * 2013-09-18 2017-11-14 同方威视技术股份有限公司 X射线装置以及具有该x射线装置的ct设备
CN103594308A (zh) * 2013-11-25 2014-02-19 丹东华日理学电气股份有限公司 双灯丝x射线管
CN203573942U (zh) * 2013-11-25 2014-04-30 丹东华日理学电气股份有限公司 双灯丝x射线管
JP2015180859A (ja) 2014-03-05 2015-10-15 株式会社東芝 フォトンカウンティングct装置
FR3022683B1 (fr) 2014-06-19 2018-03-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Anode structuree en multiples sites de generation de photons x, tube de rayons x et utilisation pour imagerie de source codee
US10405813B2 (en) 2015-02-04 2019-09-10 Dental Imaging Technologies Corporation Panoramic imaging using multi-spectral X-ray source
US10345479B2 (en) 2015-09-16 2019-07-09 Rapiscan Systems, Inc. Portable X-ray scanner
CN207909827U (zh) * 2017-09-18 2018-09-25 同方威视技术股份有限公司 阳极靶、射线光源、计算机断层扫描设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6125167A (en) * 1998-11-25 2000-09-26 Picker International, Inc. Rotating anode x-ray tube with multiple simultaneously emitting focal spots
CN104882350A (zh) * 2015-06-11 2015-09-02 杭州与盟医疗技术有限公司 一种提供多能量和更大覆盖范围x射线球管系统
CN107481912A (zh) * 2017-09-18 2017-12-15 同方威视技术股份有限公司 阳极靶、射线光源、计算机断层扫描设备及成像方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686913A4 *

Also Published As

Publication number Publication date
CN107481912B (zh) 2019-06-11
CN107731644A (zh) 2018-02-23
US11456146B2 (en) 2022-09-27
EP3686913A1 (en) 2020-07-29
US11315750B2 (en) 2022-04-26
EP3686914A4 (en) 2021-08-04
WO2019052232A1 (zh) 2019-03-21
EP3686913A4 (en) 2021-10-27
US20200168428A1 (en) 2020-05-28
US20200168426A1 (en) 2020-05-28
CN107731644B (zh) 2019-10-18
CN107481912A (zh) 2017-12-15
EP3686914A1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US9991085B2 (en) Apparatuses and methods for generating distributed x-rays in a scanning manner
US20210375575A1 (en) Bremsstrahlung target for radiation therapy system
RU2538771C2 (ru) Источник рентгеновских лучей со множеством эмиттеров электронов
US10068740B2 (en) Distributed, field emission-based X-ray source for phase contrast imaging
CN100479755C (zh) 具有小型x射线源组件的固定式计算机x射线断层扫描系统
WO2019052491A1 (zh) 阳极靶、射线光源、计算机断层扫描设备及成像方法
WO2016029811A1 (zh) 电子源、x射线源、使用了该x射线源的设备
TWI723094B (zh) X射線產生裝置、x射線產生裝置之陽極及具有x射線產生裝置之設備
JP2020516907A (ja) X線断層撮影検査のシステムおよび方法
CN104000616A (zh) 多放射线产生设备和放射线成像系统
US20190029611A1 (en) Medical imaging system having an array of distributed x-ray generators
Stelzer et al. The new small wheel upgrade project of the atlas experiment
KR20140109809A (ko) X선 발생관, 그 x선 발생관을 구비한 x선 발생장치, 및 x선 촬영 시스템
TWI399780B (zh) 包含場發射陰極之x射線源
JP2019519900A (ja) X線の生成に使用するためのカソードアセンブリ
EP2740141A1 (en) Generation of multiple x-ray energies
CN207800543U (zh) 阳极靶、射线光源、计算机断层扫描设备
JP6821304B2 (ja) 電子銃、x線発生管、x線発生装置およびx線撮影システム
US10032595B2 (en) Robust electrode with septum rod for biased X-ray tube cathode
US7497620B2 (en) Method and system for a multiple focal spot x-ray system
Frutschy et al. X-ray multisource for medical imaging
Pugatch Position sensitive micro-strip and micro-pixel detectors
JP2020181832A (ja) 電子誘導及び受取素子
JP2021529425A (ja) 走査型のx線源及びその画像形成システム
JP2021061251A (ja) X線発生管、x線発生装置およびx線撮影システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018856120

Country of ref document: EP

Effective date: 20200420