WO2019052272A1 - 一种复合材料及其制备方法及用途 - Google Patents

一种复合材料及其制备方法及用途 Download PDF

Info

Publication number
WO2019052272A1
WO2019052272A1 PCT/CN2018/094955 CN2018094955W WO2019052272A1 WO 2019052272 A1 WO2019052272 A1 WO 2019052272A1 CN 2018094955 W CN2018094955 W CN 2018094955W WO 2019052272 A1 WO2019052272 A1 WO 2019052272A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
water
group
substrate
inhibiting
Prior art date
Application number
PCT/CN2018/094955
Other languages
English (en)
French (fr)
Inventor
贾非
Original Assignee
广州联福新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州联福新材料科技有限公司 filed Critical 广州联福新材料科技有限公司
Priority to CN201880006731.3A priority Critical patent/CN110177765B/zh
Publication of WO2019052272A1 publication Critical patent/WO2019052272A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F271/00Macromolecular compounds obtained by polymerising monomers on to polymers of nitrogen-containing monomers as defined in group C08F26/00
    • C08F271/02Macromolecular compounds obtained by polymerising monomers on to polymers of nitrogen-containing monomers as defined in group C08F26/00 on to polymers of monomers containing heterocyclic nitrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the field of materials, and in particular relates to a composite material and a preparation method thereof.
  • the thermal conductivity of scale is very poor, and its thermal conductivity is several times or even hundreds of times smaller than that of metal.
  • the thermal conductivity will be reduced by 20%-30% for each 1mm increase in scale, that is, the electricity consumption will increase by 20%-30%.
  • the scale thickness reaches 12.7 mm, it will consume 70% more energy.
  • scale not only causes serious energy waste, but also easily leads to local corrosion, even perforation of household appliances, kettles, water dispensers, aluminum pans, solar water heaters, electric water heaters, thermos bottles and household heating stoves, hotel boilers, self-heating heating stoves, etc. What is more, causing the explosion of the appliance to cause an explosion, causing adverse consequences.
  • the related art uses mechanical treatment and chemical pickling to remove scale.
  • an external force is used to remove scale adhering to the surface of the container.
  • a strong acid is used to dissolve the scale adhering to the surface of the container.
  • a method and apparatus for producing a modified scale and corrosion inhibiting material are provided.
  • a method and a device for producing a modified scale and corrosion inhibiting material the steps of the method for producing the modified scale and corrosion inhibiting material are as follows:
  • Step 1 Clinking and grinding of mineral materials: high-purity calcite or hydroxyapatite or quartz or suitable inorganic materials (purity ⁇ 99.9%) and other large surface area active materials are crushed to 320 by ultrafine pulverizer in a clean workshop. To the left and right, and then use a nano-grinder to grind the pulverized material to 15-60 nm or directly purchase the required nano-scale materials;
  • Step 2 removing water and dispersing the mineral material: the above micropowder is dehydrated under high temperature vacuum drying oven at 120 degrees for 3 hours, and then mixed with an appropriate amount of organic solvent, added to the reaction vessel and repeatedly stirred to make it uniformly dispersed;
  • Step 3 mixing reaction: adding an appropriate amount of modifier to the above dispersion, such as octadecyltrichlorosilane, palmitoyl chloride, pyrophosphoric acid, maleic anhydride, etc., according to a weight ratio of 1: (0.02-2) Proportion, using a stirring device to fully stir, forming a mixture at room temperature for 5 hours;
  • modifier such as octadecyltrichlorosilane, palmitoyl chloride, pyrophosphoric acid, maleic anhydride, etc.
  • Step 4 recrystallization: adding the appropriate amount of absolute ethanol to the reaction mixture of step 3, the amount of addition is 1-1.5 times the weight of the total reaction liquid, and the reaction product is precipitated from the reaction liquid and recrystallized;
  • Step 5 Filtration and cleaning: the above reaction product is sent to a suction filtration or centrifugal separation device, and after the reaction solution is taken off, the total solid weight is added to the proportion of absolute ethanol for cleaning, and the cleaning liquid is dried and then added to the same amount of steps.
  • the organic solvent in 2 is de-dryed and cleaned, and the above two cleanings can effectively remove the residual reagents and side reaction products. The remaining reaction product solids are taken out for use;
  • Step 6 preparation of cross-linking material: 20% by weight of the reaction product of step 5, polyvinyl alcohol (molecular weight: 17,000, degree of alcoholysis of 99%), PVP (K30), etc., placed in a glass container, added 30 times Pure water, gradually heated to 95 degrees or more, ultrasonically dispersed and stirred for 3 hours, after completely dissolved, cooled to room temperature, slowly added dropwise the total liquid amount of anhydrous ethanol, and stirred at high speed to form a flocculent mixed solution ;
  • Step 7 mixed cross-linking: the solid product prepared in step 5 is added to the mixing tank together with the mixed solution prepared in step 6, and an appropriate amount of organic solvent is added according to the viscosity of the blending liquid to make it easier to stir, stir evenly and then add the total 0.001% solid benzoyl peroxide (AR), crosslinked material total solid content of 1% sodium trimetaphosphate (AR), 0.1% triallyl isocyanurate (AR), mixed and stirred for 3 hours;
  • AR solid benzoyl peroxide
  • AR crosslinked material total solid content of 1% sodium trimetaphosphate
  • AR triallyl isocyanurate
  • Step 8 Filtration: the above cross-linked mixed liquid is input into a filtering device, and fully filtered;
  • Step 9 high temperature curing: the solid product prepared in step 8 is placed in a drying device at 85 degrees for drying and curing for 5 hours;
  • Step 10 pulverization: the above solidified product is added to a pulverizer and pulverized to about 200 mesh for use;
  • Step 11 The above powder is added to a tableting machine and pressed into a sheet shape.
  • the clean workshop is a GMP purification production workshop
  • the ultrafine pulverizer is a medical grade, food grade stainless steel ultrafine pulverizer
  • the nanogrinding machine is a medical grade nanogrinder
  • the discharge granularity is respectively 80-320 mesh and 15-60 nm.
  • the reaction kettle is a double-layer glass reaction kettle
  • the stirring device is a double-cylinder polytetrafluoroethylene agitator for the reaction kettle
  • the water removal device is a medical high-temperature vacuum drying oven.
  • the filter is a Buchner funnel or a medical grade centrifugal separator.
  • the ultrasonic dispersing device in the step 6 is a stainless steel ultrasonic dispersing agitator.
  • the mixing drum is a SUS304 stainless steel mixing drum.
  • the filter is a Buchner funnel or a medical grade centrifugal separator.
  • the drying and curing device in the step 9 is a vertical electric heating constant temperature drying box for medical and food, and the material contact part is SUS304 food grade stainless steel.
  • the ultrafine pulverizer is a medical grade, food grade stainless steel ultrafine pulverizer, and the discharge granularity is 80-200 mesh.
  • the tablet machine is a medical rotary multi-stamping machine.
  • the method and equipment for producing modified scale and corrosion inhibiting material produced by the technical scheme of the invention, the solid scale inhibitor and corrosion inhibitor have the effects of preventing scale formation and effectively alleviating corrosion of the metal tube wall in the hot water system, and further having Micro-dissolution, slow release, low solubility limit, PH neutral, green and environmentally friendly.
  • a composite material including a scale inhibitor, the scale inhibitor comprising a matrix having a scale inhibiting functional group grafted thereon; the matrix having a solubility in water of less than or equal to 100 g/L (eg, less than Or equal to 50 g/L, such as less than or equal to 10 g/L, such as less than or equal to 5 g/L, such as less than or equal to 1 g/L, such as less than or equal to 0.5 g/L, such as less than or equal to 0.1 g/L, such as less than Or equal to 0.05 g/L, such as less than or equal to 0.01 g/L, such as less than or equal to 0.005 g/L, such as less than or equal to 0.001 g/L, such as from 0.001 to 100 g/L.
  • 100 g/L eg, less than Or equal to 50 g/L, such as less than or equal to 10 g/L, such as less than or equal to 5 g/L,
  • the matrix comprises an inorganic material.
  • the matrix comprises an inorganic salt.
  • the matrix comprises a metal oxide or an inorganic salt.
  • the matrix comprises a carbonate, a phosphate, a silicate, a titanate, or a combination thereof.
  • the matrix comprises a calcium phosphate salt.
  • the matrix comprises hydroxyapatite.
  • the scale inhibiting functional group is selected from the group consisting of a carboxylic acid group, a carboxylic acid derivative group, a sulfonic acid group, a sulfonic acid derivative group, a phosphoric acid or a derivative thereof, an amino acid group, An amino acid derivative group, a quaternary amine group, or a combination thereof.
  • the scale inhibiting functional group contains a carbonyl group.
  • the carboxylic acid group, the carboxylic acid derivative group, the sulfonic acid group, the sulfonic acid derivative group, the phosphoric acid or a derivative thereof, the amino acid group, and the amino acid derivative group are each independently saturated. Or unsaturated (for example, ethylenically unsaturated).
  • the scale inhibiting functional group comprises a maleic acid group, such as a maleic acid group having a carboxyl end group.
  • the scale inhibiting functional group further comprises a hydroxyl group.
  • the scale inhibiting functional group refers to a group having the ability to chelate, adsorb, electrostatically repel, and solubilize metal ions such as Ca 2+ , Mg 2+ . Based on this, the scale inhibiting functional group can interfere with the crystallization of scale, making the scale nucleus difficult to form or crystallizing difficult to grow.
  • a scale inhibiting functional group refers to a group capable of forming a stable complex with calcium ions and/or magnesium ions in water. Based on this, the scale inhibiting functional group can reduce the concentration of calcium ions and/or magnesium ions in the water.
  • a scale inhibiting functional group refers to a group that is capable of dissociating in water and capable of forming an anion after dissociation. Based on this, the negative ions can adsorb the scale particles, and the particles are negatively charged, so that the particles repel each other and cannot form large crystal grains.
  • a scale inhibiting functional group refers to a group that is capable of dissociating in water and capable of forming a positive ion upon dissociation. Based on this, the positive ions can adsorb the particles of the scale, and the particles are positively charged, thereby causing the particles to repel each other and fail to form large crystal grains.
  • the scale inhibiting functional group is a cationic scale inhibiting functional group.
  • the cationic scale inhibiting functional group has a positive charge upon ionization in water.
  • the scale inhibiting functional group is an anionic scale inhibiting functional group.
  • the anionic scale inhibiting functional group is negatively charged after ionization in water.
  • the scale inhibiting functional group has one or more of the following characteristics in the water: dispersible, scale inhibiting, and sustained release.
  • the scale inhibiting functional group is: a C1-C50 carboxylic acid group, a C1-C50 carboxylic acid derivative group, a C1-C50 sulfonic acid group, a C1-C50 sulfonic acid derivative group, C1 -C50 phosphoric acid or a derivative thereof, a C1-C50 amino acid group, and a C1-C50 amino acid derivative group.
  • the scale inhibiting group has from 1 to 50 C atoms, for example from 1 to 10 C atoms, from 10 to 20 C atoms, from 20 to 30 C atoms, from 30 to 40 C atoms or 40 to 50 C atoms.
  • the substrate is grafted with a scale inhibiting functional group.
  • the surface of the substrate has a surface group (eg, a hydroxyl group) in the absence of grafting a scale inhibiting functional group.
  • a surface group eg, a hydroxyl group
  • the anti-scaling functional group-containing compound chemically reacts (eg, a condensation reaction) with a surface group (eg, a hydroxyl group) on the surface of the substrate, thereby grafting the scale inhibiting functional group onto the surface of the substrate.
  • the composite has surface groups modified by a scale inhibiting functional group.
  • Scaling functional group-modified surface group refers to a surface group that has been functionalized by a scale inhibiting functional group.
  • the surface group is -OH, and -OH is modified (or functionalized) by the anti-scaling functional group to form a surface group functionalized by the anti-scaling functional group, for example, OC(O)CH 2 -, OCH 2 - , OPh-, OCH 2 Ph- and OC(O)Ph-.
  • modifying refers to passing a scale inhibiting functional group through a chemical bond (eg, a covalent bond) to a substrate or Surface groups (e.g., hydroxyl groups) on the surface of the substrate are bonded.
  • a chemical bond e.g., a covalent bond
  • Surface groups e.g., hydroxyl groups
  • the chemical bond is selected from one or more of the group consisting of esters, ethers, phosphoesters, amides, peptides, imines, carbon-sulfur bonds, carbon-phosphorus bonds, and the like.
  • the scale inhibiting functional group is grafted onto the substrate by chemical bonding.
  • the surface of the substrate to which the ungrafted anti-scaling functional group has a surface group the substance containing the anti-scaling functional group reacts with the surface group on the surface of the substrate to effect grafting.
  • At least a portion of the surface groups of the matrix are derivatized (or functionalized) by the scale inhibiting functional group.
  • one or more scale inhibiting functional groups are attached to the substrate.
  • the matrix is a metal oxide or inorganic salt containing a hydroxyl functional group (-OH functional group).
  • the oxide may be selected from the group consisting of silica SiO 2 , alumina Al 2 O 3 , zirconium dioxide ZrO 2 , ceria CeO 2 , titania TiO 2 and cerium oxide.
  • Grafting using the hydroxyl group of the matrix gives the bonding sequence A-0-M(OR)n, and A represents the metal element of the carrier.
  • A represents the metal element of the carrier.
  • silica using its silanol groups, a Si—O—M(OR)n bonding sequence can be produced on the surface of the support.
  • the matrix is hydrophobic or has been hydrophobically modified.
  • the matrix is modified by a coupling modifier.
  • the substrate is coated with a coupling modifier.
  • the purpose of the coupling modifier may be to improve the dispersibility of the matrix in water, and may also be compatible with the scale inhibiting group/solid support to which it is combined.
  • the coupling involves physical (eg, spatial) and/or chemical (eg, chemical bonds such as covalent bonds or van der Waals forces) interactions between the polymers and/or between the polymer and the surface treatment agent. .
  • coupling modifiers useful herein include silicones, acrylate siloxane copolymers, acrylate polymers, alkyl silanes, titanium isopropyl triisostearate, stearic acid.
  • the matrix does not contain a scale inhibiting component without the grafting of the scale inhibiting functional group.
  • the matrix does not have scale inhibition in the absence of grafting of scale inhibiting functional groups.
  • the substrate is made of a material that does not have a scale inhibiting effect.
  • the substrate has a specific surface area greater than or equal to 10 g/m 2 , such as from 10 to 20 g/m 2 , from 20 to 30 g/m 2 , from 30 to 40 g/m 2 , from 40 to 50 g/m 2 , 50 to 60 g/m 2 , 60 to 70 g/m 2 , 70 to 80 g/m 2 , 80 to 90 g/m 2 , and 90 to 100 g/m 2 .
  • 10 g/m 2 such as from 10 to 20 g/m 2 , from 20 to 30 g/m 2 , from 30 to 40 g/m 2 , from 40 to 50 g/m 2 , 50 to 60 g/m 2 , 60 to 70 g/m 2 , 70 to 80 g/m 2 , 80 to 90 g/m 2 , and 90 to 100 g/m 2 .
  • the scale inhibiting body has a specific surface area greater than or equal to 10 g/m 2 , such as a specific surface area of 10 to 20 g/m 2 , 20 to 30 g/m 2 , 30 to 40 g/m 2 , and 40 to 50 g. /m 2 , 50 to 60 g/m 2 , 60 to 70 g/m 2 , 70 to 80 g/m 2 , 80 to 90 g/m 2 or 90 to 100 g/m 2 .
  • the scale inhibiting agent has a solubility in water of less than or equal to 100 g/L (eg, less than or equal to 50 g/L, such as less than or equal to 10 g/L, such as less than or equal to 5 g/L, such as less than or equal to, eg, less than or equal to 1 g/L, for example less than or equal to 0.5 g/L, such as less than or equal to 0.1 g/L, such as less than or equal to 0.05 g/L, such as less than or equal to 0.01 g/L, such as less than or equal to 0.005 g/L, for example Less than or equal to 0.001 g/L, for example, 0.001 to 100 g/L).
  • 100 g/L eg, less than or equal to 50 g/L, such as less than or equal to 10 g/L, such as less than or equal to 5 g/L, such as less than or equal to, eg, less than or equal to 1
  • the matrix has a particle size of less than or equal to 100 ⁇ m, such as from 1 to 10 nm, from 10 to 50 nm, from 50 to 100 nm, from 100 to 200 nm, from 200 to 500 nm, from 500 to 1000 nm, from 1 to 2 ⁇ m, from 2 to 5 ⁇ m. 5 to 10 ⁇ m, 10 to 50 ⁇ m or 50 to 100 ⁇ m.
  • the scale inhibitor has a particle size of less than or equal to 100 ⁇ m, such as from 1 to 10 nm, from 10 to 50 nm, from 50 to 100 nm, from 100 to 200 nm, from 200 to 500 nm, from 500 to 1000 nm, from 1 to 2 ⁇ m, 2 ⁇ 5 ⁇ m, 5 to 10 ⁇ m, 10 to 50 ⁇ m or 50 to 100 ⁇ m.
  • the matrix is porous.
  • the composite of the present disclosure includes one or more of the scale inhibitor and a solid support disposed on an interior and/or surface of the solid support.
  • the solid support has a solubility in water of less than or equal to 100 g/L (eg, less than or equal to 50 g/L, such as less than or equal to 10 g/L, such as less than or equal to 5 g/L, such as less than or equal to, eg, less than or equal to 1 g/L, for example less than or equal to 0.5 g/L, such as less than or equal to 0.1 g/L, such as less than or equal to 0.05 g/L, such as less than or equal to 0.01 g/L, such as less than or equal to 0.005 g/L, for example Less than or equal to 0.001 g/L, for example, 0.001 to 100 g/L).
  • 100 g/L eg, less than or equal to 50 g/L, such as less than or equal to 10 g/L, such as less than or equal to 5 g/L, such as less than or equal to, eg, less than or equal to 1 g
  • the solid support is a polyvinyl alcohol cross-linking product, such as a polyvinyl alcohol cross-linking product with sodium trimetaphosphate as a crosslinking aid.
  • the solid support is a polylactic acid cross-linking product, such as a polylactic acid cross-linking product with triallyl isocyanurate as a crosslinking aid.
  • the solid support may further contain ferrous sulfate and/or cuprous chloride as a catalyst during crosslinking, and benzoyl peroxide as an initiator.
  • a portion of the group on the scale inhibitor is attached to a portion of the group on the solid support by a covalent bond.
  • the solid support is a water insoluble polymer.
  • the water-insoluble polymer refers to a polymer resin having a crosslinked structure synthesized from a hydrophilic or water-soluble monomer (or prepolymer), which is insoluble (or poorly soluble) and water, and swells in water.
  • the scale inhibitor is distributed inside the water insoluble polymer. Based on this, on the one hand, the water-insoluble polymer can play the role of supporting/fixing the scale inhibitor, and on the other hand, the water-insoluble polymer can slow down the dissolution/release of the scale inhibitor and enhance the sustained release effect of the scale inhibiting material.
  • the solid support has a swelling ratio of from 1 to 10 (eg, 1-2, 2-5, or 5-10).
  • a method of making a composite material comprises the steps of dispersing a scale inhibitor in a solution containing a precursor, and then crosslinking the precursor, the precursor being hydrophilic or water soluble,
  • the precursor is a monomer or prepolymer.
  • the water insoluble polymer refers to a solubility of less than or equal to 5 g/L, 1 g/L, such as less than or equal to 0.5 g/L, such as less than or equal to 0.1 g/L, such as less than or equal to 0.05 g/L.
  • a solubility of less than or equal to 5 g/L, 1 g/L, such as less than or equal to 0.5 g/L, such as less than or equal to 0.1 g/L, such as less than or equal to 0.05 g/L.
  • 0.01 g/L such as less than or equal to 0.005 g/L, such as less than or equal to 0.001 g/L of polymer.
  • the matrix is grafted with a chain group containing 8 or more (eg, 10 or more, or 20 or more) C atoms, based on which the chain groups can be entangled in water-insoluble polymerization.
  • a chain group containing 8 or more (eg, 10 or more, or 20 or more) C atoms based on which the chain groups can be entangled in water-insoluble polymerization.
  • the scale inhibiting group is a chain group containing more than 8 (eg, 10 or more, or 20 or more) C atoms.
  • the scale inhibiting group contains more than 8 (eg, more than 10, or more than 20) C atoms.
  • the mass ratio of the scale inhibitor to the solid support is from 100:1 to 20 (eg, 100:3 to 5, such as 100:3 to 5, such as 100:5 to 10, such as 100:10 to 20) ).
  • the scale inhibitor is present in the composite in an amount from 1 to 100%, such as from 1 to 99%, from 10 to 20%, from 20 to 30%, from 30 to 40%, from 40 to 50%, 50. ⁇ 60%, 60-70%, 70-80%, 80-90% or 100%.
  • the scale inhibitor is complexed with the solid support by in situ polymerization or blending.
  • the scale inhibitor is filled in a solid support.
  • the composite can be obtained by combining a scale inhibitor with one or more monomers or prepolymers and then polymerizing one or more monomers or prepolymers.
  • the scale inhibitor is combined with a solid support by a physical or chemical binding force.
  • the scale inhibitor is dispersed in the solid support.
  • the composite material is in the form of granules or lumps.
  • composite materials are provided for inhibiting fouling in water bodies and/or for slowing the corrosion of metals in water bodies.
  • a water treatment device in some aspects, includes a water inlet, a water outlet, and a filter cartridge containing the composite material of the present disclosure.
  • a water treatment device for inhibiting fouling in a water body and/or for slowing the corrosion of metal in a water body.
  • a method of making a composite material comprising the steps of obtaining a scale inhibitor, the step comprising:
  • the anti-scaling functional group-containing compound comprises one or more of the following: a carboxylic acid group, a carboxylic acid derivative group, a phosphoric acid or a derivative thereof, a sulfonic acid group, a sulfonic acid derivative group a group, an amino acid group, an amino acid derivative group, and a quaternary amine group.
  • the method of preparing a composite material further includes the step of hydrophobically modifying the substrate.
  • the method of preparing the composite material further comprises:
  • the solid support has a limited solubility in water, such as less than or equal to 100 g/L (eg, less than or equal to 50 g/L, such as less than or equal to 10 g/L, such as less than or equal to 5 g/L, such as less than or equal to 1 g/ L, for example less than or equal to 0.5 g/L, such as less than or equal to 0.1 g/L, such as less than or equal to 0.05 g/L, such as less than or equal to 0.01 g/L, such as less than or equal to 0.005 g/L, such as less than or It is equal to 0.001 g/L, for example, 0.001 to 100 g/L).
  • 100 g/L eg, less than or equal to 50 g/L, such as less than or equal to 10 g/L, such as less than or equal to 5 g/L, such as less than or equal to 1 g/ L, for example less than or equal to 0.5 g/L
  • the matrix is nano-hydroxyapatite.
  • step ii) comprises dispersing the nano-hydroxyapatite in an organic solvent (eg, N-ethylpyrrolidone), adding palmitoyl chloride and maleic anhydride for reaction.
  • organic solvent eg, N-ethylpyrrolidone
  • step iii) comprises blending the scale inhibitor in a water soluble solid polymer.
  • step iii) comprises the step of crosslinking a water soluble solid polymer.
  • step iii) comprises dissolving polyvinyl alcohol having a molecular weight of 10,000 to 20,000 in water and adding anhydrous ethanol to obtain a first mixture containing flocs.
  • the solid product obtained in the step ii) is mixed with the first mixture, and sodium trimetaphosphate is added to carry out the reaction.
  • step iii) comprises mixing the solid product obtained in step ii) with polylactic acid, adding a mixture of ferrous sulfate, cuprous chloride, adding petroleum ether, water, stirring to reflux, and then adding benzoyl peroxide. Formyl and triallyl isocyanurate are reacted.
  • step ii) further comprises subjecting the filtrate to one or more of washing, filtration, drying, crystallization, heat treatment.
  • step iii) further comprises subjecting the filtrate to one or more of washing, filtration drying, crystallization, heat treatment.
  • step iii) further comprises the step of pulverizing the filtrate into a powder, and optionally, pressing the powder into a compact.
  • the composite material of the present disclosure can be applied to water systems in the fields of power plants, chemical plants, fertilizer plants, smelting, salt industry, fruit milk industry, pipe manufacturing or pharmaceuticals.
  • the composite material of the disclosure can be applied to central air conditioning water system, air compressor unit, large cold storage, heat exchanger, civil water heater, solar water heater, air source heat pump water heater, automobile water tank, fountain waterscape, bath, humidifier or steam iron, etc. In the field of water systems.
  • the composite material of the present disclosure can also be used for the scale inhibition of drinking water purification membranes, and can be combined with a central water purification system and household and commercial water purifiers, water heaters and the like.
  • nano refers to a size of no greater than 1000 nm, such as a size of 10 nm to 100 nm, 100 nm to 200 nm, 200 nm to 300 nm, 300 nm to 400 nm, 400 nm to 500 nm, 500 nm to 600 nm, 600 nm to 700 nm, 700 nm. 800 nm, 800 nm to 900 nm or 900 nm to 1000 nm.
  • particle size or “equivalent particle size” means that when a physical property or physical behavior of a particle to be measured is closest to a homogenous sphere (or combination) of a certain diameter, The diameter (or combination) of the sphere is taken as the equivalent particle diameter (or particle size distribution) of the measured particle.
  • the term "average particle size" refers to an actual population of particles consisting of particles of different sizes and shapes, compared to a group of hypothetical particles consisting of uniform spherical particles. When the total length of the diameter is the same, the diameter of the spherical particles is referred to as the average particle diameter of the actual particle group.
  • the measurement method of the average particle diameter is known to those skilled in the art, such as a light scattering method; the measuring instrument of the average particle diameter includes, but is not limited to, an electron microscope, a light scattering particle size analyzer.
  • particle is understood herein to mean a solid having an upper limit of particle size of 1 cm (including 1 cm).
  • block is understood herein to mean a solid having a lower limit of size of 1 cm (excluding 1 cm).
  • scale includes poorly soluble inorganic salts formed in water and equivalents or analogs thereof, such as precipitates of calcium carbonate, magnesium carbonate, calcium sulfate, magnesium sulfate, calcium chloride, magnesium chloride, and the like.
  • scale inhibition is to prevent or interfere with the formation of poorly soluble inorganic salts by metal ions, or to prevent or interfere with the precipitation and fouling of poorly soluble inorganic salts.
  • solubility refers to the solubility measured in water at 20 °C.
  • the environmental conditions of the step are normal temperature and pressure.
  • normal temperature means 25 ⁇ 5 °C.
  • normal pressure means 1.0 ⁇ 0.1 x 10 5 Pa.
  • carboxylic acid/phosphonic acid/sulfonic acid in principle includes all compounds having at least one carboxylic acid/phosphonic acid/sulfonic acid group. It therefore also includes in particular compounds which contain, in addition to at least one carboxylic acid/phosphonic acid/sulfonic acid group, further functional groups such as hydroxyl groups, ketone groups or ether groups. Dicarboxylic acid/phosphonic acid/sulfonic acid, tricarboxylic acid/phosphonic acid/sulfonic acid or carboxylic acid/phosphonic acid/sulfonic acid having more than 3 carboxyl groups.
  • amino acid group refers to an amino acid including an alpha-amino acid, a beta-amino acid, and a gamma-amino acid.
  • amino acid may include, but may not be limited to, glycine, alanine, valine, leucine, isoleucine, methionine, valine, phenylalanine, tryptophan, serine, Threonine, cysteine, thirosine, asparagine, glutamine, aspartic acid, glutamic acid, lysine, arginine, histidine, ⁇ -alanine, ornithine, etc. .
  • carboxylic acid derivative includes, but is not limited to, salts, esters or amides of carboxylic acids.
  • sulfonic acid derivative includes, but is not limited to, salts, esters or amides of sulfonic acids.
  • phosphonic acid derivative includes, but is not limited to, salts, esters or amides of phosphonic acids.
  • amino acid derivative includes, but is not limited to, salts, esters or amides of amino acids.
  • carboxylic acid group refers to -C(O)OH.
  • sulfonic acid group refers to -S(O) 2 OH.
  • phosphonic acid group refers to -P(O)(OH) 2 or -RP(O)OH.
  • R is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, haloalkyl, heteroaryl and heterocyclic groups.
  • quaternary amine group refers to a compound of -R a R b R c R d N+ wherein the R a , R b , R c and R d groups are respectively selected from aliphatic, alicyclic, aryl or hetero Ring base.
  • the carboxylic acid derivative group refers to CO 2 R or C(O)NRR', where R and R' are each hydrogen or lower alkyl (eg, C1-C10 alkyl).
  • the sulfonic acid derivative group refers to SO 3 R or SO 2 NRR', where R and R' are each hydrogen or lower alkyl (eg, C1-C10 alkyl).
  • the phosphonic acid derivative group refers to PO(OR) 2 , PO(OH)(OR), PO(OR)(NRR'), or PO(NRR') 2 , where R and R' are each It is hydrogen or a lower alkyl group (for example, a C1-C10 alkyl group).
  • Hydroxyapatite English name Hydroxapatite, has the chemical formula Ca 10 (PO 4 ) 6 (OH) 2 . Hydroxyapatite is the main inorganic component of animal and human bones and has good biocompatibility. It is often used as a bone repair material and a drug carrier.
  • "comprising” means having a content of from 1 to 99%, from 10 to 20%, from 20 to 30%, from 30 to 40%, from 40 to 50%, from 50 to 60%, from 60 to 70%, 70%. 80%, 80 to 90% or 100%.
  • % is % by weight and parts are parts by weight.
  • the disclosed composites utilize a matrix having limited solubility in water to control the amount of fouling functional group released in water.
  • the matrix when the solubility of the matrix in water is not saturated, the matrix is continuously dissolved into the water, whereby the functional group having the scale inhibiting function attached to the surface of the substrate is continuously dissolved into the water, thereby obtaining
  • the water body containing the scale inhibiting component achieves the technical effect of scale inhibition.
  • the matrix when the solubility of the substrate in water reaches saturation, the matrix is no longer dissolved, the concentration of the matrix in the water body is no longer increased, and the concentration of the scale inhibiting component is no longer increased, thereby preventing the scale-reducing component from being released unrestrictedly. In the water, it causes waste of scale inhibition components. Thereby, the effect of saving scale inhibitor components is achieved.
  • the composite of the present disclosure may further control the release of the scale inhibiting functional group in water by compounding the scale inhibitor in the water insoluble polymer.
  • the water insoluble polymer swells in the water without dissolving, forming a crosslinked network.
  • the scale inhibitor is distributed in the crosslinked network of the water-insoluble polymer, so that the release rate of the scale inhibitor in the water body is effectively controlled.
  • the pH is substantially neutral, for example, the pH is 6-8;
  • ingredients are safe and non-toxic;
  • the green composite composite material has the characteristics of green environmental protection, high efficiency scale inhibition, safety and non-toxicity;
  • the composite of the present disclosure grafts a scale inhibiting functional group, such as a carboxylic acid group, an ester group or a carbonyl group, on the surface of the substrate by graft modification of the substrate, which serves as a scale inhibiting effect.
  • a scale inhibiting functional group such as a carboxylic acid group, an ester group or a carbonyl group
  • FIG. 1 is a production flow chart of a method and a device for producing a modified scale and corrosion inhibiting material according to the present disclosure
  • FIG. 3 is a schematic diagram of a scale inhibition performance testing system of the present disclosure
  • Figure 4 is a bar graph showing the concentration of the active ingredient of the scale inhibiting material III in the sustained release performance test as a function of the number of times of detection;
  • Fig. 5 is a graph showing the scale inhibition rate as a function of the number of detections in the sustained release performance test.
  • Step 1 Obtain nano-hydroxyapatite (purchased from Shanghai Maclean Biochemical Technology Co., Ltd.), the product information is as follows:
  • Step 2 Drying the nano-hydroxyapatite at 120 ° C for 3 hours in a vacuum drying oven to obtain a dried nano-hydroxyapatite. 100 g of the dried nano-hydroxyapatite was dispersed in 500 ml of N-ethylpyrrolidone (NEP).
  • NEP N-ethylpyrrolidone
  • Step 3 Add 0.2 g of palmitoyl chloride (>96% (T)) and 20 g of maleic anhydride (>99% (GC)) to the product of the previous step, and react at normal temperature and normal pressure for 5 hours.
  • step 3 a representative chemical reaction formula of nano-hydroxyapatite and maleic anhydride is as shown in the following formula (I).
  • a representative chemical reaction formula of nano hydroxyapatite and palmitoyl is as shown in the following formula (II).
  • maleic anhydride is reacted with hydroxyapatite to obtain a hydroxyapatite having a surface grafted with maleic acid.
  • One carboxyl group of maleic acid is esterified with hydroxyapatite and the other carboxyl group is still terminal.
  • palmitoyl chloride is esterified with hydroxyapatite to obtain palmitate-modified hydroxyapatite.
  • Hydroxyapatite modified by palmitoyl chloride has better dispersibility in water.
  • the palmitate group generates a cationic weak electric effect, which further improves the scale inhibition effect of the scale inhibitor.
  • the palmitate group since the palmitate group has a long carbon chain, a plurality of scale inhibitors grafted with palmitate groups are intertwined with each other, thereby slowing down the dissolution/release of the scale inhibitor and enhancing the retardation. The effect of the release effect.
  • Step 4 Add 1.3 times of absolute ethanol to the product of the previous step to obtain a crystalline product.
  • Step 5 The product of the previous step was filtered and washed successively with N-ethylpyrrolidone (NEP) and absolute ethanol to collect a solid product.
  • NEP N-ethylpyrrolidone
  • Step 6 Mix 1.2g of polyvinyl alcohol (Qingdao Yousuo Chemical Technology Co., Ltd. food grade 1799H flocculent PVA, molecular weight of 17,000, alcoholysis degree of 99%) and 36g of water, and perform ultrasonic dispersion treatment at 95 °C. After 3 hours, until the polyvinyl alcohol was completely dissolved in water, it was cooled to normal temperature, and then anhydrous ethanol was added dropwise in a volume ratio of 1:1, and stirred while being added dropwise to obtain a solution containing flocs.
  • polyvinyl alcohol Qingdao Yousuo Chemical Technology Co., Ltd. food grade 1799H flocculent PVA, molecular weight of 17,000, alcoholysis degree of 99%
  • Step 7 mixing the solid product obtained in the step 5 with the floc-containing solution obtained in the step 6, adding 1 wt% of sodium trimetaphosphate (AR 95%) to the solid product, and stirring at normal temperature and normal pressure for 3 hours to collect the solid. product.
  • AR 95%) sodium trimetaphosphate
  • Step 8 The product of the previous step was washed with absolute ethanol to collect a solid product.
  • Step 9 The product of the previous step was vacuum heat treated at 85 ° C for 5 hours to obtain a product, which was named as scale inhibiting material I.
  • the scale inhibiting material I is pulverized into a powder of about 200 mesh to obtain a scale-inhibiting powder, which is named as a scale inhibiting material II.
  • the scale inhibiting material II is made into a scale-inhibiting tablet of 0.23 g/piece using a rotary multi-stamping machine, and is named as a scale inhibiting material III.
  • Step 1 Clinking and grinding of mineral materials: high-purity calcite or hydroxyapatite or quartz or suitable inorganic materials (purity ⁇ 99.9%) and other large surface area active materials are crushed to 320 by ultrafine pulverizer in a clean workshop. To the left and right, and then use a nano-grinder to grind the pulverized material to 15-60 nm or directly purchase the required nano-scale materials;
  • Step 2 removing water and dispersing the mineral material: the above micropowder is dehydrated under high temperature vacuum drying oven at 120 degrees for 3 hours, and then mixed with an appropriate amount of organic solvent, added to the reaction vessel and repeatedly stirred to make it uniformly dispersed;
  • Step 3 mixing reaction: adding an appropriate amount of modifier to the above dispersion, such as octadecyltrichlorosilane, palmitoyl chloride, pyrophosphoric acid, maleic anhydride, etc., according to a weight ratio of 1: (0.02-2) Proportion, using a stirring device to fully stir, forming a mixture at room temperature for 5 hours;
  • modifier such as octadecyltrichlorosilane, palmitoyl chloride, pyrophosphoric acid, maleic anhydride, etc.
  • Step 4 recrystallization: adding the appropriate amount of absolute ethanol to the reaction mixture of step 3, the amount of addition is 1-1.5 times the weight of the total reaction liquid, and the reaction product is precipitated from the reaction liquid and recrystallized;
  • Step 5 Filtration and cleaning: the above reaction product is sent to a suction filtration or centrifugal separation device, and after the reaction solution is taken off, the total solid weight is added to the proportion of absolute ethanol for cleaning, and the cleaning liquid is dried and then added to the same amount of steps.
  • the organic solvent in 2 is de-dryed and cleaned, and the above two cleanings can effectively remove the residual reagents and side reaction products. The remaining reaction product solids are taken out for use;
  • Step 6 preparation of cross-linking material: 20% by weight of the reaction product of step 5, polyvinyl alcohol (molecular weight: 17,000, degree of alcoholysis of 99%), PVP (K30), etc., placed in a glass container, added 30 times Pure water, gradually heated to 95 degrees or more, ultrasonically dispersed and stirred for 3 hours, after completely dissolved, cooled to room temperature, slowly added dropwise the total liquid amount of anhydrous ethanol, and stirred at high speed to form a flocculent mixed solution ;
  • Step 7 mixed cross-linking: the solid product prepared in step 5 is added to the mixing tank together with the mixed solution prepared in step 6, and an appropriate amount of organic solvent is added according to the viscosity of the blending liquid to make it easier to stir, stir evenly and then add the total 0.001% solid benzoyl peroxide (AR), crosslinked material total solid content of 1% sodium trimetaphosphate (AR), 0.1% triallyl isocyanurate (AR), mixed and stirred for 3 hours;
  • AR solid benzoyl peroxide
  • AR crosslinked material total solid content of 1% sodium trimetaphosphate
  • AR triallyl isocyanurate
  • Step 8 Filtration: the above cross-linked mixed liquid is input into a filtering device, and fully filtered;
  • Step 9 high temperature curing: the solid product prepared in step 8 is placed in a drying device at 85 degrees for drying and curing for 5 hours;
  • Step 10 pulverization: the above solidified product is added to a pulverizer and pulverized to about 200 mesh for use;
  • Step 11 The above powder is added to a tableting machine and pressed into a sheet shape.
  • the clean workshop is a GMP purification production workshop
  • the ultrafine pulverizer is a medical grade, food grade stainless steel ultrafine pulverizer
  • the nanogrinding machine is a medical grade nanogrinder
  • the discharge granularity is respectively 80-320 mesh and 15-60 nm
  • the reaction kettle is a double-layer glass reaction kettle
  • the stirring device is a double-pulp polytetrafluoroethylene agitator for the reaction kettle
  • the water removal device is medical high-temperature vacuum drying
  • the filter is a Buchner funnel or a medical grade centrifugal separator
  • the ultrasonic dispersing device is a stainless steel ultrasonic dispersing agitator
  • the agitating barrel is a SUS304 stainless steel mixing drum
  • the filter is a Buchner funnel or a medical grade centrifugal separator
  • the drying and curing device in the step 9 is a vertical electric heating constant temperature drying oven for medical and food, and the material contact
  • FIG. 2 shows an X-ray electron micrograph of the scale inhibiting material III of Example 1.
  • the photo magnification is 10,000 times.
  • the photograph shows that the scale inhibiting material III has a porous morphology.
  • the scale inhibiting material III does not contain heavy metal impurities and reactant residual components, and is a non-toxic and harmless product standard.
  • the content of the carbonyl group in the scale inhibiting material III was measured as an index for evaluating the graft ratio of maleic acid grafted on the surface of the hydroxyapatite. Table 3 shows that the carbonyl content in the scale inhibiting material III was 4.8%.
  • the hydroxyapatite was modified with palmitoyl chloride, and the palmitoyl chloride was esterified with the active hydroxyl group on the surface of the hydroxyapatite to obtain a palmated hydroxyapatite.
  • Palmitic acidified hydroxyapatite has good dispersibility in water.
  • palmitated hydroxyapatite also has improved scale inhibition properties and sustained release properties.
  • methyl palmitoyl acetate is a reaction product when a solid containing palmitoyl chloride is washed with ethanol.
  • the examples also modify the hydroxyapatite with maleic anhydride, and the maleic acid is esterified with the active hydroxyl group on the surface of the hydroxyapatite to obtain maleic acid modified hydroxyapatite, which is in contact with water. An anionic characteristic scale inhibiting functional group is then produced.
  • the scale inhibiting material of the present disclosure has hundreds of thousands or even millions of scale inhibiting functional groups even in the case of very slight dissolution, thereby achieving the purpose of high-efficiency scale inhibition.
  • the scale inhibition performance of the modified scale inhibition and corrosion inhibiting materials of the scale inhibiting materials III and 2 of Example 1 was respectively determined using "GB/16632-2008 Water Treatment Agent Determination of Scale Inhibition - Calcium Carbonate Deposition Method".
  • a sample solution containing 0.5 ppm (0.5 mg/L) of scale inhibiting material was prepared according to the standard, and the scale inhibition ratio was measured to be 100%.
  • the solution was prepared by using the scale inhibiting material III of Example 1 and the modified scale inhibition and corrosion inhibiting material of Example 2, respectively, in accordance with "GB/T18175-2014 Water Treatment Agent Corrosion Inhibition Performance Rotating Hanging Method" to comply with "HG/ T3523-2008 Cooling Water Chemical Treatment Standard Corrosion Test Specimen Technical Conditions:
  • the ordinary carbon steel, copper and aluminum test pieces were tested according to the requirements of GB/T18175-2014 (72 hours), and the corrosion rate was tested and calculated. The results are shown in Table 4 below:
  • Table 4 shows that the scale inhibiting material III of Example 1 and the modified scale inhibiting material of Example 2 have better corrosion inhibition performance.
  • Figure 1 shows a scale inhibition capability test system.
  • the test system comprises: a first container 1; a water pipe 2, a water pump 3, a regulating valve 4, a pressure gauge 5, a scale inhibiting device 6 and a second container 7.
  • the first container 1 is for holding underground hard water
  • the water pipe 2 is for conveying the water in the first container 1 to the second container 7, and the water pump 3, the regulating valve 4, and the pressure gauge 5 are sequentially connected in series on the water pipe. Used to pump water at a predetermined flow rate.
  • the scale inhibiting device 6 has a cavity therein, and the cavity has a water inlet and a water outlet.
  • the cavity is further provided with a cage for holding the scale inhibiting tablet (ie, the scale inhibiting material III of the embodiment 1) to avoid the tablet. Washed away by the water.
  • the water flow through the cavity can also flow through the scale inhibiting material III in the cage.
  • the scale inhibiting device 5 is connected in series to the water pipe 2, and the water inlet and the water outlet are connected
  • the scale inhibition rate was found to be significantly reduced. After opening the scale inhibitor, the scale inhibitor was also found to be wrapped in a large amount of contaminants, and the scale inhibitor was reloaded into the scale inhibitor to perform a reverse Rinse and continue testing.
  • Table 6 shows the following indicators obtained from the first to the 14th day test: the amount of water tested, the calcium content of the water sample, the carbonyl content of the water sample, and the scale inhibition rate.
  • the effective component of the scale inhibiting material III (based on the carbonyl content) is stable.
  • the content of the active ingredient is higher during the first test every day. The reason is that after the test on the previous day, due to the residual moisture in the filter element containing the scale inhibiting material III, the scale inhibiting material III is soaked in water for one night, and the amount of dissolution is more. In the first test of the second day, the total content of the active ingredient of the scale inhibiting material III was higher.
  • the average scale inhibition rate of scale inhibiting material III is greater than 90%.
  • Scale inhibiting material III showed good scale inhibition effect, indicating that Example 1 did achieve the grafting of scale inhibition groups on the surface of hydroxyapatite, and obtained scale inhibition materials with good sustained release and scale inhibition effects. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种复合材料及其制备方法及用途。该复合材料包括阻垢体,该阻垢体包括基体,基体上接枝有阻垢官能团;该基体在水中的溶解度小于或等于100g/L。该复合材料作为阻垢剂,具有缓释高效的效果。

Description

一种复合材料及其制备方法及用途 技术领域
本发明属于材料领域,具体涉及一种复合材料及其制备方法。
背景技术
众所周知,结垢问题是一个世界性难题。
首先,水垢的导热性非常差,其导热系数比金属小几十倍甚至上百倍。有实验表明当热交换面结垢后,每增加1mm水垢则导热系数将降低20%-30%,即用电量增加20%-30%。当水垢厚度达到12.7毫米,那就要多消耗70%的能源。
其次,水垢不仅造成严重的能源浪费,还极易导致家用电器、水壶、饮水机、铝锅、太阳能热水器、电热水器、暖水瓶及家用采暖炉、宾馆锅炉、自供暖采暖炉等局部腐蚀乃至穿孔报废,更有甚者使器具的受热不均而引起爆炸,造成恶劣后果。
相关技术采用机械处理和化学酸洗方法去除水垢。例如,利用外力去除附着在容器表面的水垢。例如,使用强酸溶解附着在容器表面水垢。
发明内容
在一些方面,提供一种改性阻垢缓蚀材料生产方法及设备。
一种改性阻垢缓蚀材料生产方法及设备,该改性阻垢缓蚀材料生产方法步骤如下:
步骤1、矿料粉碎、研磨:在洁净厂房中将高纯度方解石或羟基磷灰石或石英石或适用的无机材料(纯度≥99.9%)等大比表面积活性材料经超微粉碎机粉碎至320目左右,进而使用纳米研磨机将粉碎材料研磨至15-60nm或直接采购符合要求的纳米级材料;
步骤2、矿料除水、分散:将上述微粉经高温真空干燥箱在120度下减压除水3小时后与适量有机溶剂混合,加入反应釜并反复搅拌,使之分散均匀;
步骤3、混合反应:往上述分散液中加入适量改性剂,如十八烷基三氯硅烷、棕榈酰氯、焦磷酸、马来酸酐等,按照重量比为1:(0.02-2)的比例配比,使用搅拌设备进行充分搅拌,形成混合物常温下反应5小时;
步骤4、重结晶:将步骤3反应混合液中加入适量无水乙醇,添加量为总反应液重量的1-1.5倍,使反应产物从反应液中析出,重新结晶;
步骤5、过滤清洗:将上述反应产物输送入抽滤或离心分离设备,脱掉反应液后,加入总固体重量等比例的无水乙醇进行清洗,等清洗液脱干后继续加入等量的步骤2中的有机溶剂脱干清洗,以上两次清洗可有效去除反应残留试剂及副反应产物。剩余反应产物固体取出待用;
步骤6、交联材料制备:将与步骤5反应产物重量20%的聚乙烯醇(分子量为1.7万、醇解度为99%)、PVP(K30)等放入一玻璃容器内,添加30倍纯水,逐渐加热至95度以上,超声分散搅拌3小时,待完全溶解后,冷却至常温,缓慢滴加入总液量等比的无水乙醇,并高速搅拌,使之形成絮状混合溶液备用;
步骤7、混合交联:将步骤5所制备的固体产物与步骤6所制备的混合溶液一齐加入搅拌桶内,根据共混液的粘度添加适量有机溶剂,使之更容易搅拌,搅拌均匀后加入总固体含量0.001%的过氧化苯甲酰(AR)、交联材料总固含量1%的三偏磷酸钠(AR)、0.1%异氰脲酸三烯丙酯(AR),混合搅拌3小时;
步骤8、过滤:将上述交联混合液输入过滤设备,充分滤干;
步骤9、高温固化:将步骤8所制备的固体产物放入烘干设备85度烘干固化5小时;
步骤10、粉碎:将上述固化产物加入粉碎机粉碎至200目左右待用;
步骤11、制片:将上述粉末加入制片机压制成片状。
所述步骤1中洁净厂房为GMP净化生产车间,所述超微粉碎机为医用级、食品级不锈钢超微粉碎机;所述纳米研磨机为医用级纳米研磨机,所述出料粒度分别为80-320目及15-60nm。
所述步骤2中反应釜为双层玻璃反应釜,所述搅拌设备为反应釜自带双浆聚四氟搅拌器;所述除水设备为医用高温真空干燥箱。
所述步骤5中过滤器为布氏漏斗或医用级离心分离机。
所述步骤6中超声分散设备为不锈钢超声分散搅拌仪。
所述步骤7中搅拌桶为SUS304不锈钢搅拌桶。
所述步骤8中过滤器为布氏漏斗或医用级离心分离机。
所述进步骤9中烘干固化设备为医用、食品用立式电热恒温烘干箱,材料接触部分为SUS304食品级不锈钢。
所述步骤10中超微粉碎机为医用级、食品级不锈钢超微粉碎机,出料粒度为80-200目。
所述步骤11中制片机为医用旋转式多冲压片机。
利用本发明的技术方案制作的改性阻垢缓蚀材料生产方法及设备,该固体阻垢缓蚀剂在热水系统中除具有防止水垢生成、有效缓解金属管壁腐蚀的效果外,更具备微量溶解、缓慢释放、低溶限、PH中性、绿色环保的特征。
在一些方面,提供一种复合材料,包括阻垢体,所述阻垢体包括基体,所述基体上接枝有阻垢官能团;所述基体在水中的溶解度小于或等于100g/L(例如小于或等于50g/L,例如小于或等于10g/L,例如小于或等于5g/L,例如小于或等于1g/L,例如小于或等于0.5g/L,例如小于或等于0.1g/L,例如小于或等于0.05g/L,例如小于或等于0.01g/L,例如小于或等于0.005g/L,例如小于或等于0.001g/L,例如为0.001~100g/L)。
在一些实施方案中,所述基体包含无机物。
在一些实施方案中,所述基体包含无机盐。
在一些实施方案中,所述基体包含金属氧化物或无机盐。
在一些实施方案中,所述基体包含碳酸盐、磷酸盐、硅酸盐、钛酸盐或它们的组合。
在一些实施方案中,所述基体包含磷酸钙盐。
在一些实施方案中,所述基体包括羟基磷灰石。
在一些实施方案中,所述阻垢官能团选自:羧酸基团、羧酸衍生物基团、磺酸基团、磺酸衍生物基团、磷酸或其衍生物基团、氨基酸基团、氨基酸衍生物基团、季胺基团或它们的组合。
在一些实施方案中,所述阻垢官能团含有羰基基团。
在一些实施方案中,羧酸基团、羧酸衍生物基团、磺酸基团、磺酸衍生物基团、磷酸或其衍生物、氨基酸基团、氨基酸衍生物基团各自独立地为饱和的或不饱和的(例如烯键式不饱和的)。
在一些实施方案中,所述阻垢官能团包括马来酸基团,例如具有羧基端基的马来酸基团。
在一些实施方案中,所述阻垢官能团还包括羟基。
在一些实施方案中,阻垢官能团是指具有对金属离子(如Ca 2+、Mg 2+)有螯合、吸附、静电斥力、增溶中的一种或多种能力的基团。基于此,阻垢官能团能干扰水垢的结晶,使水垢晶核不易形成或结晶不易长大。
在一些实施方案中,阻垢官能团是指在水中能够与钙离子和/或镁离子形成稳定络合物的基团。基于此,阻垢官能团能够降低了水中钙离子和/或镁离子的浓度。
在一些实施方案中,阻垢官能团是指在水中能够解离,解离后能形成负离子的基团。基于此,负离子能够吸附水垢的微粒,使微粒带负电,进而使微粒之间相互排斥,无法形成大晶粒。
在一些实施方案中,阻垢官能团是指在水中能够解离,解离后能形成正离子的基团。基于此,正离子能够吸附水垢的微粒,使微粒带正电,进而使微粒之间相互排斥,无法形成大晶粒。
在一些实施方案中,阻垢官能团是阳离子型阻垢官能团。阳离子型阻垢官能团在水中电离后带有正电荷。
在一些实施方案中,阻垢官能团是阴离子型阻垢官能团。阴离子型阻垢官能团再水中电离后带有负电荷。
在一些实施方案中,阻垢官能团再水中具有以下一种或多种特征:能分散、能阻垢、缓释。
在一些实施方案中,所述阻垢官能团为:C1-C50羧酸基团、C1-C50羧酸衍生物基团、C1-C50磺酸基团、C1-C50磺酸衍生物基团、C1-C50磷酸或其衍生物、C1-C50氨基酸基团、C1-C50氨基酸衍生物基团。
在一些实施方案中,所述阻垢基团具有1~50个C原子,例如具有1~10个C原子,10~20个C原子,20~30个C原子,30~40个C原子或40~50个 C原子。
在一些实施方案中,所述基体上接枝有阻垢官能团。
在一些实施方案中,在未接接枝阻垢官能团的情况下,所述基体表面有表面基团(例如羟基)。
在一些实施方案中,含有阻垢官能团的化合物与基体表面的表面基团(例如羟基)发生化学反应(例如缩合反应),进而将阻垢官能团接枝在基体表面。
在一些实施方案中,复合材料上有阻垢官能团修饰的表面基团。“阻垢官能团修饰的表面基团”指的是已经被阻垢官能团官能团化了的表面基团。例如,表面基团是-OH,-OH被阻垢官能团修饰(或官能化)后,从而形成被阻垢官能团官能团化了的表面基团,例如,OC(O)CH 2-、OCH 2-、OPh-、OCH 2Ph-和OC(O)Ph-。
在一些实施方案中,术语“改性”、“接枝”、“功能化”和“衍生化”在本文中具有相同含义,并且均指使阻垢官能团通过化学键(如共价键)与基体或基体表面的表面基团(例如羟基)键合。
在一些实施方案中,所述化学键选自以下一种或多种:酯、醚、磷酯、酰胺、肽、亚胺、碳-硫键、碳-磷键等。
在一些实施方案中,所述阻垢官能团通过化学键键接枝在所述基体上。
在一些实施方案中,未接枝阻垢官能团的基体表面有表面基团,含有阻垢官能团的物质与基体表面的表面基团反应实现接枝。
在一些实施方案中,所述基体的至少部分表面基团被所述阻垢官能团衍生化(或功能化)。
在一些实施方案中,所述基体上连接有一个或多个阻垢官能团。
在一些实施方案中,基体是含有羟基官能团(-OH官能团)的金属氧化物或无机盐。例如,氧化物可以选自二氧化硅SiO 2、氧化铝Al 2O 3、二氧化锆ZrO 2、二氧化铈CeO 2、二氧化钛TiO 2和二氧化钍。
使用基体的羟基进行接枝,得到键合序列A—O—M(OR)n,A代表载体的金属元素。例如,在二氧化硅的情况下,使用其硅烷醇基团,可在载体表面上产生Si—O—M(OR)n键合序列。
在一些实施方案中,所述基体是疏水的或已被疏水改性的。
在某些实施方式中,基体是经偶联改性剂改性处理的。在某些实施方式中,基体上涂覆有偶联改性剂。偶联改性剂的目的可以是改善基体在水中的分散性,还可以是与要与之结合的阻垢基团/固体支持物的相容性。在某些实施方式中,偶联涉及聚合物之间和/或聚合物与表面处理剂之间的物理(例如,空间)和/或化学(例如化学键,如共价键或范德华力)相互作用。
在一些实施方案中,可用于本文的偶联改性剂包括硅氧烷、丙烯酸酯硅氧烷共聚物、丙烯酸酯聚合物、烷基硅烷、三异硬脂酸钛异丙酯、硬脂酸钠、肉豆蔻酸镁、全氟醇磷酸酯、全氟聚甲基异丙基醚、卵磷脂、卡洛巴蜡、聚乙烯、脱乙酰壳多糖、月桂酰赖氨酸、植物类脂提取物、棕榈酰氯或它们的组合。
在一些实施方案中,所述基体在未接接枝阻垢官能团的情况下不含有阻垢成分。
在一些实施方案中,所述基体在未接枝阻垢官能团的情况下不具有阻垢作用。
在一些实施方案中,所述基体由不具有阻垢作用的材料制成。
在一些实施方案中,所述基体的比表面积大于或等于10g/m 2,例如为10~20g/m 2,20~30g/m 2,30~40g/m 2,40~50g/m 2,50~60g/m 2,60~70g/m 2,70~80g/m 2,80~90g/m 2,90~100g/m 2
在一些实施方案中,所述阻垢体的比表面积大于或等于10g/m 2,例如比表面积为10~20g/m 2,20~30g/m 2,30~40g/m 2,40~50g/m 2,50~60g/m 2,60~70g/m 2,70~80g/m 2,80~90g/m 2或90~100g/m 2
在一些实施方案中,所述阻垢体在水中的溶解度小于或等于100g/L(例如小于或等于50g/L,例如小于或等于10g/L,例如小于或等于5g/L,例如小于或等于1g/L,例如小于或等于0.5g/L,例如小于或等于0.1g/L,例如小于或等于0.05g/L,例如小于或等于0.01g/L,例如小于或等于0.005g/L,例如小于或等于0.001g/L,例如为0.001~100g/L)。
在一些实施方案中,所述基体的粒径小于或等于100μm,例如为1~10nm,10~50nm,50~100nm,100~200nm,200~500nm,500~1000nm,1~2μm, 2~5μm、5~10μm、10~50μm或50~100μm。
在一些实施方案中,所述阻垢体的粒径小于或等于100μm,例如为1~10nm,10~50nm,50~100nm,100~200nm,200~500nm,500~1000nm,1~2μm,2~5μm、5~10μm、10~50μm或50~100μm。
在一些实施方案中,所述基体是多孔的。
在一些实施方案中,本公开复合材料包括一个或多个所述阻垢体和固体支持物,所述一个或多个阻垢体被设置在所述固体支持物的内部和/或表面。
在一些实施方案中,所述固体支持物在水中的溶解度小于或等于100g/L(例如小于或等于50g/L,例如小于或等于10g/L,例如小于或等于5g/L,例如小于或等于1g/L,例如小于或等于0.5g/L,例如小于或等于0.1g/L,例如小于或等于0.05g/L,例如小于或等于0.01g/L,例如小于或等于0.005g/L,例如小于或等于0.001g/L,例如为0.001~100g/L)。
在一些实施方案中,所述固体支持物是聚乙烯醇交联产物,例如以三偏磷酸钠为交联助剂的聚乙烯醇交联产物。
在一些实施方案中,所述固体支持物是聚乳酸交联产物,例如以异氰脲酸三烯丙酯为交联助剂的聚乳酸交联产物。固体支持物中还可以含有在交联过程中作为催化剂的硫酸亚铁和/或氯化亚铜、以及作为引发剂的过氧化苯甲酰。
在一些实施方案中,阻垢体上的部分基团与固体支持物上的部分基团通过共价键连接。
在一些实施方案中,固体支持物是水不溶性聚合物。水不溶性聚合物是指由亲水性或水溶性单体(或预聚物)合成的具有交联结构的高分子树脂,不溶(或难溶)与水,而在水中溶胀。阻垢体分布在水不溶性聚合物内部。基于此,一方面水不溶性聚合物能够起到支持/固定阻垢体的作用,另一方面水不溶性聚合物能够起到减缓阻垢体溶解/释放、增强阻垢材料缓释效果的作用。
在一些实施方案中,固体支持物的溶胀比为1~10(例如1-2、2-5或5-10)。
在一些实施方案中,制备复合材料的方法包括以下步骤:将阻垢体分散在含有前体的溶液中,然后使所前体交联,所述前体是亲水性的或水溶性的, 所述前体是单体或预聚物。
在一些实施方案中,水不溶性聚合物是指溶解度小于或等于5g/L,1g/L,例如小于或等于0.5g/L,例如小于或等于0.1g/L,例如小于或等于0.05g/L,例如小于或等于0.01g/L,例如小于或等于0.005g/L,例如小于或等于0.001g/L的聚合物。
在一些实施方案中,所述基体上接枝有含8个以上(例如10个以上、或20个以上)C原子的链状基团,基于此,这些链状基团能够纠缠在水不溶性聚合物的交联结构中,进而起到减缓阻垢体溶解/释放、增强阻垢材料缓释效果的作用。
在一些实施方案中,所述阻垢基团是含8个以上(例如10个以上、或20个以上)C原子的链状基团。
在一些实施方案中,阻垢基团含8个以上(例如10个以上、或20个以上)C原子。
在一些实施方案中,阻垢体与固体支持物的质量比为100:1~20(例如100:3~5,例如100:3~5,例如100:5~10,例如100:10~20)。
在一些实施方案中,阻垢体在所述复合材料中的含量为1~100%,例如1~99%、10~20%、20~30%、30~40%、40~50%、50~60%、60~70%、70~80%、80~90%或100%。
在一些实施方案中,所述阻垢体通过原位聚合或共混的方式与所述固体支持物相复合。
在一些实施方案中,所述阻垢体填充于固体支持物中。
在一些实施方案中,可通过将阻垢体与一个或多个单体或预聚物接合,然后将一个或多个单体或预聚物聚合,获得复合材料。
在一些实施方案中,所述阻垢体通过物理或化学地结合力与固体支持物相结合。
在一些实施方案中,所述阻垢体分散在所述固体支持物中。
在一些实施方案中,所述复合材料的为颗粒状或块状。
在一些方面,提供复合材料用于抑制水体内结垢和/或用于减缓水体中金属被腐蚀的用途。
在一些方面,提供一种水处理装置,包括进水口、出水口和滤芯,所述滤芯内含有本公开的复合材料。
在一些方面,提供水处理装置用于抑制水体内结垢和/或用于减缓水体中金属被腐蚀的用途。
在一些方面,提供一种复合材料的制备方法,包括获得阻垢体的步骤,该步骤包括:
i)获得基体,所述基体在水中的小于或等于100g/L;
ii)使所述基体与含有阻垢官能团的化合物接触,使阻垢官能团接枝于所述基体表面。
在一些实施方案中,所述含有阻垢官能团的化合物包括以下一种或多种:羧酸基团、羧酸衍生物基团,磷酸或其衍生物,磺酸基团、磺酸衍生物基团、氨基酸基团、氨基酸衍生物基团和季胺基团。
在一些实施方案中,复合材料的制备方法,还包括对基体进行疏水改性的步骤。
在一些实施方案中,复合材料的制备方法,还包括:
iii)将阻垢体设置在固体支持物表面或内部。
所述固体支持物在水中具有有限的溶解度,例如小于或等于100g/L(例如小于或等于50g/L,例如小于或等于10g/L,例如小于或等于5g/L,例如小于或等于1g/L,例如小于或等于0.5g/L,例如小于或等于0.1g/L,例如小于或等于0.05g/L,例如小于或等于0.01g/L,例如小于或等于0.005g/L,例如小于或等于0.001g/L,例如为0.001~100g/L)。
在一些实施方案中,所述基体是纳米羟基磷灰石。
在一些实施方案中,步骤ii)包括:将纳米羟基磷灰石分散在有机溶剂(例如N乙基吡咯烷酮)中,加入棕榈酰氯和马来酸酐进行反应。
在一些实施方案中,步骤iii)包括:将阻垢体共混在水溶性固体聚合物中。
在一些实施方案中,步骤iii)包括:将水溶性固体聚合物交联的步骤。
在一些实施方案中,步骤iii)包括,将分子量为10000~20000的聚乙烯醇溶解在水中,加入无水乙醇,获得含有絮状物的第一混合物。将步骤ii) 所得固体产物与第一混合物混合,加入三偏磷酸钠,进行反应。
在一些实施方案中,步骤iii)包括,将步骤ii)所得固体产物与聚乳酸混合,加入硫酸亚铁、氯化亚铜的混合物,再加入石油醚、水,搅拌回流,再加入过氧化苯甲酰和异氰脲酸三烯丙酯,进行反应。
在一些实施方案中,步骤ii)还包括对所述滤出物实施清洗、过滤、烘干、结晶、热处理中的一步或多步。
在一些实施方案中,步骤iii)还包括对所述滤出物实施清洗、过滤烘干、结晶、热处理中的一步或多步。
在一些实施方案中,步骤iii)还包括将所述滤出物粉碎成粉末的步骤,以及可选地,将粉末压制成坯块。
本公开复合材料可以应用于电厂、化工、化肥厂、冶炼、盐业、果乳业、管业制造或制药等领域的用水系统中。
本公开复合材料可以应用于中央空调水系统、空压机组、大型冷库、热交换器、民用热水器、太阳能热水器、空气源热泵热水器、汽车水箱、喷泉水景、洗浴、加湿器或蒸汽烫斗等领域的用水系统中。
本公开复合材料还可用于饮用水净化膜阻垢,可与中央净水系统及家用、商用净水器、开水器等设备组合使用。
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所涉及的实验室操作步骤均为相应领域内广泛使用的常规步骤。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
如本文中使用的,术语“纳米”是指尺寸不大于1000nm,例如尺寸为10nm~100nm、100nm~200nm、200nm~300nm、300nm~400nm、400nm~500nm、500nm~600nm、600nm~700nm、700nm~800nm、800nm~900nm或900nm~1000nm。
如本文中使用的,术语“粒径”即“等效粒径”,是指当被测粒子的某种物理特性或物理行为与某一直径的同质球体(或组合)最相近时,就把该球体的直径(或组合)作为被测粒子的等效粒径(或粒度分布)。
如本文中使用的,术语“平均粒径”是指对于一个由大小和形状不相同的 粒子组成的实际粒子群,与一个由均一的球形粒子组成的假想粒子群相比,如果两者的粒径全长相同,则称此球形粒子的直径为实际粒子群的平均粒径。平均粒径的测量方法是本领域技术人员已知的,例如光散射法;平均粒径的测量仪器包括但不限于电子显微镜、光散射粒度仪。
如本文中使用的,术语“颗粒”在这里可理解为颗粒尺寸上限为1cm(包括1cm)的固体。
如本文中使用的,术语“块”在这里可理解为尺寸的下限为1cm(不包括1cm)的固体。
如本文中使用的,术语“垢”包括水中形成的难溶性无机盐及其等同物或类似物,例如碳酸钙、碳酸镁、硫酸钙、硫酸镁、氯化钙、氯化镁等沉淀物。
如本文中使用的,术语“阻垢”是阻止或干扰金属离子形成难溶性无机盐,或者阻止或干扰难溶性无机盐沉淀、结垢。
如本文中使用的,术语“溶解度”是指于20℃的水中测定的溶解度。
除非特别说明,步骤的环境条件为常温常压。
如本文中使用的,术语“常温”是指25±5℃。
如本文中使用的,术语“常压”是指1.0±0.1×10 5Pa。
如本文中使用的,术语“约”应该被本领域技术人员理解,并将随其所用之处的上下文而有一定程度的变化。如果根据术语应用的上下文,对于本领域技术人员而言,其使用不是清楚的,那么“约”的意思是不超过所述特定数值或范围的正负10%。
此外,原则上术语“羧酸/膦酸/磺酸”包括所有具有至少一个羧酸/膦酸/磺酸基团的化合物。因此其特别还包括除至少一个羧酸/膦酸/磺酸基团外还含有其它官能团如羟基、酮基团或醚基团的化合物。二羧酸/膦酸/磺酸、三羧酸/膦酸/磺酸或具有大于3个羧基的羧酸/膦酸/磺酸。
术语“氨基酸基团”是指包括α-氨基酸、β-氨基酸和γ-氨基酸的氨基酸。氨基酸的实例可以包括,但可以不限于,甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、脯氨酸、苯丙氨酸、色氨酸、丝氨酸、苏氨酸、半胱氨酸、thirosine、天冬酰胺、谷氨酰胺、天冬氨酸、谷氨酸、赖氨酸、精氨酸、组氨酸、β-丙氨酸、鸟氨酸等。
术语“羧酸衍生物”包括但不限于羧酸的盐、酯或酰胺。
术语“磺酸衍生物”包括但不限于磺酸的盐、酯或酰胺。
术语“膦酸衍生物”包括但不限于膦酸的盐、酯或酰胺。
术语“氨基酸衍生物”包括但不限于氨基酸的盐、酯或酰胺。
术语“羧酸基团”指-C(O)OH。
术语“磺酸基团”指-S(O) 2OH。
术语“膦酸基团”指-P(O)(OH) 2或-RP(O)OH。R选自烷基、烯基、炔基、芳基、芳烷基、环烷基、卤烷基、杂芳基和杂环基。
术语“季胺基团”指-R aR bR cR dN+的化合物,其中R a、R b、R c和R d基团分别选自脂族基、脂环基、芳基或杂环基。
在一些实施方案中,羧酸衍生物基团是指CO 2R或C(O)NRR′,这里R和R′各自为氢或低级烷基(例如C1-C10烷基)。
在一些实施方案中,磺酸衍生物基团是指SO 3R或SO 2NRR′,这里R和R′各自为氢或低级烷基(例如C1-C10烷基)。
在一些实施方案中,膦酸衍生物基团是指PO(OR) 2、PO(OH)(OR)、PO(OR)(NRR')或PO(NRR') 2,这里R和R'各自为氢或低级烷基(例如C1-C10烷基)。
羟基磷灰石,英文名Hydroxyapatite,其化学式为Ca 10(PO 4) 6(OH) 2。羟基磷灰石是动物和人体骨骼的主要无机成分,具有良好的生物相容性。其常用作骨修复材料和药物载体。
在一些实施方案中,“包括”是指含量为1~99%、10~20%、20~30%、30~40%、40~50%、50~60%、60~70%、70~80%、80~90%或100%。
除非特别说明,%为重量%,份数为重量份。
有益效果
本公开复合材料或其制备方法具有以下一项或多项有益效果:
i)释放速度可控性好
本公开复合材料利用在水中具有有限的溶解度的基体来控制阻垢官能团在水中的释放量。
例如,当基体在水中的溶解度未达到饱和时,基体会源源不断地溶解到水中,由此,连接在基体表面的具有阻垢功能的官能团也会源源不断地溶解到水中,由此,获得了含有阻垢成分的水体,实现了阻垢的技术效果。
再例如,当基体在水中的溶解度达到饱和时,基体不再溶解,水体中基体的浓度不再增加,阻垢成分的浓度也不再增加,由此,避免了阻垢成分无限制地释放到水体中,造成阻垢成分的浪费。由此,实现了节约阻垢成分的效果。
本公开复合材料还可进一步通过将阻垢体复合在水不溶性聚合物中,来控制阻垢官能团在水中的释放量。水不溶性聚合物在水体中溶胀而不溶解,形成交联网络。阻垢体分布在水不溶性聚合物的交联网络中,使得阻垢体在水体中释放速度得到了有效地控制。
ii)PH基本呈中性,例如PH为6~8;
iii)成分安全无毒害;
iv)本公开复合材料在水中缓慢溶解释放;
v)绿本公开复合材料具有绿色环保、高效阻垢、安全无毒害的特征;
vi)本公开复合材料通过对基体进行接枝改性,在基体表面接枝阻垢官能团,例如羧酸基团、酯基或羰基,这些基团起到阻垢效果。
下面将结合附图和实施例对本发明的实施方案进行详细描述,但是,本领域技术人员将理解,下列附图和实施例仅用于说明本发明,而不是对本发明的范围的限定。根据附图和优选实施方案的下列详细描述,本发明的各种目的和有利方面对于本领域技术人员来说将变得显然。
附图说明
图1是本公开一种改性阻垢缓蚀材料生产方法及设备的生产流程图;
图2是本公开一种改性阻垢缓蚀材料的扫描电子镜照片;
图3是本公开阻垢性能测试系统的示意图;
图4是缓释性能测试中阻垢材料III有效成分浓度随检测次数变化的柱状图;
图5是缓释性能测试中阻垢率随检测次数变化的曲线图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
步骤1、获得纳米羟基磷灰石(购自上海麦克林生化科技有限公司),产品信息如下:
表1
Figure PCTCN2018094955-appb-000001
步骤2、在真空干燥箱内在120℃对纳米羟基磷灰石实施干燥处理3小时,获得干燥处理后的纳米羟基磷灰石。将100g干燥处理后的纳米羟基磷灰石分散在500ml N乙基吡咯烷酮(NEP)中。
步骤3、向上一步产物中加0.2g棕榈酰氯(>96%(T))、20g马来酸酐(>99%(GC)),在常温常压下反应5小时。
步骤3中,纳米羟基磷灰石与马来酸酐的一个代表性化学反应式如下式(I)。纳米羟基磷灰石与棕榈酰按的一个代表性化学反应式如下式(II)。
Figure PCTCN2018094955-appb-000002
式(I)中,马来酸酐与羟基磷灰石反应,获得表面接枝有马来酸的羟基磷灰石。马来酸的一个羧基与将羟基磷灰石酯化,另一个羧基仍为端基。
式(II)中,棕榈酰氯与羟基磷灰石酯化反应,获得被棕榈酸酯化的羟基磷灰石。被棕榈酰氯酯化改性的羟基磷灰石在水中具有更好的分散性。另外,棕榈酸酯基团会产生阳离子弱电效应,进一步提高阻垢体的阻垢效果。另外,由于棕榈酸酯基团具有较长的碳链,多个接枝有棕榈酸酯基团的阻垢体彼此之间会发生相互缠绕,进而起到减缓阻垢体溶解/释放,增强缓释效果的作用。
步骤4、向上一步产物中加入1.3倍无水乙醇,获得结晶产物。
步骤5、过滤上一步产物,并依次用N乙基吡咯烷酮(NEP)、无水乙醇清洗,收集固体产物。
步骤6、将1.2g聚乙烯醇(青岛优索化学科技有限公司食品级1799H絮状PVA,分子量为1.7万、醇解度为99%)和36g水混合,将混合物在95℃实施超声分散处理3小时,直至聚乙烯醇完全溶解在水中,冷却至常温,再按体积比1:1滴加的无水乙醇,滴加时搅拌,获得含有絮状物的溶液。
步骤7、混合步骤5所得固体产物与步骤6所得含有絮状物的溶液,加入占固体产物1wt%的三偏磷酸钠(AR 95%),在常温常压下搅拌3小时进行反应,收集固体产物。
步骤8、将上一步产物用无水乙醇清洗,收集固体产物。
步骤9、将上一步产物在85℃真空热处理5小时,获得产品,命名为阻垢材料I。
可选地,步骤10、将阻垢材料I粉碎为约200目的粉末,获得阻垢粉末 (scale-inhibiting powder),命名为阻垢材料II。
可选地,步骤11、使用旋转式多冲压片机将阻垢材料II制成规格0.23g/片的阻垢药片(scale-inhibiting tablet),命名为阻垢材料III。
实施例2
该改性阻垢缓蚀材料生产方法步骤如下:
步骤1、矿料粉碎、研磨:在洁净厂房中将高纯度方解石或羟基磷灰石或石英石或适用的无机材料(纯度≥99.9%)等大比表面积活性材料经超微粉碎机粉碎至320目左右,进而使用纳米研磨机将粉碎材料研磨至15-60nm或直接采购符合要求的纳米级材料;
步骤2、矿料除水、分散:将上述微粉经高温真空干燥箱在120度下减压除水3小时后与适量有机溶剂混合,加入反应釜并反复搅拌,使之分散均匀;
步骤3、混合反应:往上述分散液中加入适量改性剂,如十八烷基三氯硅烷、棕榈酰氯、焦磷酸、马来酸酐等,按照重量比为1:(0.02-2)的比例配比,使用搅拌设备进行充分搅拌,形成混合物常温下反应5小时;
步骤4、重结晶:将步骤3反应混合液中加入适量无水乙醇,添加量为总反应液重量的1-1.5倍,使反应产物从反应液中析出,重新结晶;
步骤5、过滤清洗:将上述反应产物输送入抽滤或离心分离设备,脱掉反应液后,加入总固体重量等比例的无水乙醇进行清洗,等清洗液脱干后继续加入等量的步骤2中的有机溶剂脱干清洗,以上两次清洗可有效去除反应残留试剂及副反应产物。剩余反应产物固体取出待用;
步骤6、交联材料制备:将与步骤5反应产物重量20%的聚乙烯醇(分子量为1.7万、醇解度为99%)、PVP(K30)等放入一玻璃容器内,添加30倍纯水,逐渐加热至95度以上,超声分散搅拌3小时,待完全溶解后,冷却至常温,缓慢滴加入总液量等比的无水乙醇,并高速搅拌,使之形成絮状混合溶液备用;
步骤7、混合交联:将步骤5所制备的固体产物与步骤6所制备的混合溶液一齐加入搅拌桶内,根据共混液的粘度添加适量有机溶剂,使之更容易 搅拌,搅拌均匀后加入总固体含量0.001%的过氧化苯甲酰(AR)、交联材料总固含量1%的三偏磷酸钠(AR)、0.1%异氰脲酸三烯丙酯(AR),混合搅拌3小时;
步骤8、过滤:将上述交联混合液输入过滤设备,充分滤干;
步骤9、高温固化:将步骤8所制备的固体产物放入烘干设备85度烘干固化5小时;
步骤10、粉碎:将上述固化产物加入粉碎机粉碎至200目左右待用;
步骤11、制片:将上述粉末加入制片机压制成片状。
所述步骤1中洁净厂房为GMP净化生产车间,所述超微粉碎机为医用级、食品级不锈钢超微粉碎机;所述纳米研磨机为医用级纳米研磨机,所述出料粒度分别为80-320目及15-60nm;所述步骤2中反应釜为双层玻璃反应釜,所述搅拌设备为反应釜自带双浆聚四氟搅拌器;所述除水设备为医用高温真空干燥箱;所述步骤5中过滤器为布氏漏斗或医用级离心分离机;所述步骤6中超声分散设备为不锈钢超声分散搅拌仪;所述步骤7中搅拌桶为SUS304不锈钢搅拌桶;所述步骤8中过滤器为布氏漏斗或医用级离心分离机;所述进步骤9中烘干固化设备为医用、食品用立式电热恒温烘干箱,材料接触部分为SUS304食品级不锈钢;所述步骤10中超微粉碎机为医用级、食品级不锈钢超微粉碎机,出料粒度为80-200目;所述步骤11中制片机为医用旋转式多冲压片机。
二、分析检测
对实施例1和2获得的阻垢材料III进行了以下检测:
1、形貌
图2示出实施例1的阻垢材料III的X射线电子显微镜照片。照片放大倍数为10,000倍。照片示出阻垢材料III具有多孔形貌。
2、成分分析
使用X射线荧光光谱和液相色谱-质谱联用仪分析了阻垢材料III中各元素含量,结果如表2和表3所示。
表2
Figure PCTCN2018094955-appb-000003
表3
Figure PCTCN2018094955-appb-000004
通过表2-3可以看出:阻垢材料III中不含有重金属杂质及反应物残留成份,复合无毒无害的产品标准。
通过检测阻垢材料III中羰基含量,作为评价马来酸接枝于羟基磷灰石表面的接枝率的指标。表3示出阻垢材料III中的羰基含量为4.8%。
使用棕榈酰氯对羟基磷灰石进行修饰,棕榈酰氯与羟基磷灰石表面的活性羟基发生酯化反应,获得了棕榈酸酯化的羟基磷灰石。棕榈酸酯化的羟基磷灰石在水中具有较好的分散性。另外,棕榈酸酯化的羟基磷灰石还具有改善的阻垢性能和缓释性能。表3中,棕榈酰乙酸甲酯是用乙醇清洗含有棕榈酰氯的固体时反应产物。
实施例还使用马来酸酐对羟基磷灰石进行修饰,马来酸与羟基磷灰石表面的活性羟基发生了酯化反应,获得了马来酸修饰的羟基磷灰石,该基团遇水后产生阴离子特性阻垢官能团。
本公开的阻垢材料即使在非常微量溶解的情况下,就具备数十万,甚至数百万阻垢官能团,实现高效阻垢的目的。
2、PH值和溶解度
取实施例1的阻垢材料III和实施例2的改性阻垢缓蚀材料各10克分别置于带盖磨口烧瓶中,加入100克高纯水(TDS为零),在常温下(密封,25℃恒温)溶解24小时。使用“哈纳HI4522高精度实验室多参数分析测定仪”分析上清液的PH值和总固体溶解度TDS。结果显示,实施例1和2的样品的PH值为7.2,总固体溶解度为5g/L。
由上可知,本公开阻垢剂在水中溶解度有限,
3、阻垢性能。
使用《GB/16632-2008水处理剂阻垢性能的测定——碳酸钙沉积法》分别测定实施例1的阻垢材料III和2的改性阻垢缓蚀材料的阻垢性能。
(1)按标准配制含5ppm(5mg/L)阻垢材料的试样溶液,测得阻垢率为100%。
(1)按标准配制含0.5ppm(0.5mg/L)阻垢材料的试样溶液,测得阻垢率为100%。
4、缓蚀性能
使用实施例1的阻垢材料III和实施例2的改性阻垢缓蚀材料分别配置溶液,按《GB/T18175-2014水处理剂缓蚀性能的测定旋转挂片法》对符合《HG/T3523-2008冷却水化学处理标准腐蚀试片技术条件》的普通碳钢、铜、铝三种试片分别按照《GB/T18175-2014》标准要求进行测试(72小时),测试其腐蚀速率,计算结果如下表4:
表4
Figure PCTCN2018094955-appb-000005
表4说明,实施例1的阻垢材料III和实施例2的改性阻垢缓蚀材料缓蚀性能较好。
5、缓释性能
(1)待测试硬水
取广东清远市地下硬水,其相关指标如下表5:
表5
Figure PCTCN2018094955-appb-000006
*以上指标检测标准如下:1、GB/T 15452-2009工业循环冷却水中钙镁离子的测定EDTA滴定法;2、GB/T 11007-2008电导率仪试验方法;3、GB/T 6920-1986水质pH值的测定;4、GB 6903-86锅炉用水和冷却水分析方法通则;5、GB/T 6682分析实验室用水规格和实验方法。
(2)检测方法:
图1示出一个阻垢能力测试系统。该测试系统包括:第一容器1;输水管2,水泵3,调节阀4,压力表5,阻垢装置6和第二容器7。第一容器1用于盛放地下硬水,输水管2用于将第一容器1中的水输送到第二容器7中去,水泵3、调节阀4、压力表5依次串联在输水管上,用于按预定流量抽水。阻垢装置6内有一空腔,空腔有一进水口和一出水口,空腔内还设有一笼,该笼用于盛放阻垢药片(即实施例1的阻垢材料III),避免药片被水流冲走。经过空腔的水流也能够流经笼内的阻垢材料III。阻垢装置5串联在输水管2上,进水口和出水口与输水管2连通。
在阻垢装置6中装入实施例1的阻垢材料III 20克。开启阻垢能力测试系统,设定从第一容器1向第二容器7输水流量为10-12L/分钟。在一次检测实验中,向第一容器中加入X L硬水,用水泵3从第一容器连续抽80升水,使水经过装置5进入第二容器7。待80L水全部转移至第二容器7后后,从第二容器7中取样500ml检测。然后排空第二容器7,重复上上述操作。每天实施上述检测实验13次,前12次X=80,第13次X=40。每日输水的总量为1000L。连续检测14天。
测试过程中,第6天(第78次)发现检测到阻垢率有明显下降趋势,打开阻垢装置后发现阻垢药片均完整,但阻垢药片表面被大量黄色胶体及污染物包裹,将阻垢药片简单冲洗后重新装入阻垢装置继续进行测试,从第7天(第79次)开始阻垢率明显回升。
测试过程中,第12天(第144次)发现阻垢率又明显下降,打开阻垢装置后同样发现阻垢药片被大量污染物包裹,将阻垢药片重新装入阻垢装置,进行一次反冲洗,然后继续测试。
试验过程中,参照以下标准分别计算了阻垢率和检测了水中羰基含量(用于表示阻垢剂有效成分溶出量)。
(1)GBT16632-2008处理剂阻垢性能的测定-碳酸钙沉积法;
(2)GB/T 15452-2009工业循环冷却水中钙镁离子的测定EDTA滴定法;
(2)GB/T 14454-13-2008香料羰值和羰基化合物含量的测定。
表6示出第1~14天测试所得以下指标:测试水量,水样的钙含量、水样的羰基含量和阻垢率。
表6
Figure PCTCN2018094955-appb-000007
Figure PCTCN2018094955-appb-000008
Figure PCTCN2018094955-appb-000009
结果分析:
1、整个测试过程中,阻垢材料III的有效成份(以羰基含量计)溶出稳定。每天第一次测试时有效成分含量较高,原因是前一天测试完毕后,由于含有阻垢材料III的滤芯内有残余水分,导致阻垢材料III在水中浸泡一夜,进而溶解量较多,第二天第一次测试时阻垢材料III有效成份总含量较高。
2、经14天测试后,阻垢材料III的平均阻垢率大于90%。
3、测试完毕后,将剩余阻垢材料III取出,清洗干净后置于真空干燥箱105℃烘干3小时后称量,重量为12.33克,这说明本次测试阻垢剂总消耗量为7.67克。
4、阻垢材料III表现出很好阻垢效果,说明实施例1确实实现了在羟基磷灰石表面接枝了阻垢基团,获得了缓释、阻垢效果都很好的阻垢材料。
尽管本发明的具体实施方式已经得到详细的描述,但本领域技术人员将理解:根据已经公开的所有教导,可以对细节进行各种修改和变动,并且这些改变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等同物给出。

Claims (27)

  1. 一种改性阻垢缓蚀材料生产方法及设备,该改性阻垢缓蚀材料生产方法步骤如下:
    步骤1、矿料粉碎、研磨:在洁净厂房中将高纯度方解石或羟基磷灰石或石英石或适用的无机材料(纯度≥99.9%)等大比表面积活性材料经超微粉碎机粉碎至320目左右,进而使用纳米研磨机将粉碎材料研磨至15-60nm或直接采购符合要求的纳米级材料;
    步骤2、矿料除水、分散:将上述微粉经高温真空干燥箱在120度下减压除水3小时后与适量有机溶剂混合,加入反应釜并反复搅拌,使之分散均匀;
    步骤3、混合反应:往上述分散液中加入适量改性剂,如十八烷基三氯硅烷、棕榈酰氯、焦磷酸、马来酸酐等,按照重量比为1:(0.02-2)的比例配比,使用搅拌设备进行充分搅拌,形成混合物常温下反应5小时;
    步骤4、重结晶:将步骤3反应混合液中加入适量无水乙醇,添加量为总反应液重量的1-1.5倍,使反应产物从反应液中析出,重新结晶;
    步骤5、过滤清洗:将上述反应产物输送入抽滤或离心分离设备,脱掉反应液后,加入总固体重量等比例的无水乙醇进行清洗,等清洗液脱干后继续加入等量的步骤2中的有机溶剂脱干清洗,以上两次清洗可有效去除反应残留试剂及副反应产物。剩余反应产物固体取出待用;
    步骤6、交联材料制备:将与步骤5反应产物重量20%的聚乙烯醇(分子量为1.7万、醇解度为99%)、PVP(K30)等放入一玻璃容器内,添加30倍纯水,逐渐加热至95度以上,超声分散搅拌3小时,待完全溶解后,冷却至常温,缓慢滴加入总液量等比的无水乙醇,并高速搅拌,使之形成絮状混合溶液备用;
    步骤7、混合交联:将步骤5所制备的固体产物与步骤6所制备的混合溶液一齐加入搅拌桶内,根据共混液的粘度添加适量有机溶剂,使之更容易搅拌,搅拌均匀后加入总固体含量0.001%的过氧化苯甲酰(AR)、交联材料总固含量1%的三偏磷酸钠(AR)、0.1%异氰脲酸三烯丙酯(AR),混合搅拌3 小时;
    步骤8、过滤:将上述交联混合液输入过滤设备,充分滤干;
    步骤9、高温固化:将步骤8所制备的固体产物放入烘干设备85度烘干固化5小时;
    步骤10、粉碎:将上述固化产物加入粉碎机粉碎至200目左右待用;
    步骤11、制片:将上述粉末加入制片机压制成片状。
  2. 根据权利要求1所述的一种改性阻垢缓蚀材料生产方法及设备,其特征在于,所述步骤1中洁净厂房为GMP净化生产车间,所述超微粉碎机为医用级、食品级不锈钢超微粉碎机;所述纳米研磨机为医用级纳米研磨机,所述出料粒度分别为80-320目及15-60nm。
  3. 根据权利要求1所述的一种改性阻垢缓蚀材料生产方法及设备,其特征在于,所述步骤2中反应釜为双层玻璃反应釜,所述搅拌设备为反应釜自带双浆聚四氟搅拌器;所述除水设备为医用高温真空干燥箱。
  4. 根据权利要求1所述的一种改性阻垢缓蚀材料生产方法及设备,其特征在于,所述步骤5中过滤器为布氏漏斗或医用级离心分离机。
  5. 根据权利要求1所述的一种改性阻垢缓蚀材料生产方法及设备,其特征在于,所述步骤6中超声分散设备为不锈钢超声分散搅拌仪。
  6. 根据权利要求1所述的一种改性阻垢缓蚀材料生产方法及设备,其特征在于,所述步骤7中搅拌桶为SUS304不锈钢搅拌桶。
  7. 根据权利要求1所述的一种改性阻垢缓蚀材料生产方法及设备,其特征在于,所述步骤8中过滤器为布氏漏斗或医用级离心分离机。
  8. 根据权利要求1所述的一种改性阻垢缓蚀材料生产方法及设备,其特征在于,所述进步骤9中烘干固化设备为医用、食品用立式电热恒温烘干箱,材料接触部分为SUS304食品级不锈钢。
  9. 根据权利要求1所述的一种改性阻垢缓蚀材料生产方法及设备,其特征在于,所述步骤10中超微粉碎机为医用级、食品级不锈钢超微粉碎机,出料粒度为80-200目。
  10. 根据权利要求1所述的一种改性阻垢缓蚀材料生产方法及设备,其特征在于,所述步骤11中制片机为医用旋转式多冲压片机。
  11. 一种复合材料,包括阻垢体;
    所述阻垢体包括基体;
    所述基体上接枝有阻垢官能团;
    所述基体在水中的溶解度小于或等于100g/L。
  12. 根据权利要求11所述的复合材料,所述基体是无机物;
    例如,所述基体包括无机盐;
    例如,所述基体包括金属氧化物或无机盐;
    例如,所述基体包括碳酸盐、磷酸盐、硅酸盐、钛酸盐或它们的组合;
    例如,所述基体包括羟基磷灰石。
  13. 根据权利要求11所述的复合材料,所述阻垢官能团通过化学键键接枝在所述基体上;
    例如,所述化学键是共价键;
    例如,所述化学键选自以下一种或多种:酯、醚、磷酯、酰胺、肽、亚胺、碳-硫键、碳-磷键等;
    例如,所述基体的至少部分被所述阻垢官能团衍生化。
  14. 根据权利要求11所述的复合材料,所述阻垢官能团含有羰基。
  15. 根据权利要求11所述的复合材料,所述阻垢官能团选自:羧酸基团、羧酸衍生物基团、磺酸基团、磺酸衍生物基团、膦酸基团,膦酸衍生物基团、氨基酸基团、氨基酸衍生物基团、季胺基团或其组合;
    可选地,羧酸衍生物基团、磺酸衍生物基团膦酸衍生物基团、氨基酸衍生物基团分别是指羧酸、磺酸、膦酸、氨基酸对应的盐、酯或酰胺;
    可选地,所述阻垢官能团含有1~50个碳原子,例如10~40个碳原子;
    可选地,所述阻垢官能团还包括羟基。
  16. 根据权利要求11所述的复合材料,其特征在于以下一项或多项:
    -未接接枝阻垢官能团的基体的表面有表面基团,所述阻垢官能团接枝在所述表面基团上,可选地,所述表面基团是羟基;
    -所述基体是疏水的或已被疏水改性的;
    -所述基体不含有阻垢成分;
    -所述基体由不具有阻垢作用的材料制成;
    -所述基体在未接枝阻垢官能团的情况下不具有阻垢作用;
    -所述基体的比表面积大于或等于10g/m 2
    -所述基体的粒径小于或等于10μm;
    -所述基体是多孔的;
    -述基体在水中的溶解度小于或等于10g/L,例如小于或等于1g/L;
    -所述基体上接枝有含8个以上C原子的链状基团。
  17. 根据权利要求11所述的复合材料,还包括固体支持物,一个或多个所述阻垢体被设置在所述固体支持物的内部和/或表面。
  18. 根据权利要求17所述的复合材料,其特征在于以下一项或多项:
    -所述固体支持物在水中的溶解度小于或等于100g/L,例如度小于或等于10g/L,例如小于或等于1g/L;
    -所述固体支持物是聚合物,例如为水不溶性聚合物,例如为交联聚合物;
    -所述固体支持物选自聚乙烯醇交联产物和聚乳酸交联产物。
    -所述固体支持物通过在所述阻垢体表面原位聚合的方式与所述阻垢体复合;
    -所述阻垢体通过与所述固体支持物共混的方法分布在所述固体支持物中。
  19. 根据权利要求11所述的复合材料,所述复合材料的为颗粒状或块状。
  20. 一种水处理装置,包括进水口、出水口和滤芯,所述滤芯内含有权 利要求11~19任一项所述的复合材料。
  21. 权利要求11~19任一项所述的复合材料或权利要求19所述的水处理装置,其用于抑制水体内结垢和/或用于减缓水体中金属被腐蚀的用途。
  22. 一种抑制水体内结垢和/或减缓水体中金属被腐蚀的方法,包括将权利要求11~19任一项所述的复合材料施放到水体中。
  23. 权利要求11~19任一项所述的复合材料的制备方法,包括获得阻垢体的步骤,该步骤包括:
    i)获得基体,所述基体在水中的小于或等于100g/L;
    ii)使所述基体与含有阻垢官能团的化合物接触,使阻垢官能团接枝于所述基体表面。
  24. 根据权利要求23所述的方法,步骤ii)还包括以下一步或多步:
    -对基体进行疏水改性的步骤;
    -在所述基体上接枝含8个以上C原子的链状基团;
    -将所述基体分散在溶剂中,加入棕榈酰氯和马来酸酐,进行反应,收集固体产物。
    -对所述滤出物实施清洗、烘干、热处理中的一步或多步;
  25. 根据权利要求23所述的方法,还包括以下步骤:
    iii)将阻垢体设置在固体支持物表面或内部;
    所述固体支持物在水中具有有限的溶解度,例如小于或等于100g/L。
  26. 根据权利要求25所述的方法,步骤iii)还包括以下步骤:
    将阻垢体分散在含有前体的溶液中,然后使所述前体交联,所述前体是亲水性的或水溶性的,所述前体是单体或预聚物。
  27. 根据权利要求25所述的方法,步骤iii)还包括以下一步或多步:
    -将分子量为10000~20000的聚乙烯醇溶解在水中,加入无水乙醇,获得含有絮状物的溶液,将步骤ii)所得固体产物与所述含有絮状物的溶液混合,加入三偏磷酸钠,进行反应;
    -将步骤ii)所得固体产物与聚乳酸混合,加入硫酸亚铁、氯化亚铜的混合物,再加入石油醚和水,搅拌回流,再加入过氧化苯甲酰和异氰脲酸三烯丙酯,进行反应;
    -对所述滤出物实施清洗、烘干、热处理中的一步或多步;
    -将所述滤出物粉碎成粉末的步骤,以及可选地,将粉末压制成坯块。
PCT/CN2018/094955 2017-09-16 2018-07-09 一种复合材料及其制备方法及用途 WO2019052272A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880006731.3A CN110177765B (zh) 2017-09-16 2018-07-09 一种改性阻垢缓释材料生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710836115.8 2017-09-16
CN201710836115.8A CN107416989A (zh) 2017-09-16 2017-09-16 一种改性阻垢缓蚀材料生产方法及设备

Publications (1)

Publication Number Publication Date
WO2019052272A1 true WO2019052272A1 (zh) 2019-03-21

Family

ID=60433073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094955 WO2019052272A1 (zh) 2017-09-16 2018-07-09 一种复合材料及其制备方法及用途

Country Status (2)

Country Link
CN (2) CN107416989A (zh)
WO (1) WO2019052272A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362545A (zh) * 2020-03-24 2020-07-03 成都科衡环保技术有限公司 用于钻井废弃油基泥浆的除油氧化剂及其制备方法与应用
CN114057305A (zh) * 2021-12-03 2022-02-18 澳门大学 一种阻垢剂缓释珠、制备方法和应用
US11365343B1 (en) * 2021-03-08 2022-06-21 Jonathan R. Strobel Solid scale inhibitor and method of manufacture

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416989A (zh) * 2017-09-16 2017-12-01 广州联福新材料科技有限公司 一种改性阻垢缓蚀材料生产方法及设备
CN108562037B (zh) * 2018-04-26 2023-12-05 广东万和电气有限公司 一种阻垢电热水器
CN111718014A (zh) * 2019-03-19 2020-09-29 佛山市顺德区美的饮水机制造有限公司 活性炭棒及其制备方法、活性炭棒滤芯和水处理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192171A (ja) * 2000-12-25 2002-07-10 Yoshihara:Kk 活性水の製造装置、これにより得られる活性水、及び該活性水を用いた冷却塔のスケール・スライム・緑藻の除去及び付着防止方法
US20080053895A1 (en) * 2000-10-20 2008-03-06 Harvey A R Porous Grog Composition, Water Purification Device Containing the Grog and Method for Making Same
CN101580311A (zh) * 2009-06-24 2009-11-18 安徽省蓝天化工有限公司 聚马来酸锅炉阻垢缓蚀剂
CN102786159A (zh) * 2012-08-09 2012-11-21 艾欧史密斯(中国)热水器有限公司 联合阻垢剂和阻垢器
CN103755045A (zh) * 2014-01-13 2014-04-30 张跃进 一种环保型锅炉防垢除垢缓蚀剂的制备方法
CN105692926A (zh) * 2016-02-22 2016-06-22 佛山高富中石油燃料沥青有限责任公司 一种高效的循环水缓蚀阻垢剂及其配制方法
CN106242090A (zh) * 2016-09-08 2016-12-21 合肥智慧殿投资管理有限公司 一种无磷缓蚀阻垢剂及其制备方法和应用
CN107416989A (zh) * 2017-09-16 2017-12-01 广州联福新材料科技有限公司 一种改性阻垢缓蚀材料生产方法及设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU653518B2 (en) * 1990-05-31 1994-10-06 Mobil Oil Corporation Inhibition of scale formation from oil well brines utilising a slow release composition
JP2574144B2 (ja) * 1993-07-20 1997-01-22 株式会社日本触媒 マレイン酸系共重合体,その製造方法および用途
US6280528B1 (en) * 2000-12-19 2001-08-28 Cortec Corporation Water soluble containers for blends of surface cleaners and corrosion inhibitors
CN101712730B (zh) * 2009-05-13 2011-07-27 北京瑞仕邦精细化工技术有限公司 一种水溶性聚合物分散液的制备方法
CN101928074A (zh) * 2009-06-25 2010-12-29 中国石油化工股份有限公司 一种复配阻垢剂及其制备方法
CN104039919B (zh) * 2011-12-21 2019-08-13 阿克佐诺贝尔化学国际公司 包含一种或多种受控释放的交联的活性剂的颗粒
EP2695918A1 (en) * 2012-08-07 2014-02-12 3M Innovative Properties Company Coating composition for the prevention and/or removal of limescale and/or soap scum
US9127236B2 (en) * 2013-10-09 2015-09-08 Ecolab Usa Inc. Alkaline detergent composition containing a carboxylic acid terpolymer for hard water scale control

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080053895A1 (en) * 2000-10-20 2008-03-06 Harvey A R Porous Grog Composition, Water Purification Device Containing the Grog and Method for Making Same
JP2002192171A (ja) * 2000-12-25 2002-07-10 Yoshihara:Kk 活性水の製造装置、これにより得られる活性水、及び該活性水を用いた冷却塔のスケール・スライム・緑藻の除去及び付着防止方法
CN101580311A (zh) * 2009-06-24 2009-11-18 安徽省蓝天化工有限公司 聚马来酸锅炉阻垢缓蚀剂
CN102786159A (zh) * 2012-08-09 2012-11-21 艾欧史密斯(中国)热水器有限公司 联合阻垢剂和阻垢器
CN103755045A (zh) * 2014-01-13 2014-04-30 张跃进 一种环保型锅炉防垢除垢缓蚀剂的制备方法
CN105692926A (zh) * 2016-02-22 2016-06-22 佛山高富中石油燃料沥青有限责任公司 一种高效的循环水缓蚀阻垢剂及其配制方法
CN106242090A (zh) * 2016-09-08 2016-12-21 合肥智慧殿投资管理有限公司 一种无磷缓蚀阻垢剂及其制备方法和应用
CN107416989A (zh) * 2017-09-16 2017-12-01 广州联福新材料科技有限公司 一种改性阻垢缓蚀材料生产方法及设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362545A (zh) * 2020-03-24 2020-07-03 成都科衡环保技术有限公司 用于钻井废弃油基泥浆的除油氧化剂及其制备方法与应用
CN111362545B (zh) * 2020-03-24 2022-02-08 成都科衡环保技术有限公司 用于钻井废弃油基泥浆的除油氧化剂及其制备方法与应用
US11365343B1 (en) * 2021-03-08 2022-06-21 Jonathan R. Strobel Solid scale inhibitor and method of manufacture
CN114057305A (zh) * 2021-12-03 2022-02-18 澳门大学 一种阻垢剂缓释珠、制备方法和应用

Also Published As

Publication number Publication date
CN110177765B (zh) 2021-11-09
CN107416989A (zh) 2017-12-01
CN110177765A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2019052272A1 (zh) 一种复合材料及其制备方法及用途
Zhang et al. Distinguished Cr (VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism
Fischer et al. Stabilization of calcium oxalate metastable phases by oligo (L-glutamic acid): effect of peptide chain length
RU2520452C2 (ru) Способ получения карбоната кальция с подвергнутой реакционной обработке поверхностью, использующий слабую кислоту, конечные продукты и их применение
Nourani et al. Production of a biodegradable flocculant from cotton and evaluation of its performance in coagulation-flocculation of kaolin clay suspension: Optimization through response surface methodology (RSM)
Santhosh et al. Adsorption, photodegradation and antibacterial study of graphene–Fe 3 O 4 nanocomposite for multipurpose water purification application
Butler et al. Calcium carbonate crystallization in the presence of biopolymers
Gao et al. A hollow mesoporous silica and poly (diacetone acrylamide) composite with sustained-release and adhesion properties
Chen et al. Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion
Ali et al. Modulation of size, shape and surface charge of chitosan nanoparticles with reference to antimicrobial activity
CN106621835B (zh) 一种载银埃洛石-聚乙烯醇超滤膜及其制备与应用
Zhang et al. Facile synthesis of hydroxyapatite/yeast biomass composites and their adsorption behaviors for lead (II)
Wu et al. The facile preparation of novel magnetic zirconia composites with the aid of carboxymethyl chitosan and their efficient removal of dye
MX2010013971A (es) Compuestos de cobre nanoparticulados.
CN109364889A (zh) 一种温敏性水凝胶的制备方法及其用途
Kwak et al. Preparation of ion-exchangeable nanobeads using suspension polymerization and their sorption properties for indium in aqueous solution
Apostol et al. Xanthan or esterified xanthan/cobalt ferrite-lignin hybrid materials for methyl blue and basic fuchsine dyes removal: equilibrium, kinetic and thermodynamic studies
JPH06248081A (ja) 球状シリコーン微粒子の製造方法
JP5427985B2 (ja) 汚泥脱水剤および汚泥脱水方法
Bassaid et al. Elaboration and characterization of poly (acrylic acid-co-crotonic acid) copolymers: Application to extraction of metal cations Pb (II), Cd (II) and Hg (II) by complexation in aqueous media
Karahan et al. The formation of polycomplexes of poly (methyl vinyl ether-CO-maleic anhydride) and bovine serum albumin in the presence of copper ions
JP5906672B2 (ja) 汚泥脱水剤およびこれを用いた有機汚泥の脱水処理方法
Yang et al. Microwave-assisted synthesis of l-aspartic acid-based metal organic aerogel (MOA) for efficient removal of oxytetracycline from aqueous solution
JP2016120464A (ja) 汚泥の脱水方法
Yang et al. High-Speed Shear Assisted Synthesis of Zirconium-Cerium Modified Polyvinyl Alcohol/Nacmc Biocomposite Film for Removal of Fluoride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855707

Country of ref document: EP

Kind code of ref document: A1