WO2019052196A1 - 一种无人飞行器、机臂组件及其转轴结构 - Google Patents

一种无人飞行器、机臂组件及其转轴结构 Download PDF

Info

Publication number
WO2019052196A1
WO2019052196A1 PCT/CN2018/085373 CN2018085373W WO2019052196A1 WO 2019052196 A1 WO2019052196 A1 WO 2019052196A1 CN 2018085373 W CN2018085373 W CN 2018085373W WO 2019052196 A1 WO2019052196 A1 WO 2019052196A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction plate
fixing seat
hole
arm
fixed shaft
Prior art date
Application number
PCT/CN2018/085373
Other languages
English (en)
French (fr)
Inventor
梁智颖
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019052196A1 publication Critical patent/WO2019052196A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/293Foldable or collapsible rotors or rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/02Gyroplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Definitions

  • the present application relates to the field of aircraft technology, and in particular, to an unmanned aerial vehicle, an arm assembly, and a hinge structure thereof.
  • An unmanned aerial vehicle generally includes a fuselage and a plurality of arms extending outward from the fuselage, and the arm is provided with one or more propellers at a distal end away from the fuselage, and the rotation of the blades of the propeller generates flight power, which can be driven Unmanned aerial vehicle flying.
  • the arm is disposed on one end of the connecting body, that is, on the proximal end, and the organic arm folding mechanism is disposed.
  • the arm of the UAV is in the working state in the open position, and is in the non-working collecting state in the stowed position, by folding without
  • the arm of the human aircraft can reduce the total space occupied by the unmanned aerial vehicle, thereby achieving the purpose of being portable.
  • the arm of the existing UAV generally generates the deformation of the arm by the friction of the outer casing of the arm shaft, thereby realizing the folding function of the arm; or, the sliding block and the elastic force are disposed outside the arm shaft.
  • the folding function of the arm is realized by the cooperation of the sliding block and the elastic member.
  • the folding arm structure is an off-axis structure that occupies a large space, thereby increasing the overall size and weight of the UAV.
  • the embodiment of the present application provides a small-sized rotating shaft structure, and an arm assembly and an unmanned aerial vehicle having the rotating shaft structure.
  • the embodiment of the present application provides the following technical solutions:
  • a shaft structure comprising:
  • the first fixing seat, the first friction plate, the second fixing seat and the second friction plate are sleeved on the fixed shaft, and the first friction plate and the second friction plate are frictionally engaged.
  • a receiving groove is formed on one side of the first fixing seat, and the first friction plate is embedded in the receiving groove.
  • the first fixing seat is provided with a first through hole
  • the first friction piece is provided with a second through hole
  • the first fixing seat and the first friction piece respectively pass through the first through hole
  • the second through hole is sleeved on the fixed shaft
  • the second fixing seat is provided with a third through hole
  • the second friction plate is provided with a fourth through hole
  • the second fixing seat and the second friction plate respectively pass through the third through hole and the The fourth through hole is sleeved on the fixed shaft.
  • first friction plate is provided with a first body portion and a first protrusion portion
  • second friction plate is provided with a second body portion and a second protrusion that frictionally engages with the first protrusion portion unit.
  • the number of the first convex portion and the second convex portion are equal.
  • the number of the first convex portion and the second convex portion are respectively two, and each is symmetrically disposed with respect to the fixed axis.
  • the first convex portion includes a first bump and a first wedge block located at two sides of the first bump;
  • the second raised portion includes a second bump and a second wedge block on both sides of the second bump.
  • first protrusion and the second protrusion have a fan shape in cross section.
  • the first fixing base is further provided with a mounting hole
  • the shaft structure further includes an elastic mechanism embedded in the mounting hole and sleeved on the fixed shaft.
  • the elastic mechanism comprises a metal elastic piece and a first gasket and a second gasket disposed on both sides of the metal elastic piece.
  • the number of the metal domes is greater than or equal to two.
  • the metal dome is a pot piece.
  • the elastic mechanism is an elastic tension spring.
  • the shaft structure further includes a nut disposed at an end of the first fixing seat, the nut is sleeved on the fixed shaft, and is screwed to the fixed shaft, and the first fixing seat is axially Limit.
  • first fixing seat and the first friction plate are rotatably connected to the fixed shaft; the second fixing seat and the second friction plate both rotate with the rotation of the fixed shaft.
  • the surface of the rod body of the fixed shaft is symmetrically disposed with a flat surface, and the first through hole of the first fixing seat and the second through hole of the first friction plate are both circular holes;
  • the third through hole of the second fixing seat and the hole wall of the fourth through hole of the second friction plate are each provided with a flat surface corresponding to the flat surface of the surface of the rod body of the fixed shaft.
  • the surface of the rod body of the fixed shaft is symmetrically disposed with a flat surface
  • the first fixing seat is provided with a first through hole
  • the first friction plate is provided with a second through hole
  • the first through hole and the The second through holes are all round holes
  • the second fixing seat is provided with a third through hole
  • the second friction plate is provided with a fourth through hole
  • the third through hole and the fourth through hole are a flat surface corresponding to the flat surface of the surface of the rod body of the fixed shaft is disposed on the hole wall;
  • the first gasket, the metal elastic piece and the second gasket are respectively provided with through holes, and the first gasket, the metal elastic piece and the through hole of the second gasket have a hole wall A flat surface corresponding to the flat surface of the surface of the shaft of the fixed shaft is provided.
  • an embodiment of the present application further provides an arm assembly, including an arm and a rotating shaft structure as described above, wherein a proximal end portion of the arm is fixedly coupled to the first fixing base.
  • an embodiment of the present application further provides an unmanned aerial vehicle including a fuselage, an arm, and a rotating shaft structure as described above, and the arm is connected to the unmanned aerial vehicle through the rotating shaft structure.
  • the fuselage is connected to the unmanned aerial vehicle through the rotating shaft structure.
  • the rotating shaft structure is fixed on the fuselage, and the arm is rotatably connected to the rotating shaft structure.
  • the rotating shaft structure is fixedly connected to the body through the second fixing seat, and the first fixing seat is matched with a sidewall in a proximal end portion of the arm.
  • the shaft structure is fixed to a proximal end of the arm, and the shaft structure is rotatably coupled to the body.
  • the part of the shaft structure of the embodiment of the present application may be disposed in the arm, and the other parts are disposed in the body, which is a structure disposed in the arm of the UAV and in the body, and has a small volume compared to the prior art.
  • the off-axis structure, the space occupied by the embodiment of the present application is small, and the open position of the arm is in a working state, and the stowed position is a folded and stored state.
  • FIG. 1 is an exploded view of a rotating shaft structure provided by a first embodiment of the present application
  • Figure 2 is an exploded view of the hinge structure of Figure 1 from another angle;
  • Figure 3 is a cross-sectional view showing a structure of a rotating shaft according to a first embodiment of the present application
  • FIG. 4 is a perspective view of a rotating shaft structure provided by a first embodiment of the present application.
  • FIG. 5 is a schematic structural view of a first friction plate in the hinge structure of FIG. 1;
  • FIG. 6 is a schematic structural view of a second fixing seat and a second friction plate in the rotating shaft structure of FIG. 1;
  • FIG. 7 is a schematic structural view of a arm assembly according to a second embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an unmanned aerial vehicle according to a third embodiment of the present application.
  • FIG. 9 is a schematic diagram of an open state of an arm of an unmanned aerial vehicle according to a third embodiment of the present application.
  • FIG. 10 is a schematic diagram of the arm stowed state of the unmanned aerial vehicle according to the third embodiment of the present application.
  • the first embodiment of the present application provides a rotating shaft structure 10 for rotating and connecting an arm of an unmanned aerial vehicle and a fuselage.
  • the rotating shaft structure 10 includes a first fixing base 11 .
  • the first friction plate 12 is disposed on the first fixing base 11 and rotates with the rotation of the first fixing base 11;
  • the second friction plate 15 is disposed on one side of the second fixing seat 14 with the second fixing seat 14 Rotating and rotating; the fixed shaft 13, the first fixing seat 11, the first friction plate 12, the second fixing seat 14 and the second friction plate 15 are sleeved on the fixed shaft 13, the first friction plate 12 and
  • the second friction plates 15 are frictionally engaged.
  • the first fixing base 11 is mounted in the arm 20 and rotates by the rotation of the random arm 20.
  • the first fixing base 11 is a columnar body, for example, a polygonal prism, a cylinder or the like, so as to facilitate the shape in which it is fitted into the arm 20 and closely fitted with the arm 20 (for example, an interference fit).
  • the fixed shaft 13 and the second fixing base 14 are both fixed to the body 30.
  • the fixed shaft 13 and the second fixing seat 14 may be fixed to the body 30 by welding, screwing, or the like.
  • the second friction plate 15 is disposed on one side of the second fixing seat 14 .
  • the second friction plate 15 may be integrally formed with the second fixing seat 14, or may be separately and separately processed to fix the second friction plate 15 to the second fixing seat 14 by welding or screwing.
  • the first fixing seat 11 and the first friction plate 12 are respectively provided with a first through hole 161 and a second through hole 162, and the first fixing seat 11 and the first friction plate 12 respectively pass through the first through hole 161 and the first
  • the two through holes 162 are sleeved on the fixed shaft 13, and the first fixing base 11 and the first friction plate 12 are rotated around the fixed shaft 13, so that the arm 20 is rotated relative to the body 30 to realize the opening and closing of the arm 20.
  • the second fixing hole 14 and the second friction plate 15 are respectively provided with a third through hole 163 and a fourth through hole 164, and the second fixing seat 14 and the second friction plate 15 respectively pass through the third through hole 163.
  • the fourth through hole 164 is sleeved on the fixed shaft 13 .
  • the fixing shaft 13 is sequentially sleeved with a second fixing seat 14, a second friction plate 15, a first friction plate 12 and a first fixing seat 11.
  • the first friction plate 12 and the second friction plate 15 are frictionally engaged. Since the fixed shaft 13 and the second fixing seat 14 are both fixed to the body 30, the second friction plate 15 is disposed on the second fixing seat 14, so that the second friction plate 15 is stationary, and when an external force acts on the arm 20, The rotation of the arm 20 will drive the first fixing seat 11 and the first friction plate 12 to rotate, so that the rotational frictional resistance between the first friction plate 12 and the second friction plate 15 is overcome by an external force, and the driven arm 20 is rotated to the required state. Location (such as open or stowed position). After the arm 20 is rotated into position, the arm 20 is locked by the frictional resistance between the first friction plate 12 and the second friction plate 15, so that the arm 20 is no longer rotated.
  • a receiving groove 111 is defined in a side of the first fixing base 11 , and the first friction plate 12 is embedded in the receiving groove 111 .
  • the first friction plate 12 includes a first body portion 121 and an ear portion 122 that extends from the first body portion 121 in the radial direction of the first body portion 121.
  • a position corresponding to the shape of the ear portion 122 is provided on the first fixing base 11 at a position corresponding to the ear portion 122, and the ear portion 122 is embedded in the notch 112, thereby The first friction plate 12 is restrained in the first fixing seat 11 to rotate the first friction plate 12 with the rotation of the first fixing base 11.
  • the first friction plate 12 and the first fixing base 11 can also be locked relative to each other by an interference fit, and the first friction plate 12 is restrained in the first fixing seat 11.
  • the limit manners commonly used in the field may be used to prevent relative rotation between the two, and details are not described herein again.
  • the second friction plate 15 includes a second body portion 151.
  • the first friction plate 12 is further provided with a first protrusion 123
  • the second friction plate 15 is further provided with a second protrusion 153 which is frictionally engaged with the first protrusion 123.
  • the number of the first convex portions 123 and the second convex portions 153 are equal, and in the present embodiment, two are respectively.
  • the first raised portion 123 may be formed to extend in the axial direction of the fixed shaft 13 on the surface of the first body portion 121
  • the second raised portion 153 may be on the surface of the second body portion 151. It is formed to extend in the axial direction of the fixed shaft 13.
  • One side surface of the first body portion 121 where the first protrusion portion 123 is disposed and one side surface of the second body portion 151 where the second protrusion portion 153 is disposed may be a flat surface or may be concave. Face.
  • the rotation angle A of the first protrusion portion 123 with respect to the center of the first friction plate 12 is set within a small angle range, and the rotation of the first body portion 121 relative to the center of the first friction plate 12
  • the angle B is a rotation angle between the open state and the stowed state of the arm 20, and the rotation angle B is set within a larger angle range; referring to FIG.
  • the second protrusion 153 is opposite to the second friction plate 15
  • the rotation angle A of the center is set within a small angle range
  • the rotation angle B of the second body portion 151 with respect to the center of the second friction plate 15 is a rotation angle between the open state and the stowed state of the arm 20, and the rotation angle B is set within a wide range of angles.
  • the two friction plates are twisted with each other, and the state in which the two bosses are frictionally engaged with each other is converted into the convex portion of one of the friction plates and the other.
  • the body portion of one of the friction plates abuts.
  • the rotation of the arm 20 drives the first friction plate 12 to rotate relative to the second friction plate 15.
  • the first protrusion 123 rotates on the second body portion 151, only a small frictional resistance is overcome, and the arm is now 20 is opposite to the stroke of the fuselage 30 opening or closing;
  • the first boss portion 123 is rotated to the position of the second boss portion 153, the arm 20 is rotated to the open position or the stowed position, at which time the two raised portions are The frictional resistance between the two is large, and the self-locking of the arm 20 is achieved, which ensures the stability of the UAV 100 when it is in the working state or in the stowed state.
  • the first raised portion 123 and the second raised portion 153 may be respectively disposed according to the need of the opening angle of the arm 20, and are respectively disposed symmetrically with respect to the fixed shaft 13. At this time, the angle between the adjacent edges of the two first bosses 123 is equal to the angle of rotation between the open state and the stowed state of the arm 20; the angle between the adjacent edges of the two second bosses 153 is equal to the machine The angle of rotation between the open state of the arm 20 and the stowed state. In this way, the arm 20 can be unfolded or folded within a reasonable angular range.
  • the rotation angle A of the first protrusion 123 relative to the center of the first friction plate 12 ranges from 6 to 45 degrees
  • the second protrusion 153 is opposite to the first
  • the rotation angle A of the center of the two friction plates 15 ranges from 6 to 45 degrees
  • the angle B of the arm 20 is expanded or folded to a range of 90 to 168 degrees.
  • the rotation angle A of the first convex portion 123 with respect to the center of the first friction plate 12 is 8 degrees
  • the rotation angle A of the second convex portion 153 with respect to the center of the second friction plate 15 is 8 degrees
  • the arm 20 is unfolded or
  • the angle B of the fold is 164 degrees.
  • the first protrusion 123 includes a first protrusion 1231 and a first wedge block 1232 located at two sides of the first protrusion 1231; the second protrusion 153 includes a second protrusion 1531 and is located at the A second wedge block 1532 on both sides of the second bump 1531.
  • the arrangement of the first wedge block 1232 and the second wedge block 1532 makes the first bump 1231 of the first friction plate 12 rotate more smoothly onto the second bump 1531 of the second friction plate 15.
  • the first convex portion 123 and the second convex portion 153 have a fan-shaped cross section so that the two can closely fit when rotated.
  • the other side of the first fixing base 11 is further provided with a mounting hole 113.
  • the rotating shaft structure 10 further includes an elastic mechanism embedded in the mounting hole 113 and sleeved on the fixing shaft 13. The pressure generated by the elastic deformation of the elastic mechanism causes the first friction plate 12 on the first mount 11 to better frictionally contact the second friction plate 15, and is better locked in the position after the arm 20 is rotated to the target position. .
  • the resilient mechanism includes a metal dome and a spacer disposed on each side of the metal dome.
  • the number of the metal domes may be one, but two or more are preferable, and the more the number of the metal domes, the greater the elasticity.
  • the resilient mechanism is an elastic tension spring.
  • the elastic mechanism includes a first spacer 171, a first metal dome 181, a second metal dome 182, and a second spacer 172, a first spacer 171, a first metal dome 181, a second metal dome 182, and a second pad.
  • a fifth through hole 165, a sixth through hole 166, a seventh through hole 167, and an eighth through hole 168 are sequentially formed on the sheet 172, and the first spacer 171, the first metal dome 181, the second metal dome 182, and the second pad
  • the sheets 172 are sequentially embedded in the mounting holes 113 , and are sequentially sleeved on the fixed shaft 13 through the fifth through holes 165 , the sixth through holes 166 , the seventh through holes 167 , and the eighth through holes 168 .
  • the first metal elastic piece 181 and the second metal elastic piece 182 may adopt a pot piece, and the first friction piece 12 on the first fixing seat 11 side is better frictionally contacted with the second friction piece 15 by the pressure generated by the elastic deformation thereof.
  • the arm 20 is better locked in this position after being rotated to the target position. Only one metal shrapnel may be provided, for example, only one pan piece is disposed between the first shim 171 and the second shim 172.
  • the shaft structure 10 further includes a nut 19 disposed on the other side of the first fixing base 11.
  • the nut 19 is sleeved on the fixed shaft 13 and screwed to the fixed shaft 13 to perform shafting on the first fixing base 11. To the limit.
  • the second friction plate 15 , the elastic mechanism and the nut 19 are disposed on the first fixing base 11 , wherein the receiving groove 111 is opened on one side of the first fixing seat 11 , and the second friction The sheet 15 is embedded in the accommodating groove 111.
  • the mounting hole 113 starts from the other side of the first fixing base 11 , and the first gasket 171 , the first metal elastic piece 181 , the second metal elastic piece 182 and the second gasket 172 are embedded in the mounting hole 113 .
  • the nut 19 is also disposed on the other side of the first fixing base 11 , and the nut 19 is tightened until the nut 19 presses the second spacer 172 to axially limit the first fixing base 11 .
  • the first fixing seat 11 and the first friction plate 12 are rotatably connected to the fixed shaft 13; the second fixing seat 14 and the second friction plate 15 both rotate with the rotation of the fixed shaft 13.
  • the first fixing base 11 can be fixed to the arm, and the second fixing seat is fixed to the air body, so that the arm can rotate relative to the body, and is realized by the friction fit between the first friction plate 12 and the second friction plate 15 Self-locking function.
  • the first fixing seat 11 can also be fixed to the body.
  • the second fixing seat is fixed to the arm, and the arm can also be rotated relative to the body and pass the friction between the first friction plate 12 and the second friction plate 15. Cooperate to achieve self-locking function.
  • the surface of the rod body 131 of the fixed shaft 13 is symmetrically disposed with a flat surface 1311, the first through hole 161 of the first fixing base 11 and the second through hole of the first friction plate 12
  • the 162 is a circular hole, so that the first fixing seat 11 and the first friction plate 12 can rotate relative to the fixed shaft 13; the third through hole 163 of the second fixing seat 14 and the second friction plate 15
  • a flat surface 1631, 1641 corresponding to the flat surface 1311 of the surface of the rod 131 of the fixed shaft 13 is respectively disposed on the hole wall of the fourth through hole 164, and thus the second fixing seat 14 and the second friction plate 15 can be rotated together with the fixed shaft 13.
  • the elastic mechanism includes the first spacer 171, the first metal dome 181, the second metal dome 182, and the second spacer 172
  • the first spacer 171, the first metal dome 181, the second metal dome 182, and the first The holes of the fifth through hole 165, the sixth through hole 166, the seventh through hole 167, and the eighth through hole 168 respectively formed in the two spacers 172 are provided with the surface of the rod 131 of the fixed shaft 13
  • the flat faces 1651, 1661, 1671, and 1681 corresponding to the flat faces 1311 are thus mounted on the first spacers 171, the first metal domes 181, the second metal domes 182, and the second spacers 172 in the first mount 11.
  • the nut 19 which is screwed onto the fixed shaft 13 and pressed against the second spacer 172 can be rotated together with the fixed shaft 13.
  • the rotating shaft structure of the embodiment of the present application is a structure disposed in the arm of the unmanned aerial vehicle and in the airframe, and has a small volume. Compared with the prior art off-axis structure, the space occupied by the embodiment is small, and the arm is realized. The open position is in the working state, and the stowed position is in the folded and stowed state.
  • FIG. 9 is a schematic diagram of the open state of the UAV arm
  • FIG. 10 is a schematic diagram of the unmanned aircraft arm retracted state.
  • the self-locking function is set in a small angle range A, and the arm 20 is automatically locked, thereby ensuring the stability of the working state and the stowed state of the unmanned aerial vehicle 100.
  • the larger angle range B outside of A is the resistance rotation state of the arm 20.
  • the external force can drive the motive arm 20 to rotate relative to the body 30, and the external force required in the wide range of angles is stable and balanced, and the user operates. The experience is good.
  • the first fixing base can be installed in the fuselage, the fixed shaft and the second fixing base are fixed to the arm, and the rotating arm rotates, and the first fixing seat can be opposite to the fixed axis and The second mount rotates, and the UAV arm to which the structure is applied can also be rotatably coupled to the UAV fuselage.
  • Other structures of this embodiment are the same as those of the first embodiment, and the detailed description thereof will not be repeated here.
  • a second embodiment of the present application provides a boom assembly 200 that is rotatably coupled to a fuselage by a hinge structure 10 of the first embodiment.
  • the arm assembly 200 includes an arm 20 and a shaft structure 10 as described in the first embodiment, and a proximal end portion of the arm 20 is fixedly coupled to the first mount 11.
  • the first mount 11 is embedded in the arm 20 and mates with the arm 20.
  • the end of the arm 20 away from the fuselage is provided with a propeller, which is called the distal end of the arm 20, and the opposite end, that is, the end of the arm 20 connected to the fuselage, is called the arm 20 The proximal end.
  • the arm assembly 200 includes a first fixing base 11 mounted in the arm 20, and the first fixing base 11 is rotatable by the rotation of the random arm 20, and is disposed on the first fixing base 11. There is a first friction plate 12, and the first friction plate 12 is rotatable with the rotation of the first fixing base 11. The first friction plate 12 and the second friction plate 15 fixed to the fuselage are frictionally engaged to open and retract the arm 20 relative to the body.
  • the arm assembly includes a fixed shaft fixed to the arm and a second fixing seat, and the second fixing seat is provided with a second friction plate, a second friction plate and a first device disposed on the arm The friction plate is frictionally engaged, and the arm drives the first friction plate to rotate, so that the arm is opened and closed relative to the body.
  • an unmanned aerial vehicle 100 is provided in a third embodiment of the present application.
  • the unmanned aerial vehicle 100 includes a fuselage 30 , an arm 20 , and a rotating shaft structure 10 of the first embodiment.
  • the arm 20 passes through
  • the spindle structure 10 is coupled to the fuselage 30 of the UAV 100.
  • the shaft structure 10 is fixed to the body 30, and the arm 20 is rotatably coupled to the shaft structure 10.
  • the rotating shaft structure 10 is fixedly connected to the fuselage 30 through the second fixing base 15 , and the first fixing seat 11 is matched with the side wall in the proximal end portion of the arm 20 .
  • the first fixing seat 11 is mounted in the arm 20, and the rotating arm 20 rotates.
  • the first friction plate 12 is disposed on the first fixing seat 11, and the first friction plate 12 rotates with the rotation of the first fixing seat 11;
  • the fixed shaft 13 and the second fixing seat 14 are fixed to the body 30, and the second friction plate 15 is disposed on one side of the second fixing seat 14;
  • the first fixing seat 11 is sleeved on the fixed shaft 13, the first friction plate 12 and the first
  • the friction fit between the two friction plates 15 realizes opening and closing of the arm 20 relative to the body 30.
  • the shaft structure may also be fixed to a proximal end of the arm, the shaft structure being rotatably coupled to the body.
  • the rotating shaft structure is fixedly connected to the arm through the second fixing base, and the first fixing seat and the side wall of the fuselage are matched with the side wall in the connecting portion of the arm.
  • the fixed shaft and the second fixing base are installed in the arm, and the random arm rotates; the second friction plate is disposed on the second fixing seat, and the second friction plate rotates with the rotation of the second fixing seat; the first fixing seat Fixed to the fuselage, the first friction plate is disposed on one side of the first fixing seat; the first fixing seat is sleeved on the fixed shaft, and the first friction plate and the second friction plate are frictionally engaged to realize the opposite side of the arm Open and close.
  • the shaft structure part of the embodiment of the present application may be disposed in the arm, and the other components are disposed in the body, which is a structure disposed in the arm of the aircraft and in the fuselage, and has a small volume compared to the prior art shaft.
  • the external structure, the space occupied by the embodiment of the present application is small, and the open position of the arm is in a working state, and the stowed position is a folded and stored state.
  • Applying the hinge structure of the present application to the arm assembly and the unmanned aerial vehicle can also reduce the size of the arm assembly and the unmanned aerial vehicle accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

一种无人飞行器、机臂组件及其转轴结构(10)。其中转轴结构(10)包括:第一固定座(11);第一摩擦片(12),其设置于所述第一固定座(11)上,第一摩擦片(12)随第一固定座(11)的转动而转动;第二固定座(14);第二摩擦片(15),其设置于第二固定座(14)上,第二摩擦片(15)随第二固定座(14)的转动而转动;固定轴(13),第一固定座(11)、第一摩擦片(12)、第二固定座(14)以及第二摩擦片(15)均套设于固定轴(13),第一摩擦片(12)和第二摩擦片(15)之间摩擦配合。该结构设置在无人飞行器的机臂(20)内以及机身(30)内,体积较小,占据的空间较小。

Description

一种无人飞行器、机臂组件及其转轴结构
本申请要求于2017年09月15日提交的、申请号为201721199652.8、申请名称为“一种无人飞行器、机臂组件及其转轴结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及飞行器技术领域,尤其涉及一种无人飞行器、机臂组件及其转轴结构。
背景技术
无人飞行器通常包括机身及从机身向外伸展的多个机臂,机臂在远离机身的远端部上设置有一个或多个螺旋桨,螺旋桨的叶片的旋转产生飞行动力,可带动无人飞行器飞行。机臂在连接机身的一端上,即,近端部上,设置有机臂折叠机构,无人飞行器的机臂在打开位置处于工作状态,在收起位置处于非工作的收藏状态,通过折叠无人飞行器的机臂,可以减小无人飞行器所占用的总空间,从而达到便于携带的目的。
然而,现有的无人飞行器的机臂一般通过机臂转轴的外壳体的摩擦,产生外壳体的局部变形,从而实现机臂的折叠功能;或者,在机臂转轴的外侧设置滑动块与弹力件,通过滑动块与弹力件的配合,实现机臂的折叠功能。这种折叠臂结构为轴外结构,占据较大空间,进而增加了无人飞行器的总体尺寸和重量。
发明内容
为了解决上述技术问题,本申请实施例提供一种体积小的转轴结构,及具有该转轴结构的机臂组件和无人飞行器。
为解决上述技术问题,本申请实施例提供以下技术方案:
一种转轴结构,包括:
第一固定座;
第一摩擦片,其设置于所述第一固定座上,所述第一摩擦片随所述第一固定座的转动而转动;
第二固定座;
第二摩擦片,其设置于所述第二固定座上,所述第二摩擦片随所述第二固定座的转动而转动;
固定轴,所述第一固定座、第一摩擦片、第二固定座以及第二摩擦片均套设于所述固定轴,所述第一摩擦片和第二摩擦片之间摩擦配合。
进一步地,所述第一固定座的一侧开设有容置槽,所述第一摩擦片嵌设于所述容置槽内。
进一步地,所述第一固定座开设有第一通孔,所述第一摩擦片开设有第二通孔,所述第一固定座和所述第一摩擦片分别通过所述第一通孔和所述第二通孔套设于所述固定轴;
所述第二固定座开设有第三通孔,所述第二摩擦片开设有第四通孔,所述第二固定座和所述第二摩擦片分别通过所述第三通孔和所述第四通孔套设于所述固定轴。
进一步地,所述第一摩擦片设置有第一本体部和第一凸起部,所述第二摩擦片设置有第二本体部和与所述第一凸起部摩擦配合的第二凸起部。
进一步地,所述第一凸起部和第二凸起部的数量相等。
进一步地,所述第一凸起部和第二凸起部的数量分别为两个,各自相对于所述固定轴对称设置。
进一步地,所述第一凸起部包括第一凸块和位于所述第一凸块两侧的第一楔形块;
所述第二凸起部包括第二凸块和位于所述第二凸块两侧的第二楔形块。
进一步地,所述第一凸起部和第二凸起部的横截面为扇形。
进一步地,所述第一固定座上还开设有安装孔;
所述转轴结构还包括嵌设于所述安装孔内且套设于所述固定轴的弹性机构。
进一步地,所述弹性机构包括金属弹片和设置于金属弹片两侧的第一 垫片、第二垫片。
进一步地,所述金属弹片的数量大于等于两个。
进一步地,所述金属弹片为锅子片。
进一步地,所述弹性机构为弹性拉簧。
进一步地,所述转轴结构还包括螺母,其设置于第一固定座的端部,所述螺母套设于所述固定轴,并与固定轴螺纹连接,对所述第一固定座进行轴向限位。
进一步地,所述第一固定座和第一摩擦片皆可转动地连接于所述固定轴;所述第二固定座和第二摩擦片皆随所述固定轴的转动而转动。
进一步地,所述固定轴的杆体表面对称设置有扁平面,所述第一固定座的所述第一通孔和所述第一摩擦片的所述第二通孔均为圆孔;所述第二固定座的所述第三通孔和所述第二摩擦片的所述第四通孔的孔壁上均设置有与所述固定轴的杆体表面的所述扁平面相对应的扁平面。
进一步地,所述固定轴的杆体表面对称设置有扁平面,所述第一固定座开设有第一通孔,所述第一摩擦片开设有第二通孔,所述第一通孔和所述第二通孔均为圆孔;所述第二固定座开设有第三通孔,所述第二摩擦片开设有第四通孔,所述第三通孔和所述第四通孔的孔壁上均设置有与所述固定轴的杆体表面的所述扁平面相对应的扁平面;
所述第一垫片、所述金属弹片和所述第二垫片分别开设有通孔,所述第一垫片、所述金属弹片和所述第二垫片的通孔的孔壁上均设置有与所述固定轴的杆体表面的所述扁平面相对应的扁平面。
为解决上述技术问题,本申请实施例还提供了一种机臂组件,包括机臂和如上所述的转轴结构,所述机臂的近端部固定连接所述第一固定座。
为解决上述技术问题,本申请实施例还提供了一种无人飞行器,包括机身、机臂和如上所述的转轴结构,所述机臂通过所述转轴结构连接至所述无人飞行器的所述机身。
进一步地,所述转轴结构固定在所述机身上,所述机臂可转动地连接于所述转轴结构。
进一步地,所述转轴结构通过所述第二固定座与所述机身固定连接,所述第一固定座与所述机臂的近端部内的侧壁形状配合。
进一步地,所述转轴结构固定在所述机臂的近端部,所述转轴结构可转动地连接于所述机身。
本申请实施例的转轴结构部分部件可设置于机臂内,其他部件设置于机身,其是在无人飞行器的机臂内以及机身内设置的结构,体积较小,相比现有技术的轴外结构,本申请实施例占据的空间较小,实现机臂打开位置处于工作状态,收起位置为折叠、收藏状态。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请第一实施例提供的一种转轴结构的分解图;
图2为从另一角度示出的图1的转轴结构的分解图;
图3为本申请第一实施例提供的转轴结构的剖视图;
图4为本申请第一实施例提供的转轴结构的立体图;
图5为图1的转轴结构中第一摩擦片的结构示意图;
图6为图1的转轴结构中第二固定座和第二摩擦片的结构示意图;
图7为本申请第二实施例提供的机臂组件的结构示意图;
图8为本申请第三实施例提供的无人飞行器的结构示意图;
图9为本申请第三实施例提供的无人飞行器的机臂打开状态示意图;
图10为本申请第三实施例提供的无人飞行器的机臂收起状态示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本说明书中在本申请的说明书 中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参考图1至图4,本申请第一实施例提供一种转轴结构10,所述转轴结构10用于转动连接无人飞行器的机臂和机身,该转轴结构10包括第一固定座11、第一摩擦片12、固定轴13、第二固定座14和第二摩擦片15。所述第一摩擦片12设置于第一固定座11上,随第一固定座11的转动而转动;第二摩擦片15设置于第二固定座14的一侧上,随第二固定座14的转动而转动;固定轴13,第一固定座11,第一摩擦片12,第二固定座14以及第二摩擦片15均套设于所述固定轴13,所述第一摩擦片12和第二摩擦片15之间摩擦配合。
请同时参考图7,所述第一固定座11安装于机臂20内,且随机臂20的转动而转动。第一固定座11为柱状体,例如多棱柱、圆柱体等,以方便嵌入安装于机臂20内且与机臂20之间紧密配合(例如过盈配合)的形状为佳。
请同时参考图8,所述固定轴13和第二固定座14均固定于机身30。固定轴13和第二固定座14可通过焊接、螺纹连接等方式与机身30固定。所述第二摩擦片15设置于所述第二固定座14的一侧。第二摩擦片15可以与第二固定座14一体成型,也可以分开单独加工后将第二摩擦片15通过焊接或螺纹固定等方式固定于第二固定座14。
所述第一固定座11和第一摩擦片12分别开设有第一通孔161、第二通孔162,所述第一固定座11和第一摩擦片12分别通过第一通孔161和第二通孔162套设于固定轴13,第一固定座11和第一摩擦片12绕固定轴13转动,使机臂20相对机身30转动,实现机臂20的打开和收起。
所述第二固定座14和第二摩擦片15分别开设有第三通孔163、第四通孔164,所述第二固定座14和第二摩擦片15分别通过所述第三通孔163和第四通孔164套设于固定轴13。所述固定轴13上依次套设有第二固定座14、第二摩擦片15、第一摩擦片12和第一固定座11。
所述第一摩擦片12和第二摩擦片15之间摩擦配合。由于固定轴13和第二固定座14均固定于机身30,第二摩擦片15设置于第二固定座14,因 此第二摩擦片15静止不动,外力作用于机臂20时,由于机臂20的转动将带动第一固定座11和第一摩擦片12转动,因此通过外力克服第一摩擦片12和第二摩擦片15之间的转动摩擦阻力,带动机臂20转动到所需要的位置(例如打开位置或收起位置)。机臂20转动到位后,通过第一摩擦片12和第二摩擦片15之间的摩擦阻力锁定机臂20,使机臂20不再转动。
所述第一固定座11的一侧开设有容置槽111,所述第一摩擦片12嵌设于所述容置槽111内。第一摩擦片12包括第一本体部121和耳部122,所述耳部122沿第一本体部121的径向从第一本体部121延伸而出。相应地,在第一固定座11上与所述耳部122相对应的位置设有与所述耳部122形状相适配的缺口112,所述耳部122嵌设于缺口112内,从而对第一摩擦片12在第一固定座11内进行限位,使第一摩擦片12随所述第一固定座11的转动而转动。第一摩擦片12和第一固定座11之间还可通过过盈配合使两者之间不能相对转动,对第一摩擦片12在第一固定座11内进行限位。或者,还可以通过其他本领域常用的限位方式使两者之间不能相对转动,此处不再赘述。
所述第二摩擦片15包括第二本体部151。所述第一摩擦片12还设置有第一凸起部123,所述第二摩擦片15还设置有与所述第一凸起部123摩擦配合的第二凸起部153。第一凸起部123与的第二凸起部153的数量相等,在本实施例中,分别为两个。其中,所述第一凸起部123可以是在第一本体部121的表面沿所述固定轴13的轴向延伸形成,所述第二凸起部153可以是在第二本体部151的表面沿所述固定轴13的轴向延伸形成。所述第一本体部121设置第一凸起部123的一侧表面和第二本体部151设置第二凸起部153的一侧表面均可以是呈平坦状的面,也可以是呈凹陷状的面。
请同时参考图5,所述第一凸起部123相对第一摩擦片12中心的回转角度A设置在较小的角度范围内,所述第一本体部121相对第一摩擦片12中心的回转角度B为机臂20打开状态和收起状态之间的旋转角度,回转角度B设置在较大的角度范围内;请同时参考图6,所述第二凸起部153相对第二摩擦片15中心的回转角度A设置在较小的角度范围内,所述第二本体部151相对第二摩擦片15中心的回转角度B为机臂20打开状态和收起状态之间的旋转角度,回转角度B设置在较大的角度范围内。除了两个凸起部抵接配合 外,在机臂20旋转过程中,两个摩擦片相互发生扭转,从两个凸起部相互摩擦配合的状态转换为其中一个摩擦片的凸起部与另一个摩擦片的本体部抵接配合。例如机臂20转动带动第一摩擦片12相对第二摩擦片15转动,当第一凸起部123在第二本体部151上转动时,只需克服较小的摩擦阻力,此时为机臂20相对机身30打开或收起的行程;当第一凸起部123转动到第二凸起部153位置时,机臂20转动到打开位置或收起位置,此时两个凸起部之间的摩擦阻力较大,实现机臂20的自锁,保证了无人飞行器100在工作状态或收起状态时的稳定性。
所述第一凸起部123和第二凸起部153可根据机臂20打开角度的需要分别设置两个,各自相对于所述固定轴13对称设置。此时两个第一凸起部123相邻边缘之间的角度等于机臂20打开状态和收起状态之间的旋转角度;两个第二凸起部153相邻边缘之间的角度等于机臂20打开状态和收起状态之间的旋转角度。这样可使机臂20在合理的角度范围内展开或折叠,例如第一凸起部123相对第一摩擦片12中心的回转角度A的范围为6-45度,第二凸起部153相对第二摩擦片15中心的回转角度A的范围为6-45度,机臂20展开或折叠的角度B的范围为90-168度。优选地,第一凸起部123相对第一摩擦片12中心的回转角度A为8度,第二凸起部153相对第二摩擦片15中心的回转角度A为8度,机臂20展开或折叠的角度B为164度。
所述第一凸起部123包括第一凸块1231和位于所述第一凸块1231两侧的第一楔形块1232;所述第二凸起部153包括第二凸块1531和位于所述第二凸块1531两侧的第二楔形块1532。第一楔形块1232和第二楔形块1532的设置使第一摩擦片12的第一凸块1231旋转到第二摩擦片15的第二凸块1531上时更顺畅。
所述第一凸起部123和第二凸起部153的横截面为扇形,使两者在转动时能紧密配合。
所述第一固定座11的另一侧还开设有安装孔113;所述转轴结构10还包括嵌设于所述安装孔113内且套设于所述固定轴13的弹性机构。通过弹性机构的弹性形变产生的压力使第一固定座11上的第一摩擦片12更好地与第二摩擦片15摩擦接触,在机臂20转动到目标位置后更好的锁定在该位置。
在一些实施例中,所述弹性机构包括金属弹片和分别设置于金属弹片两 侧的垫片。所述金属弹片的数量可以是一个,但大于等于两个为佳,金属弹片的数量越多,其弹性越大。在一些替代实施例中,该弹性机构为弹性拉簧。
例如,弹性机构包括第一垫片171、第一金属弹片181、第二金属弹片182和第二垫片172,第一垫片171、第一金属弹片181、第二金属弹片182和第二垫片172上依次开设第五通孔165、第六通孔166、第七通孔167和第八通孔168,第一垫片171、第一金属弹片181、第二金属弹片182和第二垫片172依次嵌设于安装孔113内,且依次通过第五通孔165、第六通孔166、第七通孔167和第八通孔168套设于固定轴13。
第一金属弹片181和第二金属弹片182可采用锅子片,通过其弹性形变产生的压力使第一固定座11一侧的第一摩擦片12更好地与第二摩擦片15摩擦接触,在机臂20转动到目标位置后更好的锁定在该位置。金属弹片也可仅设置一个,例如在第一垫片171和第二垫片172间仅设置一个锅子片。
转轴结构10还包括螺母19,其设置于第一固定座11的另一侧,所述螺母19套设于固定轴13,并与固定轴13螺纹连接,对所述第一固定座11进行轴向限位。
关于第二摩擦片15、弹性机构和螺母19在第一固定座11上的设置位置,可以是:所述容置槽111开设于所述第一固定座11的一侧,所述第二摩擦片15嵌设于所述容置槽111内。所述安装孔113开始于所述第一固定座11的另一侧,第一垫片171、第一金属弹片181、第二金属弹片182和第二垫片172嵌设于所述安装孔113内。所述螺母19也设置于第一固定座11的另一侧,旋紧所述螺母19直至螺母19压紧第二垫片172,从而对第一固定座11进行轴向限位。
所述第一固定座11和第一摩擦片12皆可转动地连接于所述固定轴13;所述第二固定座14和第二摩擦片15皆随所述固定轴13的转动而转动。第一固定座11可固定于机臂,此时第二固定座固定于机身,使机臂可相对机身转动,并通过第一摩擦片12和第二摩擦片15之间的摩擦配合实现自锁功能。第一固定座11也可固定于机身,此时第二固定座固定于机臂,同样可使机臂相对机身转动,并通过第一摩擦片12和第二摩擦片15之间的摩擦配合实现自锁功能。
具体实现时,所述固定轴13的杆体131表面对称设置有扁平面1311,所述第一固定座11的所述第一通孔161和所述第一摩擦片12的所述第二通孔162均为圆孔,因此第一固定座11和第一摩擦片12才能相对于固定轴13转动;所述第二固定座14的所述第三通孔163和所述第二摩擦片15的所述第四通孔164的孔壁上分别设置有与所述固定轴13的杆体131表面的所述扁平面1311相对应的扁平面1631、1641,因此第二固定座14和第二摩擦片15才能随固定轴13一起转动。
当弹性机构包括第一垫片171、第一金属弹片181、第二金属弹片182和第二垫片172时,所述第一垫片171、第一金属弹片181、第二金属弹片182和第二垫片172上分别开设的第五通孔165、第六通孔166、第七通孔167和第八通孔168的孔壁上均设置有与所述固定轴13的杆体131表面的所述扁平面1311相对应的扁平面1651、1661、1671、1681,因此安装在第一固定座11内的第一垫片171、第一金属弹片181、第二金属弹片182和第二垫片172才能和旋紧在固定轴13上且压紧第二垫片172的螺母19同时随固定轴13一起转动。
本申请实施例的转轴结构是在无人飞行器的机臂内以及机身内设置的结构,体积较小,相比现有技术的轴外结构,本实施例占据的空间较小,实现机臂打开位置处于工作状态,收起位置为折叠、收藏状态。
请参考图9,为无人飞行器机臂打开状态示意图;请参考图10,为无人飞行器机臂收起状态示意图。机臂20在打开位置和收起位置时,在较小角度范围A设定了自锁功能,自动锁住机臂20,保证了无人飞行器100工作状态和收藏状态的稳定。在A以外的较大角度范围B,为机臂20的阻力转动状态,此时通过外力能带动机臂20相对机身30转动,该大范围角度内所需要的外力力度稳定、均衡,用户操作体验良好。
在另一实施方式中,还可以将第一固定座安装于机身内,固定轴和第二固定座固定于机臂,随机臂的转动而转动,也能实现第一固定座相对固定轴和第二固定座转动,应用该结构的无人飞行器机臂也可与无人飞行器机身转动连接。这种实施方式的其他结构与第一实施例都相同,在此不再重复赘述。
请参考图7,本申请第二实施例提供的一种机臂组件200,通过第一实 施例的转轴结构10与机身转动连接。
该机臂组件200包括机臂20和第一实施例所述的转轴结构10,所述机臂20的近端部固定连接所述第一固定座11。例如,第一固定座11嵌入安装于机臂20内且与机臂20之间紧密配合。其中,在所述机臂20上远离机身的一端带有螺旋桨,称为机臂20的远端部,相对的另一端,即,机臂20上连接机身的一端,称为机臂20的近端部。
具体地,在一实施方式中,该机臂组件200包括安装于机臂20内的第一固定座11,第一固定座11可随机臂20的转动而转动,在第一固定座11上设置有第一摩擦片12,第一摩擦片12可随第一固定座11的转动而转动。第一摩擦片12和固定于机身的第二摩擦片15之间摩擦配合,实现机臂20相对机身的打开和收起。
在另一实施方式中,该机臂组件包括固定于机臂的固定轴和第二固定座,在第二固定座上设置有第二摩擦片,第二摩擦片和设置于机臂的第一摩擦片之间摩擦配合,机臂带动第一摩擦片转动,实现机臂相对机身的打开和收起。
请参考图8,本申请第三实施例提供的一种无人飞行器,所述无人飞行器100包括机身30、机臂20和上述第一实施例的转轴结构10,所述机臂20通过所述转轴结构10连接至所述无人飞行器100的所述机身30。
所述转轴结构10固定在所述机身30上,所述机臂20可转动地连接于所述转轴结构10。具体地,所述转轴结构10通过所述第二固定座15与所述机身30固定连接,所述第一固定座11与所述机臂20的近端部内的侧壁形状配合。第一固定座11安装于机臂20内,随机臂20的转动而转动,第一摩擦片12设置于第一固定座11上,第一摩擦片12随第一固定座11的转动而转动;固定轴13和第二固定座14固定于机身30,第二摩擦片15设置于第二固定座14的一侧;第一固定座11套设于固定轴13,第一摩擦片12和第二摩擦片15之间摩擦配合,实现机臂20相对机身30的打开和收起。
在另一实施方式中,所述转轴结构还可以固定在所述机臂的近端部,所述转轴结构可转动地连接于所述机身。具体地,所述转轴结构通过所述第二固定座与所述机臂固定连接,所述第一固定座与所述机身上与机臂连接部位内的侧壁形状配合。
固定轴和第二固定座安装于机臂内,随机臂的转动而转动;第二摩擦片设置于第二固定座上,第二摩擦片随第二固定座的转动而转动;第一固定座固定于机身,第一摩擦片设置于第一固定座的一侧;第一固定座套设于固定轴,第一摩擦片和第二摩擦片之间摩擦配合,实现机臂相对机身的打开和收起。
本申请实施例的转轴结构部分部件可设置于机臂内,其他部件设置于机身,其是在飞行器的机臂内以及机身内设置的结构,体积较小,相比现有技术的轴外结构,本申请实施例占据的空间较小,实现机臂打开位置处于工作状态,收起位置为折叠、收藏状态。将本申请的转轴结构应用到机臂组件和无人飞行器上,也能够相应地减小机臂组件和无人飞行器的体积大小。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种转轴结构(10),其特征在于,包括:
    第一固定座(11);
    第一摩擦片(12),其设置于所述第一固定座(11)上,所述第一摩擦片(12)随所述第一固定座(11)的转动而转动;
    第二固定座(14);
    第二摩擦片(15),其设置于所述第二固定座(14)上,所述第二摩擦片(15)随所述第二固定座(14)的转动而转动;
    固定轴(13),所述第一固定座(11)、第一摩擦片(12)、第二固定座(14)以及第二摩擦片(15)均套设于所述固定轴(13),所述第一摩擦片(12)和第二摩擦片(15)之间摩擦配合。
  2. 如权利要求1所述的转轴结构(10),其特征在于,所述第一固定座(11)的一侧开设有容置槽(111),所述第一摩擦片(12)嵌设于所述容置槽(111)内。
  3. 如权利要求1或2所述的转轴结构(10),其特征在于,所述第一固定座(11)开设有第一通孔(161),所述第一摩擦片(12)开设有第二通孔(162),所述第一固定座(11)和所述第一摩擦片(12)分别通过所述第一通孔(161)和所述第二通孔(162)套设于所述固定轴(13);
    所述第二固定座(14)开设有第三通孔(163),所述第二摩擦片(15)开设有第四通孔(164),所述第二固定座(14)和所述第二摩擦片(15)分别通过所述第三通孔(163)和所述第四通孔(164)套设于所述固定轴(13)。
  4. 如权利要求1至3任一项所述的转轴结构(10),其特征在于,所述第一摩擦片(12)设置有第一本体部(121)和第一凸起部(123),所述第二摩擦片(15)设置有第二本体部(151)和与所述第一凸起部(123)摩擦配合的第二凸起部(153)。
  5. 如权利要求4所述的转轴结构(10),其特征在于,所述第一凸起部(123)和第二凸起部(153)的数量相等。
  6. 如权利要求5所述的转轴结构(10),其特征在于,所述第一凸起部(123)和第二凸起部(153)的数量分别为两个,各自相对于所述固定轴(13)对称设置。
  7. 如权利要求4至6任一项所述的转轴结构(10),其特征在于,所述第一凸起部(123)包括第一凸块(1231)和位于所述第一凸块(1231)两侧的第一楔形块(1232);
    所述第二凸起部(153)包括第二凸块(1531)和位于所述第二凸块(1531)两侧的第二楔形块(1532)。
  8. 如权利要求4至7任一项所述的转轴结构(10),其特征在于,所述第一凸起部(123)和第二凸起部(153)的横截面为扇形。
  9. 如权利要求1至8任一项所述的转轴结构(10),其特征在于,所述第一固定座(11)上还开设有安装孔(113);
    所述转轴结构(10)还包括嵌设于所述安装孔(113)内且套设于所述固定轴(13)的弹性机构。
  10. 如权利要求9所述的转轴结构(10),其特征在于,所述弹性机构包括金属弹片(181,182)和设置于金属弹片两侧的第一垫片(171)、第二垫片(172)。
  11. 如权利要求10所述的转轴结构(10),其特征在于,所述金属弹片(181,182)的数量大于等于两个。
  12. 如权利要求10或11所述的转轴结构(10),其特征在于,所述金 属弹片(181,182)为锅子片。
  13. 如权利要求9至12任一项所述的转轴结构(10),其特征在于,所述弹性机构为弹性拉簧。
  14. 如权利要求9至13任一项所述转轴结构(10),其特征在于,还包括螺母(19),其设置于第一固定座(11)的端部,所述螺母(19)套设于所述固定轴(13),并与固定轴(13)螺纹连接,对所述第一固定座(11)进行轴向限位。
  15. 如权利要求1至14任一项所述的转轴结构(10),其特征在于,所述第一固定座(11)和第一摩擦片(12)皆可转动地连接于所述固定轴(13);所述第二固定座(14)和第二摩擦片(15)皆随所述固定轴(13)的转动而转动。
  16. 如权利要求3至15任一项所述的转轴结构(10),其特征在于,所述固定轴(13)的杆体(131)表面对称设置有扁平面(1311),所述第一固定座(11)的所述第一通孔(161)和所述第一摩擦片(12)的所述第二通孔(162)均为圆孔;所述第二固定座(14)的所述第三通孔(163)和所述第二摩擦片(15)的所述第四通孔(164)的孔壁上均设置有与所述固定轴(13)的杆体(131)表面的所述扁平面(1311)相对应的扁平面(1631,1641)。
  17. 如权利要求10至16任一项所述的转轴结构(10),其特征在于,所述固定轴(13)的杆体(131)表面对称设置有扁平面(1311),所述第一固定座(11)开设有第一通孔(161),所述第一摩擦片(12)开设有第二通孔(162),所述第一通孔(161)和所述第二通孔(162)均为圆孔;所述第二固定座(14)开设有第三通孔(163),所述第二摩擦片(15)开设有第四通孔(164),所述第三通孔(163)和所述第四通孔(164)的孔壁上均设置有与所述固定轴(13)的杆体(1311)表面的所述扁平面(1311) 相对应的扁平面(1631,1641);
    所述第一垫片(171)、所述金属弹片(181,182)和所述第二垫片(172)分别开设有通孔(165,166,167,168),所述第一垫片(171)、所述金属弹片(181,182)和所述第二垫片(172)的通孔(165,166,167,168)的孔壁上均设置有与所述固定轴(13)的杆体(131)表面的所述扁平面(1311)相对应的扁平面(1651,1661,1671,1681)。
  18. 一种机臂组件,其特征在于,包括机臂(20)和如权利要求1-17任一项所述的转轴结构(10),所述机臂(20)的近端部固定连接所述第一固定座(11)。
  19. 一种无人飞行器,其特征在于,包括机身(30)、机臂(20)和如权利要求1-17任一项所述的转轴结构(10),所述机臂(20)通过所述转轴结构(10)连接至所述无人飞行器的所述机身(30)。
  20. 如权利要求19所述的无人飞行器,其特征在于,所述转轴结构(10)固定在所述机身(30)上,所述机臂(20)可转动地连接于所述转轴结构(10)。
  21. 如权利要求20述的无人飞行器,其特征在于,所述转轴结构(10)通过所述第二固定座(15)与所述机身(30)固定连接,所述第一固定座(11)与所述机臂(20)的近端部内的侧壁形状配合。
  22. 如权利要求19至21任一项所述的无人飞行器,其特征在于,所述转轴结构(10)固定在所述机臂(20)的近端部,所述转轴结构(10)可转动地连接于所述机身(30)。
PCT/CN2018/085373 2017-09-15 2018-05-02 一种无人飞行器、机臂组件及其转轴结构 WO2019052196A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721199652.8 2017-09-15
CN201721199652.8U CN207759017U (zh) 2017-09-15 2017-09-15 一种无人飞行器、机臂组件及其转轴结构

Publications (1)

Publication Number Publication Date
WO2019052196A1 true WO2019052196A1 (zh) 2019-03-21

Family

ID=63179359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085373 WO2019052196A1 (zh) 2017-09-15 2018-05-02 一种无人飞行器、机臂组件及其转轴结构

Country Status (2)

Country Link
CN (1) CN207759017U (zh)
WO (1) WO2019052196A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084818A1 (en) * 2002-11-06 2004-05-06 Russell Donald D. Fluid-elastomeric damper assembly including internal pumping mechanism
CN201621183U (zh) * 2009-12-30 2010-11-03 比亚迪股份有限公司 一种包覆式转轴
CN203799673U (zh) * 2014-05-06 2014-08-27 驾道科技有限公司 移动检测车悬臂显示装置
CN205606108U (zh) * 2016-04-14 2016-09-28 深圳市大疆创新科技有限公司 竖向增稳机构、云台装置、支撑装置及拍摄设备
CN205707292U (zh) * 2016-04-28 2016-11-23 杭州启飞智能科技有限公司 一种植保无人机的折叠式机臂管夹装置
CN106603773A (zh) * 2017-01-26 2017-04-26 广东欧珀移动通信有限公司 显示装置及移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084818A1 (en) * 2002-11-06 2004-05-06 Russell Donald D. Fluid-elastomeric damper assembly including internal pumping mechanism
CN201621183U (zh) * 2009-12-30 2010-11-03 比亚迪股份有限公司 一种包覆式转轴
CN203799673U (zh) * 2014-05-06 2014-08-27 驾道科技有限公司 移动检测车悬臂显示装置
CN205606108U (zh) * 2016-04-14 2016-09-28 深圳市大疆创新科技有限公司 竖向增稳机构、云台装置、支撑装置及拍摄设备
CN205707292U (zh) * 2016-04-28 2016-11-23 杭州启飞智能科技有限公司 一种植保无人机的折叠式机臂管夹装置
CN106603773A (zh) * 2017-01-26 2017-04-26 广东欧珀移动通信有限公司 显示装置及移动终端

Also Published As

Publication number Publication date
CN207759017U (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
US10465427B2 (en) Electronic device and hinge assembly thereof
TWM458068U (zh) 雙轉軸之同步運動裝置
US8336168B2 (en) Hinge mechanism and electronic device using the same
WO2018133393A1 (zh) 飞行器及其云台限位装置
WO2020015239A1 (zh) 无人飞行器及其机臂连接结构
CN110206814B (zh) 一种折叠式装置的转轴模块
WO2020211028A1 (zh) 螺旋桨、动力组件及飞行器
WO2019242225A1 (zh) 无人飞行器及其机臂组件和转轴机构
CN109238040A (zh) 尾翼折叠装置、微型导弹及尾翼折叠方法
CN107336826B (zh) 一种多旋翼折叠式无人机
US20200011101A1 (en) Rotating part hinge and mobile terminal
CN112449523B (zh) 可折叠壳体组件及可折叠设备
WO2019061415A1 (zh) 无人机的机架组件及无人机
WO2019052196A1 (zh) 一种无人飞行器、机臂组件及其转轴结构
CN207889970U (zh) 无人机机臂折叠机构
CN207972784U (zh) 无人机
WO2019029387A1 (zh) 飞行器及其机臂组件和机架
CN212623838U (zh) 一种转轴及铰链装置
CN108994874A (zh) 用于无人机的机械臂和无人机
WO2019062389A1 (zh) 一种螺旋桨、动力组件及无人机
US20210094689A1 (en) Frame and uav
CN201391539Y (zh) 枢纽器
WO2020237678A1 (zh) 连接结构、机架及飞行器
CN210666527U (zh) 铰链结构及笔记本电脑
CN110300704A (zh) 机臂组件及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857116

Country of ref document: EP

Kind code of ref document: A1