WO2019052033A1 - 一种适用于5g系统的f-ofdm调制方法和装置 - Google Patents

一种适用于5g系统的f-ofdm调制方法和装置 Download PDF

Info

Publication number
WO2019052033A1
WO2019052033A1 PCT/CN2017/115188 CN2017115188W WO2019052033A1 WO 2019052033 A1 WO2019052033 A1 WO 2019052033A1 CN 2017115188 W CN2017115188 W CN 2017115188W WO 2019052033 A1 WO2019052033 A1 WO 2019052033A1
Authority
WO
WIPO (PCT)
Prior art keywords
ifft
data
sub
bandwidth
filter
Prior art date
Application number
PCT/CN2017/115188
Other languages
English (en)
French (fr)
Inventor
徐兰天
刘祖深
凌云志
林艺辉
Original Assignee
中国电子科技集团公司第四十一研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第四十一研究所 filed Critical 中国电子科技集团公司第四十一研究所
Publication of WO2019052033A1 publication Critical patent/WO2019052033A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26414Filtering per subband or per resource block, e.g. universal filtered multicarrier [UFMC] or generalized frequency division multiplexing [GFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • H04L27/2633Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators using partial FFTs

Definitions

  • the present invention relates to the field of wireless communications, and in particular to an F-OFDM modulation method and apparatus suitable for a 5G system.
  • 5G The 5th Generation Mobile Communication System, 5G
  • 5G The 5th Generation Mobile Communication System
  • 5G key technology research is in full swing.
  • Waveforms are one of the key technologies in the physical layer of wireless communication.
  • the industry has not yet clearly defined the waveforms of 5G systems.
  • F-OFDM is configured with its flexible parameters and becomes one of the 5G system candidate waveforms.
  • F-OFDM is a variable air-bandwidth modulation adaptive air interface waveform modulation technique proposed by Huawei. The basic idea is to divide the OFDM carrier bandwidth into sub-bands with different parameters, and implement parameter configuration between sub-bands through filtering. Decoupling.
  • F-OFDM supports each sub-band with different parameters such as transmission time interval, CP length and sub-carrier spacing, thus implementing flexible and adaptive air interface, enhancing system support for various services, and improving system flexibility and scalability. .
  • F-OFDM modulation technology has many references at home and abroad, mainly for F-OFDM performance, including performance comparison with traditional OFDM, and performance comparison with other candidate waveforms (W-OFDM, FBMC, FB-OFDM and UFMC).
  • the specific implementation of F-OFDM modulation is mostly based on the traditional OFDM, and the modulation bandwidth is set to 20MHz.
  • the modulation bandwidth of the 5G system will reach 200MHz, 500MHz, 1GHz, 2GHz, and the aggregate bandwidth will reach 10GHz, which puts higher requirements on F-OFDM modulation implementation. This is because when the bandwidth is increased, the corresponding sampling rate is also increased, and when the subcarrier spacing is constant, the amount of calculation sharply increases.
  • the technical problem to be solved by the present invention is to provide an F-OFDM modulation method and apparatus suitable for a 5G system, which overcomes the drastic increase of F-OFDM modulation in a large bandwidth of a 5G system, and reduces IFFT and filtering through subcarrier zero frequency mapping.
  • the length of the operation is such that the amount of computation is only 1/N of the original, where N is the number of subbands divided by the system.
  • An F-OFDM modulation method suitable for a 5G system specifically comprising the following steps:
  • W i and F i are system parameters, and i is a sub-bandwidth number
  • the configuration length L i cp of the CP and the configuration length L i ifft of the IFFT is determined according to the formula (2), and then the last IFFT data is The data of the actual CP length is directly copied to the front of the IFFT data, thereby completing the addition of the CP;
  • the combined sub-bandwidth symbol data is spliced, and finally, the spliced sub-bandwidth data is superimposed to realize F-OFDM modulation output.
  • the IFFT operation in the step (2) described above performs the IFFT operation on the symbol data s i k according to the formula (4) to generate the symbol time domain data u i k :
  • step (3) adding CP to the symbol time domain data u i k obtains the data c i k , which is obtained by the formula (5):
  • the data v i k after the sampling rate matching is obtained by the formula (6):
  • the low-pass filter is designed by using a sinc function plus a Hanning window, as shown in the formula (7):
  • l i filter is the filter order
  • h i is the filter coefficient
  • sc i is the sin function output
  • w i is the Hanning window coefficient
  • F s is the system bandwidth
  • the convolution function conv is used to filter the data V i k matched by the sampling rate by using the filter coefficient h i to obtain the filtered data o i k , as shown in the formula (8); wherein all the data obtained by convolution is retained.
  • the phase of the time domain complex sinusoidal signal t i is aligned with the data of the IFFT, that is, the first data of the IFFT corresponds to the 0 phase.
  • the sub-symbol data r i k is obtained , as shown in formulas (9) and (10):
  • F i o is the center frequency of the sub-bandwidth and F s is the system bandwidth.
  • the sub-bandwidth symbol r is formed by combining the sub-symbol data r i k , that is, The splicing process is to superimpose the first and last l i filter -1 data of two adjacent sub-symbols to obtain each sub-bandwidth data x i , as shown in formula (11):
  • each sub-bandwidth data x i is superimposed to realize F-OFDM modulation output, as shown in formula (12):
  • An F-OFDM modulation apparatus suitable for a 5G system, comprising a subcarrier zero frequency mapping module, an IFFT and CP modulation module, a zero insertion and filtering module, a spectrum shifting and splicing module, and a subband combining module;
  • the frequency mapping module completes the frequency domain shift of the spectrum by direct mapping, and forms a data format of the IFFT operation;
  • the IFFT and CP modulation module is used for the IFFT operation and increases the function of the CP;
  • the interpolation and filtering module implements the sampling rate.
  • the invention reduces the IFFT and the length of the filtering operation by the zero-frequency shift of the sub-bandwidth data, reduces the calculation amount of the F-OFDM modulation, satisfies the low delay requirement of the F-OFDM signal generated by the 5G system, and can be applied to the signal generation of the 5G system.
  • the module and baseband generation module it effectively promotes 5G system standard verification and hardware development.
  • FIG. 1 is a step diagram of a F-OFDM modulation method of the present invention.
  • FIG. 2 is a flow chart of the F-OFDM modulation method of the present invention.
  • Figure 3 is a diagram showing the configuration of a sub-bandwidth parameter of the present invention.
  • Figure 4 is a sub-bandwidth 64QAM data constellation diagram.
  • Figure 5 is a frequency domain diagram of subcarrier zero frequency mapping.
  • Figure 6 is the impulse response of the filter.
  • Figure 7 is the frequency domain response of the filter.
  • Figure 8 is a PSD diagram of the pre-filtering signal.
  • Figure 9 is a PSD diagram of the filtered signal.
  • Figure 10 is a PSD diagram of the signal after the time domain spectrum shift.
  • Figure 11 is a frequency-domain diagram after segmentation filtering.
  • Figure 12 is a frequency domain diagram after eliminating the influence of time domain segmentation filtering.
  • Fig. 13 is a block diagram showing the structure of an F-OFDM modulation apparatus.
  • an F-OFDM modulation method suitable for a 5G system specifically includes the following steps:
  • each sub-bandwidth data d i is subjected to sub-carrier zero-frequency mapping to generate symbol data s i ,
  • the symbol data s i is composed of each sub-symbol data s i k , that is, Where M i is the number of symbols included in the i-th sub-band, which is a system parameter;
  • the minimum length of the IFFT is determined according to the formula (1), and the minimum length of the IFFT is used as the IFFT actual length l i ifft for the IFFT operation, and the IFFT operation is according to the formula ( 4) Performing an IFFT operation on the symbol data s i k to generate symbol time domain data u i k :
  • W i and F i are system parameters, and i is a sub-bandwidth number
  • the configuration length L i cp of the CP and the configuration length L i ifft of the IFFT is determined according to the formula (2), and then the last IFFT data is The data of the actual CP length is directly copied to the forefront of the IFFT data, thereby completing the increase of the CP, that is, adding the CP to the symbol time domain data u i k to obtain the data c i k , which is obtained by the formula (5):
  • the low-pass filter is used to filter the IFFT data after the CP is added.
  • the low-pass filter is designed by the sinc function plus the Hanning window. For details, see equation (7):
  • l i filter is the filter order
  • h i is the filter coefficient
  • sc i is the sin function output
  • w i is the Hanning window coefficient
  • F s is the system bandwidth
  • the convolution function conv is used to filter the data v i k matched by the sampling rate by using the filter coefficient h i to obtain the filtered data o i k , as shown in the formula (8); wherein all the data obtained by convolution is retained.
  • F i o is the center frequency of the sub-bandwidth
  • F s is the system bandwidth
  • sub-bandwidth symbol r is a combination of sub-symbol data r i k , ie
  • the splicing process is to superimpose the first and last l i filter -1 data of two adjacent sub-symbols to obtain each sub-bandwidth data x i , as shown in formula (11):
  • each sub-bandwidth data x i is superimposed to realize F-OFDM modulation output, as shown in formula (12):
  • an F-OFDM modulation apparatus suitable for a 5G system, including a subcarrier zero frequency mapping module, an IFFT and CP modulation module, a zero insertion and filtering module, a spectrum shifting and splicing module, and a subband combining module;
  • the zero-frequency mapping module completes the frequency domain shift of the spectrum by direct mapping and forms the data format of the IFFT operation;
  • the IFFT and CP modulation modules are used for the IFFT operation and the function of the CP is added;
  • the zero insertion and filtering module realizes the sampling rate matching and filtering function.
  • the spectrum shifting and splicing module eliminates the influence of segmentation filtering by phase alignment and head-to-tail superposition; the sub-bandwidth merging module superimposes the sub-bandwidth time domain data to form an F-OFDM modulated signal output.
  • the amount of computation is mainly concentrated on IFFT, filtering, spectrum shifting, and sub-symbol combining operations.
  • the Matlab method is used for simulation verification.
  • the system parameter configuration is shown in Figure 3.
  • the sub-bandwidth data is 64QAM modulated data, and the constellation diagram is shown in FIG.
  • the spectrum of the subcarrier zero frequency map is shown in Figure 5.
  • the IFFT has a minimum length of 256 and a CP length of 64.
  • the impulse response of the filter is shown in Figure 6, and the frequency domain response is shown in Figure 7.
  • the PSD of the pre-filtering signal is shown in Figure 8.
  • the PSD of the filtered signal is shown in Figure 9.
  • the PSD of the signal after the time domain spectrum shift is as shown in FIG.
  • the frequency domain effect of time domain segmentation filtering is eliminated by the method of phase and its overlap with the first and last tails, as shown in Figures 11 and 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种适用于5G系统的F-OFDM调制方法,首先根据配置的子带宽数把输入数据分配为多路子带宽数据,然后各子带数据进行子载波零频映射,产生多路符号数据;确定IFFT的最小长度,并进行最小长度的IFFT运算;确定CP长度,并完成为IFFT数据增加CP;确定插0个数,并完成采样率匹配;设计低通滤波器,完成匹配采样率数据的低频滤波,并进行频谱搬移和时域数据拼接,完成子带宽已调制数据的输出;最后把所有子带宽已调制数据进行合并,完成F-OFDM调制。本发明通过对子带宽数据的零频映射,减小IFFT和滤波运算长度,使运算量只有原来的1/N,满足5G系统对F-OFDM信号产生的低延时要求。

Description

一种适用于5G系统的F-OFDM调制方法和装置 技术领域
本发明涉及无线通信领域,具体是一种适用于5G系统的F-OFDM调制方法和装置。
背景技术
5G(The 5th Generation Mobile Communication System,5G)作为下一代移动通信系统,ITU给出了明确的时间规划,预计2020年推出5G通信标准。现今,5G关键技术研究已经正如火如荼开展。波形作为无线通信物理层关键的技术之一,业界尚未对5G系统波形给出明确定义。F-OFDM以其灵活参数配置,成为5G系统候选波形之一。F-OFDM是由华为提出的一种可变子带带宽的自适应空口波形调制技术,其基本思想是将OFDM载波带宽划分成多个不同参数的子带,通过滤波实现各子带间参数配置的解耦。F-OFDM支持每个子带可配置不同的传输时间间隔、CP长度和子载波间隔等参数,因而实现灵活自适应的空口,增强系统对各种业务的支持能力,提高系统的灵活性和可扩展性。
F-OFDM调制技术研究国内外已有许多参考文献,主要针对F-OFDM性能,包括与传统OFDM性能比较,与其他候选波形(W-OFDM、FBMC、FB-OFDM和UFMC)性能比较。对F-OFDM调制具体实现研究多是基于传统OFDM的基础进行的,调制带宽设置为20MHz。5G系统的调制带宽将达到200MHz、500MHz、1GHz、2GHz,聚合带宽达到10GHz,对F-OFDM调制实现提出了更高的要求。这是因为当带宽增大时,对应的采样率也增大,在子载波间隔不变时,运算量急剧增加。
发明内容
本发明要解决的技术问题是提供一种适用于5G系统的F-OFDM调制方法和装置,克服5G系统大带宽下F-OFDM调制急剧增加运算量,通过子载波零频映射,降低IFFT和滤波运算长度,使运算量只有原来的1/N,其中N为系统划分的子带宽数目。
本发明的技术方案为:
一种适用于5G系统的F-OFDM调制方法,具体包括有以下步骤:
(1)、将输入的子带宽频域数据进行子载波零频映射,即把原映射到子带宽的数据搬移到零频频带;
(2)、根据子带宽的带宽Wi和子载波间隔Fi,即根据公式(1)确定IFFT的最小长度,把IFFT最小长度作为IFFT实际长度li ifft进行IFFT运算;
li ifft=2^ceil(log2(Wi/Fi)       (1),
上述(1)式中,Wi和Fi均为系统参数,其i为子带宽号;
(3)、根据IFFT的实际长度li ifft、CP的配置长度Li cp和IFFT的配置长度Li ifft,即根据公式(2)确定实际CP的长度li cp,然后把IFFT数据中最后面实际CP长度的数据直接复制到IFFT数据的最前面,从而完成增加CP;
li cp=Li cpli ifft/Li ifft         (2);
(4)、进行采样率匹配,即通过插0实现,插0个数li 0根据IFFT长度li ifft和IFFT配置长度Li ifft确定,即根据公式(3)得到插0个数li 0
li 0=Li ifft/li ifft-1       (3);
(5)、利用低通滤波器对增加CP后的IFFT数据进行滤波处理;
(6)、进行时域搬移,即滤波后的数据需要在时域上把零频数据还原到原子带宽上;
(7)、为了消除时域分段滤波带来的影响,将组合后的子带宽符号数据进行拼接处理,最后将拼接后的各子带宽数据进行叠加,实现F-OFDM调制输出。
所述的步骤(1)中,所述的输入的子带宽频域数据d为各子带宽数据di的集合,即d=[d1d2…di…dN],其中,N是子带宽数目,为系统参数;然后各子带宽数据di进行子载波零频映射,产生符号数据si,符号数据si由各子符号数据si k的组成,即
Figure PCTCN2017115188-appb-000001
Figure PCTCN2017115188-appb-000002
其中,Mi是第i子带宽包含的符号数,为系统参数。
所述的步骤(2)中的IFFT运算即根据公式(4)将符号数据si k进行IFFT运算,产生符号时域数据ui k
ui k=ifft(si k,,li ifft)        (4)。
所述的步骤(3)中,对符号时域数据ui k增加CP得到数据ci k,即由公式(5)得到:
ci k=[ui k(li ifft-li cp+1:li ifft)ui k]       (5)。
所述的步骤(4)中,采样率匹配后的数据vi k由公式(6)得到:
Figure PCTCN2017115188-appb-000003
所述的步骤(5)中,所述的低通滤波器采用sinc函数加汉宁窗的方法设计,具体见公式(7):
sci=sinc((1:li filter)Wi/Fs),
wi=hann(li filter),
hi=wi sci/sum(wi sci)      (7);
其中,li filter为滤波器阶数,hi为滤波器系数,sci为sin函数输出,wi为汉宁窗系数,Fs为系统带宽;
然后采用卷积函数conv利用滤波器系数hi对采样率匹配后的数据vi k滤波,得到滤波 后的数据oi k,具体见公式(8);其中,要保留卷积获得的所有数据,用于消除符号数据分段滤波的影响;
oi k=conv(vi k,hi)     (8)。
所述的步骤(6)中,为了保证时域搬移后的数据与理论值的一致性,时域复数正弦信号ti的相位要与IFFT的数据对齐,即IFFT的第一个数据对应0相位,同时要保证相位的连续性,从而得到各子符号数据ri k,具体见公式(9)和(10):
ti=exp(j2π(-(li filter-1)/2-li cp:li ifft+(li filter-1)/2-1)Fi o/Fs)      (9),
ri k=oi kti      (10);
其中,Fi o为子带宽的中心频率,Fs为系统带宽。
所述的步骤(7)中,所述的子带宽符号r是由各子符号数据ri k组合而成,即
Figure PCTCN2017115188-appb-000004
Figure PCTCN2017115188-appb-000005
所述的拼接处理是将相邻两个子符号的首尾li filter-1数据进行叠加得到各子带宽数据xi,具体见公式(11):
xi=splice(ri,Mi)        (11);
最后把各子带宽数据xi进行叠加,实现F-OFDM调制输出,具体见公式(12):
Figure PCTCN2017115188-appb-000006
一种适用于5G系统的F-OFDM调制装置,包括有子载波零频映射模块、IFFT与CP调制模块、插零与滤波模块、频谱搬移与拼接模块和子带宽合并模块;所述的子载波零频映射模块通过直接映射完成频谱的频域搬移,并形成IFFT运算的数据格式;所述的IFFT与CP调制模块用于IFFT运算以及增加CP的功能;所述的插零与滤波模块实现采样率匹配与滤波的功能;所述的频谱搬移与拼接模块通过相位对齐和首尾叠加的方法消除分段滤波带来的影响;所述的子带宽合并模块对子带宽时域数据进行叠加,形成F-OFDM调制信号输出。
本发明的优点:
本发明通过子带宽数据的零频搬移,减小IFFT和滤波运算长度,降低F-OFDM调制的运算量,满足5G系统对F-OFDM信号产生的低延时要求,可应用到5G系统信号发生器和基带产生模块中,有效推动5G系统标准验证以及硬件研发。
附图说明
图1是本发明F-OFDM调制方法的步骤图。
图2是本发明F-OFDM调制方法的流程图。
图3是本发明子带宽参数配置图。
图4是子带宽64QAM数据星座图。
图5是子载波零频映射频域图。
图6是滤波器的脉冲响应。
图7是滤波器的频域响应。
图8是滤波前信号的PSD图。
图9是滤波后信号的PSD图。
图10是时域频谱搬移后信号的PSD图。
图11是分段滤波后的频域图。
图12是消除时域分段滤波影响后的频域图。
图13是F-OFDM调制装置的结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
见图1和图2,一种适用于5G系统的F-OFDM调制方法,具体包括有以下步骤:
(1)、将输入的子带宽频域数据进行子载波零频映射,即把原映射到子带宽的数据搬移到零频频带;输入的子带宽频域数据d为各子带宽数据di的集合,即d=[d1d2…di…dN],其中,N是子带宽数目,为系统参数;然后各子带宽数据di进行子载波零频映射,产生符号数据si,符号数据si由各子符号数据si k的组成,即
Figure PCTCN2017115188-appb-000007
其中,Mi是第i子带宽包含的符号数,为系统参数;
(2)、根据子带宽的带宽Wi和子载波间隔Fi,即根据公式(1)确定IFFT的最小长度,把IFFT最小长度作为IFFT实际长度li ifft进行IFFT运算,IFFT运算即根据公式(4)将符号数据si k进行IFFT运算,产生符号时域数据ui k
li ifft=2^ceil(log2(Wi/Fi)       (1),
ui k=ifft(si k,,li ifft)      (4),
上述(1)式中,Wi和Fi均为系统参数,其i为子带宽号;
(3)、根据IFFT的实际长度li ifft、CP的配置长度Li cp和IFFT的配置长度Li ifft,即根据公式(2)确定实际CP的长度li cp,然后把IFFT数据中最后面实际CP长度的数据直 接复制到IFFT数据的最前面,从而完成增加CP,即对符号时域数据ui k增加CP得到数据ci k,即由公式(5)得到:
li cp=Li cpli ifft/Li ifft     (2),
ci k=[ui k(li ifft-li cp+1:li ifft)ui k]       (5);
(4)、进行采样率匹配,即通过插0实现,插0个数li 0根据IFFT长度li ifft和IFFT配置长度Li ifft确定,即根据公式(3)得到插0个数li 0;采样率匹配后的数据vi k由公式(6)得到:
li 0=Li ifft/li ifft-1      (3),
Figure PCTCN2017115188-appb-000008
(5)、利用低通滤波器对增加CP后的IFFT数据进行滤波处理,低通滤波器采用sinc函数加汉宁窗的方法设计,具体见公式(7):
sci=sinc((1:li filter)Wi/Fs),
wi=hann(li filter),
hi=wi sci/sum(wi sci)       (7);
其中,li filter为滤波器阶数,hi为滤波器系数,sci为sin函数输出,wi为汉宁窗系数,Fs为系统带宽;
然后采用卷积函数conv利用滤波器系数hi对采样率匹配后的数据vi k滤波,得到滤波后的数据oi k,具体见公式(8);其中,要保留卷积获得的所有数据,用于消除符号数据分段滤波的影响;
oi k=conv(vi k,hi)       (8);
(6)、进行时域搬移,即滤波后的数据需要在时域上把零频数据还原到原子带宽上;为了保证时域搬移后的数据与理论值的一致性,时域复数正弦信号ti的相位要与IFFT的数据对齐,即IFFT的第一个数据对应0相位,同时要保证相位的连续性,从而得到各子符号数据ri k,具体见公式(9)和(10):
ti=exp(j2π(-(li filter-1)/2-li cp:li ifft+(li filter-1)/2-1)Fi o/Fs)       (9),
ri k=oi kti       (10);
其中,Fi o为子带宽的中心频率,Fs为系统带宽;
(7)、为了消除时域分段滤波带来的影响,将组合后的子带宽符号数据进行拼接处理,最后将拼接后的各子带宽数据进行叠加,实现F-OFDM调制输出;子带宽符号r是由各子符号数据ri k组合而成,即
Figure PCTCN2017115188-appb-000009
拼接处理是将相邻两个子符号的首 尾li filter-1数据进行叠加得到各子带宽数据xi,具体见公式(11):
xi=splice(ri,Mi)      (11);
最后把各子带宽数据xi进行叠加,实现F-OFDM调制输出,具体见公式(12):
Figure PCTCN2017115188-appb-000010
见图13,一种适用于5G系统的F-OFDM调制装置,包括有子载波零频映射模块、IFFT与CP调制模块、插零与滤波模块、频谱搬移与拼接模块和子带宽合并模块;子载波零频映射模块通过直接映射完成频谱的频域搬移,并形成IFFT运算的数据格式;IFFT与CP调制模块用于IFFT运算以及增加CP的功能;插零与滤波模块实现采样率匹配与滤波的功能;频谱搬移与拼接模块通过相位对齐和首尾叠加的方法消除分段滤波带来的影响;子带宽合并模块对子带宽时域数据进行叠加,形成F-OFDM调制信号输出。
下面对算法性能进行分析,以运算量为指标,具体对应复加数cam和复乘数cmm。不采用本方法时,运算量主要集中在IFFT和滤波运算。
Figure PCTCN2017115188-appb-000011
Figure PCTCN2017115188-appb-000012
采用本方法时,运算量主要集中在IFFT、滤波、频谱搬移和子符号合并运算。
Figure PCTCN2017115188-appb-000013
Figure PCTCN2017115188-appb-000014
假设所有的Mi都等于M,所有的li ifft都等于lifft,所有的Li ifft都等于Lifft,合并简化得
cama≈lifft/Lifftcamb≈1/N camb
cmma≈lifft/Lifftcmmb≈1/N camb
所以,当子带宽数目增加时,采样本方法的运算量线性降低。
利用Matlab方法进行仿真验证,系统参数配置如图3所示。子带宽数据为64QAM调制数据,星座图如图4所示。子载波零频映射的频谱图如图5所示。IFFT最小长度为256,CP长度为64。滤波器的脉冲响应如图6所示,频域响应如图7所示。滤波前信号的PSD如图8所示。滤波后信号的PSD如图9所示。时域频谱搬移后信号的PSD如图10所示。采用相位对其和首尾叠加的方法消除了时域分段滤波的频域影响,如图11和12所示。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

  1. 一种适用于5G系统的F-OFDM调制方法,其特征在于:具体包括有以下步骤:
    (1)、将输入的子带宽频域数据进行子载波零频映射,即把原映射到子带宽的数据搬移到零频频带;
    (2)、根据子带宽的带宽Wi和子载波间隔Fi,即根据公式(1)确定IFFT的最小长度,把IFFT最小长度作为IFFT实际长度li ifft进行IFFT运算;
    Figure PCTCN2017115188-appb-100001
    上述(1)式中,Wi和Fi均为系统参数,其i为子带宽号;
    (3)、根据IFFT的实际长度li ifft、CP的配置长度Li cp和IFFT的配置长度Li ifft,即根据公式(2)确定实际CP的长度li cp,然后把IFFT数据中最后面实际CP长度的数据直接复制到IFFT数据的最前面,从而完成增加CP;
    li cp=Li cpli ifft/Li ifft    (2);
    (4)、进行采样率匹配,即通过插0实现,插0个数li 0根据IFFT长度li ifft和IFFT配置长度Li ifft确定,即根据公式(3)得到插0个数li 0
    li 0=Li ifft/li ifft-1    (3);
    (5)、利用低通滤波器对增加CP后的IFFT数据进行滤波处理;
    (6)、进行时域搬移,即滤波后的数据需要在时域上把零频数据还原到原子带宽上;
    (7)、为了消除时域分段滤波带来的影响,将组合后的子带宽符号数据进行拼接处理,最后将拼接后的各子带宽数据进行叠加,实现F-OFDM调制输出。
  2. 根据权利要求1所述的一种适用于5G系统的F-OFDM调制方法,其特征在于:所述的步骤(1)中,所述的输入的子带宽频域数据d为各子带宽数据di的集合,即d=[d1 d2…di…dN],其中,N是子带宽数目,为系统参数;然后各子带宽数据di进行子载波零频映射,产生符号数据si,符号数据si由各子符号数据si k的组成,即
    Figure PCTCN2017115188-appb-100002
    其中,Mi是第i子带宽包含的符号数,为系统参数。
  3. 根据权利要求2所述的一种适用于5G系统的F-OFDM调制方法,其特征在于:所述的步骤(2)中的IFFT运算即根据公式(4)将符号数据si k进行IFFT运算,产生符号时域数据ui k
    ui k=ifft(si k,,li ifft)      (4)。
  4. 根据权利要求3所述的一种适用于5G系统的F-OFDM调制方法,其特征在于:所述的步骤(3)中,对符号时域数据ui k增加CP得到数据ci k,即由公式(5)得到:
    ci k=[ui k(li ifft-li cp+1:li ifft)ui k]     (5)。
  5. 根据权利要求4所述的一种适用于5G系统的F-OFDM调制方法,其特征在于:所述的步骤(4)中,采样率匹配后的数据vi k由公式(6)得到:
    Figure PCTCN2017115188-appb-100003
  6. 根据权利要求5所述的一种适用于5G系统的F-OFDM调制方法,其特征在于:所述的步骤(5)中,所述的低通滤波器采用sinc函数加汉宁窗的方法设计,具体见公式(7):
    sci=sinc((1:li filter)Wi/Fs),
    wi=hann(li filter),
    hi=wi sci/sum(wi sci)      (7);
    其中,li filter为滤波器阶数,hi为滤波器系数,sci为sin函数输出,wi为汉宁窗系数,Fs为系统带宽;
    然后采用卷积函数conv利用滤波器系数hi对采样率匹配后的数据vi k滤波,得到滤波后的数据oi k,具体见公式(8);其中,要保留卷积获得的所有数据,用于消除符号数据分段滤波的影响;
    oi k=conv(vi k,hi)     (8)。
  7. 根据权利要求6所述的一种适用于5G系统的F-OFDM调制方法,其特征在于:所述的步骤(6)中,为了保证时域搬移后的数据与理论值的一致性,时域复数正弦信号ti的相位要与IFFT的数据对齐,即IFFT的第一个数据对应0相位,同时要保证相位的连续性,从而得到各子符号数据ri k,具体见公式(9)和(10):
    ti=exp(j2π(-(li filter-1)/2-li cp:li ifft+(li filter-1)/2-1)Fi o/Fs)     (9),
    ri k=oi kti     (10);
    其中,Fi o为子带宽的中心频率,Fs为系统带宽。
  8. 根据权利要求7所述的一种适用于5G系统的F-OFDM调制方法,其特征在于:所述的步骤(7)中,所述的子带宽符号r是由各子符号数据ri k组合而成,即ri=[ri 1ri 2…ri k…ri Mi];所述的拼接处理是将相邻两个子符号的首尾li filter-1数据进行叠加得到各子带宽数据xi,具体见公式(11):
    xi=splice(ri,Mi)     (11);
    最后把各子带宽数据xi进行叠加,实现F-OFDM调制输出,具体见公式(12):
    Figure PCTCN2017115188-appb-100004
  9. 根据权利要求1所述的一种适用于5G系统的F-OFDM调制装置,其特征在于:包括 有子载波零频映射模块、IFFT与CP调制模块、插零与滤波模块、频谱搬移与拼接模块和子带宽合并模块;所述的子载波零频映射模块通过直接映射完成频谱的频域搬移,并形成IFFT运算的数据格式;所述的IFFT与CP调制模块用于IFFT运算以及增加CP的功能;所述的插零与滤波模块实现采样率匹配与滤波的功能;所述的频谱搬移与拼接模块通过相位对齐和首尾叠加的方法消除分段滤波带来的影响;所述的子带宽合并模块对子带宽时域数据进行叠加,形成F-OFDM调制信号输出。
PCT/CN2017/115188 2017-09-13 2017-12-08 一种适用于5g系统的f-ofdm调制方法和装置 WO2019052033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710823630.2A CN107454034A (zh) 2017-09-13 2017-09-13 一种适用于5g系统的f‑ofdm调制方法和装置
CN201710823630.2 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019052033A1 true WO2019052033A1 (zh) 2019-03-21

Family

ID=60495469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115188 WO2019052033A1 (zh) 2017-09-13 2017-12-08 一种适用于5g系统的f-ofdm调制方法和装置

Country Status (2)

Country Link
CN (1) CN107454034A (zh)
WO (1) WO2019052033A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277245A (zh) * 2020-03-24 2020-06-12 西安电子科技大学 一种滤波正交频分复用系统的低阶子带滤波器设计方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182647B (zh) * 2018-11-09 2021-09-24 深圳市中兴微电子技术有限公司 随机接入检测方法及装置
CN109639615B (zh) * 2018-12-07 2021-07-20 中国电子科技集团公司第四十一研究所 一种低延时的5g基带信号产生方法
CN112704470B (zh) * 2020-12-22 2022-03-15 电子科技大学 分光谱频域相干断层成像系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2913953A1 (en) * 2014-02-26 2015-09-02 Alcatel Lucent Filtered Multicarrier system for fragmented spectrum
CN105471800A (zh) * 2015-11-26 2016-04-06 华侨大学 一种基于叠接相加的f-ofdm多子带频域滤波器
CN106656892A (zh) * 2015-10-30 2017-05-10 华为技术有限公司 发送数据的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101355538B (zh) * 2007-07-23 2011-01-26 中国科学院上海微系统与信息技术研究所 基于滤波器组的分块传输系统频域调制系统及方法
CN101834824B (zh) * 2010-03-22 2012-08-08 深圳市云海通讯股份有限公司 一种多载波滤波方法、系统
CN104823402B (zh) * 2012-11-29 2017-07-28 Idac控股公司 一种用于在无线通信设备内执行多载波调制的方法
CN104253782A (zh) * 2014-09-02 2014-12-31 深圳市力合微电子股份有限公司 残余载波偏差和采样偏差的估计方法及补偿方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2913953A1 (en) * 2014-02-26 2015-09-02 Alcatel Lucent Filtered Multicarrier system for fragmented spectrum
CN106656892A (zh) * 2015-10-30 2017-05-10 华为技术有限公司 发送数据的方法和设备
CN105471800A (zh) * 2015-11-26 2016-04-06 华侨大学 一种基于叠接相加的f-ofdm多子带频域滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, LANTIAN: "FPGA actualization for F-OFDM in 5G", OUTLOOK OF ELECTRONIC TECHNOLOGY, 30 November 2017 (2017-11-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277245A (zh) * 2020-03-24 2020-06-12 西安电子科技大学 一种滤波正交频分复用系统的低阶子带滤波器设计方法
CN111277245B (zh) * 2020-03-24 2023-03-10 西安电子科技大学 一种滤波正交频分复用系统的低阶子带滤波器设计方法

Also Published As

Publication number Publication date
CN107454034A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2019052033A1 (zh) 一种适用于5g系统的f-ofdm调制方法和装置
Chen et al. Properties and power spectral densities of CP based OQAM-OFDM systems
Van Bouwel et al. Wavelet packet based multicarrier modulation
Isam et al. Characterizing the intercarrier interference of non-orthogonal spectrally efficient FDM system
CN106789828B (zh) 一种基于峰值跟踪反馈降低fbmc-oqam系统峰均功率比的方法
CN106941465B (zh) 超奈奎斯特率块的传输方法、发射机、接收机及系统
CN107483378B (zh) 基于dft的ftn块传输方法、发射机、接收机及系统
Ijiga et al. Review of channel estimation for candidate waveforms of next generation networks
US10778476B2 (en) Discontinuous fast-convolution based filter processing
CN101068232B (zh) 得到信道时域响应方法及装置、ofdm符号精同步方法及装置
CN107070836A (zh) 一种5g系统中基于frm技术的fbmc收发系统的设计方法
CN104486266A (zh) 一种基于mimo-ofdm系统的信道估计方法及装置
CN104237901A (zh) 卫星导航通信一体化方法及系统
CN100544337C (zh) 多载波调制的数据传输方法
CN108462557A (zh) 一种fbmc系统中联合信道估计的迭代检测方法
CN106453186B (zh) 恒包络正交频分复用系统中基于空闲子载波的频偏估计及补偿方法
CN101478507B (zh) 一种信道估计方法及终端
CN106487731A (zh) 一种基于小波变换的混合载波调制方法和系统
Hariprasad et al. Comparative analysis of the BER performance of DWT OFDM over that of FFT OFDM in presence of phase noise
CN103001918B (zh) 非正交频分复用数据的传输方法
WO2017117818A1 (zh) 一种信号处理方法及发送端设备
CN102065035B (zh) 多带正交频分复用超宽带系统的信道估计方法
Fu et al. Non‐orthogonal frequency division multiplexing based on sparse representation
Kattoush et al. A radon-multiwavelet based OFDM system design and simulation under different channel conditions
CN108462559A (zh) Gfdm系统中基于ia-pft降低带外辐射的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925010

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17925010

Country of ref document: EP

Kind code of ref document: A1