WO2019051764A1 - 微型发光二极管及其制作方法 - Google Patents

微型发光二极管及其制作方法 Download PDF

Info

Publication number
WO2019051764A1
WO2019051764A1 PCT/CN2017/101860 CN2017101860W WO2019051764A1 WO 2019051764 A1 WO2019051764 A1 WO 2019051764A1 CN 2017101860 W CN2017101860 W CN 2017101860W WO 2019051764 A1 WO2019051764 A1 WO 2019051764A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
emitting diode
semiconductor layer
epitaxial stack
region
Prior art date
Application number
PCT/CN2017/101860
Other languages
English (en)
French (fr)
Inventor
李佳恩
徐宸科
吴政
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Priority to PCT/CN2017/101860 priority Critical patent/WO2019051764A1/zh
Priority to CN201780049112.8A priority patent/CN109923683B/zh
Priority to CN202210249309.9A priority patent/CN114678453A/zh
Priority to TW107132173A priority patent/TWI670869B/zh
Publication of WO2019051764A1 publication Critical patent/WO2019051764A1/zh
Priority to US16/818,872 priority patent/US11424387B2/en
Priority to US17/883,344 priority patent/US20220375992A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to the field of semiconductor manufacturing, and in particular to a miniature light emitting diode device and a method of fabricating the same.
  • Micro-element technology refers to an array of minute-sized components that are integrated at a high density on a substrate.
  • Some examples of micro devices include microelectromechanical systems (MEMS) micro-switches, LED display systems, and MEMS- or quartz-based oscillators.
  • MEMS microelectromechanical systems
  • LED display systems LED display systems
  • MEMS- or quartz-based oscillators MEMS- or quartz-based oscillators.
  • micro LEDs have the advantages of high brightness, low power consumption, ultra high resolution and color saturation, which attracts many developers to invest in research and development.
  • the Micro LED has a large bottleneck in the full measurement of the chip:
  • the extremely small electrode size it is impossible to accurately test the test pin on the electrode to complete the photoelectric parameter test;
  • the low current test its relatively low brightness, causes a single chip to consume a long time and has a large error.
  • the present invention provides a miniature light emitting diode which is provided with a connection region for metal interconnection at least on one electrode to achieve the full measurement of the Micro-LED.
  • a first technical solution of the present invention is: a micro light emitting diode chip, comprising: an epitaxial stack, comprising a first type semiconductor layer, an active layer, and a second type semiconductor layer, which have opposite first surfaces and a second surface, formed on the second surface of the epitaxial layer, connected to the first type of semiconductor layer; and a second electrode formed on the second surface of the epitaxial layer, Connecting with the second type semiconductor layer; a first connection region is respectively disposed on the surface of the first electrode and the second electrode.
  • a second technical solution of the present invention is: a micro light emitting diode chip, comprising: an epitaxial stack, comprising, in order, a first type semiconductor layer, an active layer, and a second type semiconductor layer having opposite first surfaces And a second surface; a first electrode formed over the first surface of the epitaxial stack, coupled to the first type of semiconductor layer; a second electrode formed over the second surface of the epitaxial stack With the said Two types of semiconductor layers are connected; a first connection region is disposed on the surface of the first electrode.
  • the first connection region is distinguished from other regions of the electrode by surface topography or appearance color
  • the first connection region is used to fabricate a metal wire to lead the first electrode and/or the second electrode to a region outside the chip to form a test electrode.
  • the area of the first connection area accounts for more than 5% of the total area of the electrode.
  • the shape of the first connection region is polygonal, circular or semi-circular.
  • the micro LED chip has a thickness of 20 ⁇ m.
  • the size of the micro light emitting diode chip is within ⁇ .
  • the total area of the first electrode and the second electrode is not less than 40% of the area of the chip.
  • a second connection region is disposed on the first electrode or/and the second electrode for contacting the support column such that the second surface of the chip is partially suspended and is in a state to be picked up.
  • the area of the second connection area accounts for less than 5% of the total area of the electrode.
  • the present invention also provides a miniature light emitting diode array comprising any of the foregoing miniature light emitting diode chips.
  • any of the foregoing miniature light emitting diode chips can be applied to a display device.
  • a third technical solution of the present invention is: a method for fabricating a miniature light emitting diode, comprising the steps of:
  • an epitaxial stack which in turn comprises a first type of semiconductor layer, an active layer, a second type of semiconductor layer having opposite first and second surfaces;
  • the first connection region formed in the step (3) is used for fabricating a metal wiring to lead the first electrode and the second electrode to a region outside the chip to form a test electrode.
  • the first connection region formed in the step (3) is distinguished from other regions of the electrode from the surface topography or appearance color.
  • the manufacturing method of the micro light emitting diode further comprises the step (4): providing a supporting substrate, and connecting the second surface of the epitaxial layer by at least one supporting pillar, so that the miniature light emitting diode The tube is in a state to be picked up.
  • the step (2) of the manufacturing method of the micro light emitting diode comprises: (a) defining a scribe line region and a first electrode region on the second surface of the epitaxial layer, the epitaxial laminate Divided into a series of microcells by the dicing zone, each microcell having at least one first electrode zone; (b) etching a second type of semiconductor layer, active layer to the first electrode region of the epitaxial structure a type of semiconductor layer exposing a portion of the surface of the first type of semiconductor layer; ( c) fabricating a first electrode and a second electrode on the exposed first type semiconductor layer and second type semiconductor layer of each of the micro cells (d) etching the scribe line region of the epitaxial stack, dividing the epitaxial stack into a series of microcell arrays; the step (3) comprising: (e) at first of at least one of the microcells Defining a first connection region on the electrode and the second electrode, fabricating a metal connection, and guiding the first electrode and
  • the material of the metal wiring formed in the step (3) is different from the materials of the first and second electrodes, and the metal wiring is removed by selective etching.
  • the following steps are performed: (i) forming a sacrificial layer on one side of the electrode of the microcell array at the location for each microcell Having at least one mouthwash; ( ⁇ ) providing a carrier substrate, respectively forming a thermosetting material on the carrier substrate and the sacrificial layer, and then bonding the two to cure and bond, thereby forming a support column at the mouth (iii)
  • the same layer removes the sacrificial layer and the metal wiring.
  • the metal wiring and the sacrificial layer are made of the same material, and TiW or Ni is selected.
  • the following steps are performed: (i) forming a sacrificial layer on one side of the electrode of the microcell array at the location for each microcell Having at least one mouthwash; ( ⁇ ) providing a carrier substrate, respectively forming a thermosetting material on the carrier substrate and the sacrificial layer, and then bonding the two to cure and bond, thereby forming a support column at the mouth (iii) removing the sacrificial layer; then proceeding to step (f).
  • the material of the metal wiring and the sacrificial layer is TiW or Ni, but different.
  • a fourth technical solution of the present invention is: a method for fabricating a miniature light emitting diode, comprising the steps of:
  • an epitaxial stack which in turn comprises a first type of semiconductor layer, an active layer, a second type of semiconductor layer having opposite first and second surfaces;
  • the first connection region formed in the step (3) is used for fabricating a metal wiring to lead the first electrode and the second electrode to a region outside the chip to form a test electrode.
  • the first connection region formed in the step (3) is distinguished from other regions of the electrode from the surface topography or appearance color.
  • the manufacturing method of the micro light emitting diode further comprises the step (4): providing a supporting substrate, and connecting the second surface of the epitaxial layer by at least one supporting pillar, so that the micro light emitting diode is at Pending status.
  • the step (2) of the manufacturing method of the micro diode comprises: (a) defining a scribe line region and a second electrode region on the second surface of the epitaxial layer, the epitaxial laminate Divided into a series of microcells by the dicing zone; (b) forming a second electrode on the second electrode region on the second surface of the epitaxial stack; (c) etching the dicing zone of the epitaxial stack Dividing the epitaxial stack into a series of microcell arrays; (d) fabricating a first electrode on the first surface of the epitaxial stack; the step (3) comprising: (e) at least one of Defining a first connection region on the first electrode of the microcell, fabricating a metal connection, and guiding the first electrode to a region other than the microcell to form a test electrode; (f) passing a test current to the test electrode for photoelectric test; (g) removing the test electrode.
  • the material of the metal wiring formed in the step (3) is different from the material of the first electrode, and the metal wiring is removed by selective etching.
  • the micro LED device of the present invention can perform full measurement for the Micro LED by the chip design, and does not affect the subsequent huge transfer process.
  • FIG. 1 is a schematic structural view of a miniature light emitting diode according to an embodiment of the present invention, wherein (a) is a side cross-sectional view, and (b) is a lower surface pattern of the micro light emitting diode chip.
  • FIG. 2 shows various variations of the pattern shown in (b) of FIG. 1.
  • 3 to 14 are schematic views of processes for fabricating a miniature light emitting diode device in accordance with an embodiment of the present invention.
  • FIG. 15 is a schematic structural view of a micro light emitting diode formed by another micro light emitting diode device fabrication method according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural view of another micro light emitting diode according to an embodiment of the present invention, wherein (a) is a side cross-sectional view, and (b) is a lower surface pattern of the micro light emitting diode chip. [0045] FIG.
  • 17 to 28 are schematic views of processes for fabricating a miniature light emitting diode device in accordance with an embodiment of the present invention.
  • FIG. 1(a) is a side cross-sectional view of a flip-chip micro LED of a first preferred embodiment including an LED chip 100 and a support structure, the LED chip 100 including an epitaxial stack 110 and an epitaxial stack 110.
  • the first electrode 121 and the second electrode 122 of the lower surface 11 Ob, and the partial region 124 of the lower surface of the chip 100 is in contact with the at least one support post 131 to be held in position on the carrier substrate 140, so that the device is in a state to be picked up.
  • the support post 131 can be a thermoset material such as, but not limited to, benzocyclobutene (BCB) or epoxy.
  • the LED chip 110 is a thin film micro structure, preferably having a size of ⁇ , for example, 100 ⁇ 100 ⁇ , or 100 ⁇ 50 ⁇ , in some applications even 50 ⁇ 50 ⁇ , for example, 50 ⁇ 50 ⁇ , or 20 ⁇ 10 ⁇ , or 10 ⁇ 10 ⁇ . Further, the LED chip 100 removes the growth substrate, so that the thickness d of the chip can be kept substantially at 20 Within ⁇ , such as 15 ⁇ or ⁇ .
  • the epitaxial stack 110 of LED chips includes a first type of semiconductor layer, an active layer, and a second type of semiconductor layer.
  • the first type of semiconductor layer is n
  • the semiconductor of the second type may be a p-type semiconductor of a different electrical conductivity.
  • the first type of semiconductor layer is a p-type semiconductor
  • the second type of semiconductor layer may be a dissimilar electrically n-type semiconductor.
  • the active layer can be a neutral, p-type or n-type semiconductor. A current is applied through the semiconductor epitaxial stack to excite the active layer to emit light.
  • the active layer is nitride-based, it emits blue, green, or ultraviolet light; when it is based on aluminum indium gallium phosphide, it emits red, orange, and yellow amber light.
  • the first electrode 121, the second electrode 122 and the support pillar 122 are on the same side (the lower surface 110b of the epitaxial stack), and the microchip can be on the other side (the upper surface of the epitaxial stack) 110a) Illumination, which increases the size of the light-emitting area, facilitates the packaging of the microchip.
  • the first electrode 121 is electrically connected to the first type semiconductor layer of the epitaxial layer 110, and the second electrode 122 is connected to the second type semiconductor layer.
  • FIG. 1(b) shows an electrode pattern of the lower surface 110b of the LED chip 110, wherein the first electrode 121 and the second electrode 122 are respectively distributed on both sides of the lower surface 110b of the epitaxial laminate, first and second
  • the total area of the electrodes is not less than 40% of the chip area, preferably 60% or more, but less than 90%, to ensure electrical isolation between the first and second electrodes, for example, 80% or 75%, etc. .
  • the first electrode and the second electrode are respectively provided with a first connection region 123, which is mainly used for fabricating a metal wire during the chip fabrication process, to the first electrode 121 and the second electrode.
  • 122 leads to a test electrode formed outside the chip, wherein the metal wire can be retained or removed after the test is completed, and this portion will be described in detail in the second embodiment below.
  • the first connection region 123 can be distinguished from other regions on the first electrode 121 and the second electrode 122, for example, by wet etching to remove the metal connection.
  • the surface color of the first connection region 123 on the electrode and the second electrode will be different from other regions. If the metal connection is retained, the first connection region of the crucible is obviously different from the other surface due to the addition of the metal connection. region.
  • the shape of the first connection area 123 may be a polygon, a circle, a semicircle or other irregular patterns, which is subject to actual needs.
  • the first company The connection area 123 adopts a rectangular shape, which accounts for 5% or more of the total area of the electrodes, and is generally preferably 10 to 30%.
  • the support pillars 131 may be located at any position on the lower surface of the epitaxial laminate 110, such as an intermediate blank region between the first electrode and the second electrode, or the lower surface of the first electrode, or the lower surface of the second electrode. .
  • the area of the second connection region 124 is preferably not more than 10% of the area of the electrode, and may be, for example, about 5%.
  • the support post 131 is connected to the carrier substrate 140 through the adhesive layer 132, wherein the adhesive layer and the support post 131 may be formed in the same manner, and formed using the same material, for example, the aforementioned thermosetting material.
  • FIG. 2 simply illustrates several different electrode patterns, wherein the first connection region 123 is located at an edge region of the electrode, and the first connection region on the first electrode 121 and the second connection region on the second electrode 122 are preferably Axisymmetric distribution.
  • the second connection region 124 may be located in an intermediate portion of the lower surface of the epitaxial stack, or an intermediate portion of the first electrode, or an intermediate portion of the second electrode.
  • FIG. 13 are schematic views showing a process of fabricating a micro light emitting diode device according to an embodiment of the present invention, and a method for fabricating the micro light emitting diode device of the present invention will be described in detail below with reference to the schematic drawings.
  • an epitaxial structure 110 is provided that can generally include a growth substrate 111 and an epitaxial stack thereon.
  • the selection of the growth substrate 110 includes, but is not limited to, sapphire, aluminum nitride, gallium nitride, silicon, silicon carbide, gallium arsenide, and the surface structure thereof may be a planar structure or a patterned structure, and the epitaxial stack is from top to bottom. Generally, at least the first type semiconductor layer 112, the active layer 113, and the second type semiconductor layer 114 are included. The specific material and structural layer of the epitaxial layer may be selected according to actual needs.
  • an etched region 115 is defined on the surface of the epitaxial stack 110, the etched region including a first electrode region 116 and a dicing region 117, wherein the dicing region 117 divides the entire luminescent epitaxial stack 110 into A series of micro-lighting unit LEDs, each microcell having at least one first electrode region 116.
  • the second type semiconductor layer 114 and the active layer 113 of the etched region 115 of the light emitting epitaxial structure are etched to expose the surface 112a of the first type semiconductor layer 112.
  • the second type semiconductor layer 114 and the active layer 113 of the light emitting epitaxial structure are divided into a series of microcells A.
  • a first electrode 121 and a second electrode 122 are fabricated. Specifically, the first electrode 113 is formed on the exposed first electrode region of the first type semiconductor layer 112; and the second electrode 122 is formed on the surface of the second semiconductor layer 114 of each of the cells A, respectively.
  • the second type semiconductor layer 112 continuing to etch the scribe region 117 forms a via 150, thereby dividing the entire luminescent epitaxial structure into a series of micro LED chip arrays.
  • the transparent protective layer 160 is covered on the surface of each of the micro LED chips to expose only a part of the surface of the first electrode 121 and the second electrode 122.
  • the insulating protective layer 160 is made of SiN x or SiO 2 .
  • an extension electrode may be formed on the first electrode 121 and the second electrode 122, respectively, which extends to a part of the surface of the insulating protective layer 160.
  • the extended electrode of the first electrode may extend to the insulating protective layer above the second type of semiconductor layer to be substantially flush with the extended electrode of the second electrode 122 to facilitate packaging.
  • the first connection region 123 is disposed on each of the first electrode 121 and the second electrode 122 of each of the micro light-emitting diodes.
  • Various parameters such as the shape, size, and position of the first connection region can be designed with reference to the first embodiment.
  • Metal wires 171 are formed on the first connection region 123, so that the first electrode 121 and the second electrode 122 of each LED chip are respectively led to an area outside the chip (for example, a walkway area 150 or other blank area) to prepare a test electrode, such as Figure 8 shows.
  • the size of the test electrode can be determined according to the size of the walkway between the micro devices, generally up to ⁇ or more.
  • the first test electrode 181 and the second test electrode 1 82 are respectively fabricated on both sides of the chip array, wherein the first electrode 121 of the first chip of the same row passes through the metal connection 171 and the first The test electrodes 181 are connected, and the second electrodes 122 of the last chip are connected to the second test electrode 182 through the metal wires 171, and the chip electrodes in the middle are connected end to end to form a series-parallel test circuit, as shown in FIG. In this way, the photoelectric characteristics of the miniature LE D chip array can be tested.
  • FIG. 10 shows another parallel test circuit pattern.
  • a series of spare test electrodes 183a to 183d may be provided.
  • FIG. 11 shows another test circuit pattern.
  • a single spot measurement is used, specifically, respectively, from the first electrode 121 and the second electrode 122 of each micro LED chip to the blank area of the walkway 150 between the chips, and then designed into a quarter.
  • a ball-shaped lead electrode such that the lead electrodes of four adjacent micro-LED chips constitute a test electrode 180, and the measuring electrode of the micro-array structure can test each one Photoelectric parameters of miniature LED chips.
  • each micro light-emitting diode device is designed with a test electrode. If the photoelectricity uniformity of the entire LED epitaxial wafer is good, an individual region can be selected as a unit with a measurable electrode, and these are tested. The photoelectric characteristics of individual regions, to understand the photoelectric characteristics of the entire LED epitaxial wafer.
  • a sacrificial layer 190 is formed on the micro LED chip array, and a port 191 is reserved as a support point on each of the micro LED chips.
  • the thickness of the sacrificial layer 190 is between 0.1 and 5 ⁇ m, and the material may be oxide, nitride or other material that may be selectively removed relative to other layers.
  • thermosetting material 132 such as BCB
  • the growth substrate 111 is removed, and the surface of the first type semiconductor layer 112 is exposed. Removal can be accomplished by a variety of methods, including laser lift-off (LLO), grinding, or etching, depending on the material selection of the growth substrate 111.
  • LLO laser lift-off
  • the metal wiring 171 of the aisle region 150 and the test electrodes 181, 182 are cut off together with the growth substrate 111 and the micro LED chip, and are removed together with the growth substrate.
  • the sacrificial layer 190 is removed such that the lower surface portion of the micro LED chip is suspended to form a micro light emitting diode device fixed by the support pillar 131, as shown in FIG.
  • connection region on the first electrode and the second electrode, in the microchip fabrication process, a metal connection is formed on the connection region, thereby guiding the first electrode and the second electrode to A blank area outside the chip, a large-sized test electrode is fabricated, and the micro LED chip is completely measured, while the same is used to remove the growth substrate, the metal connection between the micro LED chips is broken, and the metal in the blank area is Wiring and test electrode removal.
  • the metal connection 171 is made of a material different from the first electrode 121 and the second electrode 122. After the test is completed, the metal connection 171 is removed by selective etching. The etchant reacts only with the metal connection 171, does not react with the first electrode and the second electrode, so that the purpose of the test can be achieved, and the metal wire of the conventional series-parallel connection can be prevented from deriving a huge amount of subsequent chips. The problem of residual metal wires after transfer.
  • FIG. 15 is a view showing the structure of a micro light emitting diode device formed by the above method. As can be seen from the figure, the micro LED device has no problem of residual metal wires.
  • the first connection region 123 on the first electrode and the second electrode is selectively removed by first making a metal connection, so that its color is different from the color of other regions.
  • the material of the metal wiring 171 is different from the materials of the first electrode and the second electrode, wherein the materials of the first electrode and the second electrode may be selected from Au, A1, etc., the material of the metal wiring 171.
  • TiW or Ni may be selected, and after the test electrode and the metal wiring 171 are fabricated, the photoelectric test is performed first, and then the metal wiring 171 is selectively removed, and the sacrificial layer 190 is formed. This removes the metal wires and maintains the integrity of the first and second electrodes.
  • the same material is selected as the metal wiring 171 and the sacrificial layer 190.
  • the chip is tested first, and then the support structure is directly fabricated according to the method of the second embodiment. Finally, the metal wires 171 are removed by removing the same layer of the sacrificial layer 190.
  • the materials of the first and second electrodes, the material of the metal wires 171, and the material of the sacrificial layer 190 are all different, and are tested after the support structure is completed, so as to facilitate the surface of the chip ( Non-electrode side) Tested in an upward state.
  • a micro LED chip is formed in the unitized epitaxial structure, and the epitaxial layer 110 of the scribe region 117 is not completely etched to the surface of the growth substrate 111, but a certain thickness is retained.
  • the non-tacky semiconductor layer is then formed on the remaining non-tacky semiconductor layer by the test electrode and a portion of the metal wiring.
  • the test circuit is completed and the carrier substrate 140 is bonded, after the growth substrate 111 is removed, the test circuit is supported by the non-tough semiconductor layer having a certain thickness, so that the test circuit is not damaged, and then the sacrificial layer 190 is removed.
  • the chip test is performed, and after the test is completed, the metal wiring 171 is removed by selective etching to form the structure shown in FIG.
  • the material of the first and second electrodes is Au or Al, and the material of the metal wiring 171 is Ni.
  • the material of the sacrificial layer 190 is TiW. After etching and removing the TiW sacrificial layer 190, the test circuit and the first and second electrodes are not affected, and the Ni metal wiring 171 is removed by etching, which is not the first. , number The two electrodes have an effect.
  • 16(a) is a side cross-sectional view of a vertical micro LED of a first preferred embodiment, including an LED chip 200 and a support structure, the LED chip 200 including an epitaxial stack 210 on the epitaxial stack 210.
  • the first electrode 221 of the surface and the second electrode 222 on the lower surface of the epitaxial stack, and a partial region of the lower surface is in contact with the at least one support post 231 to be held in position on the carrier substrate 240 such that the device is in a state to be picked up.
  • the LED chip 210 is a vertical chip, and the size and thickness thereof can be referred to the first embodiment.
  • the epitaxial layer 2 10 includes at least a first type semiconductor layer, an active layer and a second type semiconductor layer from top to bottom.
  • the first electrode 221 is located above the upper surface of the first type semiconductor layer and is electrically connected thereto, and the second electrode 222 is located on the lower surface of the second type semiconductor layer to be electrically connected thereto.
  • the first connection region 223 is disposed on the first electrode 221 for fabricating a metal wiring to lead the first electrode to the outside of the chip. Test electrodes for testing during chip fabrication. The details will be described below with reference to Figs. 17 to 27 and the production method.
  • an epitaxial structure 210 is first provided, which may generally include a growth substrate 211 and an epitaxial stack thereon.
  • the epitaxial stack generally includes at least a first type semiconductor layer 212 and an active layer 213 from top to bottom.
  • the second type semiconductor layer 214, the specific material and the structural layer of the epitaxial layer stack may be selected according to actual needs.
  • a second electrode region 216 and a scribe region 215 are defined on the surface of the epitaxial stack 210, wherein the dicing region 215 divides the entire luminescent epitaxial stack 210 into a series of micro illuminating unit LEDs, each The microcells have at least one second electrode region 214.
  • a second electrode 222 is formed on each of the second electrode regions 216 on the upper surface of the epitaxial laminate 200.
  • the second type semiconductor layer 214, the active layer 213, and the first type semiconductor layer 212 of the scribe line region 215 of the light emitting epitaxial structure are etched until the surface of the growth substrate 211 is exposed.
  • the luminescent epitaxial structure is diced into a series of microcells to form a walkway 250.
  • the transparent protective layer 260 is covered on the surface of each of the micro LED chips to expose only a part of the surface of the second electrode 222.
  • the insulating protective layer 2 60 is made of SiN x or SiO 2 .
  • a metal sacrificial layer 290 is formed on the micro LED chip array, and in each micro LED A mouth 291 is reserved on the chip as a support point.
  • the thickness of the sacrificial layer is between 0.1 and 5 ⁇ m, for example, a TiW layer having a thickness of 2 to 4 ⁇ m may be used as the sacrificial layer.
  • a metal material is selected as the sacrificial layer, on the one hand for supporting the pillar structure, and on the other hand, the sacrificial layer 190 is in contact with the second electrode 222, and thus can be directly used as a test electrode.
  • a carrier substrate 240 is provided, and a thermosetting material 232, such as BCB, is formed on the carrier substrate 240 and the sacrificial layer 290, respectively, and then the two are bonded together for curing and bonding, thereby being in the mouth.
  • a support column 231 is formed at 291.
  • the growth substrate 211 is removed to expose the surface of the first type semiconductor layer 212.
  • the upper surface of the sacrificial layer 290 of the aisle region and the sidewalls of each of the LED microcells are covered with an insulating protective layer 260.
  • a first electrode 221 is formed on the exposed first surface of the semiconductor layer 212.
  • a first connection region 223 is disposed on the first electrode 221 of each LED microcell, and a metal connection 271 is formed on the first connection region 223, thereby guiding the first electrode of each LED chip to A test electrode 280 is fabricated in an area outside the chip (e.g., a walkway area 250 or other blank area).
  • the material of the metal wiring 271 is different from the material of the first electrode, and the material which can be removed by selective etching is preferably selected, so that the metal wiring 271 can be removed by selective etching after the test is completed.
  • the test electrode 280 is fabricated on one side of the chip array, and the first electrode 221 of the first chip of the same row is connected through the metal connection 271 test electrode 280, which is the same through the metal connection 271.
  • the first electrodes of the individual chips of the row are connected in series as shown in FIG.
  • the external test power supply is connected to the test electrode 280 at one end, and the metal sacrificial layer 290 is connected to the other end, so that the photoelectric characteristics of the micro LED chip array can be tested.
  • test circuit shown in FIG. 26 it is a multi-point test, and in other embodiments, a single-point test can also be used, that is, the first electrodes of the single, two or four LED chips are respectively connected by metal wires.
  • a test electrode is formed to the area of the aisle 250. For example, referring to the circuit design shown in FIG. 11, only the test electrode is referenced from the first electrode to the area of the walkway 250.
  • the metal wiring 271 is removed by selective etching, as shown in FIG.
  • the sacrificial layer 290 is removed such that the lower surface portion of the micro LED chip is suspended to form a micro light emitting diode device fixed by the support post 231, as shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

公开了一种微型发光二极管、显示装置及其制作方法,其至少在一个电极上设置连接区用于金属联线,达到Micro-LED全测目的。微型发光二极管芯片(100)包括:外延叠层(110),依次包含第一类型半导体层(112)、有源层(113)、第二类型半导体层(114),其具有相对的第一表面和第二表面;第一电极(121),形成于外延叠层(110)的第二表面之上,与第一类型半导体层(112)连接;第二电极(122),形成于外延叠层(110)的第二表面之上,与第二类型半导体层(114)连接;第一电极(121)和第二电极(122)表面上分别设有第一连接区(123)。第一连接区(123)可从表面形貌或外观颜色上区别于所在电极的其他区域。

Description

微型发光二极管及其制作方法
技术领域
[0001] 本发明属于半导体制造领域, 具体涉及一种微型发光二极管器件及其制作方法 背景技术
[0002] 微元件技术是指在衬底上以高密度集成的微小尺寸的元件阵列。 微型器件的一 些实例包括微机电系统 (MEMS)微动幵关、 发光二极管显示系统和基于 MEMS或 者石英的振荡器。 目前, 微发光二极管 (Micro LED)显示具有高亮度、 低功耗、 超高分辨率与色彩饱和度等优点, 吸引不少业者投入研发。
技术问题
[0003] 目前 Micro LED因其较小之芯片尺寸, 导致芯片全测存在较大的瓶颈: 一方面 由于电极尺寸极小, 无法准确将测试针扎在电极上完成光电参数的测试; 另一 方面低电流测试, 其相对较低的亮度导致单颗芯片耗吋较久且误差较大。
问题的解决方案
技术解决方案
[0004] 针对上述问题, 本发明提供了一种微型发光二极管, 其至少在一个电极上设置 连接区用于金属联线, 达到 Micro-LED全测目的。
[0005] 本发明的第一个技术方案为: 微型发光二极管芯片, 包括: 外延叠层, 依次包 含第一类型半导体层、 有源层、 第二类型半导体层, 其具有相对的第一表面和 第二表面; 第一电极, 形成于所述外延叠层的第二表面之上, 与所述第一类型 半导体层连接; 第二电极, 形成于所述外延叠层的第二表面之上, 与所述第二 类型半导体层连接; 所述第一电极和第二电极表面上分别设有第一连接区。
[0006] 本发明的第二个技术方案为: 微型发光二极管芯片, 包括: 外延叠层, 依次包 含、 第一类型半导体层、 有源层、 第二类型半导体层, 其具有相对的第一表面 和第二表面; 第一电极, 形成于所述外延叠层的第一表面之上, 与所述第一类 型半导体层连接; 第二电极, 形成于所述外延叠层的第二表面之上, 与所述第 二类型半导体层连接; 所述第一电极表面上设有第一连接区。
[0007] 优选地, 所述第一连接区从表面形貌或外观颜色上区别于所在电极的其他区域
[0008] 优选地, 所述第一连接区用于制作金属连线, 以将第一电极和 /或第二电极引 至芯片以外区域形成测试电极。
[0009] 优选地, 所述第一连接区的面积占所在电极的总面积的 5%以上。
[0010] 优选地, 所述第一连接区的形状为多边形、 圆形或者半圆形。
[0011] 优选地, 所述微型发光二极管芯片的厚度为 20μηι以内。
[0012] 优选地, 所述微型发光二极管芯片的尺寸为 ΙΟΟμηιχΙΟΟμιη以内。
[0013] 优选地, 所述第一电极与第二电极的总面积不小于所述芯片面积的 40%。
[0014] 优选地, 在第一电极或 /和第二电极上设置第二连接区, 用于接触支撑柱, 使 所述芯片第二表面呈部分悬空, 处于待拾取状态。
[0015] 优选地, 所述第二连接区的面积占所在电极的总面积的 5%以下。
[0016] 本发明同吋提供微型发光二极管阵列, 其包括前述任意一种微型发光二极管芯 片。
[0017] 前述任意一种微型发光二极管芯片可应用于显示装置。
[0018] 本发明的第三个技术方案为: 微型发光二极管的制作方法, 包括步骤:
[0019] (1) 提供一外延叠层, 依次包含第一类型半导体层、 有源层、 第二类型半导 体层, 其具有相对的第一表面和第二表面;
[0020] (2) 在外延叠层的第二表面制作第一、 第二电极, 其中所述第一电极与所述 第一类型半导体层连接, 所述第二电极与所述第二类型半导体层连接;
[0021] (3) 在所述第一电极和第二电极上形成第一连接区。
[0022] 优选地, 所述步骤 (3) 中形成的第一连接区用于制作金属连线, 以将第一电 极和第二电极引至芯片以外区域形成测试电极。
[0023] 优选地, 所述步骤 (3) 中形成的第一连接区从表面形貌或外观颜色上区别于 所在电极的其他区域。
[0024] 优选地, 所述微型发光二极管的制作方法还包括步骤 (4) : 提供一支撑基板 , 通过至少一支撑柱与所述外延叠层的第二表面连接, 使得所述微型发光二极 管处于待拾取状态。
[0025] 优选地, 所述微型发光二极管的制作方法的步骤 (2) 包含: (a) 在所述外延 叠层的第二表面上定义切割道区和第一电极区, 所述外延叠层被所述切割道区 划分为一系列微单元, 每个微单元具有至少一个第一电极区; (b) 蚀刻所述外 延结构的第一电极区的第二类型半导体层、 有源层至第一类型半导体层, 裸露 出第一类型半导体层的部分表面; (c) 分别在各个所述微单元之裸露出的第一 类型半导体层和第二类型半导体层上制作第一电极、 第二电极; (d) 蚀刻所述 外延叠层的切割道区, 将所述外延叠层分为一系列微单元阵列; 所述步骤 (3) 包含: (e) 在至少一个所述微单元的第一电极和第二电极上定义第一连接区, 制作金属连线, 将第一电极和第二电极引至微单元以外的区域形成测试电极;
(f) 向所述测试电极通入测试电流, 进行光电测试; (g) 去除所述测试电极。
[0026] 较佳地, 所述步骤 (3) 中形成的金属连线的材料与所述第一、 第二电极的材 料不同, 采用选择性蚀刻去除所述金属连线。
[0027] 在一些实施例中, 完在 (f) 步骤后, 进行下面步骤: (i) 在所述微单元阵列 之电极的一侧形成牺牲层, 其在所述对于每个微单元的位置至少预留一个幵口 ; (ϋ) 提供一承载基板, 分别在所述承载基板和牺牲层形成热固型材料, 然后 将两者贴合进行固化、 键合, 从而在幵口处形成支撑柱; (iii) 同吋去除所述牺 牲层和金属连线。 优选的, 所述金属连线和牺牲层的材料相同, 选择 TiW或 Ni。
[0028] 在一些实施例中, 完在 (e) 步骤后, 进行下面步骤: (i) 在所述微单元阵列 之电极的一侧形成牺牲层, 其在所述对于每个微单元的位置至少预留一个幵口 ; (ϋ) 提供一承载基板, 分别在所述承载基板和牺牲层形成热固型材料, 然后 将两者贴合进行固化、 键合, 从而在幵口处形成支撑柱; (iii) 去除所述牺牲层 ; 接着进行步骤 (f) 。 优选的, 所述金属连线和牺牲层的材料选择 TiW或 Ni, 但各不相同。
[0029] 本发明的第四个技术方案为: 微型发光二极管的制作方法, 包括步骤:
[0030] (1) 外延叠层, 依次包含第一类型半导体层、 有源层、 第二类型半导体层, 其具有相对的第一表面和第二表面;
[0031] (2) 在外延叠层的第一表面制作第一电极, 其与所述第一类型半导体层连接 , 在外延叠层的第二表面上制作第二电极, 其与所述第二类型半导体层连接;
[0032] (3) 在所述第一电极的表面上形成第一连接区。
[0033] 优选地, 所述步骤 (3) 中形成的第一连接区用于制作金属连线, 以将第一电 极和第二电极引至芯片以外区域形成测试电极。
[0034] 优选地, 所述步骤 (3) 中形成的第一连接区从表面形貌或外观颜色上区别于 所在电极的其他区域。
[0035] 优选地, 所述微型发光二极管的制作方法还包括步骤 (4) : 提供一支撑基板 , 通过至少一支撑柱与所述外延叠层的第二表面连接, 使得所述微型发光二极 管处于待拾取状态。
[0036] 优选地, 所述的微型二极管的制作方法的步骤 (2) 包含: (a) 在所述外延叠 层的第二表面上定义切割道区和第二电极区, 所述外延叠层被所述切割道区划 分为一系列微单元; (b) 在所述外延叠层的第二表面上的第二电极区制作第二 电极; (c) 蚀刻所述外延叠层的切割道区, 将所述外延叠层分为一系列微单元 阵列; (d) 在所述外延叠层的第一表面上制作第一电极; 所述步骤 (3) 包含 : (e) 在至少一个所述微单元的第一电极上定义第一连接区, 制作金属连线, 将第一电极引至微单元以外的区域形成测试电极; (f ) 向所述测试电极通入测 试电流, 进行光电测试; (g) 去除所述测试电极。
[0037] 较佳地, 所述步骤 (3) 中形成的金属连线的材料与所述第一电极的材料不同 , 采用选择性蚀刻去除所述金属连线。
[0038] 本发明所述微型发光二极管器件藉由芯片设计可针对 Micro LED进行全测, 同 吋不影响后续巨量转移工艺。
[0039] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。 。
发明的有益效果
对附图的简要说明
附图说明
[0040] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0041] 图 1是根据本发明实施的一种微型发光二极管的结构示意图, 其中 (a) 为侧面 剖视图, (b) 为微型发光二极管芯片的下表面图案。
[0042] 图 2显示了图 1之 (b) 所示图案的各种变形。
[0043] 图 3~14为根据本发明实施的制作微型发光二极管器件的过程示意图。
[0044] 图 15为根据本发明实施的采用另一种微型发光二极管器件制作方法所形成的微 型发光二极管的结构示意图。
[0045] 图 16是根据本发明实施的另一种微型发光二极管的结构示意图, 其中 (a) 为 侧面剖视图, (b) 为微型发光二极管芯片的下表面图案。
[0046] 图 17~28为根据本发明实施的制作微型发光二极管器件的过程示意图。
本发明的实施方式
[0047] 以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明如何应 用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实 施。 需要说明的是, 只要不构成冲突, 本发明中的各个实施例以及各实施例中 的各个特征可以相互结合, 所形成的技术方案均在本发明的保护范围之内。
[0048] 实施例一
[0049] 图 1之 (a) 为第一个较佳实施例的倒装微型 LED的侧面剖视图, 其包括 LED芯 片 100及支撑结构, 该 LED芯片 100包括外延叠层 110及位于外延叠层 110下表面 11 Ob的第一电极 121和第二电极 122, 且芯片 100下表面的部分区域 124与至少一个 支撑柱 131接触从而保持在承载基板 140上的适当位置, 使得器件处于待拾取状 态, 所述支撑柱 131可采用热固性材料, 诸如但不限于苯并环丁烯 (BCB)或环氧 树脂。
[0050] 在本实施例中, LED芯片 110为薄膜微型结构, 其较佳尺寸为 ΙΟΟμηιχΙΟΟμιη以 内, 例如为 100μηιχ100μιη, 或者为 100μηιχ50μιη, 在一些应用中甚至为 50μηιχ50 μηι以内, 例如可以是为 50μηιχ50μιη, 或者 20μηιχ10μιη, 或者 10μηιχ10μιη。 进一 步的, LED芯片 100去除了生长衬底, 因此可以使得芯片的厚度 d基本上保持在 20 μηι以内, 例如 15μηι或者 ΙΟμηι等。
[0051] 通常, LED芯片的外延叠层 110包括第一类型半导体层、 有源层和第二类型半 导体层。 当第一类型半导体层为 n
型半导体, 第二类型半导体层可为相异电性的 p型半导体, 反之, 当第一类型半 导体层为 p型半导体, 第二类型半导体层可为相异电性的 n型半导体。 有源层可 为中性、 p型或 n型电性的半导体。 施以电流通过半导体外延叠层吋, 激发有源 层发光出光线。 当有源层以氮化物为基础的材料吋, 会发出蓝、 绿或紫外光; 当以磷化铝铟镓为基础的材料吋, 会发出红、 橙、 黄光的琥珀色系的光。
[0052] 在本实施例中, 第一电极 121、 第二电极 122和支撑柱子 122处于同一侧 (外延 叠层的下表面 110b) , 则微型芯片可在另外一侧 (外延叠层的上表面 110a) 发光 , 增大出光面积的同吋, 方便了微型芯片的封装。 其中第一电极 121与外延叠层 110的第一类型半导体层形成电性连接, 第二电极 122与第二类型半导体层连接
[0053] 图 1之 (b) 显示了 LED芯片 110的下表面 110b的电极图案, 其中第一电极 121和 第二电极 122分别分布于外延叠层下表面 110b的两侧, 第一、 第二电极的总面积 点不小于芯片面积的 40%, 较佳为达到 60%以上, 但小于 90%, 以确保第一、 第 二电极之间的电性隔离, 例如可以是 80%或者 75%等。
[0054] 由于 LED芯片 100为微型器件, 第一电极 121和第二电极 122的尺寸对应也是极 小的, 基本上无法准确将测试针扎在电极上完成光电参数的测试。 因此, 在本 实施例中, 第一电极和第二电极上均设有第一连接区 123, 其主要是在芯片制作 过程中用于制作金属连线, 以将第一电极 121和第二电极 122引至芯片以外区域 形成测试电极, 其中金属连线在测试完成后可保留或进行移除, 此部分在下面 的实施例二中将进行详细说明。 不管是保留金属连接还是移除金属连线, 第一 连接区 123在第一电极 121和第二电极 122上均可与其他区域进行区别, 例如采用 湿法蚀刻去除金属连线, 此吋第一电极和第二电极上的第一连接区 123的表面颜 色将有别于其他区域, 如果保留金属连线, 此吋第一连接区由于增加了金属连 线, 其表面形貌上明显区别于其他区域。 其中, 第一连接区 123的形状可以是多 边形、 圆形、 半圆形或者其他不规则图形, 以实际需要为准。 较佳的, 第一连 接区 123采用矩形, 占所在电极的总面积的 5%以上, 一般 10~30%更佳。
[0055] 支撑柱 131可位于外延叠层 110下表面的任意位置, 例如第一电极和第二电极之 间的中间空白区域, 或者是第一电极的下表面, 再或者第二电极的下表面。 在 本实施例中, 为达到较佳的拾取效果, 优选在第一电极 121或第二电极 122上设 置第二连接区 124, 用于接触支撑柱 131。 其中, 第二连接区 124的面积以不超过 所在电极面积的 10%为佳, 例如可以是 5%左右。 支撑柱 131通过粘结层 132与承 载基板 140连接, 其中粘结层与支撑柱 131可以是同吋形成的, 采用相同的材料 , 例如前述热固性材料固化形成。
[0056] 图 2简单列举了几种不同的电极图案, 其中第一连接区 123位于电极的边缘区域 , 第一电极 121上的第一连接区和第二电极 122上的第二连接区较佳呈轴对称分 布。 第二连接区 124可以位于外延叠层下表面的中间区域, 或者第一电极的中间 区域, 或者第二电极的中间区域。
[0057] 实施例二
[0058] 图 3~图13显示了根据本发明实施的制作微型发光二极管器件的过程示意图, 下 面结合示意图对本发明的微型发光二极管器件的制作方法进行详细的描述。
[0059] (一) 提供 LED外延结构
[0060] 如图 3所示, 提供外延结构 110, 其一般可包括生长衬底 111和其上外延叠层。
其中生长衬底 110的选取包括但不限于蓝宝石、 氮化铝、 氮化镓、 硅、 碳化硅、 砷化镓, 其表面结构可为平面结构或图案化图结构, 外延叠层从上到下一般至 少包括第一类型半导体层 112、 有源层 113、 第二类型半导体层 114, 关于外延叠 层的具体材料及结构层可根据实际需要, 选择现有常规结构即可。
[0061] (二) 单元化外延结构, 形成微发光二极芯片
[0062] 请参看图 4, 在外延叠层 110的表面上定义蚀刻区 115, 该蚀刻区包括第一电极 区 116和切割道区 117, 其中切割道区 117将整个发光外延叠层 110划分为一系列 微发光单元 LED, 每个微单元具有至少一个第一电极区 116。
[0063] 蚀刻该发光外延结构的蚀刻区 115的第二类型半导体层 114和有源层 113, 露出 第一类型型半导体层 112的表面 112a。 请参看图 5, 该发光外延结构的第二类型半 导体层 114和有源层 113划分为一系列微单元 A。 [0064] 请参看图 6, 制作第一电极 121和第二电极 122。 具体为: 在露出的第一类型半 导体层 112表面的第一电极区制作第一电极 113; 分别在各个单元 A的第二型半导 体层 114表面上制作第二电极 122。
[0065] 请参看图 7, 继续蚀刻切割道区 117的第二类型半导体层 112形成走道 150, 从而 将在整个发光外延结构分为一系列微型 LED芯片阵列。 较佳的, 在各个微型 LED 芯片的表面上覆盖透明保护层 160, 仅露出第一电极 121和第二电极的 122的部分 表面。 优选的, 绝缘保护层 160采用 SiN x或者 Si0 2。 较佳的, 还可以分别将在第 一电极 121和第二电极 122上制作延伸电极, 其延伸至绝缘保护层 160的部分表面 上。 其中第一电极的延伸电极可以延伸至第二类型半导体层上方的绝缘保护层 上, 与第二电极 122的延伸电极保持基本齐平, 以便于封装。
[0066] (三) 制作测试电路
[0067] 分别在各个微发光二极管的第一电极 121和第二电极 122设置第一连接区 123, 关于第一连接区的形状、 尺寸及位置等各种参数可参照实施例一进行设计。 在 第一连接区 123上制作金属连线 171, 从而将各个 LED芯片的第一电极 121和第二 电极 122分别引至芯片外的区域 (例如走道区 150或其他空白区域) 制作测试电 极, 如图 8所示。 测试电极的尺寸可根据微型器件之间的走道尺寸而确定, 一般 可达 ΙΟΟμηι以上。
[0068] 在本实施例中, 在芯片阵列的两侧分别制作第一测试电极 181和第二测试电极 1 82, 其中同一行的首个芯片的第一电极 121通过金属连线 171与第一测试电极 181 连接, 末个芯片的第二电极 122通过金属连线 171与第二测试电极 182连接, 中间 的芯片电极首尾相接, 形成串并联测试电路, 如图 9所示。 如此, 即可对微型 LE D芯片阵型进行光电特性测试。
[0069] 图 10显示了另一种并联测试电路图案。 在图 10所示的电路中, 为防止两侧的条 状测试电极 181、 182发生断裂, 还可设置一系列的备用测试电极 183a~183d。
[0070] 图 11显示了再种一种测试电路图案。 在图 9所示的电路中采用单颗点测, 具体 为分别从各个微型 LED芯片的第一电极 121和第二电极 122分别引线到芯片之间走 道 150的空白区域, 再设计成四分之一球形状引电极, 如此相邻四颗微型 LED芯 片的引电极构成一个测试电极 180, 此微型阵列结构的测度电极可以测试每一颗 微型发光二极管芯片的光电参数。
[0071] 进一步地, 并不是每个微型发光二极管器件都要设计测试电极, 如果整个 LED 外延片的光电特性均匀性较好, 则可以选取个别区域设计成带可测电极的单元 , 通过测试这些个别区域的光电特性, 了解整个 LED外延片的光电特性。
[0072] (四) 制作支撑结构
[0073] 请参看图 12, 在微型 LED芯片阵列上制作牺牲层 190, 并在每个微型 LED芯片 上预留一个幵口 191作为支撑点。 较佳的, 牺牲层 190的厚度为 0.1~5μηι之间, 材 料可为氧化物、 氮化物或者可选择性地相对于其他层被移除的其他材料。
[0074] 接着, 提供一承载基板 140, 分别在该承载基板 140和牺牲层 190形成热固型材 料 132, 例如 BCB, 然后将两者贴合进行固化、 键合, 如图 13所示, 从而在幵口 191处形成支撑柱 131。
[0075] 接着, 移除生长衬底 111, 裸露出第一类型半导体层 112的表面。 可通过多种方 法来实现移除, 包括激光剥离 (LLO)、 磨削或者蚀刻, 具体取决于生长衬底 111 的材料选择。
[0076] 随着生长衬底 111的去除, 走道区 150的金属连线 171与测试电极 181、 182—同 随生长衬底 111与微型 LED芯片断幵, 同生长衬底一并去除。
[0077] 最后, 去除牺牲层 190, 使得微型 LED芯片的下表面部分悬空, 形成通过支撑 柱 131固定的微型发光二极管器件, 如图 14所示。
[0078] 在本实施例中, 通过在第一电极和第二电极上设置连接区, 在微型芯片制作过 程中, 在连接区上制作金属连线, 从而将第一电极和第二电极引至芯片外的空 白区域, 制作大尺寸的测试电极, 实现微型 LED芯片全测, 同吋在去除生长衬底 的同吋, 断幵各个微型 LED芯片间的金属连线, 一并将空白区域的金属连线及测 试电极去除。
[0079] 实施例三
[0080] 本实施例与实施例二的主要区别在于: 金属连线 171采用不同于第一电极 121和 第二电极 122的材料, 在完成测试后, 采用选择性蚀刻去除金属连线 171, 该蚀 刻液只与金属连线 171反应, 不与第一电极和第二电极发生反应, 如此即可达到 测试的目的, 又可以同吋避免传统串并联之金属导线将衍生出后续做芯片巨量 转移后, 金属导线残留的问题。
[0081] 图 15显示了采用上述方法形成的微型发光二极管器件的结构示意图。 从图中可 看了, 该微型 LED器件无金属导线残留的问题。 第一电极和第二电极上的第一连 接区 123由于先制作金属连线, 后续又采用选择性去除, 使得其颜色有别于其他 区域的颜色。
[0082] 在本实施例中, 金属连线 171的材料与第一电极和第二电极的材料不同, 其中 第一电极和第二电极的材料可以选择 Au、 A1等, 金属连线 171的材料可选择 TiW 或者 Ni, 在制作完测试电极及金属连线 171后进行, 先进行光电测试, 然后选择 性去金属连线 171, 再制作牺牲层 190。 此吋去除金属连线的同吋, 又保持了第 一、 第二电极的完整性。
[0083] 实施例四
[0084] 在本实施例中, 选择相同的材料作为金属连线 171和牺牲层 190, 此吋在制作完 成测试电极后先进行芯片的测试, 接着照参实施例二的方法直接制作支撑结构 , 最后去除牺牲层 190的同吋一并去除金属连线 171。
[0085] 实施例五
[0086] 在本实施例中, 第一、 第二电极的材料、 金属连线 171的材料和牺牲层 190的材 料均不相同, 在制作完成支撑结构后再测试, 方便在芯片的出表面 (非电极侧 ) 朝上的状态进行测试。
[0087] 具体的, 参照实施例二的方法, 在单元化外延结构形成微型 LED芯片吋, 切割 道区 117的外延叠层 110未被完全蚀刻至生长衬底 111的表面, 而是保留一定厚度 的非惨杂半导体层, 之后将测试电极及部分金属连线形成在该保留的非惨杂半 导体层上。 制作完成测试电路及粘接承载基板 140后, 在去除生长衬底 111吋, 由于有保留一定厚度的非惨杂半导体层支撑测试电路, 此吋可以保证测试电路 不被破坏, 接着去除牺牲层 190, 然后进行芯片测试, 最后完成测试后采用选择 性蚀刻去除金属连线 171, 形成图 15所示的结构。
[0088] 在本实施例中, 第一、 第二电极的材料选择 Au或 Al, 金属连线 171的材料为 Ni
, 牺牲层 190的材料为 TiW, 在蚀刻去除 TiW牺牲层 190吋, 不会对测试电路和第 一、 第二电极产生影响, 同吋蚀刻去除 Ni金属连线 171吋, 同样不会对第一、 第 二电极产生影响。
[0089] 实施例六
[0090] 图 16之 (a) 为第一个较佳实施例的垂直微型 LED的侧面剖视图, 其包括 LED 芯片 200及支撑结构, 该 LED芯片 200包括外延叠层 210、 位于外延叠层 210上表面 的第一电极 221及位于外延叠层下表面的第二电极 222, 且下表面的部分区域与 至少一个支撑柱 231接触从而保持在承载基板 240上的适当位置, 使得器件处于 待拾取状态。
[0091] 具体的, LED芯片 210为垂直芯片, 其尺寸及厚度可参考实施例一, 外延叠层 2 10从上到下至少包括第一类型半导体层、 有源层和第二类型半导体层。 第一电 极 221位于第一类型半导体层的上表面之上, 与之形成电性连接, 第二电极 222 位于第二类型半导体层的下表面上, 与之形成电性连接。
[0092] 在本实施中, 如图 16 (b) 所示, 仅需在第一电极 221上设置第一连接区 223, 用于制作金属连线, 以将第一电极引至芯片以外区域形成测试电极, 用于在芯 片制作过程中进行测试。 下面结合附图 17~27和制作方法进行详细说明。
[0093] 请参看图 17, 首先提供外延结构 210, 其一般可包括生长衬底 211和其上外延叠 层, 外延叠层从上到下一般至少包括第一类型半导体层 212、 有源层 213、 第二 类型半导体层 214, 关于外延叠层的具体材料及结构层可根据实际需要, 选择现 有常规结构即可。
[0094] 请参看图 18, 在外延叠层 210的表面上定义第二电极区 216和切割道区 215, 其 中切割道区 215将整个发光外延叠层 210划分为一系列微发光单元 LED, 每个微单 元具有至少一个第二电极区 214。
[0095] 请参看图 19, 在外延叠层 200上表面的各个第二电极区 216制作第二电极 222。
[0096] 请参看图 20, 蚀刻该发光外延结构的切割道区 215的第二类型半导体层 214、 有 源层 213和第一类型半导体层 212, 直至露出生长衬底 211的表面。 该发光外延结 构切割成一系列微单元, 形成走道 250。 较佳的, 在各个微型 LED芯片的表面上 覆盖透明保护层 260, 仅露出第二电极的 222的部分表面。 优选的, 绝缘保护层 2 60采用 SiN x或者 SiO 2
[0097] 请参看图 21, 在微型 LED芯片阵列上制作金属牺牲层 290, 并在每个微型 LED 芯片上预留一个幵口 291作为支撑点。 较佳的, 牺牲层的厚度为 0.1~5μηι之间, 例如可选用厚度为 2~4微米的 TiW层作为牺牲层。 在本步骤中选择金属材料作为 牺牲层, 一方面用于支撑柱结构, 另一方面牺牲层 190与第二电极 222接触, 因 此可直接作为测试电极。
[0098] 请参看图 22, 提供一承载基板 240, 分别在该承载基板 240和牺牲层 290形成热 固型材料 232, 例如 BCB, 然后将两者贴合进行固化、 键合, 从而在幵口 291处 形成支撑柱 231。
[0099] 请参看图 23, 移除生长衬底 211, 裸露出第一类型半导体层 212的表面。 其中走 道区的牺牲层 290上表面及各个 LED微单元的侧壁上均覆盖有绝缘保护层 260。
[0100] 请参看图 24, 在裸露出的第一类型是半导体层 212的表面上制作第一电极 221。
[0101] 请参看图 25, 在各个 LED微单元的第一电极 221上设置第一连接区 223, 在第一 连接区 223上制作金属连线 271, 从而将各个 LED芯片的第一电极引至芯片外的区 域 (例如走道区 250或其他空白区域) 制作测试电极 280。 其中金属连线 271的材 料与第一电极的材料不同, 其优先择择可以通过选择性蚀刻去除的材料为好, 如此在完成测试后可采用选择性蚀刻去除金属连线 271。
[0102] 在本实施例中, 在芯片阵列的一侧制作测试电极 280, 同一行的首个芯片的第 一电极 221通过金属连线 271测试电极 280连接, 其并通过金属连线 271将同一行 的各个芯片的第一电极串接起来, 如图 26所示。 如此, 在完成图 25所示的结构 后, 外部测试电源一端连接测试电极 280, 另一端连接金属牺牲层 290, 即可实 现对微型 LED芯片阵型进行光电特性测试。
[0103] 在图 26所示的测试电路中为多点测试, 在另一些实施例中也可采用单点测试, 即单个、 两个或四个 LED芯片的第一电极分别通过金属连线引至走道 250区域形 成测试电极, 例如可以参考图 11所示的电路设计, 只从第一电极引用测试电极 至走道 250区域。
[0104] 在完成点测后, 采用选择性蚀刻去除金属连线 271, 如图 27所示。
[0105] 最后, 去除牺牲层 290, 使得微型 LED芯片的下表面部分悬空, 形成通过支撑 柱 231固定的微型发光二极管器件, 如图 28所示。
[0106] 以上所述仅为本发明创造的较佳实施例而已, 并不用以限制本发明创造, 凡在 本发明创造的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包 含在本发明创造的保护范围之内。

Claims

权利要求书
[权利要求 1] 微型发光二极管芯片, 包括:
外延叠层, 依次包含第一类型半导体层、 有源层、 第二类型半导体层 , 其具有相对的第一表面和第二表面;
第一电极, 形成于所述外延叠层的第二表面之上, 与所述第一类型半 导体层连接;
第二电极, 形成于所述外延叠层的第二表面之上, 与所述第二类型半 导体层连接;
其特征在于: 所述第一电极和第二电极表面上分别设有第一连接区, 其从表面形貌或外观颜色上区别于所在电极的其他区域。
[权利要求 2] 微型发光二极管芯片, 包括:
外延叠层, 依次包含、 第一类型半导体层、 有源层、 第二类型半导体 层, 其具有相对的第一表面和第二表面;
第一电极, 形成于所述外延叠层的第一表面之上, 与所述第一类型半 导体层连接;
第二电极, 形成于所述外延叠层的第二表面之上, 与所述第二类型半 导体层连接;
其特征在于: 所述第一电极表面上设有第一连接区, 其从表面形貌或 外观颜色上区别于所在电极的其他区域。
[权利要求 3] 根据权利要求 1或 2所述的微型发光二极管芯片, 其特征在于: 所述第 一连接区用于制作金属连线, 以将第一电极和 /或第二电极弓 I至芯片 以外区域形成测试电极。
[权利要求 4] 根据权利要求 1或 2所述的微型发光二极管芯片, 其特征在于: 所述第 一连接区的面积占所在电极的总面积的 5%以上。
[权利要求 5] 根据权利要求 1或 2所述的微型发光二极管芯片, 其特征在于: 所述第 一连接区的形状为多边形、 圆形或者半圆形。
[权利要求 6] 根据权利要求 1或 2所述的微型发光二极管芯片, 其特征在于: 所述微 型发光二极管芯片的厚度为 20μηι以内。 [权利要求 7] 根据权利要求 1或 2所述的微型发光二极管芯片, 其特征在于: 所述微 型发光二极管芯片的尺寸为 ΙΟΟμηιχΙΟΟμιη以内。
[权利要求 8] 根据权利要求 1所述的微型发光二极管芯片, 其特征在于: 所述第一 电极与第二电极的总面积不小于所述芯片面积的 40%。
[权利要求 9] 根据权利要求 1所述的微型发光二极管芯片, 其特征在于: 在第一电 极或 /和第二电极上设置第二连接区, 用于接触支撑柱, 使所述芯片 第二表面呈部分悬空, 处于待拾取状态。
[权利要求 10] 根据权利要求 9所述的微型发光二极管芯片, 其特征在于: 所述第二 连接区的面积占所在电极的总面积的 5%以下。
[权利要求 11] 微型发光二极管阵列, 其特征在于: 包含一系列前述权利要求 1-10所 述的任意一种微型发光二极管芯片。
[权利要求 12] —种显示装置, 其包含一系列前述权利要求 1-10所述的任意一种微型 发光二极管芯片。
[权利要求 13] 微型发光二极管的制作方法, 包括步骤:
(1) 提供一外延叠层, 依次包含第一类型半导体层、 有源层、 第二 类型半导体层, 其具有相对的第一表面和第二表面;
(2) 在外延叠层的第二表面制作第一、 第二电极, 其中所述第一电 极与所述第一类型半导体层连接, 所述第二电极与所述第二类型半导 体层连接;
(3) 在所述第一电极和第二电极上形成第一连接区, 其从表面形貌 或外观颜色上区别于所在电极的其他区域。
[权利要求 14] 根据权利要求 13所述的微型发光二极管的制作方法, 其特征在于: 所 述形成的第一连接区用于制作金属连线, 以将第一电极和第二电极引 至芯片以外区域形成测试电极。
[权利要求 15] 根据权利要求 14所述的微型发光二极管的制作方法, 其特征在于: 还 包括步骤 (4) :
(4) 提供一支撑基板, 通过至少一支撑柱与所述外延叠层的第二表 面连接, 使得所述微型发光二极管处于待拾取状态。 根据权利要求 13所述的微型二极管的制作方法, 其特征在于: 所述步骤 (2) 包含:
(a) 在所述外延叠层的第二表面上定义切割道区和第一电极区, 所 述外延叠层被所述切割道区划分为一系列微单元, 每个微单元具有至 少一个第一电极区;
(b) 蚀刻所述外延结构的第一电极区的第二类型半导体层、 有源层 至第一类型半导体层, 裸露出第一类型半导体层的部分表面;
(c) 分别在各个所述微单元之裸露出的第一类型半导体层和第二类 型半导体层上制作第一电极、 第二电极;
(d) 蚀刻所述外延叠层的切割道区, 将所述外延叠层分为一系列微 单元阵列;
所述步骤 (3) 包含:
(e) 在至少一个所述微单元的第一电极和第二电极上定义第一连接 区, 制作金属连线, 将第一电极和第二电极引至微单元以外的区域形 成测试电极;
(f) 向所述测试电极通入测试电流, 进行光电测试;
(g) 去除所述测试电极。
根据权利要求 16所述的微型发光二极管的制作方法, 其特征在于: 所 述步骤 (3) 中形成的金属连线的材料与所述第一、 第二电极的材料 不同, 采用选择性蚀刻去除所述金属连线。
根据权利要求 17所示的微型发光二极管的制作方法, 其特征在于: 完 在 (f) 步骤后, 进行下面步骤:
(i) 在所述微单元阵列之电极的一侧形成牺牲层, 其在所述对于每 个微单元的位置至少预留一个幵口;
(ii) 提供一承载基板, 分别在所述承载基板和牺牲层形成热固型材 料, 然后将两者贴合进行固化、 键合, 从而在幵口处形成支撑柱;
(iii) 同吋去除所述牺牲层和金属连线。
根据权利要求 18所示的微型发光二极管的制作方法, 其特征在于: 所 述金属连线和牺牲层的材料相同, 选择 TiW或 Ni。
根据权利要求 17所示的微型发光二极管的制作方法, 其特征在于: 完 在 (e) 步骤后, 进行下面步骤:
(i) 在所述微单元阵列之电极的一侧形成牺牲层, 其在所述对于每 个微单元的位置至少预留一个幵口;
(ii) 提供一承载基板, 分别在所述承载基板和牺牲层形成热固型材 料, 然后将两者贴合进行固化、 键合, 从而在幵口处形成支撑柱;
(iii) 去除所述牺牲层;
接着进行步骤 (f) 。
根据权利要求 20所示的微型发光二极管的制作方法, 其特征在于: 所 述金属连线和牺牲层的材料选择 TiW或 Ni, 但各不相同。
微型发光二极管的制作方法, 包括步骤:
(1) 外延叠层, 依次包含第一类型半导体层、 有源层、 第二类型半 导体层, 其具有相对的第一表面和第二表面;
(2) 在外延叠层的第一表面制作第一电极, 其与所述第一类型半导 体层连接, 在外延叠层的第二表面上制作第二电极, 其与所述第二类 型半导体层连接;
(3) 在所述第一电极的表面上形成第一连接区, 其从表面形貌或外 观颜色上区别于所在电极的其他区域。
根据权利要求 22所述的微型发光二极管的制作方法, 其特征在于: 所 述形成的第一连接区用于制作金属连线, 以将第一电极引至芯片以外 区域形成测试电极。
根据权利要求 22所述的微型发光二极管的制作方法, 其特征在于: 还 包括步骤 (4) :
(4) 提供一支撑基板, 通过至少一支撑柱与所述外延叠层的第二表 面连接, 使得所述微型发光二极管处于待拾取状态。
根据权利要求 22所述的微型二极管的制作方法, 其特征在于: 所述步骤 (2) 包含: (a) 在所述外延叠层的第二表面上定义切割道区和第二电极区, 所 述外延叠层被所述切割道区划分为一系列微单元;
(b) 在所述外延叠层的第二表面上的第二电极区制作第二电极;
(c) 蚀刻所述外延叠层的切割道区, 将所述外延叠层分为一系列微 单元阵列;
(d) 在所述外延叠层的第一表面上制作第一电极;
所述步骤 (3) 包含:
(e) 在至少一个所述微单元的第一电极上定义第一连接区, 制作金 属连线, 将第一电极引至微单元以外的区域形成测试电极;
(f) 向所述测试电极通入测试电流, 进行光电测试;
(g) 去除所述测试电极。
[权利要求 26] 根据权利要求 25所述的微型发光二极管的制作方法, 其特征在于: 所 述步骤 (3) 中形成的金属连线的材料与所述第一电极的材料不同, 采用选择性蚀刻去除所述金属连线。
PCT/CN2017/101860 2017-09-15 2017-09-15 微型发光二极管及其制作方法 WO2019051764A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2017/101860 WO2019051764A1 (zh) 2017-09-15 2017-09-15 微型发光二极管及其制作方法
CN201780049112.8A CN109923683B (zh) 2017-09-15 2017-09-15 微型发光二极管及其制作方法
CN202210249309.9A CN114678453A (zh) 2017-09-15 2017-09-15 微型发光二极管及其制作方法
TW107132173A TWI670869B (zh) 2017-09-15 2018-09-13 微型發光二極體晶片及其製作方法與應用
US16/818,872 US11424387B2 (en) 2017-09-15 2020-03-13 Micro light emitting diode chip and method for manufacturing micro light emitting diode device including the same
US17/883,344 US20220375992A1 (en) 2017-09-15 2022-08-08 Micro light emitting diode chip and method for manufacturing micro light emitting diode device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101860 WO2019051764A1 (zh) 2017-09-15 2017-09-15 微型发光二极管及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/818,872 Continuation-In-Part US11424387B2 (en) 2017-09-15 2020-03-13 Micro light emitting diode chip and method for manufacturing micro light emitting diode device including the same

Publications (1)

Publication Number Publication Date
WO2019051764A1 true WO2019051764A1 (zh) 2019-03-21

Family

ID=65722214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101860 WO2019051764A1 (zh) 2017-09-15 2017-09-15 微型发光二极管及其制作方法

Country Status (4)

Country Link
US (2) US11424387B2 (zh)
CN (2) CN109923683B (zh)
TW (1) TWI670869B (zh)
WO (1) WO2019051764A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785751A (zh) * 2020-06-23 2020-10-16 东莞市中晶半导体科技有限公司 可区块电测的Micro LED晶圆及转移方法
CN113450681A (zh) * 2020-03-24 2021-09-28 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器生产检测方法及其显示器
GB2593698A (en) * 2020-03-30 2021-10-06 Plessey Semiconductors Ltd Monolithic electronic device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923683B (zh) * 2017-09-15 2022-04-05 厦门市三安光电科技有限公司 微型发光二极管及其制作方法
CN112582383B (zh) * 2019-09-27 2022-12-20 成都辰显光电有限公司 芯片结构及芯片检测方法
TWI779242B (zh) * 2019-10-28 2022-10-01 錼創顯示科技股份有限公司 微型發光二極體裝置
CN112750851B (zh) * 2019-10-31 2023-01-20 成都辰显光电有限公司 微发光元件阵列基板、制备方法以及转移方法
CN112259572B (zh) * 2020-10-26 2022-11-08 錼创显示科技股份有限公司 微型发光二极管显示器
CN113161499B (zh) * 2021-04-13 2022-06-17 浙江大学 光电器件及其制造方法
CN113299803B (zh) * 2021-06-11 2024-05-03 苏州大学 一种Micro LED芯片单体器件的制备方法、显示模块及显示装置
CN114447173B (zh) * 2022-01-28 2024-04-16 京东方晶芯科技有限公司 发光器件及其制备方法、发光装置
TWI824591B (zh) * 2022-06-29 2023-12-01 晶呈科技股份有限公司 Led電路基板結構、led測試封裝方法及led畫素封裝體

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887407A (zh) * 2014-03-19 2014-06-25 浙江古越龙山电子科技发展有限公司 一种微型贴片发光二极管及其生产工艺
US20140217355A1 (en) * 2013-02-05 2014-08-07 Rensselaer Polytechnic Institute Semiconductor light emitting device
CN106486577A (zh) * 2015-08-27 2017-03-08 美科米尚技术有限公司 微型发光二极管装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410942B1 (en) * 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
JP4330476B2 (ja) * 2004-03-29 2009-09-16 スタンレー電気株式会社 半導体発光素子
US7166483B2 (en) * 2004-06-17 2007-01-23 Tekcore Co., Ltd. High brightness light-emitting device and manufacturing process of the light-emitting device
CN102376826B (zh) * 2010-08-06 2014-08-06 晶元光电股份有限公司 半导体光电元件及其制作方法
TW201238043A (en) * 2011-03-11 2012-09-16 Chi Mei Lighting Tech Corp Light-emitting diode device and method for manufacturing the same
US20130292719A1 (en) * 2012-05-04 2013-11-07 Chi Mei Lighting Technology Corp. Light-emitting diode structure and method for manufacturing the same
CN102903828B (zh) * 2012-10-18 2015-04-22 四川虹视显示技术有限公司 用于检测有机发光二极管的封装效果的方法
KR102085897B1 (ko) * 2013-06-10 2020-03-06 엘지이노텍 주식회사 발광 소자 및 발광 소자 패키지
US9590137B2 (en) * 2014-05-30 2017-03-07 Mikro Mesa Technology Co., Ltd. Light-emitting diode
US20170236760A1 (en) * 2016-02-16 2017-08-17 Mikro Mesa Technology Co., Ltd. Light-emitting diode lighting device and method for repairing the same
TWI618266B (zh) * 2016-09-07 2018-03-11 友達光電股份有限公司 微型發光二極體單元之中介結構及其製造方法、微型發光二極體單元及其製造方法與微型發光二極體裝置
TWI611599B (zh) * 2016-10-27 2018-01-11 友達光電股份有限公司 過渡載板裝置、顯示面板以及兩者的製造方法、微型發光件的檢測方法
CN206422062U (zh) * 2016-11-03 2017-08-18 佛山市国星光电股份有限公司 一种led器件及led显示屏
CN107068665B (zh) * 2017-04-18 2019-02-05 天津三安光电有限公司 微型发光二极管器件及其制作方法
CN109923683B (zh) * 2017-09-15 2022-04-05 厦门市三安光电科技有限公司 微型发光二极管及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140217355A1 (en) * 2013-02-05 2014-08-07 Rensselaer Polytechnic Institute Semiconductor light emitting device
CN103887407A (zh) * 2014-03-19 2014-06-25 浙江古越龙山电子科技发展有限公司 一种微型贴片发光二极管及其生产工艺
CN106486577A (zh) * 2015-08-27 2017-03-08 美科米尚技术有限公司 微型发光二极管装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113450681A (zh) * 2020-03-24 2021-09-28 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器生产检测方法及其显示器
GB2593698A (en) * 2020-03-30 2021-10-06 Plessey Semiconductors Ltd Monolithic electronic device
GB2593698B (en) * 2020-03-30 2022-12-07 Plessey Semiconductors Ltd Monolithic electronic device
CN111785751A (zh) * 2020-06-23 2020-10-16 东莞市中晶半导体科技有限公司 可区块电测的Micro LED晶圆及转移方法

Also Published As

Publication number Publication date
TWI670869B (zh) 2019-09-01
CN109923683B (zh) 2022-04-05
CN109923683A (zh) 2019-06-21
TW201916409A (zh) 2019-04-16
CN114678453A (zh) 2022-06-28
US20220375992A1 (en) 2022-11-24
US11424387B2 (en) 2022-08-23
US20200220047A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2019051764A1 (zh) 微型发光二极管及其制作方法
JP7064587B2 (ja) マイクロ発光デバイス及びその作製方法
WO2019041811A1 (zh) 微型发光二极管及其制作方法
KR102239715B1 (ko) 마이크로 발광 다이오드 소자 및 그 제조방법
US11296060B2 (en) LED pixel device having chip stack structure
US9178107B2 (en) Wafer-level light emitting diode structure, light emitting diode chip, and method for forming the same
US9105714B2 (en) Stabilization structure including sacrificial release layer and staging bollards
EP2237335B1 (en) Method for fabricating a white-light emitting light emitting diode chip
JP2018503982A (ja) 半導体部品を製造するための方法および半導体部品
JP2011199221A (ja) 発光ダイオード
WO2010074288A1 (ja) 高電圧駆動の発光ダイオードモジュール
TWI450345B (zh) 晶片封裝體及其形成方法
TWI398967B (zh) 發光二極體晶片及其製法
JP5588882B2 (ja) 発光ダイオードモジュール
KR101128261B1 (ko) 전공정이 웨이퍼 레벨로 제조된 led 패키지 및 그 제조방법
KR101021974B1 (ko) 자기조립 패키지용 반도체 칩
CN203503689U (zh) 覆晶式led芯片
KR101204428B1 (ko) Soi 웨이퍼를 이용한 발광 다이오드 패키지 제조 방법
KR20100095133A (ko) 발광소자 패키지 및 그 제조방법
CN108123015A (zh) 基于多量子阱的GaN横向LED的器件结构
KR20100094247A (ko) 발광소자 패키지 및 그 제조방법
TW201301565A (zh) 發光二極體元件、其製作方法以及發光裝置
KR20090087374A (ko) 발광 다이오드 및 이를 이용한 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925058

Country of ref document: EP

Kind code of ref document: A1