WO2019050094A1 - 리튬 이차전지 음극활물질용 리튬 티탄 산화물 및 그 제조방법 - Google Patents

리튬 이차전지 음극활물질용 리튬 티탄 산화물 및 그 제조방법 Download PDF

Info

Publication number
WO2019050094A1
WO2019050094A1 PCT/KR2017/013734 KR2017013734W WO2019050094A1 WO 2019050094 A1 WO2019050094 A1 WO 2019050094A1 KR 2017013734 W KR2017013734 W KR 2017013734W WO 2019050094 A1 WO2019050094 A1 WO 2019050094A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
titanium oxide
active material
lithium secondary
Prior art date
Application number
PCT/KR2017/013734
Other languages
English (en)
French (fr)
Inventor
김동현
이헌주
오선영
이헌재
Original Assignee
주식회사 아이에프엠
김동현
이헌주
오선영
이헌재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이에프엠, 김동현, 이헌주, 오선영, 이헌재 filed Critical 주식회사 아이에프엠
Publication of WO2019050094A1 publication Critical patent/WO2019050094A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium titanium oxide (LTO) that can be used for an anode active material of a lithium secondary battery used in an energy storage system (ESS) and the like, and a method for manufacturing the same.
  • LTO lithium titanium oxide
  • An energy storage system stores produced electricity in a storage device (such as a battery) and supplies power when needed to improve the efficiency of power usage.
  • a storage device such as a battery
  • the battery required for the energy storage system is not a small secondary battery used for a cell phone, a notebook computer, a PC, etc., but is capable of storing power of several hundreds of Wh.
  • the cells of the energy storage system are typically made up of stach cells, and the voltage and current magnitude of the power storage device can be obtained by connecting the cells in series and / or in parallel.
  • Secondary batteries for the energy storage system are required to have high energy storage density, power density, long cycle life, high-speed operation, and low cost.
  • Batteries used in energy storage systems include lead-acid batteries, NaS batteries, and lithium secondary batteries.
  • lead-acid batteries NaS batteries
  • lithium secondary batteries are attracting attention for electric power storage in the future. This is because it has the advantages of environment friendliness, high energy density, and energy storage efficiency close to 100%.
  • Graphite is widely used as an anode material of a lithium secondary battery capable of storing the electric power.
  • a typical oxide is lithium titanium oxide (Li 4 Ti 5 O 12 ). This oxide is known to exist in a mixed state of Li and TI in octahedral sites of 16 d, and the remaining Li exists in the tetrahedral sites of 8a.
  • One aspect of the present invention is to provide an anode active material for a lithium secondary battery for an energy storage system, which is capable of easily and easily producing a lithium titanium oxide for a negative electrode active material having a high capacity and a long lifetime compared to conventional lithium titanium oxide And to provide a way to do that.
  • One aspect of the present invention is a method for producing a TiO 2 powder, comprising the steps of: stirring a titanium dioxide (TiO 2 ) powder and an aqueous LiOH solution;
  • the present invention also relates to a method for producing lithium titanium oxide for a negative electrode active material of a lithium secondary battery.
  • Another aspect of the present invention is a lithium titanium oxide having a nanotube form
  • the nanotubes have a multilayer structure composed of two or more layers, and the interlayer spacing is 0.5 to 1 nm.
  • the present invention relates to a lithium titanium oxide for an anode active material for a lithium secondary battery.
  • the lithium titanium oxide provided in the present invention can remarkably improve the energy storage capacity and improve the lifetime of the battery based on the structural stability as compared with the conventional Li 4 Ti 5 O 12 .
  • FIG. 1 shows the results of XRD (X-ray diffraction) analysis and comparison with JCPDS to confirm the crystal structure of the LTO powder prepared in the example of the present invention.
  • FIG. 2 is an electron micrograph showing the LTO powder prepared in the example of the present invention.
  • FIG. 3 is a graph showing the results of electrochemical experiments performed in an embodiment of the present invention.
  • a method for producing lithium titanium oxide is provided by preparing a solution of titanium dioxide (TiO 2 ) and lithium hydroxide (LiOH), stirring the solution to prepare a solution, heat-treating the solution, separating the precipitate from the solution, The precipitate is washed and dried.
  • TiO 2 titanium dioxide
  • LiOH lithium hydroxide
  • TiO 2 titanium dioxide
  • LiOH lithium hydroxide
  • the crystal structure of the titanium dioxide powder may be one or more of anatase, rutile, and brookite, and preferably a rutile structure powder is used.
  • the particle size of the titanium dioxide powder is preferably 1 to 500 nm. When the particle size is less than 1 nm, the TiO 2 crystal structure is completely dissolved in the strong alkali LiOH, and it is difficult to form lithium titanium oxide (Li 4 Ti 5 O 12 , LTO). When the particle size exceeds 500 nm, It is not easy to form an LTO crystal structure.
  • the particle size of the titanium dioxide powder is more preferably 10 to 30 nm.
  • the lithium hydroxide (LiOH) aqueous solution preferably has a concentration of 0.1 to 20M. If the concentration of the LiOH aqueous solution is less than 0.1 M, the Ti-O-Ti bond is not decomposed during the reaction, and when it exceeds 20M, the TiO 2 is completely dissolved and the bond may not be disassembled to form a columnar structure.
  • the titanium dioxide powder and the lithium hydroxide aqueous solution are preferably mixed at a weight ratio of 0.1: 50 to 1:40.
  • the weight ratio is less than 0.1: 50, the LTO production time becomes too long and the economical efficiency is deteriorated.
  • the weight ratio exceeds 1:40 the crystal structure of LTO changes and Li is precipitated. It is more preferable that the titanium dioxide powder and the aqueous lithium hydroxide solution are mixed at a weight ratio of 1:10 to 1:20.
  • the stirred solution is preferably heat-treated at a temperature of 100 to 150 ° C for 10 to 36 hours.
  • the crystal structure of the lithium titanium aqueous solution can be formed through the heat treatment. Specifically, in the process of the heat treatment of the oxide of the -O-Ti-O-Ti-O-Ti-O-Li-H structure in which the O-Ti-O bonds are diluted in the aqueous solution of LiOH and arranged in a row, Forms a tubular shape, and forms a precipitate.
  • the nanotube-shaped oxide is formed.
  • the heat treatment temperature is less than 100 ⁇ ⁇ or when the heat treatment is performed for less than 10 hours, a folding phenomenon for reducing surface energy does not occur.
  • the heat treatment is performed at a temperature higher than 150 ° C. or more than 36 hours, the folding phenomenon occurs excessively and lithium titanium oxide may be formed into a spherical shape.
  • the precipitate is separated from the solution by filtration, and the separated precipitate is dried to secure lithium titanium oxide (LTO).
  • LTO lithium titanium oxide
  • the drying is preferably performed at 100 to 200 DEG C for 1 to 4 hours. More preferably, the drying is performed at a temperature of 130 to 180 ° C for 2 to 3 hours. Meanwhile, the precipitate separated before the drying can be washed with distilled water. If the drying temperature is lower than 130 ⁇ , it takes a long time to dry. If the drying temperature is lower than 2 hours, it may not be sufficiently dried. On the other hand, when the drying temperature is more than 180 DEG C or longer than 3 hours, crystal growth may occur and the particle size may become large.
  • the lithium titanium oxide (LTO) of the present invention has a nanotube form.
  • the lithium-titanium oxide (LTO) of the present invention has a tube shape and both ends open.
  • the tube shape is formed on two or more lithium titanium oxide layers (LTO layers). That is, the lithium-titanium oxide (LTO) of the present invention has a multi-layered tube shape, and the multi-layers may have 2 to 10 layers, for example, interlayer spacing ) Is preferably 0.5 to 1 nm.
  • interlayer spacing Is preferably 0.5 to 1 nm.
  • the layer interval should be 0.5 nm or more for the storage of Li ions.
  • shrinkage may occur between the respective layers, and therefore, it is preferably 1 nm or less.
  • the length of the tube is preferably 50 to 150 nm.
  • the length of the tube is less than 50 nm, the length of the tube is too short, so that the stored lithium can be released rapidly.
  • the length exceeds 150 nm lithium ions entering the tube are difficult to be released upon discharge. It is preferable that the tube length is 50 to 150 nm.
  • titanium dioxide powder TiO 2
  • 40 mL of 0.2 M LiOH were mixed, stirred for 320 minutes, and then heat-treated at 120 ° C for 24 hours in a hydrothermal synthesizer.
  • the titanium dioxide powder had a particle size of about 50 nm.
  • the precipitate and the aqueous solution precipitated in the solution obtained after the heat treatment were separated using a filter paper of 0.05 mu m, and the precipitate was washed with distilled water.
  • the precipitate was further dried at 150 ° C for 2 hours to prepare a final lithium titanium oxide (Li 4 Ti 5 O 12 , LTO) powder.
  • XRD X-ray diffraction
  • analysis was performed to confirm the crystal structure of the LTO powder.
  • FIG. 1 it was confirmed that the powder produced by the present invention had a crystal structure of Li 4 Ti 5 O 12 .
  • FIG. 2 the result of observing the powder by using a scanning electron microscope (SEM) is shown in FIG. As shown in FIG. 2, it was confirmed that the LTO powder prepared according to the present invention had a nanotube form.
  • the cathode experiment was performed using the lithium titanium oxide (LTO) prepared as described above.
  • Super P carbon black and polyvinylidene fluoride as a binder were mixed at a weight ratio of 80: 12: 8 using the lithium-titanium oxide (LTO) as a negative electrode active material, Methyl-2-pyrrolidone to prepare an anode slurry.
  • the prepared negative electrode slurry was applied to the aluminum thin film and dried at about 100 ⁇ for 8 hours to prepare an electrode plate. The plate was then pressed.
  • a 2030-type coin cell was manufactured using lithium metal as a cathode, and 1M LiPF 6 dissolved in EC-DEC (volume ratio 1: 1) was used as an electrolytic solution.
  • the discharge capacity of the inventive material using the LTO of the present invention is 200 mAh / g or more, which is significantly higher than 160 to 180 mAh / g of the conventional LTO .
  • FIG. 3 shows the result of charging and discharging the inventive material and the comparative material, respectively, after one or two cycles of charging and discharging.
  • the capacity is increased as compared with the comparative material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 에너지 저장 시스템(Energy Storage System, ESS) 등에 사용되는 리튬 이차전지의 음극활물질에 사용될 수 있는 리튬 티탄 산화물(Lithium Titanate Oxide, LTO)과 이를 제조하는 방법에 관한 것이다.

Description

리튬 이차전지 음극활물질용 리튬 티탄 산화물 및 그 제조방법
본 발명은 에너지 저장 시스템(Energy Storage System, ESS) 등에 사용되는 리튬 이차전지의 음극활물질에 사용될 수 있는 리튬 티탄 산화물(Lithium Titanate Oxide, LTO)과 이를 제조하는 방법에 관한 것이다.
에너지 저장 시스템(ESS)는 생산된 전기를 저장장치(배터리 등)에 저장했다가 전력이 필요한 때 공급하여 전력 사용의 효율을 도모한다. 효율적인 에너지의 사용을 위해서 에너지 저장 시스템이나 장치에 필요한 전지(battery)에 대한 관심과 기술에 대한 욕구가 점차 증대되고 있다.
상기 에너지 저장 시스템에 필요한 전지는 특성상 핸드폰, 노트북, PC 등에 사용되는 소형 이차전지가 아닌 수백 Wh의 전력을 저장할 수 있는 전지이다. 에너지 저장 시스템의 전지는 일반적으로 stach cell로 이루어지며, 전력 저장용 장치의 전압 및 전류 크기는 전지를 직렬 및/또는 병렬 연결함으로써 얻을 수 있다.
상기 에너지 저장 시스템에 들어가는 이차전지는 높은 에너지 저장밀도와 출력 밀도, 장수명(long cycle life), 고속 동작, 낮은 비용 등이 요구된다. 에너지 저장 시스템에 사용되는 전지로는 납축 전지, NaS 전지, 리튬 이차전지 등이 있다. 여러 전지중에서 리튬 이차전지가 미래에 전력저장용으로 주목받고 있다. 그 이유는 친환경성, 높은 에너지 밀도, 100%에 근접하는 에너지 저장 효율의 강점을 가지고 있기 때문이다.
상기 전력을 저장할 수 있는 리튬 이차전지의 음극 소재로는 현재 흑연을 많이 사용하고 있다. 그러나 전력 저장용 이차전지의 특성상 수많은 충방전이 이루어지고, 장수명을 확보하기 위한 소재가 필요하고, 이에 산화물계 음극 소재가 각광을 받고 있다. 대표적인 산화물로 리튬 티탄 산화물(Li4Ti5O12)이 있다. 이 산화물은 16d 팔면체 위치(octahedral sites)에 Li와 TI가 혼합되어 존재하며, 8a 사면체 위치(tetrahedral sites)에 나머지 Li이 존재하는 것으로 알려져 Li[Li1/3Ti5/3]O4 의 식으로 나타낼 수도 있다.
그러나 통상의 리튬 티탄 산화물을 이용한 리튬 이차전지의 경우, 충방전 시 리튬의 반응전위는 1.5V로 다소 높으며 가역 용량은 150mAh/g 정도이기 때문에 용량 한계의 문제가 있다.
본 발명의 일측면은 에너지 저장 시스템용 리튬 이차전지의 음극 활물질로서, 기존의 리튬 티탄 산화물에 비해 고용량을 가지면서, 동시에 오랜 수명을 갖는 음극 활물질용 리튬 티탄 산화물과 이를 간단하면서도 용이하게 제조할 수 있는 방법을 제공하고자 하는 것이다.
본 발명의 과제는 상술한 사항에 한정되지 않는다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 태양은 이산화티탄(TiO2) 분말과 LiOH 수용액을 교반하는 단계;
상기 교반된 용액을 100~150℃의 온도에서 10~36시간 동안 열처리하는 단계;
상기 열처리 후, 용액에서 침전물을 여과하여 분리하는 단계;
상기 분리된 침전물을 건조하는 단계를 포함하는 리튬 이차전지 음극활물질용 리튬 티탄 산화물의 제조방법에 관한 것이다.
본 발명의 다른 일 태양은 나노 튜브 형태를 가진 리튬 티탄 산화물로서,
상기 나노 튜브는 2 이상의 층(layer)으로 이루어진 다층 구조이고, 상기 층상 간격(interlayer spacing)은 0.5~1㎚인 리튬 이차전지 음극활물질용 리튬 티탄 산화물에 관한 것이다.
본 발명에서 제공하는 리튬 티탄 산화물은 기존의 Li4Ti5O12에 비해 에너지 저장 용량을 획기적으로 향상시키고, 구조적 안정성을 바탕으로 전지의 수명을 향상시킬 수 있다. 또한, 상기 특징을 갖는 음극 활질용 리튬 티탄 산화물을 용이하고 효율적으로 제조하는 방안을 제공할 수 있다.
도 1은 본 발명의 실시예에서 제조된 LTO 분말의 결정구조를 확인하기 위해서 XRD(X-ray diffraction) 분석하여 JCPDS와 비교 분석한 결과이다.
도 2는 본 발명의 실시예에서 제조된 LTO 분말을 관찰한 전자현미경 사진이다.
도 3은 본 발명의 실시예에서 수행한 전기화학 실험 결과를 나타낸 그래프이다.
이하, 본 발명에 대해 상세히 설명한다. 먼저, 본 발명의 일태양인 리튬 티탄 산화물을 제조하는 방법에 대해서 상세히 설명한다.
본 발명에서 리튬 티탄 산화물을 제조하는 방법은 이산화티탄(TiO2)과 수산화리튬(LiOH) 수용액을 준비한 후, 교반하여 용액을 제조하고, 제조된 용액을 열처리하고, 상기 용액으로부터 침전물을 분리하고, 상기 침전물을 세척하고 건조하는 과정을 거쳐 제조된다. 이하, 상세히 살펴본다.
먼저, 이산화티탄(TiO2)과 수산화리튬(LiOH) 수용액을 준비하고, 이를 교반한다.
상기 이산화티탄 분말의 결정구조는 아나타제(anatase), 루타일(rutile), 브루카이트(brookite) 중 하나 이상인 것을 사용할 수 있으며, 바람직하게는 루타일 구조의 분말을 사용한다. 상기 이산화티탄 분말의 입자 크기는 1~500㎚인 것이 바람직하다. 입자 크기가 1㎚ 미만에서는 강알칼리인 LiOH에 TiO2 결정구조가 완전히 용해(dissolved)되어 리튬 티탄 산화물(Li4Ti5O12, LTO)가 형성되기 어려우며, 500㎚를 초과하게 되면 LiOH에 용해되지 않아, LTO 결정구조가 형성되기 용이하지 않다. 상기 이산화티탄 분말의 입자 크기는 10~30㎚인 것이 보다 바람직하다.
상기 수산화리튬(LiOH) 수용액은 0.1~20M의 농도인 것이 바람직하다. 상기 LiOH 수용액의 농도가 0.1M 미만이면, 반응과정에서 Ti-O-Ti 결합이 분해되지 않고, 20M 초과하게 되면 TiO2가 완전히 용해되어 결합이 해체된 일렬 구조를 형성하지 않을 수 있다.
한편, 상기 이산화티탄 분말과 수산화리튬 수용액은 중량비로, 0.1:50~1:40의 비율로 혼합하는 것이 바람직하다. 중량비가 0.1:50에 미치지 않는 경우에는 LTO 제조시간이 너무 길어져서 경제성이 저하되며, 1:40을 초과하는 경우에는 LTO의 결정구조가 변화하여, Li이 석출될 수 있기 때문에 바람직하지 않다. 상기 이산화티탄 분말과 수산화리튬 수용액은 중량비로, 1:10~1:20의 비율로 혼합하는 것이 보다 바람직하다.
상기 교반된 용액은 100~150℃의 온도에서 10~36시간 동안 열처리하는 것이 바람직하다. 상기 열처리를 통해 리튬 티탄 수용액의 결정구조를 형성할 수 있다. 구체적으로, LiOH 수용액에 희석되어 O-Ti-O 결합이 해체되어 일렬로 배열되어 있는 -O-Ti-O-Ti-O-Ti-O-Li-H- 구조의 산화물이 열처리 하는 과정에서 나노 튜브 형형태를 형성하고, 침전물을 형성한다.
상기 일렬로 배열된 -O-Ti-O-Ti-O-Ti-O-Li-H- 들이 열처리 시에 열에 의해 양쪽 끝단에 배열되어 있는 O 또는 Ti 이온들의 표면 에너지 저감을 위해, 양 끝단이 말리는 폴딩 현상이 발생하면서 나노 튜브 형태의 산화물이 형성된다.
상기 열처리 온도가 100℃에 미치지 못하거나, 10시간 미만으로 열처리하는 경우에는 표면에너지를 줄이기 위한 폴딩(folding) 현상이 일어나지 않는다. 반면, 150℃를 초과하거나, 36시간을 초과해서 열처리하는 경우에는 상기 폴딩(folding) 현상이 지나치게 일어나서, 리튬 티탄 산화물이 구형으로 형성될 수 있는 문제가 있다.
상기 열처리 후, 용액에서 침전물을 여과하여 분리하고, 분리된 침전물을 건조하여, 리튬 티탄 산화물(LTO)를 확보할 수 있다.
상기 여과 과정을 통해 침전물과 수화물(hydrate)을 분리하는 것이 필요하다. 상기 여과 방식를 320 메쉬(mesh) 이하를 이용하여 여과하는 것이 바람직하다. 320 메쉬 초과로 적용하는 경우에는 분말의 뭉침이 발생하고, 수화물과 충분히 분리되지 않을 수 있다.
상기 건조는 100~200℃에서 1~4시간 동안 행하는 것이 바람직하다. 상기 건조는 130~180℃의 온도에서 2~3시간 동안 행하는 것이 보다 바람직하다. 한편, 상기 건조 전에 분리된 침전물을 증류수로 세척할 수 있다. 상기 건조 온도가 130℃ 미만이면 건조에 장시간이 소요되고, 2시간 미만으로 행하는 경우에는 충분히 건조되지 않을 수 있다. 반면, 건조 온도가 180℃를 초과하거나, 3시간 이상의 장시간으로 행하는 경우에는 결정의 성장이 발생하여 입자 크기가 조대해질 우려가 있다.
이하, 본 발명의 리튬 티탄 산화물(LTO)에 대해서 상세히 설명한다. 본 발명의 리튬 티탄 산화물은 나노 튜브 형태를 갖는다.
보다 상세하게, 본 발명의 리튬 티탄 산화물(LTO)은 튜브 형상을 가지고 양쪽 끝단이 개방된 형상을 갖는다. 상기 튜브 형상은 2개 이상의 리튬 티탄 산화물 층(LTO layer)상으로 이루어져 있다. 즉, 본 발명의 리튬 티탄 산화물(LTO)은 다층 구조의 튜브 형상인 것이 바람하며, 상기 다층(multi-layers)은 일예로, 2~10개의 층을 가질 수 있으며, 이때의 층상 간격(interlayer spacing)이 0.5~1㎚인 것이 바람직하다. 상기 층간의 간격이 0.5㎚ 미만인 경우에는 Li 이온 저장이 곤란하므로, Li 이온의 저장을 위해서 층상 간격은 0.5㎚ 이상이 되어야 한다. 한편, 층상 간격이 1㎚를 초과하게 되면, 각 층끼리 수축(shrinkage)이 발생할 수 있기 때문에, 1㎚ 이하인 것이 바람직하다.
한편, 상기 튜브의 길이는 50~150㎚인 것이 바람직하다. 상기 튜브 길이가 50㎚ 미만인 경우에는 튜브의 길이가 너무 짧아서, 저장된 리튬이 급격히 방출될 수 있으며, 150㎚를 초과하는 경우에는 튜브의 내부에 들어가는 리튬 이온이 방전 시 방출되기 어려운 문제가 있으므로, 상기 튜기 길이는 50~150㎚인 것이 바람직하다.
이하, 본 발명의 실시예에 대해서 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하고자 하는 것은 아니다.
(실시예)
이산화티타늄 분말(TiO2) 2g과 0.2M의 LiOH 40mL를 혼합하여 320분 동안 교반시킨 후, 120℃에서 24시간 동안 수열합성기에서 열처리하였다. 상기 이산화티타늄 분말은 입도 약 50㎚ 이었다. 상기 열처리 후 얻어진 용액에서 침전된 침전물과 수용액을 0.05㎛의 여과지를 이용하여 침전물을 분리하고, 상기 침전물은 증류수로 세척하였다.
상기 침전물을 다시 150℃에서 2시간 건조시켜 최종 리튬 티탄 산화물(Li4Ti5O12, LTO) 분말을 제조하였다. 상기 제조된 LTO 분말의 결정구조를 확인하기 위해서 XRD(X-ray diffraction) 분석을 실시하였다. 이때 비교확인을 위해서 JCPDS의 LTO와 비교하여, 그 결과를 도 1에 나타내었다. 도 1에 나타난 바와 같이, 본 발명에 의해 제조된 분말은 Li4Ti5O12의 결정구조를 가지고 있는 것을 확인할 수 있었다.
한편, 상기 제조된 분말을 주사전자현미경(Scanning Election Microscopy, SEM)를 이용하여 관찰한 결과를 도 2에 나타내었다. 도 2에 나타난 바와 같이, 본 발명에 의해 제조된 LTO 분말은 나노 튜브 형태를 가지고 있는 것을 확인할 수 있었다.
상기와 같이 제조된 리튬 티탄 산화물(LTO)을 이용하여 음극 실험을 수행하여였다. 상기 리튬 티탄 산화물(LTO)을 음극 활물질로 하고, 도전제(Super P carbon black), 바인더로 폴리 비닐리덴 플루오라이드(polyvinylidene fluoride)를 80:12:8의 중량비로 혼합하고, 이들을 용매인 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone)과 함께 혼합하여 음극 슬러리를 제조하였다. 제조된 음극 슬러리를 알루미늄 박막에 도포한 후 약 100℃에서 8시간 동안 건조하여 극판을 제조하였다. 이후 극판을 프레스 하였다.
음극으로 리튬메탈을 사용하여, 2030형 코인 셀을 제조하였으며, 전해액으로, 1M의 LiPF6를 EC-DEC(체적비 1:1)에 용해시킨 것을 이용하였다.
제조된 전지에 대해서, 충전 조건 1.5V, 방전 조건 0.02V로 충방전 시험을 실시하였고, 그 결과를 하기 표 1 및 도 3에 나타내었다. 상기 본 발명에 의해 제조된 발명재와 비교하기 위해서, 시중 양산 판매중인 리튬 티탄 산화물(LTO, Aldrich 사)을 이용한 것을 비교재로 나타내었다.
구분 1회 방전 용량(mAh/g)(1st discharge capacity) 2회 방전 용량(mAh/g)(2nd discharge capacity)
발명재 312 261
비교재 182 162
상기 표 1 및 도 3에서 보는 바와 같이, 본 발명의 LTO를 이용한 발명재의 경우에는 방전 용량(discharge capacity)가 200mAh/g 이상임을 확인할 수 있어서, 기존 LTO의 160~180mAh/g에 비해, 현저히 증가한 것을 확인할 수 있다.
도 3은 상기 발명재와 비교재를 각각 1, 2 사이클 충방전한 후 결과를 나타나낸 것으로서, 발명재의 경우에는 비교재에 비해서 용량이 증가된 것을 확인할 수 있다.

Claims (9)

  1. 이산화티탄(TiO2) 분말과 LiOH 수용액을 교반하는 단계;
    상기 교반된 용액을 100~150℃의 온도에서 10~36시간 동안 열처리하는 단계;
    상기 열처리 후, 용액에서 침전물을 여과하여 분리하는 단계;
    상기 분리된 침전물을 건조하는 단계
    를 포함하는 리튬 이차전지 음극활물질용 리튬 티탄 산화물의 제조방법.
  2. 청구항 1에 있어서,
    상기 열처리는 100~150℃의 온도에서 10~36시간 동안 행하는 리튬 이차전지 음극활물질용 리튬 티탄 산화물의 제조방법.
  3. 청구항 1에 있어서,
    상기 이산화티탄(TiO2) 분말과 LiOH 수용액 중량비로 0.1:50~1:40의 비율로 혼합하는 리튬 이차전지 음극활물질용 리튬 티탄 산화물의 제조방법.
  4. 청구항 1에 있어서,
    상기 이산화티탄(TiO2) 분말의 입자 크기는 1~500㎚인 리튬 이차전지 음극활물질용 리튬 티탄 산화물의 제조방법.
  5. 청구항 1에 있어서,
    상기 여과는 320 메쉬(mesh) 이하로 행하는 리튬 이차전지 음극활물질용 리튬 티탄 산화물의 제조방법.
  6. 청구항 1에 있어서,
    상기 건조는 100~200℃에서 1~4시간 동안 행하는 리튬 이차전지 음극활물질용 리튬 티탄 산화물의 제조방법.
  7. 나노 튜브 형태를 가진 리튬 티탄 산화물로서,
    상기 나노 튜브는 2 이상의 층(layer)으로 이루어진 다층 구조이고, 상기 층상 간격(interlayer spacing)은 0.5~1㎚인 리튬 이차전지 음극활물질용 리튬 티탄 산화물.
  8. 청구항 7에 있어서,
    상기 다층 구조는 2~10개의 층으로 이루어진 리튬 이차전지 음극활물질용 리튬 티탄 산화물.
  9. 청구항 7에 있어서,
    상기 나노 튜브의 길이는 50~150㎚인 리튬 이차전지 음극활물질용 리튬 티탄 산화물.
PCT/KR2017/013734 2017-09-05 2017-11-29 리튬 이차전지 음극활물질용 리튬 티탄 산화물 및 그 제조방법 WO2019050094A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0113512 2017-09-05
KR20170113512 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019050094A1 true WO2019050094A1 (ko) 2019-03-14

Family

ID=65634333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013734 WO2019050094A1 (ko) 2017-09-05 2017-11-29 리튬 이차전지 음극활물질용 리튬 티탄 산화물 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2019050094A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987286A (zh) * 2020-09-14 2020-11-24 珠海冠宇电池股份有限公司 一种负极片及包含该负极片的锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080101993A (ko) * 2007-05-17 2008-11-24 주식회사 엘지화학 나노구조 형태의 리튬 티탄 산화물
KR101088268B1 (ko) * 2009-01-30 2011-11-30 한양대학교 산학협력단 나노 튜브 형태의 리튬 티탄 산화물
KR101451901B1 (ko) * 2012-10-05 2014-10-22 동국대학교 산학협력단 리튬이차전지의 스피넬 리튬 티타늄 옥사이드 나노막대 음극활물질 제조방법
KR101454865B1 (ko) * 2013-10-02 2014-11-04 부산대학교 산학협력단 리튬이차전지의 음극 활물질로 사용되는 튜브 타입의 티탄산리튬 나노섬유 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080101993A (ko) * 2007-05-17 2008-11-24 주식회사 엘지화학 나노구조 형태의 리튬 티탄 산화물
KR101088268B1 (ko) * 2009-01-30 2011-11-30 한양대학교 산학협력단 나노 튜브 형태의 리튬 티탄 산화물
KR101451901B1 (ko) * 2012-10-05 2014-10-22 동국대학교 산학협력단 리튬이차전지의 스피넬 리튬 티타늄 옥사이드 나노막대 음극활물질 제조방법
KR101454865B1 (ko) * 2013-10-02 2014-11-04 부산대학교 산학협력단 리튬이차전지의 음극 활물질로 사용되는 튜브 타입의 티탄산리튬 나노섬유 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, JONG HYUN ET AL.: "Preparation and Characterization of Li4Ti5O12 Synthesized Using Hydrogen Titanate Nanowire for Hybrid Super Capacitor", JOURNAL OF ADVANCED CERAMICS, vol. 2, no. 3, September 2013 (2013-09-01), pages 285 - 290, XP055581715, ISSN: 2226-4108, DOI: 10.1007/s40145-013-0073-x *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987286A (zh) * 2020-09-14 2020-11-24 珠海冠宇电池股份有限公司 一种负极片及包含该负极片的锂离子电池

Similar Documents

Publication Publication Date Title
Qin et al. In‐plane assembled single‐crystalline T‐Nb2O5 nanorods derived from few‐layered Nb2CTx MXene nanosheets for advanced Li‐ion capacitors
US20220173386A1 (en) Anode material, and electrochemical device and electronic device using the same
US9806339B2 (en) Titanium-niobium composite oxide-based electrode active material and lithium secondary battery using the same
WO2011142575A9 (ko) 리튬 이차전지용 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2014088270A1 (ko) 리튬 이차전지용 고용량 음극 활물질, 이의 제조 방법 및 이를 포함한 리튬 이차전지
WO2011155781A2 (ko) 리튬 이차전지용 양극 활 물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2014116064A1 (ko) 산화철 나노입자의 제조 방법
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
AU2011236100A1 (en) Electrode (anode and cathode) performance enhancement by composite formation with graphene oxide
Zheng et al. Binder-free S@ Ti3C2T x sandwich structure film as a high-capacity cathode for a stable aluminum-sulfur battery
WO2009134047A1 (ko) 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지
WO2015199251A1 (ko) 내부에 그래핀 네트워크가 형성된 나노입자-그래핀-탄소 복합체, 이의 제조방법 및 이의 응용
WO2015172621A1 (zh) 锂离子电池正极活性材料的制备方法
WO2023174152A1 (zh) 正极材料的制备方法、正极材料、正极片和钠离子电池
WO2020108132A1 (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
Porcher et al. Stability of LiFePO 4 in water and consequence on the Li battery behaviour
WO2015172625A1 (zh) 锂离子电池正极活性材料的制备方法
CN106784693A (zh) 一种表面具有均匀碳包覆层的富氮纳米钛酸锂电极材料的制备方法
CN109037632A (zh) 一种纳米钛酸锂复合材料及其制备方法、锂离子电池
Alsherari et al. Vanadium oxide nanocomposite as electrode materials for lithium-ion batteries with high specific discharge capacity and long cycling life
US11949112B2 (en) Collector layer for all-solid-state batteries, all-solid-state battery and carbon material
Gou et al. High specific capacity and mechanism of a metal–organic framework based cathode for aqueous zinc-ion batteries
WO2019050094A1 (ko) 리튬 이차전지 음극활물질용 리튬 티탄 산화물 및 그 제조방법
WO2015172627A1 (zh) 锂离子电池正极活性材料的制备方法
WO2020013488A1 (ko) 산화철의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924241

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20-01-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 17924241

Country of ref document: EP

Kind code of ref document: A1