WO2019049901A1 - Hydraulic power generation device - Google Patents

Hydraulic power generation device Download PDF

Info

Publication number
WO2019049901A1
WO2019049901A1 PCT/JP2018/032922 JP2018032922W WO2019049901A1 WO 2019049901 A1 WO2019049901 A1 WO 2019049901A1 JP 2018032922 W JP2018032922 W JP 2018032922W WO 2019049901 A1 WO2019049901 A1 WO 2019049901A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water flow
rotor
turbine rotor
blade
Prior art date
Application number
PCT/JP2018/032922
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 政彦
Original Assignee
株式会社ベルシオン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017170735A external-priority patent/JP2019044732A/en
Priority claimed from JP2017186014A external-priority patent/JP2019060293A/en
Application filed by 株式会社ベルシオン filed Critical 株式会社ベルシオン
Publication of WO2019049901A1 publication Critical patent/WO2019049901A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/02Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/04Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to, for example, a small-sized hydroelectric power unit installed in waterways, rivers, etc., and more particularly to a hydroelectric power unit capable of efficiently generating power even in a water flow with a small difference in elevation.
  • Patent Literatures 1 and 2 describe a small-sized hydroelectric power generation device that uses natural water flow, such as a canal, without using the head of water and does not use the head of water.
  • Patent Document 3 describes a hydroelectric power generation apparatus using a water drop.
  • the canal In the hydroelectric power plant installed in the above-mentioned canal and the like, the canal generally has a small height difference and the velocity of the water flow is not necessarily large, so the number of rotations and torque of the rotor (impeller) is large
  • the challenge is to raise
  • the hydroelectric generator described in Patent Document 1 includes a duct whose outlet is larger than the inlet, and the rotor is disposed immediately after the inlet inside the duct, and the water flow with a high flow velocity flowing from the inlet is used. The rotational speed of the rotor is increased to enable efficient power generation.
  • the hydroelectric generator using the head described in Patent Document 3 has the advantage that the power generation efficiency is high because the potential energy of water is large, but the hydroelectric generator is installed in the existing water channel or river with a small difference in elevation. It is difficult to install and the installation location is limited. Therefore, it is necessary to lay down concrete for forming a head at the bottom of the water channel or excavate the water channel to form a large head, and a large-scale civil engineering work is required. The cost is high.
  • the present invention has been made in view of the above problems, and the water turbine rotor can be efficiently rotated to improve the power generation efficiency, and the installation is easy, even if the water flow has a small height difference and a small flow velocity.
  • the purpose is to provide a hydroelectric power generation apparatus that can reduce costs.
  • the water turbine rotor and the outer circumferential surface of the rotor support case are projected in the radial direction in a radial direction and fixed at a predetermined angle with respect to the rotation axis of the water turbine rotor, and the water flow is accelerated by the water turbine rotor.
  • a plurality of water flow deflectors that can be deflected in the direction of rotation.
  • the water flow is deflected to turn toward the water turbine rotor by the plurality of water flow deflection plates, and each blade is pushed in the acceleration direction by the deflected water flow.
  • turning energy is added and the rotational speed and torque of the water turbine rotor are increased. Therefore, even when the hydroelectric generator according to the present invention is installed, for example, in a canal where the difference in elevation is small and the flow velocity of the water flow is small, the power generation efficiency can be enhanced.
  • the water flow deflection plate is curved in a curved shape so that the water flow is curved toward the water turbine rotor.
  • the water flow deflected by the plurality of water flow deflection plates is likely to be a swirling flow, so the rotational speed and torque of the water turbine rotor are further increased, and the power generation efficiency is further improved.
  • the upstream water receiving surface of the blade is directed rearward in the rotational direction so that the inclination angle gradually increases toward the base end.
  • the inclined surface is inclined, and the chord length of the blade is gradually increased from the proximal end to the distal end, and the blade is formed with an inclined portion inclined in the upstream direction at the distal end starting from the largest chord length.
  • the projecting dimension of the water flow deflection plate in the radial direction is such that the tip of the water flow deflection plate extends to the vicinity of the maximum chord length.
  • the deflected water flow after passing through the plurality of water flow deflectors strikes the inclined surface from the base end of the plurality of lift blades to the vicinity of the maximum chord length in a wide range, and the Coanda effect by the deflected water flow
  • the lift type blade is strongly pushed in the rotational direction, and the rotation force and torque of the water turbine rotor are increased by the increase of the lift force.
  • the tip portion of the blade is provided with an inclined portion which inclines in the upstream direction, and the inclined portion captures a water flow which is going to escape from the tip of the blade in the centrifugal direction.
  • the flow out in the direction and the reaction pushes the tip of the blade in the direction of rotation, thereby increasing the rotational efficiency of the water turbine rotor. Therefore, the number of revolutions and the torque of the water turbine rotor are increased by the synergetic effect of the water flow deflection plate and the inclined portion, and the power generation efficiency is improved.
  • the upstream water receiving surface of the blade is directed rearward in the rotational direction so that the inclination angle gradually increases toward the proximal end.
  • the inclined surface is inclined, and the chord length of the blade is gradually increased from the proximal end to the distal end, and the blade is formed with an inclined portion inclined in the upstream direction at the distal end starting from the largest chord length.
  • the radial projection size of the water flow deflection plate is a length such that the tip of the water flow deflection plate extends to the middle portion of the blade.
  • the base side of the blade having a large inclination angle is strongly pressed in the rotational direction by the Coanda effect, so the radial projection dimension of the water flow deflection plate is set to a length extending to the middle portion of the blade.
  • the rotation speed and torque of the water turbine rotor are increased, and the power generation efficiency is improved.
  • the flow resistance is reduced by the amount by which the radial projection size of the water flow deflection plate is reduced, and the centrifugal half portion in which the chord length of each blade is gradually increased is opened, and the water receiving surface on the upstream side There is no risk of reducing the rotational speed and torque of the water turbine rotor since the water flow hits without
  • the number of the water flow deflection plates is 3 to 16, and the inclination angle of each water flow deflection plate with respect to the rotation axis of the water turbine rotor is a water flow deflection plate The smaller the number is, the smaller the number is, and the smaller the number is, the larger the number does not exceed 45 degrees.
  • the number of water flow deflection plates is within a range that does not reduce the flow velocity, and even when the number of water flow deflection plates is large, the flow resistance increases and the speed of the deflection water flow toward the water turbine rotor The lowering is suppressed, and when the number of the water flow deflection plates is small, the tilt angle can be increased to exhibit the water flow deflection effect.
  • the rotor support case, the water turbine rotor, and the water flow deflection plate are surrounded by a cylindrical water transmission duct disposed in a water flow.
  • the water flow that has flowed into the water conveyance duct from the upstream side flows neatly in the downstream direction, and the entire water flow in the water conveyance duct is deflected by the water flow deflection plate in the direction to accelerate the water turbine rotor effectively. Therefore, the rotational speed and torque of the water turbine rotor are increased, and the power generation efficiency is improved.
  • the rotor support case has a fish shape having a large diameter on the upstream side and a gradually smaller diameter on the downstream side.
  • the rotor support case long in the water flow direction is supported by a support in the water in the conduit for draining the stored water in the water storage tank of the head channel device or the water in the channel using a head, It projects radially outward on the outer peripheral surface on the downstream side in the longitudinal direction of the rotor support case, and inclines at a predetermined angle to the rotation axis of the water turbine rotor, and accelerates the water rotor in the water conduit And a plurality of water flow deflectors that can be deflected in the direction of rotation.
  • the flow of water flowing in the water conduit is deflected by the plurality of water flow deflecting plates inclined and fixed to the rotor support case so as to turn toward the water turbine rotor.
  • the blade is pushed in the speed increasing direction.
  • turning energy is added to each blade in addition to the water position (falling) energy, and the rotation speed and torque of the water turbine rotor are increased. Therefore, the height of the water conduit for draining the water is limited by the installation space of the water storage tank, the depth of the water channel, and the like, and the power generation efficiency can be improved even when the drop energy of the water is small.
  • the water channel is a water channel, and in this water channel, a weir plate is installed to raise the water level of the upstream water flow and form a head gap with the downstream water flow;
  • the upper end portion of the water conduit is connected to the upper portion of the weir plate so as to communicate with the water conduction hole formed on the upper portion of the weir plate for discharging the upstream water whose water level has risen to the downstream side.
  • the water turbine rotor can be efficiently rotated to improve the power generation efficiency.
  • Example 1 of the hydraulic power unit concerning the present invention It is a side view of Example 1 of the hydraulic power unit concerning the present invention. It is the front view which looked at FIG. 1 from the upstream side. It is an enlarged front view of a single blade.
  • FIG. 4 is an enlarged cross-sectional plan view taken along line IV-IV of FIG. 3;
  • FIG. 5 is an enlarged cross-sectional plan view taken along line VV of FIG. 3;
  • FIG. 6 is an enlarged cross-sectional plan view taken along line VI-VI of FIG. 3;
  • Example 2 of the hydraulic power unit concerning the present invention It is the front view which looked at FIG. 7 from the upstream side. It is a front view of Example 3 of the hydraulic power unit concerning the present invention.
  • Example 4 It is a perspective view which expands and shows a part of Example 4 of the hydraulic power unit based on this invention. It is a partially cutaway side view of Example 5 of the hydraulic power unit according to the present invention. It is a partially cutaway side view of Example 6 of the hydraulic power unit according to the present invention.
  • FIG. 13 is an enlarged longitudinal front elevational view of FIG. 12 taken along line XIII-XIII. It is a vertical side view of Example 7 of the hydraulic power unit concerning the present invention.
  • FIG. 15 is an enlarged cross-sectional plan view taken along line XV-XV of FIG. It is an enlarged side view of the principal part of a water turbine rotor. It is a perspective view of the principal part of the modification which curved the water flow deflection board.
  • Example 8 of the hydraulic power unit concerning the present invention It is a longitudinal side view of Example 8 of the hydraulic power unit concerning the present invention. It is a longitudinal side view of Example 9 of the hydraulic power unit according to the present invention. It is a longitudinal side view of Example 10 of the hydraulic power unit concerning the present invention. It is a longitudinal side view of Example 11 of the hydraulic power unit concerning the present invention. It is a side view which shows the modification which made the water turbine rotor the drag type water turbine rotor.
  • FIGS. 1 and 2 show a first embodiment of a hydroelectric generator according to the present invention.
  • the hydroelectric generator 1 is, for example, a relatively small one generated by the water flow of the agricultural water channel 2, and is supported It is installed in the water flow of the canal 2 in a form supported by the frame 3.
  • the upstream side (left side in FIG. 1) of the water channel 2 is referred to as the front, and the downstream side (right side in FIG. 1) is referred to as the rear.
  • the support frame 3 is connected to the lower ends of the four columns 3A spaced apart in the front, rear, left, and right directions with the ends of the four lower lateral ridges 3B facing in the front, rear, left and right directions.
  • the face plate 3C By fixing the face plate 3C, it has a rectangular frame shape in which the four front and rear surfaces and the lower surface are open. As shown by the arrow in FIG. 1, water flowing from the upstream side to the downstream side in the canal 2 can pass through the rectangular frame-like support frame 3 without resistance.
  • the upper and lower dimensions of the support frame 3 are slightly larger than the height of the water channel 2. Further, in the present embodiment, the lateral width of the support frame 3 is made substantially equal to the lateral width of the canal 2 by taking the case where the lateral width of the canal 2 is relatively small as an example. However, since the support frame 3 is fixed to the canal 2 by the fixture 4 described later, the support frame 3 should be installed in the canal 2 in an immobile state even if the canal 2 is wide. Can.
  • the support frames 3 dropped into the canal 2 are fixed to the upper surfaces of the left and right wall surfaces of the canal 2 by fixtures 4 and 4 at a plurality of locations on the left and right sides of the top plate 3C.
  • the hydroelectric power generation apparatus 1 includes a hollow rotor support case 5 that is long in the water flow direction and a water rotor 6 that is provided at the rear end of the rotor support case 5 and rotates counterclockwise in a front view. 6.
  • a plurality of (eight sheets in this embodiment) water deflectors 7 fixed to the outer peripheral surface in the longitudinal direction (front-rear direction) of the rotor support case 5 in the front close to 6 and the upper surface of the rotor support case 5 near the front
  • the lower end is fixed, the upper end is fitted in the upper surface plate 3C, and is fixed to the hollow case hanging support 8 facing in the vertical direction, and facing the case supporting support 8 at the center of the upper surface of the upper surface plate 3C.
  • a generator 9 that generates electric power by being linked to the water turbine rotor 6.
  • the water flow deflection plate 7 can be integrally molded with the rotor support case 5 when it is molded with synthetic resin, aluminum or the like.
  • the lower end portion of the case support rod 8 is fixed to the left and right side surfaces of the middle portion, and the upper end portion is fixed to the lower surface of the upper surface plate 3C. It is held immobile in the central part of the inside.
  • the case hanging support 8 has a fish-like cross section in plan view, which is thick in the left-right direction at the front and gradually becomes thinner toward the rear. The passing water flow is accelerated by the Coanda effect.
  • the rotor support case 5 has a large diameter at the front and a gradually smaller diameter toward the rear, and has a shape similar to a fish-like tuna etc.
  • the water flow from the front toward the rotor support case 5 is due to the Coanda effect
  • a water flow that flows fast backward along the fish shape of the rotor support case 5 and travels to the vicinity of the base of a blade 13 described later in the water turbine rotor 6 is accelerated by the Coanda effect.
  • a horizontal rotor shaft 11 directed in the front-rear direction with its rear end slightly protruded from the rear end of the rotor support case 5 is rotatably supported and accommodated by a bearing not shown. There is.
  • the water turbine rotor 6 has a hub 12 fixed to the rear end of the rotor shaft 11 and a plurality of (four in the present embodiment) lift-type blades (bases in the center direction) fixed to the hub 12 at regular intervals.
  • a blade 13 The hub 12 and the blade 13 are made of, for example, fiber reinforced synthetic resin (FRP), or a light metal such as aluminum or duralumin.
  • FRP fiber reinforced synthetic resin
  • the hub 12 may be omitted and the blade 13 may be directly fixed to the rear end of the rotor shaft 11.
  • the front end portion of the rotor shaft 11 is, for example, similar to the hydraulic power generator described in Patent Document 1 described above, by means of transmission means (two bevel gears meshing with rotating axes orthogonal to each other) and transmission means By being linked to the generator 9 via a vertical transmission shaft (all not shown) rotated within the support rod 8, the rotor shaft 11 rotates clockwise with the water turbine rotor 6 in a front view direction.
  • the generator 9 is driven to generate electric power.
  • each blade 13 has a chord length gradually increasing from the base side toward the tip end portion and the tip end portion so that the water receiving area becomes larger toward the tip end portion.
  • the rotation efficiency of the water turbine rotor 6 can be enhanced by forming the upstream inclined portion 13A which inclines forward, which is the upstream direction, to increase the effect of capturing the water flow.
  • the maximum chord length 13B of the blade 13 is formed in the vicinity of the tip, and the upstream inclined portion 13A is formed at the tip with the maximum chord 13B as a base point.
  • the upstream inclined portion 13A is tapered toward the tip, and the inclination angle is, for example, 35 degrees to 45 degrees.
  • the cross-sectional shape of the blade 13 is such that the thickness on the front side in the rotational direction indicated by the arrow is thick and the thickness gradually decreases toward the rear end.
  • the rear face is expanded in an arc shape, and the entire blade 13 is twisted at a predetermined angle with respect to the rotor shaft 11 to form a pitch angle, whereby the front face on the upstream side, which is the water receiving face, is directed outward in the rotational direction It is an inclined surface 13C that inclines.
  • the inclination angle (angle of attack) of the inclined surface 13C is smaller at the tip end side of the blade 13 and gradually larger toward the base end.
  • each blade 13 receives a water flow from the front, a lift is generated on each blade 13 and the water turbine rotor 6 rotates counterclockwise in a front view by the thrust acting in the rotation direction.
  • the upstream direction inclined portion 13A is formed at the tip end portion of each blade 13, when the water turbine rotor 6 rotates, along the inclined surface 13C inclined to the rear side in the rotational direction, from the base end to the centrifugal direction Since a part of the water stream to be discharged is captured by the upstream inclined portion 13A and discharged in the diagonal centrifugal direction, the propulsive force in the rotational direction of the blade 13 is increased by the reaction, and the rotation speed and torque of the water turbine rotor 6 Is enhanced.
  • the eight water flow deflectors 7 described above are provided on the outer peripheral surface in the longitudinal direction of the rotor support case 5 between the case support post 8 and the water turbine rotor 6 at equal intervals so as to project in the radial direction.
  • the base end portion is fixed by inclining in the direction opposite to the rotation direction of the water turbine rotor 6 at a predetermined angle with respect to the rotation axis of 6.
  • the axial width dimension of each water flow deflection plate 7 is approximately half the axial length of the rotor support case 5, and the radial projection dimension is the maximum chord length of the blade 13 at the tip end. The length extending to the vicinity of the portion 13B or the length extending to the vicinity of the base of the upstream inclined portion 13A.
  • the inclination angle of each water flow deflection plate 7 with respect to the rotation axis of the water turbine rotor 6 is approximately 10 degrees, but this inclination angle is, for example, 5 degrees to 45 degrees depending on the number of water flow deflection plates 7 It is set within the range. That is, as the number of the water flow deflection plates 7 increases, the inclination angle is reduced and the number decreases, so that the water flow resistance plate 7 does not increase the water flow resistance and the speed of the deflection water flow toward the rotor does not decrease. Therefore, it is preferable to make the inclination angle gradually larger.
  • the number of the water flow deflection plates 7 is preferably in the range of 3 to 16, preferably 6 to 12, in order to exert the water flow deflection effect without reducing the flow velocity.
  • a plurality of water flow deflection plates 7 projecting in the radial direction with respect to the rotation axis of the water turbine rotor 6
  • the direction in which the water flow accelerates the water turbine rotor 6 by the eight water flow deflectors 7, ie, the rotation direction of the water turbine rotor 6 It is deflected to pivot in the opposite direction.
  • each water flow deflecting plate 7 strikes the inclined surface 13C in a wide range from the base end of the plurality of blades 13 to the vicinity of the maximum chord length 13B and rotates each blade 13 by lift force by the Coanda effect.
  • turning energy is added to each blade 13 to increase the rotational speed and torque of the water turbine rotor 6.
  • an upstream-facing inclined portion 13A that inclines toward the upstream direction is provided. Therefore, the water stream which is about to escape in the centrifugal direction from the tip of the blade 13 is captured by the upstream inclined portion 13A and flows out in the diagonal centrifugal direction opposite to the rotational direction, and the tip of the blade 13 It is pushed in the rotational direction, and the rotational efficiency of the water turbine rotor 6 is enhanced. Therefore, even when the flow velocity of the water flow in the canal 2 is small, the number of revolutions and the torque of the water turbine rotor 6 are increased by the synergetic effect of the water flow deflector 7 and the upstream inclined portion 13A, and the power generation efficiency is improved.
  • FIG. 7 and 8 are side views of the second embodiment of the hydraulic power generation apparatus according to the present invention.
  • symbol is attached
  • the hydroelectric power generation apparatus is the same as the first embodiment except that a bent portion 7A bent in the direction opposite to the rotation direction of the water turbine rotor 6 is formed at the tip of the water flow deflection plate 7.
  • the projection dimension in the radial direction of the water flow deflection plate 7 of the second embodiment is set such that the bent portion 7A extends to the vicinity of the maximum chord length portion 13B of the blade 13.
  • each water flow deflection plate 7 Since the bent portion 7A bent in the direction opposite to the rotation direction of the water turbine rotor 6 is formed at the tip of the water flow deflection plate 7, each water flow deflection plate 7 The flow of water deflected by the fluid flow is suppressed from flowing in the centrifugal direction, and the amount and amount of water deflected in the direction opposite to the rotation direction of the water turbine rotor 6 are increased.
  • FIG. 9 is a front view of a third embodiment of the hydroelectric power generation apparatus according to the present invention.
  • symbol is attached
  • the hydroelectric power generation apparatus has the radial projection dimensions of the plurality of water flow deflectors 7 having the same bending portion 7A as in the second embodiment, and the bending portion 7A is an intermediate portion of the blade 13, ie, the blade 13.
  • the length extends to approximately half the length in the radial direction, and the inclination angle with respect to the rotation axis of the water turbine rotor 6 is larger than that of the water flow deflector 7 of the first and second embodiments (for example, 15 degrees).
  • the projecting dimension of the water flow deflection plate 7 in the radial direction is a length extending to the middle part of the blade 13 and the inclination angle is large
  • the water flow deflection plate 7 reverses the rotation direction of the water turbine rotor 6 Since the base side of the blade 13 is pushed in the rotational direction by the lift force by the Coanda effect by the water flow that is largely deflected to the same direction, the number of rotations and the torque of the water turbine rotor 6 increase and the power generation efficiency is improved.
  • the flow resistance is reduced by the amount by which the radial projection dimension of the water flow deflection plate 7 is reduced, and the half of the centrifugal direction in which the chord length of each blade 13 is gradually increased is opened. Since the water flow strikes the receiving surface without resistance, there is no possibility of reducing the rotational speed and torque of the water turbine rotor 6.
  • the bending part 7A may be abbreviate
  • FIG. 10 is an enlarged view of a portion of a hydroelectric power generation apparatus according to a fourth embodiment of the present invention, in which the water flow of each water flow deflection plate 7 of the first embodiment is opposite to the rotation direction of the water turbine rotor 6 It is curved in a curved shape so that it flows in a curved manner. In this way, the water flow deflected in the direction opposite to the rotation direction of the water turbine rotor 6 by each water flow deflection plate 7 is likely to become a swirling flow, so the inclined surfaces 13C of the plurality of blades 13 are effectively effective in the rotation direction. The rotation speed and torque of the water turbine rotor 6 are increased. Also in the water flow deflection plate 7 of the fourth embodiment, the bent portion 7A as in the second embodiment may be formed at the tip, and in this case, the generation effect of the swirling flow is enhanced.
  • FIG. 11 is a side view of a fifth embodiment of the hydroelectric power generation apparatus according to the present invention.
  • symbol is attached
  • the hydroelectric generator according to the fifth embodiment has a cylindrical shape in which the diameter of the upstream and downstream ends of the rotor support case 5, the water turbine rotor 6 and the plurality of water flow deflectors 7 are arranged in the water flow of the water channel 2. It is surrounded by the water duct 14 of the A plurality of locations on the outer peripheral surface of the water guiding duct 14 are fixed to the support columns 3A on the upstream side and the downstream side of the support frame 3.
  • the case support rod 8 penetrates the opening 14A on the upper surface of the water guiding duct 14 while maintaining water tightness and protrudes upward.
  • the water flow which has flowed into the water guiding duct 14 from the upstream side flows neatly in the downstream direction, and the entire water flow in the water guiding duct 14 effectively rotates the water turbine rotor 6 by the water flow deflecting plate 7. As it is deflected in the direction opposite to the direction, the rotational speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is improved.
  • the flow velocity of the water flow passing through the water conveyance duct 14 becomes larger than the flow velocity of the water flow outside the water conduction duct 14 by the venturi effect.
  • the flow velocity of the water flow deflected in the direction opposite to the rotation direction of the water turbine rotor 6, and the flow velocity of the deflected water flow after passing through the plurality of water flow deflection plates 7 also become large.
  • the plurality of blades 13 are strongly pushed in the rotational direction by the lift force by the Coanda effect, the rotation speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is higher than that of the hydroelectric generator of each of the embodiments. improves.
  • this may be made into a straight cylindrical thing.
  • the hydroelectric power generation device 1 of the sixth embodiment is installed at a position where a slight height difference is formed in the riverbed 15 of the river, or at a position where the riverbed 15 is excavated slightly to form a height difference.
  • the water conduit 16 in which the upstream side is the downward inclined portion 16A and the downstream side is the horizontal portion 16B is submerged in the water flow, It is fixed in an immobile state by a plurality of anchor members 17, 17 fixed to both side surfaces in the longitudinal direction so as to be separated from the riverbed 15, and the hydraulic power unit 1 is mounted on the horizontal portion 16 B of the water guiding duct 16.
  • a rotor support case 5 similar to the example, a water turbine rotor 6, and a plurality of water flow deflecting plates 7 having a bent portion 7A at the tip end portion are installed in the duct. Note that the reason for placing the water guiding duct 16 away from the riverbed 15 is to prevent mud water, gravel, and the like from flowing into the water guiding duct 16.
  • a filter 18 for preventing foreign matter in the water flow from flowing into the water guiding duct 16 is detachably attached by a screw or the like.
  • the rotor support case 5 is fixed to the inner surface of the horizontal portion 16B of the water conduit 16 by fixing the outer end portions of the pair of case support arms 19, 19 whose inner end portions are fixed to both side surfaces thereof. It is located in the center of the house.
  • the water guiding duct 16 also serves as a support of the present invention for supporting the rotor support case 5.
  • the lower end portion of the long case support rod 20 is fixed to the front upper portion of the rotor support case 5 and penetrates the upper surface of the horizontal portion 16B of the water duct 16 to extend upward.
  • the upper end portion is supported by an upper surface plate 21A of the generator support base 21 having a U-shape in a front view downward direction, whose lower end is fixed to the upper surface of the water guiding duct 16.
  • a generator 9 is fixed to the upper surface plate 21A of the generator support base 21.
  • This generator 9 is linked to transmission means accommodated in the case support rod 20 as in the embodiment described above, and the case support is supported. It is connected to the upper end of a vertical transmission shaft that is rotated in the crucible 20. As shown in FIG. 13, when the rotor shaft 11 rotates clockwise with the water rotor 6 in a front view, the generator 9 is driven to generate electric power.
  • the height of the generator support 21 is set to an upper and lower dimension sufficiently separated from the water surface so as to prevent the generator 9 from being submerged.
  • the water guiding duct 16 is installed on the small riverbed 15 having a height difference in the river, and the rotor support having the plurality of water flow deflecting plates 7 on the outer peripheral surface in the horizontal portion 16B of the water guiding duct 16
  • the case 5 and the water turbine rotor 6 are accommodated. Therefore, the water flow flowing in the water conveyance duct 16 in an orderly manner is deflected in the direction opposite to the rotation direction of the water turbine rotor 6 by the plurality of water flow deflection plates 7, and the plurality of blades 13 rotate in the rotation direction by the Coanda effect. It is strongly pressed by Therefore, even if the flow is a gentle river, the rotational speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is improved.
  • the water guiding duct 16 is omitted, and the support frame 3 and the like as in the first embodiment are installed on the riverbed 15, and the support frame 3 and the like support the case And the generator 9 can be supported. Further, in the case of the water guiding duct 16 which is entirely inclined downward and does not have the horizontal portion 16B, the rotor support case 5 having the water flow deflector 7 and the water turbine rotor 6 in the downward inclined portion 16A It can also be housed diagonally along the 16A.
  • the hydroelectric generator is supported by the support frame 3 installed in the water channel 2, it is installed so as to simply straddle the water channel 2 without using the support frame 3.
  • the hydroelectric generator may be suspended by a support.
  • the number of the blades 13 of the water turbine rotor 6 is four in each of the above embodiments, the number of blades 13 is not limited to this, and it is needless to say
  • the present invention can also be applied to a hydroelectric generator using a propeller-type water turbine rotor provided with a mold blade.
  • the water flow deflection plate 7 may be inclined in the same direction as the rotation direction of the water turbine rotor, and even in this way, the swirling water flow deflected by the water flow deflection plate 7 Since the drag type blade is pushed in the rotational direction by this, the water turbine rotor can be accelerated to increase its rotational speed and torque.
  • the generator 9 linked to the water turbine rotor 6 is installed outside the rotor support case 5, but the generator is accommodated in the rotor support case 5 and the generated power is You may take out outside via an electrical wiring.
  • FIG. 14 and the subsequent figures show an embodiment in which the hydroelectric power generation apparatus 1 is disposed in the flowing water of the water fall channel device 22.
  • the head channel 22 communicates with the water storage tank 23 having a funnel-shaped lower portion and a drainage hole 23A on the lower surface and the drainage hole 23A, and the upstream end is the lower surface of the water storage tank 23
  • the hydropower generator 1 is attached to the reverse L-shaped water pipe 24 connected to the above, and the upper part of the water pipe 24.
  • the water conduit 24 comprises a vertical pipe portion 24A and a horizontal pipe portion 24B whose lower end is connected to the ground G at the lower end so that the upper end of the upward elbow is detachably connected to the lower end thereof. Is attached to the vertical pipe portion 24A.
  • the height of the water from the lower end of the water storage tank 23 to the horizontal pipe portion 24B is, for example, 1 to 3 m in consideration of the installation space and the like of the drop channel device 22. Water flowing out of the lower end of the horizontal pipe portion 24B flows down to a canal, a river or the like via a water channel (not shown).
  • An upper lid 25 having a wire mesh for covering relatively large dust and the like from entering is disposed on the opening surface of the upper end of the water storage tank 23.
  • a filter 18 for capturing fine dust and the like that has entered the water storage tank 23 is detachably attached to the upper end portion of the vertical pipe portion 24A.
  • water drawn in from an irrigation canal, a drainage channel, a river, a lake, a reservoir, a reservoir, a dam, etc. is stored via the water supply pipe 26.
  • the amount of water supplied to the water storage tank 23 is adjusted, for example, by a sluice valve (not shown) for flow rate adjustment provided at the water intake port of the water supply pipe 26, and the stored water is almost full It is supposed to be kept
  • the water storage tank 23 and the water conduit 24 are stably supported by the ground G at the lower end and by a plurality of (for example, three or more) vertical support rods 27 whose upper ends are fixed to the outer peripheral surface of the funnel-shaped portion of the water storage tank 23 It is held.
  • the hydroelectric power generation device 1 is disposed in a central portion near the downstream side of the vertical pipe portion 24A, and has a hollow rotor support case 5 long in the water flow direction (vertical direction), and the lower end of the rotor support case 5 in plan view.
  • the water turbine rotor 6 rotates in the clockwise direction.
  • a plurality of (eight in the present embodiment) water flow deflection plates 7 fixed to the outer peripheral surface in the longitudinal direction (vertical direction) of the rotor support case 5 and the upper side of the rotor support case 5
  • the horizontal hollow transmission shaft receiving arm 29 is supported by a mounting bracket 28 whose left end is fixed to the right side and the right side passing through the vertical pipe 24A is fixed to the right side of the vertical pipe 24A.
  • a generator 9 attached to the mounting bracket 28 and linked to the water turbine rotor 6 to generate electric power.
  • the upper outer peripheral surface of the rotor support case 5 is vertical by the transmission shaft accommodation arm 29 and three horizontal case support arms 15 fixed to the inner surface of the vertical pipe portion 24A. It is stably and well supported by the pipe portion 24A.
  • the transmission shaft receiving arm 29 and the case support arm 19 have a fish-shaped cross section in side view, which has a thick upper portion and gradually decreases downward, and passes through them. The water flow is made to accelerate.
  • the rotor support case 5 has a tuna-like shape with a large diameter at the top and a gradually smaller diameter toward the bottom, and the water flow from the top toward the rotor support case 5 is shaped like a fish in the rotor support case 5 The velocity of the water flowing fast along the lower side and passing near the base of the blade 13 described later in the water turbine rotor 6 is increased.
  • a rotor shaft 11 having a lower end protruding from the lower end of the rotor support case 5 and directed in the vertical direction (water flow direction) is rotatably supported and accommodated by a bearing (not shown). .
  • the water turbine rotor 6 has a hub 12 fixed to the lower end portion of the rotor shaft 11 and a plurality of (four in the present embodiment) lift-type blades (the followings are fixed to the hub 12). And 13).
  • the hub 12 and the blade 13 are made of, for example, a synthetic resin (including a fiber reinforced synthetic resin), a light metal such as aluminum (including an alloy thereof), or a metal material such as stainless steel or titanium.
  • the upper end portion of the rotor shaft 11 is a transmission means (two bevel gears meshing with rotating axes orthogonal to each other), and a horizontal transmission shaft (not shown) rotated in the transmission shaft receiving arm 29 by the transmission means
  • the generator 9 is driven to generate electric power by rotating the rotor shaft 11 in a counterclockwise direction in plan view with the water turbine rotor 6 in cooperation with the generator 9 via the.
  • Each blade 13 is the same as that shown in FIGS.
  • the rotor support case 5 in FIG. 7 is vertically oriented, and the water turbine rotor 6 is positioned downstream.
  • each blade 13 receives a deflected water flow from above, the water turbine rotor 6 rotates counterclockwise in plan view by the reaction force (thrust) acting on each blade 13 in the rotational direction.
  • the upstream direction inclined portion 13A is formed at the tip end portion of each blade 13, when the water turbine rotor 6 rotates, along the inclined surface 13C inclined to the rear side in the rotational direction, from the base end to the centrifugal direction Since a part of the water stream to be discharged is captured by the upstream inclined portion 13A and discharged in the oblique centrifugal direction, the reaction increases the thrust in the rotational direction of the blade 13, and the rotation speed and torque of the water turbine rotor 6 increase. Be enhanced.
  • the eight water flow deflection plates 7 described above have outer peripheral surfaces in the vertical direction of the rotor support case 9 between the transmission shaft accommodation arm 13 and the case support arm 15 and the water turbine rotor 10.
  • the water turbine rotor 6 In order to project in the radial direction and at a predetermined angle in the direction to accelerate the water turbine rotor 6, that is, in the direction opposite to the rotation direction of the water turbine rotor 6, with respect to the rotation axis of the water turbine rotor 6. The end is fixed.
  • each water flow deflection plate 7 is, for example, approximately 1/2 of the length in the vertical direction of the rotor support case 5, and the projection dimension in the radial direction is, for example, a blade at the tip end
  • the length is extended to the vicinity of the maximum chord length portion 13B of thirteen.
  • the projection size of each water flow deflection plate 7 in the radial direction may be a length extending to the tip of the blade 13 or a length exceeding the tip.
  • a bent portion 7A bent in the direction opposite to the rotation direction of the water turbine rotor 6 is formed at the tip of the water flow deflection plate 7.
  • the rotor support case 5 is formed of synthetic resin or the like, the water flow deflection plate 7 can be integrally formed therewith.
  • the inclination angle of each water flow deflection plate 7 with respect to the rotation axis of the water turbine rotor 6 is approximately 10 °, but this inclination angle ranges, for example, from 5 ° to 45 ° depending on the number of water flow deflection plates 7 It is set within. That is, as the number of the water flow deflectors 7 increases, the inclination angle decreases and the number decreases, so that the water flow resistance is not increased by the water flow deflector 7 and the velocity of the deflected water flow toward the water turbine rotor 6 is not reduced.
  • the number of the water flow deflection plates 7 is, for example, 3 to 16, preferably 6 to 12 in accordance with the magnitude of the head of the water flow in order to exert the water flow deflection effect without lowering the flow velocity. That's good.
  • each water flow deflection plate 7 strikes a wide range from the base end of the plurality of blades 13 to the vicinity of the maximum chord length 13B, and the waters of the deflected water flows along each blade 13 and the Coanda effect
  • the lift in the rotational direction acting on the blade 13 is increased.
  • each blade 13 is strongly pressed in the rotational direction (counterclockwise direction in plan view), and turning energy is added to each blade 13 in addition to the drop energy of the water, and their synergistic effect causes the water turbine rotor 6 to Speed and torque are increased.
  • an upstream-facing inclined portion 13A that inclines toward the upstream direction is provided. Therefore, the water stream which is going to escape from the tip of the blade 13 in the centrifugal direction is captured by the upstream inclined portion 18A and flows out in the diagonal direction opposite to the rotation direction, and the tip of the blade 13 It is pushed in the rotational direction, and the rotational efficiency of the water turbine rotor 6 is enhanced.
  • the height of the water conduit 3 is limited by the installation space of the water storage tank 23, etc., and even when the drop (position) energy of water is small, the synergistic effect of the water flow deflector 7 and the upstream inclined portion 13A Thus, the rotation speed and torque of the water turbine rotor 6 can be increased to improve the power generation efficiency.
  • the bent portion 7A facing in the direction opposite to the rotation direction of the water turbine rotor 6 is formed at the tip of the water flow deflection plate 7, the water flow deflected by each water flow deflection plate 7 flows in the centrifugal direction. As a result, the amount and amount of water deflected in the direction opposite to the rotational direction of the water turbine rotor 6 are increased. As a result, the inclined surface 13C from the base end to the vicinity of the maximum chord length 13B in the plurality of blades 13 is strongly pushed in the rotational direction by the lift force by the Coanda effect, the rotation speed and torque of the water turbine rotor 6 become large, Efficiency is further improved.
  • FIG. 17 shows a modification of the water flow deflector 7.
  • each water flow deflector 7 is curved in a curved shape so that the water flow is curved in the direction opposite to the rotation direction of the water turbine rotor 6. It is In this case, the water flow deflected in the direction opposite to the rotation direction of the water turbine rotor 6 by the water flow deflection plates 7 is likely to become a swirling flow, and the plurality of blades 13 are effectively pushed in the rotation direction. The rotational speed and torque of the rotor 6 are increased.
  • deviation plate 7 may be abbreviate
  • FIG. 18 is a longitudinal side view of a hydraulic power generation system according to an eighth embodiment.
  • symbol is attached
  • the hydroelectric generator 1 of the eighth embodiment arranges the rotor support case 5 horizontally near the downstream side of the horizontal pipe portion 24B in the water conduit 24 of the down flow water channel device 22.
  • the generator 9 is fixed to the upper surface of the upward transmission shaft receiving arm 29 attached to the upper surface of the rotor support case 5 via a mounting bracket 28.
  • the water flow that has flowed into the horizontal pipe portion 24B is deflected by the plurality of water flow deflection plates 7 so as to turn in the direction opposite to the rotation direction of the water turbine rotor 6. Since the inclined surface 13C of the blade 13 is pushed in the rotational direction by the lift force by the Coanda effect, the number of rotations and the torque of the water turbine rotor 6 are increased. Therefore, even when the water drop from the water storage tank 23 to the horizontal pipe portion 24B can not be increased, the power generation efficiency can be improved.
  • FIG. 19 is a longitudinal side view of a hydraulic power generation system according to a ninth embodiment of the present invention.
  • the same members as those in Examples 7 and 8 described above are denoted by the same reference numerals, and the detailed description thereof will be omitted.
  • the hydroelectric generator according to the ninth embodiment is provided with a drainage hole 23A to which the filter 18 is attached at the lower end portion of the outer peripheral surface of the water storage tank 23 installed on the ground G, and is inclined in the vertical direction at the lower part of the water storage tank 23
  • the upstream end of the water pipe 24 having a small head difference is connected to communicate with the drainage hole 23A, and the hydraulic power unit 1 similar to the eighth embodiment is attached to the downstream end of the water pipe 24. It is.
  • the water flow flowing in the water conduit 24 is deflected by the plurality of water flow deflection plates 7 so as to turn in the direction opposite to the rotation direction of the water turbine rotor 6,
  • the 13 inclined surfaces 13C are pushed in the rotational direction by the lift force by the Coanda effect. Therefore, even if the water guiding pipe 3 has a small head difference and a slow water flow velocity, the rotation speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is improved.
  • FIG. 20 is a vertical cross-sectional side view of a hydraulic power generation system according to a tenth embodiment of the present invention, which is an example in which the hydraulic power generation system 1 is installed, for example, in a water channel 30 for agriculture.
  • the same members as those in each embodiment described above are denoted by the same reference numerals, and the detailed description thereof will be omitted.
  • the weir 30 is provided with a weir plate 20 for blocking the water flow, raising the water level on the upstream side, and forming a head difference with the water flow on the downstream side.
  • the hydroelectric generator 1 is attached to the side surface (left side surface of the figure).
  • the anchor plate 31 and the hydraulic power generation device 1 are integrally connected in advance, and in a state where they are unitized, they can be lifted and installed on the water channel 30 by a crane or the like.
  • a plurality of lifting brackets 32 such as eyebolts that can be lifted by hooking a crane or the like are attached to the central portion of a later-described later-described later holding plate 34 fixed to the upper end of the holding plate 31. .
  • the upper and lower dimensions of the weir plate 31 are formed substantially the same as the depth of the canal 30 so that the lower end reaches the bottom of the canal 30, and the width dimension is also formed substantially the same width as the canal 30.
  • a plurality of triangular reinforcing plates are arranged at the upper end of the gutter plate 31 so as to cross the water channel 30 and are straddled on the upper surface thereof, and a gutter plate holding plate 34 fixed by a plurality of fasteners 33 and 33 is arranged in the width direction. It is fixed with 34A, and the weir plate 31 is held immobile in the water channel 30 by the weir plate holding plate 34 and the reinforcing plate 34A.
  • a water conduction hole 35 is provided in the upper part of the weir plate 31 to allow the upstream water whose water level has been raised to flow out to the downstream side via a water conduction pipe 24 described later.
  • a mesh-like filter 18 for preventing foreign matter from flowing into the water passage 35 is detachably attached to the upper portion of the upstream wall surface of the weir plate 31 by a plurality of holders 36, 36.
  • a water passage hole 37 for adjusting the water level on the upstream side is provided at the lower end portion of the weir plate 31, and a part of the upstream water blocked by the weir plate 31 is passed through the water passage hole 37.
  • the size and the number of the water flow holes 37 are appropriately determined depending on the depth, the flow rate, and the like of the water channel 30.
  • the lower end of the weir plate 20 may be separated from the bottom surface of the water passage 30, and a gap formed between them may be a water flow hole. When the water volume of the canal 30 is small, such a water flow hole 37 may be omitted and the entire upstream water flow may be blocked by the weir plate 31.
  • a water conduit 24 for flowing out the upstream water, which raised the water level of the irrigation channel 30, to the downstream side is attached in communication with the water conduit 35
  • the upper elbow pipe portion 24C bolted to the weir plate 31 with a flange so that the right end upper portion of the water conduit 24 opens in the upstream direction of the irrigation conduit 30 and the open end communicates with the water conduit 34;
  • a vertical pipe portion 24D continuous with the downward opening of the pipe portion 24C, and a lower elbow pipe portion 24E connected to the lower end of the vertical pipe portion 24D via a flange and having a lower left end opening in the downstream direction of the irrigation channel 30 ing.
  • the rotor support case 5 is disposed in the middle portion of the vertical pipe portion 24D so as to face the vertical direction, and the water turbine rotor 6 at the lower end is rotated counterclockwise in plan view.
  • the plurality of water flow deflectors 7 are attached to be inclined in the direction opposite to the rotation direction of the water turbine rotor 6.
  • the generator 9 is separated from the water surface on the downstream side so as not to be submerged.
  • the deflection water flow causes the blades 13 to be pushed in the rotational direction by the lift force by the Coanda effect, and turning energy is added to each blade 13 outside the drop energy of the water, so the vertical dimension of the water conduit 24 is made large. Even if the head is not increased so much, the rotational speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is improved.
  • the water flow is blocked by the weir plate 31 to raise the water level on the upstream side, and a head is formed in the canal 30 to generate electricity. Therefore, the energy of the water stream to be used is large and the power generation efficiency is high, as compared with the hydroelectric power generation using the naturally flowing water stream of the canal 30.
  • the canal 30 partially blocks the canal 30 and raises the water level to form a head, water volume in the canal 30 is small and the water rotor in the water conduit 24 is low even if the water level is low. Can efficiently rotate and enhance power generation efficiency.
  • a drop can be formed in the canal 30 simply by holding the canal 30 by the weir plate 31, a large-scale civil engineering work for constructing a concrete weir and the like as in the prior art becomes unnecessary. It can be reduced.
  • the lower portion of the lower elbow pipe portion 24E can be extended downstream, and the rotor support case 5 can be installed in the same manner as in FIG.
  • the generator 9 may be covered by a waterproof cover or the like, or the transmission shaft accommodation arm 29 may be extended upward to separate the generator 9 from the water surface.
  • FIG. 21 is a vertical cross-sectional side view of a hydraulic power generation system according to an eleventh embodiment of the present invention, which is another embodiment in which the hydraulic power generation system 1 is installed in the water channel 19.
  • symbol is attached
  • the inclined water conduit 38 which inclines downward in the downstream direction of the water channel 30 is attached to the upper part of the gutter plate 31 similar to the tenth embodiment, and the middle portion of the inclined water conduit 38
  • the rotor support case 5 similar to that of the embodiment is installed so that the generator 14 is not submerged.
  • the water flow of the irrigation channel 30 is not completely stopped by the weir plate 31, but the upstream water with the water level raised is the water conduit 24, As it flows downstream via the water supply holes 38 and the water holes 37, there is no risk of affecting the water right of the downstream side.
  • the plurality of hydroelectric power generators 1 when the water channel width of the irrigation channel 30 is relatively large, the plurality of hydroelectric power generators 1 can be arranged in the width direction on the weir plate 31 having a large width dimension. Power generation efficiency can be improved.
  • the hydroelectric power generation device 1 according to the tenth and eleventh embodiments can be installed in water and sewage, industrial waterways, rivers with a relatively small river width, and the like in addition to the agricultural waterways 30.
  • the present invention is not limited to the above-described embodiments, and various modifications and changes as described below can be made without departing from the scope of the present invention.
  • the number of the blades 13 of the water turbine rotor 6 is four in each of the above embodiments, the number of the blades 13 is not limited to this, and it is needless to say that a water turbine provided with a lift type blade in which the upward inclined portion 13A is not formed at the tip end
  • the present invention can also be applied to a hydroelectric generator using a rotor.
  • the present invention can be applied to a propeller type reaction water turbine rotor provided with a plurality of drag type blades 39, that is, a hydraulic power generation apparatus using the drag type water turbine rotor 40.
  • a drag-type water turbine rotor 40 When such a drag-type water turbine rotor 40 is used, the direction in which the drag-type water turbine rotor 40 is accelerated with respect to the rotation axis of the water flow deflection plate 7 with respect to the rotation axis of the drag-type water rotor 40. It may be inclined in the same direction as the rotation direction. Even in this case, since the drag type blade 39 is pushed in the rotation direction by the swirling water flow deflected by the water flow deflection plate 7, the drag type water turbine rotor 40 is accelerated to increase its rotation speed and torque. it can.
  • the generator 9 is installed outside the rotor support case 5 and the water conduits 24 and 38.
  • the generator 9 is accommodated in the internal space of the rotor support case 5 and the generated electric power is It may be taken out to the outside through the electrical wiring inserted in the case support arm 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

Provided is a hydraulic power generation device that is capable of increasing power generation efficiency by efficiently rotating a water turbine rotor even with a water flow of a low flow velocity. A plurality of water flow deflection plates 7 that are tilted at a prescribed angle with respect to the rotational axis of a water turbine rotor 6 and that radially project are fixed to the outer circumferential surface of a rotor support case 5 in a longitudinal direction, and water flow is deflected by the water flow deflection plates 7 in a direction so as to increase the speed of the water turbine rotor 6.

Description

水力発電装置Hydroelectric equipment
 本発明は、例えば用水路や河川等に設置される小型の水力発電装置に係り、特に、高低差が小さく、速度の小さい水流であっても、効率よく発電しうるようにした水力発電装置に関する。 The present invention relates to, for example, a small-sized hydroelectric power unit installed in waterways, rivers, etc., and more particularly to a hydroelectric power unit capable of efficiently generating power even in a water flow with a small difference in elevation.
 水の落差を利用することなく、用水路等の自然の水流を利用し、水の落差を利用することのない小型の水力発電装置は、例えば特許文献1及び2に記載されている。
 他方、特許文献3には、水の落差を利用した水力発電装置が記載されている。
For example, Patent Literatures 1 and 2 describe a small-sized hydroelectric power generation device that uses natural water flow, such as a canal, without using the head of water and does not use the head of water.
On the other hand, Patent Document 3 describes a hydroelectric power generation apparatus using a water drop.
特開2013-253577号公報JP, 2013-253577, A 特許第5787787号公報Patent No. 5787787 特開2008-151151号公報JP, 2008-151151, A
 前記のような用水路等に設置される水力発電装置においては、用水路は一般に高低差が小さくて、水流の速度は必ずしも大きくないため、ロータ(羽根車)の回転数及びトルクを大として、発電効率を高めることが課題となっている。
 前記特許文献1に記載の水力発電装置は、流入口よりも排出口を大としたダクトを備え、ダクトの内部における流入口の直後にロータを配置し、流入口より流入する流速の大きい水流によってロータの回転数を高め、効率よく発電しうるようにしている。
In the hydroelectric power plant installed in the above-mentioned canal and the like, the canal generally has a small height difference and the velocity of the water flow is not necessarily large, so the number of rotations and torque of the rotor (impeller) is large The challenge is to raise
The hydroelectric generator described in Patent Document 1 includes a duct whose outlet is larger than the inlet, and the rotor is disposed immediately after the inlet inside the duct, and the water flow with a high flow velocity flowing from the inlet is used. The rotational speed of the rotor is increased to enable efficient power generation.
 また、特許文献2に記載の水力発電装置においては、上流側よりも下流側の内径を小としたダクトを設け、その小径部によりロータ(羽根車)を囲み、小径部を通過する流速の速い水流により、ロータを効率よく回転させて、発電効率を高めるようにしている。
 しかし、前記いずれの特許文献に記載の水力発電装置においても、ダクトによる水流の増速効果には限界があるため、流速の小さい用水路等においては、ダクトによる発電効率の向上は、あまり期待できない。
Moreover, in the hydraulic power generation device described in Patent Document 2, a duct whose inner diameter on the downstream side is smaller than that on the upstream side is provided, and the small diameter portion surrounds the rotor (impeller) and the flow velocity passing through the small diameter portion is high. The water flow efficiently rotates the rotor to increase power generation efficiency.
However, in the hydroelectric power generation device described in any of the above-mentioned patent documents, there is a limit to the speed-up effect of the water flow by the duct, so improvement of the power generation efficiency by the duct can not be expected very much in the canal with small flow velocity.
 特許文献3に記載されている落差を利用した水力発電装置は、水の位置エネルギが大きいので、発電効率が高いという利点があるが、高低差の小さな既設の用水路や河川等に水力発電装置を設置することは難しく、設置場所が限られる。
 そのため、水路の底部に落差形成用のコンクリートを敷設したり、水路を掘削して、大きな落差を形成したりしなければならならず、大がかりな土木工事が必要となるので、水力発電装置の設置コストが大となる。
The hydroelectric generator using the head described in Patent Document 3 has the advantage that the power generation efficiency is high because the potential energy of water is large, but the hydroelectric generator is installed in the existing water channel or river with a small difference in elevation. It is difficult to install and the installation location is limited.
Therefore, it is necessary to lay down concrete for forming a head at the bottom of the water channel or excavate the water channel to form a large head, and a large-scale civil engineering work is required. The cost is high.
 本発明は、前記課題に鑑みてなされたもので、高低差が小さく、流速の小さい水流であっても、水車ロータを効率よく回転させて、発電効率を向上させうるとともに、設置が容易で設置コストを削減しうるようにした水力発電装置を提供することを目的としている。 The present invention has been made in view of the above problems, and the water turbine rotor can be efficiently rotated to improve the power generation efficiency, and the installation is easy, even if the water flow has a small height difference and a small flow velocity. The purpose is to provide a hydroelectric power generation apparatus that can reduce costs.
 本発明の水力発電装置によると、前記課題は次のようにして解決される。
(1)水流中に配置されるように支持体により支持された、水流方向に長いロータ支持ケースと、前記ロータ支持ケースに回転自在に支持された長手方向を向くロータ軸と、前記ロータ軸に連係され、該ロータ軸の回転により発電する発電機と、前記ロータ軸の下流側の一端部に円周方向に等間隔おきに取付けられ、水流を受けて一定方向に回転する複数のブレードを有する水車ロータと、前記ロータ支持ケースの長手方向の外周面に放射方向に突出するようにして、かつ前記水車ロータの回転軸線に対し所定角度傾斜させて固着され、水流を、前記水車ロータを増速させる方向に偏向させうる複数の水流偏向板とを備えるものとする。
According to the hydraulic power unit of the present invention, the above problem is solved as follows.
(1) A rotor support case long in the water flow direction, supported by the support so as to be disposed in the water flow, a longitudinally-oriented rotor shaft rotatably supported on the rotor support case, and the rotor shaft It has a generator linked and generating power by rotation of the rotor shaft, and a plurality of blades mounted at equal intervals circumferentially on one end of the downstream side of the rotor shaft and receiving a stream of water and rotating in a certain direction The water turbine rotor and the outer circumferential surface of the rotor support case are projected in the radial direction in a radial direction and fixed at a predetermined angle with respect to the rotation axis of the water turbine rotor, and the water flow is accelerated by the water turbine rotor. And a plurality of water flow deflectors that can be deflected in the direction of rotation.
 このような構成とすると、複数の水流偏向板により、水流が水車ロータに向かって旋回するように偏向させられ、その偏向水流によって、各ブレードが増速方向に押されるため、各ブレードには、水流によるエネルギの他に、旋回エネルギが加わり、水車ロータの回転数及びトルクは高められる。
 従って、本発明に係る水力発電装置を、例えば高低差が小さく、水流の流速の小さい用水路等に設置した場合でも、発電効率を高めることができる。
 また、従来のように、土木工事等により水路を掘削して、大きな落差を構築する必要はなく、水力発電装置を、既設の用水路や河川等に、容易に、かつ低コストで設置することができる。
With such a configuration, the water flow is deflected to turn toward the water turbine rotor by the plurality of water flow deflection plates, and each blade is pushed in the acceleration direction by the deflected water flow. In addition to the energy from the water flow, turning energy is added and the rotational speed and torque of the water turbine rotor are increased.
Therefore, even when the hydroelectric generator according to the present invention is installed, for example, in a canal where the difference in elevation is small and the flow velocity of the water flow is small, the power generation efficiency can be enhanced.
Moreover, it is not necessary to excavate a water channel by civil engineering work etc. and to build a big head like before, and to install a hydraulic power unit easily in the existing water channel or river etc. at low cost. it can.
(2) 前記(1)項において、前記水流偏向板の先端部に、水流が遠心方向に流動するのを抑制する折曲部を形成する。 (2) In the above (1), a bent portion is formed at the tip of the water flow deflection plate to suppress the flow of the water flow in the centrifugal direction.
 このような構成とすると、複数の水流偏向板によって偏向された水流が遠心方向に流動するのが抑制され、水車ロータの増速方向に向かって偏向される水量及び水勢が増大するので、水車ロータの回転数及びトルクを効率よく高めることができ、発電効率はより向上する。 With such a configuration, the flow of water deflected by the plurality of water flow deflection plates is suppressed from flowing in the centrifugal direction, and the amount of water and the amount of water deflected in the acceleration direction of the water turbine rotor are increased. Speed and torque can be efficiently increased, and power generation efficiency is further improved.
(3) 前記(1)または(2)項において、前記水流偏向板を、水流が水車ロータに向かって湾曲して流れるように、曲面状に湾曲させる。 (3) In the above (1) or (2), the water flow deflection plate is curved in a curved shape so that the water flow is curved toward the water turbine rotor.
 このような構成とすると、複数の水流偏向板により偏向される水流は、旋回流となり易いので、水車ロータの回転数及びトルクはさらに高められ、発電効率はさらに向上する。 With such a configuration, the water flow deflected by the plurality of water flow deflection plates is likely to be a swirling flow, so the rotational speed and torque of the water turbine rotor are further increased, and the power generation efficiency is further improved.
(4) 前記(1)~(3)項のいずれかにおいて、前記ブレードの上流側の受水面を、基端部に向かって漸次傾斜角度が大となるように、回転方向後外側に向かって傾斜する傾斜面とするとともに、ブレードの弦長を基端部から先端部に向かって漸次大とし、かつブレードを、最大弦長部を基点とする先端部に上流方向に傾斜する傾斜部が形成された揚力型のものとし、前記水流偏向板の放射方向の突出寸法を、当該水流偏向板の先端部が前記最大弦長部付近まで延出する長さとする。 (4) In any one of the above items (1) to (3), the upstream water receiving surface of the blade is directed rearward in the rotational direction so that the inclination angle gradually increases toward the base end. The inclined surface is inclined, and the chord length of the blade is gradually increased from the proximal end to the distal end, and the blade is formed with an inclined portion inclined in the upstream direction at the distal end starting from the largest chord length. The projecting dimension of the water flow deflection plate in the radial direction is such that the tip of the water flow deflection plate extends to the vicinity of the maximum chord length.
 このような構成とすると、複数の水流偏向板を通過した後の偏向水流は、複数の揚力型ブレードにおける基端部から、最大弦長部付近に至る傾斜面に広範囲に当たり、偏向水流によるコアンダ効果により、揚力型ブレードは回転方向に強く押され、揚力が大となることにより、水車ロータの回転数及びトルクが高められる。 With such a configuration, the deflected water flow after passing through the plurality of water flow deflectors strikes the inclined surface from the base end of the plurality of lift blades to the vicinity of the maximum chord length in a wide range, and the Coanda effect by the deflected water flow By this, the lift type blade is strongly pushed in the rotational direction, and the rotation force and torque of the water turbine rotor are increased by the increase of the lift force.
 また、ブレードの先端部には、上流方向に向かって傾斜する傾斜部が設けられ、ブレードの先端から遠心方向へ逃げようとする水流を傾斜部が捕捉して、回転方向と逆方向の斜め遠心方向に流出させ、その反作用によりブレードの先端部を回転方向に押すので、水車ロータの回転効率が高まる。
 従って、水流偏向板と傾斜部との相乗効果により、水車ロータの回転数及びトルクが増大し、発電効率が向上する。
In addition, the tip portion of the blade is provided with an inclined portion which inclines in the upstream direction, and the inclined portion captures a water flow which is going to escape from the tip of the blade in the centrifugal direction. The flow out in the direction and the reaction pushes the tip of the blade in the direction of rotation, thereby increasing the rotational efficiency of the water turbine rotor.
Therefore, the number of revolutions and the torque of the water turbine rotor are increased by the synergetic effect of the water flow deflection plate and the inclined portion, and the power generation efficiency is improved.
(5) 前記(1)~(3)項のいずれかにおいて、前記ブレードの上流側の受水面を、基端部に向かって漸次傾斜角度が大となるように、回転方向後外側に向かって傾斜する傾斜面とするとともに、ブレードの弦長を基端部から先端部に向かって漸次大とし、かつブレードを、最大弦長部を基点とする先端部に上流方向に傾斜する傾斜部が形成された揚力型のものとし、前記水流偏向板の放射方向の突出寸法を、当該水流偏向板の先端部が前記ブレードの中間部まで延出する長さとする。 (5) In any of the above items (1) to (3), the upstream water receiving surface of the blade is directed rearward in the rotational direction so that the inclination angle gradually increases toward the proximal end. The inclined surface is inclined, and the chord length of the blade is gradually increased from the proximal end to the distal end, and the blade is formed with an inclined portion inclined in the upstream direction at the distal end starting from the largest chord length. The radial projection size of the water flow deflection plate is a length such that the tip of the water flow deflection plate extends to the middle portion of the blade.
 このような構成とすると、傾斜角度の大きなブレードの基部側が、コアンダ効果により回転方向に強く押されるので、水流偏向板の放射方向の突出寸法を、ブレードの中間部まで延出する長さとしても、水車ロータの回転数及びトルクが高くなり、発電効率が向上する。 With such a configuration, the base side of the blade having a large inclination angle is strongly pressed in the rotational direction by the Coanda effect, so the radial projection dimension of the water flow deflection plate is set to a length extending to the middle portion of the blade. The rotation speed and torque of the water turbine rotor are increased, and the power generation efficiency is improved.
 また、水流偏向板の放射方向の突出寸法を小とした分だけ、水流抵抗が小さくなるとともに、各ブレードの弦長を漸次大とした遠心方向の半部は開放され、その上流側の受水面に水流が抵抗なく当たるので、水車ロータの回転数及びトルクを低下させるおそれはない。 In addition, the flow resistance is reduced by the amount by which the radial projection size of the water flow deflection plate is reduced, and the centrifugal half portion in which the chord length of each blade is gradually increased is opened, and the water receiving surface on the upstream side There is no risk of reducing the rotational speed and torque of the water turbine rotor since the water flow hits without
(6) 前記(1)~(5)項のいずれかにおいて、前記水流偏向板の枚数を、3~16枚とし、各水流偏向板の前記水車ロータの回転軸線に対する傾斜角度を、水流偏向板の枚数が多いほど小さく、枚数が少なくなるほど、45度を超えない範囲内で大きくするようにする。 (6) In any one of the above items (1) to (5), the number of the water flow deflection plates is 3 to 16, and the inclination angle of each water flow deflection plate with respect to the rotation axis of the water turbine rotor is a water flow deflection plate The smaller the number is, the smaller the number is, and the smaller the number is, the larger the number does not exceed 45 degrees.
 このような構成とすると、水流偏向板の枚数は、流速を低下させない範囲であり、かつ水流偏向板の枚数が多い場合でも、水流抵抗が増大して、水車ロータに向かう偏向水流の速さを低下させるのが抑制され、また、水流偏向板の枚数が少ない場合は、傾斜角度を大きくして水流偏向効果を発揮させることができる。 With such a configuration, the number of water flow deflection plates is within a range that does not reduce the flow velocity, and even when the number of water flow deflection plates is large, the flow resistance increases and the speed of the deflection water flow toward the water turbine rotor The lowering is suppressed, and when the number of the water flow deflection plates is small, the tilt angle can be increased to exhibit the water flow deflection effect.
(7) 前記(1)~(6)項のいずれかにおいて、前記ロータ支持ケース、前記水車ロータ、及び前記水流偏向板を、水流中に配置される円筒形の導水ダクトにより囲繞する。 (7) In any one of the items (1) to (6), the rotor support case, the water turbine rotor, and the water flow deflection plate are surrounded by a cylindrical water transmission duct disposed in a water flow.
 このような構成とすると、上流側より導水ダクト内に流入した水流が下流方向に整然と流れ、導水ダクト内の全水流が、水流偏向板によって効果的に水車ロータを増速する方向に偏向されるので、水車ロータの回転数及びトルクが高められ、発電効率は向上する。 With such a configuration, the water flow that has flowed into the water conveyance duct from the upstream side flows neatly in the downstream direction, and the entire water flow in the water conveyance duct is deflected by the water flow deflection plate in the direction to accelerate the water turbine rotor effectively. Therefore, the rotational speed and torque of the water turbine rotor are increased, and the power generation efficiency is improved.
(8) 前記(1)~(7)項のいずれかにおいて、前記ロータ支持ケースを、上流側が大径で、下流側に向かって漸次小径をなす魚形状とする。 (8) In any one of the items (1) to (7), the rotor support case has a fish shape having a large diameter on the upstream side and a gradually smaller diameter on the downstream side.
 このような構成とすると、上流側よりロータ支持ケースに向かって流れる水流は、コアンダ効果によりロータ支持ケースの魚形状に沿って後方に速く流れ、水車ロータのブレードの基部付近を増速方向に効率よく押すようになる。 With such a configuration, the water flow from the upstream side toward the rotor support case quickly flows backward along the fish shape of the rotor support case due to the Coanda effect, and the efficiency near the base of the blade of the water turbine rotor is accelerated in the acceleration direction I will push well.
(9) 前記、水流方向に長いロータ支持ケースが、落差水路装置の貯水槽の貯留水または水路の流水を、落差を利用して下方に流出させる導水管内の水中に支持体により支持され、前記ロータ支持ケースの長手方向下流側の外周面に放射方向に突出するようにして、かつ前記水車ロータの回転軸線に対し所定角度傾斜させて固着され、前記導水管内の水流を前記水車ロータを増速させる方向に偏向させうる複数の水流偏向板とを備えるものとする。 (9) The rotor support case long in the water flow direction is supported by a support in the water in the conduit for draining the stored water in the water storage tank of the head channel device or the water in the channel using a head, It projects radially outward on the outer peripheral surface on the downstream side in the longitudinal direction of the rotor support case, and inclines at a predetermined angle to the rotation axis of the water turbine rotor, and accelerates the water rotor in the water conduit And a plurality of water flow deflectors that can be deflected in the direction of rotation.
 このような構成によると、導水管内を流れる水流は、ロータ支持ケースに傾斜させて固着された複数の水流偏向板により、水車ロータに向かって旋回するように偏向させられるため、その偏向水流によって各ブレードが増速方向に押される。これにより、各ブレードには、水の位置(落差)エネルギの外に旋回エネルギが加わり、水車ロータの回転数及びトルクは高められる。
 従って、貯水槽の設置スペースや水路の深さ等により、水を流出させる導水管の高さが制限され、水の落差エネルギが小さい場合であっても、発電効率を向上させることができる。
 また、従来のように、水流を旋回流とするための螺旋リブを導水管の内周面に設ける必要がないので、導水管の製造コストが低減され、安価な水力発電装置を提供することができる。
According to such a configuration, the flow of water flowing in the water conduit is deflected by the plurality of water flow deflecting plates inclined and fixed to the rotor support case so as to turn toward the water turbine rotor. The blade is pushed in the speed increasing direction. Thus, turning energy is added to each blade in addition to the water position (falling) energy, and the rotation speed and torque of the water turbine rotor are increased.
Therefore, the height of the water conduit for draining the water is limited by the installation space of the water storage tank, the depth of the water channel, and the like, and the power generation efficiency can be improved even when the drop energy of the water is small.
Moreover, since it is not necessary to provide the helical rib for making water flow into a swirl flow like before conventionally on the inner peripheral surface of a water conduit, the manufacturing cost of a water conduit is reduced and it can provide a cheap hydraulic power unit. it can.
(10) 前記(9)項において、前記水路は用水路であり、この用水路に、上流側の水流の水位を上昇させて下流側の水流との間に落差を形成する堰板を設置し、この堰板の上部に、前記導水管の上端部を、前記堰板の上部に形成された、前記水位を上昇させた上流側の水を下流側に流出させる導水孔と連通するように連結する。 (10) In the above item (9), the water channel is a water channel, and in this water channel, a weir plate is installed to raise the water level of the upstream water flow and form a head gap with the downstream water flow; The upper end portion of the water conduit is connected to the upper portion of the weir plate so as to communicate with the water conduction hole formed on the upper portion of the weir plate for discharging the upstream water whose water level has risen to the downstream side.
 このような構成によると、水の落差を形成することが困難な用水路であっても、堰板により水流を堰止めて上流側の水位を上昇させ、用水路に落差を形成して発電しうるので、用水路を自然に流れる水流を利用して発電する水力発電に比して、発電効率は高い。
 また、堰板により上流側の水位を上昇させて、用水路に落差を形成しうるので、用水路の流量が少なくて、水位が低くても、導水管内の水車ロータを効率よく回転させて、発電効率を高めることができる。
 更に、堰板により水流を堰止めるだけで、用水路に落差を形成しうるので、コンクリート堰等を構築するための大がかりな土木工事は不要となり、水力発電装置の設置コストを低減させることができる。
According to such a configuration, even if it is a canal where it is difficult to form a head of water, it is possible to trap the water flow by the weir plate, raise the water level on the upstream side, and form a head in the canal to generate power. The power generation efficiency is higher than hydroelectric power generation using water flowing naturally through irrigation canal.
Moreover, since the water level on the upstream side can be raised by the weir plate and a head can be formed in the canal, the water flow in the canal is small, and the water turbine rotor in the water conduit can be efficiently rotated even if the water level is low. Can be enhanced.
Furthermore, since a drop can be formed in the canal just by blocking the water flow by the weir plate, extensive civil engineering work for constructing a concrete weir and the like becomes unnecessary, and the installation cost of the hydroelectric generator can be reduced.
 本発明の水力発電装置によると、高低差が小さく、流速の小さい水流であっても、水車ロータを効率よく回転させて、発電効率を向上させることができる。 According to the hydroelectric power generation apparatus of the present invention, even with a water flow having a small height difference and a low flow velocity, the water turbine rotor can be efficiently rotated to improve the power generation efficiency.
本発明に係る水力発電装置の実施例1の側面図である。It is a side view of Example 1 of the hydraulic power unit concerning the present invention. 図1を上流側から見た正面図である。It is the front view which looked at FIG. 1 from the upstream side. ブレード単体の拡大正面図である。It is an enlarged front view of a single blade. 図3のIV-IV線における拡大横断平面図である。FIG. 4 is an enlarged cross-sectional plan view taken along line IV-IV of FIG. 3; 図3のV-V線における拡大横断平面図である。FIG. 5 is an enlarged cross-sectional plan view taken along line VV of FIG. 3; 図3のVI-VI線における拡大横断平面図である。FIG. 6 is an enlarged cross-sectional plan view taken along line VI-VI of FIG. 3; 本発明に係る水力発電装置の実施例2の側面図である。It is a side view of Example 2 of the hydraulic power unit concerning the present invention. 図7を上流側より見た正面図である。It is the front view which looked at FIG. 7 from the upstream side. 本発明に係る水力発電装置の実施例3の正面図である。It is a front view of Example 3 of the hydraulic power unit concerning the present invention. 本発明に係る水力発電装置の実施例4の一部を拡大して示す斜視図である。It is a perspective view which expands and shows a part of Example 4 of the hydraulic power unit based on this invention. 本発明に係る水力発電装置の実施例5の一部切欠側面図である。It is a partially cutaway side view of Example 5 of the hydraulic power unit according to the present invention. 本発明に係る水力発電装置の実施例6の一部切欠側面図である。It is a partially cutaway side view of Example 6 of the hydraulic power unit according to the present invention. 図12のXIII-XIII線における拡大縦断正面図である。FIG. 13 is an enlarged longitudinal front elevational view of FIG. 12 taken along line XIII-XIII. 本発明に係る水力発電装置の実施例7の縦断側面図である。It is a vertical side view of Example 7 of the hydraulic power unit concerning the present invention. 図14のXV-XV線における拡大横断平面図である。FIG. 15 is an enlarged cross-sectional plan view taken along line XV-XV of FIG. 水車ロータの要部の拡大側面図である。It is an enlarged side view of the principal part of a water turbine rotor. 水流偏向板を湾曲させた変形例の要部の斜視図である。It is a perspective view of the principal part of the modification which curved the water flow deflection board. 本発明に係る水力発電装置の実施例8の縦断側面図である。It is a longitudinal side view of Example 8 of the hydraulic power unit concerning the present invention. 本発明に係る水力発電装置の実施例9の縦断側面図である。It is a longitudinal side view of Example 9 of the hydraulic power unit according to the present invention. 本発明に係る水力発電装置の実施例10の縦断側面図である。It is a longitudinal side view of Example 10 of the hydraulic power unit concerning the present invention. 本発明に係る水力発電装置の実施例11の縦断側面図である。It is a longitudinal side view of Example 11 of the hydraulic power unit concerning the present invention. 水車ロータを、抗力型水車ロータとした変形例を示す側面図である。It is a side view which shows the modification which made the water turbine rotor the drag type water turbine rotor.
 以下、本発明の実施形態を、図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the drawings.
 図1及び図2は、本発明に係る水力発電装置の実施例1を示すもので、水力発電装置1は、例えば農業用の用水路2の水流によって発電される比較的小型のものであり、支持枠体3に支持された形態で用水路2の水流中に設置される。
 なお、以下の説明においては、用水路2の上流側(図1の左側)を前、下流側(図1の右側)を後とする。
FIGS. 1 and 2 show a first embodiment of a hydroelectric generator according to the present invention. The hydroelectric generator 1 is, for example, a relatively small one generated by the water flow of the agricultural water channel 2, and is supported It is installed in the water flow of the canal 2 in a form supported by the frame 3.
In the following description, the upstream side (left side in FIG. 1) of the water channel 2 is referred to as the front, and the downstream side (right side in FIG. 1) is referred to as the rear.
 支持枠体3は、前後左右に離間する4本の支柱3Aの下端に、前後及び左右方向を向く4本の下部横杆3Bの両端部を結合するとともに、各支柱3Aの上端に方形の上面板3Cを固定することにより、前後左右の4面と下面が開放された方形枠状のものである。
 図1に矢印で示すように、用水路2内を上流側から下流側に向かって流れる水は、方形枠状をなす支持枠体3内を抵抗なく通過しうるようになっている。
The support frame 3 is connected to the lower ends of the four columns 3A spaced apart in the front, rear, left, and right directions with the ends of the four lower lateral ridges 3B facing in the front, rear, left and right directions. By fixing the face plate 3C, it has a rectangular frame shape in which the four front and rear surfaces and the lower surface are open.
As shown by the arrow in FIG. 1, water flowing from the upstream side to the downstream side in the canal 2 can pass through the rectangular frame-like support frame 3 without resistance.
 支持枠体3の上下寸法は、用水路2の高さよりも若干大としてある。また、本実施例では、用水路2の横幅が比較的小さい場合を例として、支持枠体3の左右幅を用水路2の横幅とほぼ同等とし、用水路2内において支持枠体3が横振れしないようにしているが、支持枠体3は、後述する固定具4により用水路2に固定されるので、横幅が広い用水路2であっても、支持枠体3を用水路2内に不動状態で設置することができる。
 用水路2内に落とし込まれた支持枠体3は、上面板3Cの左右両側部の複数箇所が、用水路2における左右の壁面の上面に、固定具4、4により固定されている。
The upper and lower dimensions of the support frame 3 are slightly larger than the height of the water channel 2. Further, in the present embodiment, the lateral width of the support frame 3 is made substantially equal to the lateral width of the canal 2 by taking the case where the lateral width of the canal 2 is relatively small as an example. However, since the support frame 3 is fixed to the canal 2 by the fixture 4 described later, the support frame 3 should be installed in the canal 2 in an immobile state even if the canal 2 is wide. Can.
The support frames 3 dropped into the canal 2 are fixed to the upper surfaces of the left and right wall surfaces of the canal 2 by fixtures 4 and 4 at a plurality of locations on the left and right sides of the top plate 3C.
 水力発電装置1は、水流方向に長い前後方向を向く中空状のロータ支持ケース5と、ロータ支持ケース5の後端に設けられ、正面視反時計回り方向に回転する水車ロータ6と、水車ロータ6に近接する前方において、ロータ支持ケース5の長手方向(前後方向)の外周面に固定された複数(本実施例では8枚)の水流偏向板7と、ロータ支持ケース5の前方寄りの上面に下端が固着され、上端部が上面板3Cに嵌合させて固着された上下方向を向く中空状のケース吊支杆8と、上面板3Cの上面中央にケース吊支杆8と対向するように設置され、水車ロータ6に連係されて発電する発電機9とを備えている。水流偏向板7は、ロータ支持ケース5を合成樹脂やアルミ等により型成形する場合、それらと一体成形が可能である。 The hydroelectric power generation apparatus 1 includes a hollow rotor support case 5 that is long in the water flow direction and a water rotor 6 that is provided at the rear end of the rotor support case 5 and rotates counterclockwise in a front view. 6. A plurality of (eight sheets in this embodiment) water deflectors 7 fixed to the outer peripheral surface in the longitudinal direction (front-rear direction) of the rotor support case 5 in the front close to 6 and the upper surface of the rotor support case 5 near the front The lower end is fixed, the upper end is fitted in the upper surface plate 3C, and is fixed to the hollow case hanging support 8 facing in the vertical direction, and facing the case supporting support 8 at the center of the upper surface of the upper surface plate 3C. And a generator 9 that generates electric power by being linked to the water turbine rotor 6. The water flow deflection plate 7 can be integrally molded with the rotor support case 5 when it is molded with synthetic resin, aluminum or the like.
 ケース吊支杆8は、その中間部の左右両側面に下端部が固定され、上端部が上面板3Cの下面に固定された左右1対の板状傾斜ブラケット10、10により、支持枠体3内の中央部に不動状態に保持されている。
 なお、図示は省略するが、ケース吊支杆8は、前部の左右方向の厚さが厚く、後方に向かって漸次薄くなる、平面視魚形断面をなしており、ケース吊支杆8を通過する水流が、コアンダ効果により増速されるようにしてある。
The lower end portion of the case support rod 8 is fixed to the left and right side surfaces of the middle portion, and the upper end portion is fixed to the lower surface of the upper surface plate 3C. It is held immobile in the central part of the inside.
Although the illustration is omitted, the case hanging support 8 has a fish-like cross section in plan view, which is thick in the left-right direction at the front and gradually becomes thinner toward the rear. The passing water flow is accelerated by the Coanda effect.
 ロータ支持ケース5は、前部が大径で、後方に向かうに従って漸次小径となる、まぐろ等の魚形と似た形状をなし、前方よりロータ支持ケース5に向かって流れる水流は、コアンダ効果により、ロータ支持ケース5の魚形状に沿って後方に速く流れ、水車ロータ6における後述するブレード13の基部付近に向かう水流が、コアンダ効果により増速されるようになっている。 The rotor support case 5 has a large diameter at the front and a gradually smaller diameter toward the rear, and has a shape similar to a fish-like tuna etc. The water flow from the front toward the rotor support case 5 is due to the Coanda effect A water flow that flows fast backward along the fish shape of the rotor support case 5 and travels to the vicinity of the base of a blade 13 described later in the water turbine rotor 6 is accelerated by the Coanda effect.
 ロータ支持ケース5の内部には、後端部をロータ支持ケース5の後端より若干突出させた前後方向を向く水平のロータ軸11が、図示しない軸受により、回転自在に支持して収容されている。 Inside the rotor support case 5, a horizontal rotor shaft 11 directed in the front-rear direction with its rear end slightly protruded from the rear end of the rotor support case 5 is rotatably supported and accommodated by a bearing not shown. There is.
 水車ロータ6は、ロータ軸11の後端部に固着されたハブ12と、求心方向の基部が、ハブ12に等間隔おきに固定された複数(本実施例では4枚)の揚力型ブレード(以下、ブレードと略称する)13とを備えている。
 ハブ12及びブレード13は、例えば繊維強化合成樹脂(FRP)や、アルミニウム、ジュラルミン等の軽金属により形成されている。なお、ハブ12を省略し、ブレード13をロータ軸11の後端部に直接固定することもある。
The water turbine rotor 6 has a hub 12 fixed to the rear end of the rotor shaft 11 and a plurality of (four in the present embodiment) lift-type blades (bases in the center direction) fixed to the hub 12 at regular intervals. Hereinafter, it is provided with a blade 13).
The hub 12 and the blade 13 are made of, for example, fiber reinforced synthetic resin (FRP), or a light metal such as aluminum or duralumin. The hub 12 may be omitted and the blade 13 may be directly fixed to the rear end of the rotor shaft 11.
 ロータ軸11の前端部は、例えば上述した特許文献1に記載されている水力発電装置と同様に、伝動手段(回転軸線を直交させて噛合する2個の傘歯車)、及び伝動手段によりケース吊支杆8内で回転させられる、上下方向の伝動軸(いずれも図示略)を介して、発電機9に連係され、ロータ軸11が水車ロータ6と共に正面視時計回り方向に回転することにより、発電機9が駆動されて発電するようになっている。 The front end portion of the rotor shaft 11 is, for example, similar to the hydraulic power generator described in Patent Document 1 described above, by means of transmission means (two bevel gears meshing with rotating axes orthogonal to each other) and transmission means By being linked to the generator 9 via a vertical transmission shaft (all not shown) rotated within the support rod 8, the rotor shaft 11 rotates clockwise with the water turbine rotor 6 in a front view direction. The generator 9 is driven to generate electric power.
 図3~図6にも示すように、各ブレード13は、先端部ほど受水面積が大となるように、弦長を、基部側から先端部方向に向かって漸次大とし、かつ先端部に、上流方向である前方に向かって傾斜する上流向傾斜部13Aを形成して、水流の捕捉効果を大とすることにより、水車ロータ6の回転効率が高められるようになっている。 As also shown in FIGS. 3 to 6, each blade 13 has a chord length gradually increasing from the base side toward the tip end portion and the tip end portion so that the water receiving area becomes larger toward the tip end portion. The rotation efficiency of the water turbine rotor 6 can be enhanced by forming the upstream inclined portion 13A which inclines forward, which is the upstream direction, to increase the effect of capturing the water flow.
 ブレード13の最大弦長部13Bは、先端部付近に形成され、最大弦長部13Bを基点とする先端部に、上流向傾斜部13Aが形成されている。上流向傾斜部13Aは、先端に向かって先細りとされ、かつ傾斜角度は、例えば35度~45度とされている。 The maximum chord length 13B of the blade 13 is formed in the vicinity of the tip, and the upstream inclined portion 13A is formed at the tip with the maximum chord 13B as a base point. The upstream inclined portion 13A is tapered toward the tip, and the inclination angle is, for example, 35 degrees to 45 degrees.
 図4~図6に示すように、ブレード13の横断面形状は、矢印で示す回転方向前側の厚さが厚く、後端に向かって漸次薄くしてあり、かつコアンダ効果を発揮させるために、後面を円弧状に膨出させ、さらに、ブレード13全体をロータ軸11に対して所定角度ねじり、ピッチ角を形成することにより、受水面である上流側の前面を、回転方向後外側に向かって傾斜する傾斜面13Cとしてある。
 傾斜面13Cの傾斜角度(迎角)は、ブレード13の先端部側が小さく、基端部に向かうにしたがって漸次大となるようにしてある。
As shown in FIGS. 4 to 6, the cross-sectional shape of the blade 13 is such that the thickness on the front side in the rotational direction indicated by the arrow is thick and the thickness gradually decreases toward the rear end. The rear face is expanded in an arc shape, and the entire blade 13 is twisted at a predetermined angle with respect to the rotor shaft 11 to form a pitch angle, whereby the front face on the upstream side, which is the water receiving face, is directed outward in the rotational direction It is an inclined surface 13C that inclines.
The inclination angle (angle of attack) of the inclined surface 13C is smaller at the tip end side of the blade 13 and gradually larger toward the base end.
 これにより、各ブレード13が前方より水流を受けると、各ブレード13には揚力が生じ、回転方向へ作用する推力によって、水車ロータ6は、正面視反時計回り方向に回転する。
 また、各ブレード13の先端部には、上流向傾斜部13Aが形成されているため、水車ロータ6の回転時に、回転方向後側に傾斜する傾斜面13Cに沿って基端部から遠心方向に流出しようとする水流の一部を、上流向傾斜部13Aにより捕捉し、斜め遠心方向に流出させるので、その反作用によりブレード13の回転方向の推進力が増大し、水車ロータ6の回転数及びトルクが高められる。
Thus, when each blade 13 receives a water flow from the front, a lift is generated on each blade 13 and the water turbine rotor 6 rotates counterclockwise in a front view by the thrust acting in the rotation direction.
Further, since the upstream direction inclined portion 13A is formed at the tip end portion of each blade 13, when the water turbine rotor 6 rotates, along the inclined surface 13C inclined to the rear side in the rotational direction, from the base end to the centrifugal direction Since a part of the water stream to be discharged is captured by the upstream inclined portion 13A and discharged in the diagonal centrifugal direction, the propulsive force in the rotational direction of the blade 13 is increased by the reaction, and the rotation speed and torque of the water turbine rotor 6 Is enhanced.
 前述した8枚の水流偏向板7は、ケース吊支杆8と水車ロータ6間において、ロータ支持ケース5の長手方向の外周面に、放射方向に突出するように等間隔おきに、かつ水車ロータ6の回転軸線に対し、所定角度水車ロータ6の回転方向と反対方向に傾斜させて基端部が固着されている。
 各水流偏向板7の軸方向の幅寸法は、ロータ支持ケース5の軸方向の長さのほぼ1/2とされ、また、放射方向への突出寸法は、先端部がブレード13の最大弦長部13B付近まで延出する長さ、または上流向傾斜部13Aの基部付近まで延出する長さとしてある。
The eight water flow deflectors 7 described above are provided on the outer peripheral surface in the longitudinal direction of the rotor support case 5 between the case support post 8 and the water turbine rotor 6 at equal intervals so as to project in the radial direction. The base end portion is fixed by inclining in the direction opposite to the rotation direction of the water turbine rotor 6 at a predetermined angle with respect to the rotation axis of 6.
The axial width dimension of each water flow deflection plate 7 is approximately half the axial length of the rotor support case 5, and the radial projection dimension is the maximum chord length of the blade 13 at the tip end. The length extending to the vicinity of the portion 13B or the length extending to the vicinity of the base of the upstream inclined portion 13A.
 更に、本実施例では、水車ロータ6の回転軸線に対する各水流偏向板7の傾斜角度をほぼ10度としてあるが、この傾斜角度は、水流偏向板7の枚数によって、例えば5度~45度の範囲内に設定される。すなわち、水流偏向板7によって水流抵抗が増大し、ロータに向かう偏向水流の速さが低下することがないように、水流偏向板7の枚数が多いほど傾斜角度を小さくし、枚数が少なくなるにしたがって傾斜角度を漸次大とするのが好ましい。
 傾斜角度を大きくすると、水流偏向効果は増すが、反対に水流抵抗が増大して、水車ロータ6に向かう流速が小さくなるので、45度を超えないようにするのがよい。なお、水流偏向板7の枚数は、流速を低下させずに水流偏向効果を発揮させるために、3枚以上16枚以下、好ましくは6~12枚の範囲とするのがよい。
Furthermore, in the present embodiment, the inclination angle of each water flow deflection plate 7 with respect to the rotation axis of the water turbine rotor 6 is approximately 10 degrees, but this inclination angle is, for example, 5 degrees to 45 degrees depending on the number of water flow deflection plates 7 It is set within the range. That is, as the number of the water flow deflection plates 7 increases, the inclination angle is reduced and the number decreases, so that the water flow resistance plate 7 does not increase the water flow resistance and the speed of the deflection water flow toward the rotor does not decrease. Therefore, it is preferable to make the inclination angle gradually larger.
When the inclination angle is increased, the water flow deflection effect is increased, but the water flow resistance is increased and the flow velocity toward the water turbine rotor 6 is decreased, so it is preferable not to exceed 45 degrees. The number of the water flow deflection plates 7 is preferably in the range of 3 to 16, preferably 6 to 12, in order to exert the water flow deflection effect without reducing the flow velocity.
 実施例1の水力発電装置のように、水車ロータ6の上流側に位置するロータ支持ケース5の外周面に、放射方向に突出する複数の水流偏向板7を、水車ロータ6の回転軸線に対し、その回転方向と反対方向に傾斜させて固着すると、図1の矢印で示すように、水流が8枚の水流偏向板7により水車ロータ6を増速させる方向、すなわち水車ロータ6の回転方向と反対方向に旋回するように偏向させられる。 Like the hydraulic power generation apparatus of the first embodiment, on the outer peripheral surface of the rotor support case 5 located on the upstream side of the water turbine rotor 6, a plurality of water flow deflection plates 7 projecting in the radial direction with respect to the rotation axis of the water turbine rotor 6 When it is fixed by inclining in the direction opposite to the rotation direction, as shown by the arrow in FIG. 1, the direction in which the water flow accelerates the water turbine rotor 6 by the eight water flow deflectors 7, ie, the rotation direction of the water turbine rotor 6 It is deflected to pivot in the opposite direction.
 各水流偏向板7を通過した後の偏向水流は、複数のブレード13における基端部から最大弦長部13B付近に至る傾斜面13Cに広範囲に当たり、コアンダ効果による揚力により、各ブレード13を回転方向に強く押すことにより、各ブレード13には、水流の速さのエネルギの他に旋回エネルギが加わり、水車ロータ6の回転数及びトルクが高められる。 The deflected water flow after passing through each water flow deflecting plate 7 strikes the inclined surface 13C in a wide range from the base end of the plurality of blades 13 to the vicinity of the maximum chord length 13B and rotates each blade 13 by lift force by the Coanda effect. In addition to the energy of the speed of the water flow, turning energy is added to each blade 13 to increase the rotational speed and torque of the water turbine rotor 6.
 また、ブレード13の先端部には、上流方向に向かって傾斜する上流向傾斜部13Aを設けてある。そのため、ブレード13の先端から遠心方向へ逃げようとする水流は、上流向傾斜部13Aに捕捉されて、回転方向と逆方向の斜め遠心方向に流出し、その反作用により、ブレード13の先端部は回転方向に押され、水車ロータ6の回転効率が高められる。
 従って、例え、用水路2の水流の流速が小さい場合でも、水流偏向板7と上流向傾斜部13Aとの相乗効果により、水車ロータ6の回転数及びトルクが増大し、発電効率が向上する。
Further, at the tip end portion of the blade 13, an upstream-facing inclined portion 13A that inclines toward the upstream direction is provided. Therefore, the water stream which is about to escape in the centrifugal direction from the tip of the blade 13 is captured by the upstream inclined portion 13A and flows out in the diagonal centrifugal direction opposite to the rotational direction, and the tip of the blade 13 It is pushed in the rotational direction, and the rotational efficiency of the water turbine rotor 6 is enhanced.
Therefore, even when the flow velocity of the water flow in the canal 2 is small, the number of revolutions and the torque of the water turbine rotor 6 are increased by the synergetic effect of the water flow deflector 7 and the upstream inclined portion 13A, and the power generation efficiency is improved.
 図7及び図8は、本発明に係る水力発電装置の実施例2の側面図である。なお、前述した実施例1と同様の要素には、同じ符号を付して、その詳細な説明を省略する。 7 and 8 are side views of the second embodiment of the hydraulic power generation apparatus according to the present invention. In addition, the same code | symbol is attached | subjected to the element similar to Example 1 mentioned above, and the detailed description is abbreviate | omitted.
 実施例2の水力発電装置は、実施例1と同様の水流偏向板7の先端部に、水車ロータ6の回転方向と反対方向に折曲された折曲部7Aを形成したものである。この実施例2の水流偏向板7の放射方向の突出寸法は、折曲部7Aがブレード13の最大弦長部13B付近まで延出する長さとされている。 The hydroelectric power generation apparatus according to the second embodiment is the same as the first embodiment except that a bent portion 7A bent in the direction opposite to the rotation direction of the water turbine rotor 6 is formed at the tip of the water flow deflection plate 7. The projection dimension in the radial direction of the water flow deflection plate 7 of the second embodiment is set such that the bent portion 7A extends to the vicinity of the maximum chord length portion 13B of the blade 13.
 実施例2に係る水力発電装置においては、水流偏向板7の先端部に、水車ロータ6の回転方向と反対方向に折曲された折曲部7Aを形成してあるため、各水流偏向板7によって偏向された水流が遠心方向に流動するのが抑制され、水車ロータ6の回転方向と反対方向に向かって偏向される水量及び水勢が増大する。
 その結果、複数のブレード13における基端部から最大弦長部13B付近に至る傾斜面13Cが、コアンダ効果による揚力により、回転方向に強く押され、実施例1の水力発電装置に比して、水車ロータ6の回転数及びトルクは大となり、発電効率はより向上する。
In the hydraulic power generation apparatus according to the second embodiment, since the bent portion 7A bent in the direction opposite to the rotation direction of the water turbine rotor 6 is formed at the tip of the water flow deflection plate 7, each water flow deflection plate 7 The flow of water deflected by the fluid flow is suppressed from flowing in the centrifugal direction, and the amount and amount of water deflected in the direction opposite to the rotation direction of the water turbine rotor 6 are increased.
As a result, the inclined surface 13C from the base end to the vicinity of the maximum chord length 13B of the plurality of blades 13 is strongly pushed in the rotational direction by the lift force by the Coanda effect, and compared to the hydraulic power generation device of the first embodiment, The rotation speed and torque of the water turbine rotor 6 become large, and the power generation efficiency is further improved.
 図9は、本発明に係る水力発電装置の実施例3の正面図である。なお、前述した実施例1、2と同様の部材には、同じ符号を付して、その詳細な説明を省略する。 FIG. 9 is a front view of a third embodiment of the hydroelectric power generation apparatus according to the present invention. In addition, the same code | symbol is attached | subjected to the member similar to Example 1 and 2 mentioned above, and the detailed description is abbreviate | omitted.
 実施例3の水力発電装置は、実施例2と同様の折曲部7Aを有する複数の水流偏向板7の放射方向の突出寸法を、折曲部7Aがブレード13の中間部、すなわちブレード13の放射方向の長さのほぼ半分の位置まで延出する長さとし、かつ、水車ロータ6の回転軸線に対する傾斜角度を、実施例1、2の水流偏向板7のそれよりも大(例えば15度)としたものである。 The hydroelectric power generation apparatus according to the third embodiment has the radial projection dimensions of the plurality of water flow deflectors 7 having the same bending portion 7A as in the second embodiment, and the bending portion 7A is an intermediate portion of the blade 13, ie, the blade 13. The length extends to approximately half the length in the radial direction, and the inclination angle with respect to the rotation axis of the water turbine rotor 6 is larger than that of the water flow deflector 7 of the first and second embodiments (for example, 15 degrees). The
 このように、水流偏向板7の放射方向の突出寸法を、ブレード13の中間部まで延出する長さとし、かつ傾斜角度を大とすると、水流偏向板7によって水車ロータ6の回転方向と反対方向へ大きく偏向された水流により、ブレード13の基部側が、コアンダ効果による揚力により、回転方向に押されるので、前記実施例と同様に、水車ロータ6の回転数及びトルクが高くなり、発電効率は向上する。 Thus, assuming that the projecting dimension of the water flow deflection plate 7 in the radial direction is a length extending to the middle part of the blade 13 and the inclination angle is large, the water flow deflection plate 7 reverses the rotation direction of the water turbine rotor 6 Since the base side of the blade 13 is pushed in the rotational direction by the lift force by the Coanda effect by the water flow that is largely deflected to the same direction, the number of rotations and the torque of the water turbine rotor 6 increase and the power generation efficiency is improved. Do.
 また、水流偏向板7の放射方向の突出寸法を小とした分だけ、水流抵抗が小さくなるとともに、各ブレード13の弦長を漸次大とした遠心方向の半部は開放され、その上流側の受水面に水流が抵抗なく当たるので、水車ロータ6の回転数及びトルクを低下させるおそれはない。なお、折曲部7Aを省略して、水流偏向板7の放射方向の突出寸法のみを小とすることもある。 Also, the flow resistance is reduced by the amount by which the radial projection dimension of the water flow deflection plate 7 is reduced, and the half of the centrifugal direction in which the chord length of each blade 13 is gradually increased is opened. Since the water flow strikes the receiving surface without resistance, there is no possibility of reducing the rotational speed and torque of the water turbine rotor 6. In addition, the bending part 7A may be abbreviate | omitted and only the protrusion dimension of the radial direction of the water flow deflection | deviation plate 7 may be made small.
 図10は、本発明の実施例4に係る水力発電装置の一部を拡大して示すもので、前記実施例1の各水流偏向板7を、水流が水車ロータ6の回転方向と反対方向に湾曲して流れるように、曲面状に湾曲させてある。
 このようにすると、各水流偏向板7により水車ロータ6の回転方向と反対方向に偏向された水流が、旋回流になり易くなるので、複数のブレード13の傾斜面13Cが、回転方向に効果的に押され、水車ロータ6の回転数及びトルクが高められる。
 なお、実施例4の水流偏向板7においても、先端部に実施例2のような折曲部7Aを形成してもよく、このようにすると、旋回流の生成効果が高められる。
FIG. 10 is an enlarged view of a portion of a hydroelectric power generation apparatus according to a fourth embodiment of the present invention, in which the water flow of each water flow deflection plate 7 of the first embodiment is opposite to the rotation direction of the water turbine rotor 6 It is curved in a curved shape so that it flows in a curved manner.
In this way, the water flow deflected in the direction opposite to the rotation direction of the water turbine rotor 6 by each water flow deflection plate 7 is likely to become a swirling flow, so the inclined surfaces 13C of the plurality of blades 13 are effectively effective in the rotation direction. The rotation speed and torque of the water turbine rotor 6 are increased.
Also in the water flow deflection plate 7 of the fourth embodiment, the bent portion 7A as in the second embodiment may be formed at the tip, and in this case, the generation effect of the swirling flow is enhanced.
 図11は、本発明に係る水力発電装置の実施例5の側面図である。なお、前述した実施例1と同様の部材には、同じ符号を付して、その詳細な説明を省略する。 FIG. 11 is a side view of a fifth embodiment of the hydroelectric power generation apparatus according to the present invention. In addition, the same code | symbol is attached | subjected to the member similar to Example 1 mentioned above, and the detailed description is abbreviate | omitted.
 実施例5の水力発電装置は、ロータ支持ケース5、水車ロータ6及び複数の水流偏向板7を、用水路2の水流中に配置される、上流側と下流側の端部が拡径する円筒形の導水ダクト14により囲繞したものである。導水ダクト14の外周面の複数箇所は、支持枠体3の上流側と下流側の支柱3Aに固定されている。
 ケース吊支杆8は、導水ダクト14の上面の開口14Aを、水密性を保持して貫通し、上向きに突出している。
The hydroelectric generator according to the fifth embodiment has a cylindrical shape in which the diameter of the upstream and downstream ends of the rotor support case 5, the water turbine rotor 6 and the plurality of water flow deflectors 7 are arranged in the water flow of the water channel 2. It is surrounded by the water duct 14 of the A plurality of locations on the outer peripheral surface of the water guiding duct 14 are fixed to the support columns 3A on the upstream side and the downstream side of the support frame 3.
The case support rod 8 penetrates the opening 14A on the upper surface of the water guiding duct 14 while maintaining water tightness and protrudes upward.
 実施例5の水力発電装置においては、上流側より導水ダクト14内に流入した水流が下流方向に整然と流れ、導水ダクト14内の全水流が、水流偏向板7によって効果的に水車ロータ6の回転方向と反対方向に偏向させられるので、水車ロータ6の回転数及びトルクが高められ、発電効率は向上する。 In the hydroelectric power generation apparatus according to the fifth embodiment, the water flow which has flowed into the water guiding duct 14 from the upstream side flows neatly in the downstream direction, and the entire water flow in the water guiding duct 14 effectively rotates the water turbine rotor 6 by the water flow deflecting plate 7. As it is deflected in the direction opposite to the direction, the rotational speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is improved.
 また、水流が両端を拡径させた導水ダクト14に流入すると、導水ダクト14内を通過する水流の流速が、ベンチュリ効果により、導水ダクト14外の水流の流速よりも大となり、水流偏向板7によって水車ロータ6の回転方向と反対方向に偏向される水流の流速、及び複数の水流偏向板7を通過した後の偏向水流の流速も大となる。
 その結果、複数のブレード13が、コアンダ効果による揚力により回転方向に強く押されて、水車ロータ6の回転数及びトルクは高められ、前記各実施例の水力発電装置に比して、発電効率が向上する。
 なお、導水ダクト14の上流側と下流側の端部に拡径部を形成しないで、これを直円筒形のものとすることもある。
Further, when the water flow enters the water conduction duct 14 whose diameter is enlarged at both ends, the flow velocity of the water flow passing through the water conveyance duct 14 becomes larger than the flow velocity of the water flow outside the water conduction duct 14 by the venturi effect. Thus, the flow velocity of the water flow deflected in the direction opposite to the rotation direction of the water turbine rotor 6, and the flow velocity of the deflected water flow after passing through the plurality of water flow deflection plates 7 also become large.
As a result, the plurality of blades 13 are strongly pushed in the rotational direction by the lift force by the Coanda effect, the rotation speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is higher than that of the hydroelectric generator of each of the embodiments. improves.
In addition, without forming an enlarged diameter part in the upstream and downstream end part of the water conveyance duct 14, this may be made into a straight cylindrical thing.
 図12、図13は、本発明に係る水力発電装置の実施例6である。なお、前述した実施例と同様の部材には、同じ符号を付して、その詳細な説明を省略する。 この実施例6の水力発電装置1は、河川の川床15における若干高低差が形成されている箇所、または川床15を若干掘削して高低差を形成した箇所に設置されている。 12 and 13 show a sixth embodiment of the hydroelectric power generation apparatus according to the present invention. In addition, the same code | symbol is attached | subjected to the member similar to the Example mentioned above, and the detailed description is abbreviate | omitted. The hydroelectric power generation device 1 of the sixth embodiment is installed at a position where a slight height difference is formed in the riverbed 15 of the river, or at a position where the riverbed 15 is excavated slightly to form a height difference.
 すなわち、河川における高低差が形成されている箇所の川床15に、例えば上流側が下向傾斜部16Aとされ、下流側が水平部16Bとされた導水ダクト16を、水流中に水没するように、かつ川床15より離間するようにして、長手方向の両側面に固着された複数のアンカー部材17、17により不動状態に固定し、この導水ダクト16の水平部16Bに、水力発電装置1を、前記実施例と同様のロータ支持ケース5、水車ロータ6及び先端部に折曲部7Aを有する複数の水流偏向板7がダクト内に位置するようにして設置されている。
 なお、導水ダクト16を川床15より離間させて設置するのは、泥水や砂利等が導水ダクト16内に流入するのを防止するためである。
That is, for example, in the riverbed 15 at the location where the height difference in the river is formed, the water conduit 16 in which the upstream side is the downward inclined portion 16A and the downstream side is the horizontal portion 16B is submerged in the water flow, It is fixed in an immobile state by a plurality of anchor members 17, 17 fixed to both side surfaces in the longitudinal direction so as to be separated from the riverbed 15, and the hydraulic power unit 1 is mounted on the horizontal portion 16 B of the water guiding duct 16. A rotor support case 5 similar to the example, a water turbine rotor 6, and a plurality of water flow deflecting plates 7 having a bent portion 7A at the tip end portion are installed in the duct.
Note that the reason for placing the water guiding duct 16 away from the riverbed 15 is to prevent mud water, gravel, and the like from flowing into the water guiding duct 16.
 導水ダクト16の上流側の開口部には、導水ダクト16内に水流中の異物が流入するのを防止するフィルタ18が、ねじ等により着脱可能に取り付けられている。
 ロータ支持ケース5は、その両側面に内端部が固着された1対のケース支持アーム19、19の外端部を、導水ダクト16の水平部16Bの内面に固定することにより、水平部16B内の中心部に配置されている。なお、導水ダクト16は、ロータ支持ケース5を支持する、本発明の支持体を兼ねている。
At the opening on the upstream side of the water guiding duct 16, a filter 18 for preventing foreign matter in the water flow from flowing into the water guiding duct 16 is detachably attached by a screw or the like.
The rotor support case 5 is fixed to the inner surface of the horizontal portion 16B of the water conduit 16 by fixing the outer end portions of the pair of case support arms 19, 19 whose inner end portions are fixed to both side surfaces thereof. It is located in the center of the house. The water guiding duct 16 also serves as a support of the present invention for supporting the rotor support case 5.
 ロータ支持ケース5の前上部には、長寸のケース吊支杆20の下端部が固着され、導水ダクト16の水平部16Bの上面を貫通して、上方に延出するケース吊支杆20の上端部は、導水ダクト16の上面に下端が固着された、正面視下向きコ字状をなす、発電機支持台21の上面板21Aにより支持されている。 The lower end portion of the long case support rod 20 is fixed to the front upper portion of the rotor support case 5 and penetrates the upper surface of the horizontal portion 16B of the water duct 16 to extend upward. The upper end portion is supported by an upper surface plate 21A of the generator support base 21 having a U-shape in a front view downward direction, whose lower end is fixed to the upper surface of the water guiding duct 16.
 発電機支持台21の上面板21Aには発電機9が固定され、この発電機9は、前記実施例と同様に、ケース吊支杆20内に収容された伝動手段に連係され、ケース吊支杆20内で回転させられる上下方向の伝動軸の上端部に連結されている。 図13に示すように、ロータ軸11が水車ロータ6と共に正面視時計回り方向に回転すると、発電機9が駆動されて発電するようになっている。
 なお、発電機支持台21の高さは、発電機9が水没しないように、水面から十分に離間する上下寸法に設定されている。
A generator 9 is fixed to the upper surface plate 21A of the generator support base 21. This generator 9 is linked to transmission means accommodated in the case support rod 20 as in the embodiment described above, and the case support is supported. It is connected to the upper end of a vertical transmission shaft that is rotated in the crucible 20. As shown in FIG. 13, when the rotor shaft 11 rotates clockwise with the water rotor 6 in a front view, the generator 9 is driven to generate electric power.
In addition, the height of the generator support 21 is set to an upper and lower dimension sufficiently separated from the water surface so as to prevent the generator 9 from being submerged.
 実施例6の水力発電装置においても、河川における高低差の小さな川床15に導水ダクト16を設置し、この導水ダクト16の水平部16B内に、外周面に複数の水流偏向板7を有するロータ支持ケース5及び水車ロータ6を収容してある。 そのため、導水ダクト16内を整然と流れる水流は、複数の水流偏向板7によって、水車ロータ6の回転方向と反対方向に偏向され、前記実施例と同様に、複数のブレード13がコアンダ効果により回転方向に強く押される。
 従って、流れの緩やかな河川であっても、水車ロータ6の回転数及びトルクが高められ、発電効率は向上する。
Also in the hydroelectric power generation apparatus according to the sixth embodiment, the water guiding duct 16 is installed on the small riverbed 15 having a height difference in the river, and the rotor support having the plurality of water flow deflecting plates 7 on the outer peripheral surface in the horizontal portion 16B of the water guiding duct 16 The case 5 and the water turbine rotor 6 are accommodated. Therefore, the water flow flowing in the water conveyance duct 16 in an orderly manner is deflected in the direction opposite to the rotation direction of the water turbine rotor 6 by the plurality of water flow deflection plates 7, and the plurality of blades 13 rotate in the rotation direction by the Coanda effect. It is strongly pressed by
Therefore, even if the flow is a gentle river, the rotational speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is improved.
 なお、実施例6の水力発電装置においては、導水ダクト16を省略し、実施例1のような支持枠体3等を川床15に設置して、支持枠体3等により、ケース吊支杆20や発電機9を支持するようにすることもできる。
 また、全体が下向きに傾斜し、水平部16Bのない導水ダクト16の場合には、下向傾斜部16A内に、水流偏向板7を有するロータ支持ケース5及び水車ロータ6を、下向傾斜部16Aに沿うように斜めに収容することもできる。
In the hydroelectric power generation apparatus of the sixth embodiment, the water guiding duct 16 is omitted, and the support frame 3 and the like as in the first embodiment are installed on the riverbed 15, and the support frame 3 and the like support the case And the generator 9 can be supported.
Further, in the case of the water guiding duct 16 which is entirely inclined downward and does not have the horizontal portion 16B, the rotor support case 5 having the water flow deflector 7 and the water turbine rotor 6 in the downward inclined portion 16A It can also be housed diagonally along the 16A.
 本発明は、前記各実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で、例えば次のような種々の変形や変更を施すことが可能である。
 前記実施例1~6では、水力発電装置を、用水路2内に設置される支持枠体3により支持しているが、支持枠体3を使用しないで、単に用水路2を跨ぐように設置された支持体により水力発電装置を吊支するようにしてもよい。
The present invention is not limited to the above-described embodiments, and various modifications and changes as described below can be made without departing from the scope of the present invention.
In the first to sixth embodiments, although the hydroelectric generator is supported by the support frame 3 installed in the water channel 2, it is installed so as to simply straddle the water channel 2 without using the support frame 3. The hydroelectric generator may be suspended by a support.
 また、前記各実施例では、水車ロータ6のブレード13の数を4枚としたが、これに限定されないことは勿論のこと、先端部に上流向傾斜部13Aが形成されていないブレードや、抗力型ブレードを備えるプロペラ型の水車ロータを用いた水力発電装置にも、本発明を適用することができる。
 抗力型ブレードを備える水車ロータを用いる際には、水流偏向板7を、水車ロータの回転方向と同方向に傾斜させればよく、このようにしても、水流偏向板7により偏向された旋回水流によって抗力型ブレードが回転方向に押されるため、水車ロータを増速させて、その回転数及びトルクを高めることができる。
Further, although the number of the blades 13 of the water turbine rotor 6 is four in each of the above embodiments, the number of blades 13 is not limited to this, and it is needless to say The present invention can also be applied to a hydroelectric generator using a propeller-type water turbine rotor provided with a mold blade.
When using a water turbine rotor provided with a drag type blade, the water flow deflection plate 7 may be inclined in the same direction as the rotation direction of the water turbine rotor, and even in this way, the swirling water flow deflected by the water flow deflection plate 7 Since the drag type blade is pushed in the rotational direction by this, the water turbine rotor can be accelerated to increase its rotational speed and torque.
 更に、前記各実施形態では、水車ロータ6に連係された発電機9を、ロータ支持ケース5の外部に設置しているが、ロータ支持ケース5内に発電機を収容し、発電した電力を、電気配線を介して外部に取り出すようにしてもよい。 Furthermore, in each of the above embodiments, the generator 9 linked to the water turbine rotor 6 is installed outside the rotor support case 5, but the generator is accommodated in the rotor support case 5 and the generated power is You may take out outside via an electrical wiring.
 図14以下は、落差水路装置22の水路の流水中に、水力発電装置1を配設する実施例を示すもので、前例と同じ部材には同じ符号を付して説明を省略する。 落差水路装置22は、図14に示すように、下部が漏斗状をなし、下面に排水孔23Aを有する貯水槽23と、排水孔23Aと連通するようにして、上流端が貯水槽23の下面に連結された逆向きL字状の導水管24と、導水管24の上部寄りに水力発電装置1が取付けられている。 FIG. 14 and the subsequent figures show an embodiment in which the hydroelectric power generation apparatus 1 is disposed in the flowing water of the water fall channel device 22. The same members as in the previous example are given the same reference numerals and the explanation thereof is omitted. As shown in FIG. 14, the head channel 22 communicates with the water storage tank 23 having a funnel-shaped lower portion and a drainage hole 23A on the lower surface and the drainage hole 23A, and the upstream end is the lower surface of the water storage tank 23 The hydropower generator 1 is attached to the reverse L-shaped water pipe 24 connected to the above, and the upper part of the water pipe 24.
 導水管24は、垂直管部24Aと、その下端に上向きエルボ状の上端がフランジを介して着脱可能に連結され、下面が地面Gに接地された水平管部24Bとからなり、水力発電装置1は、垂直管部24Aに取付けられている。
 貯水槽23の下端から水平管部24Bまでの水の落差は、落差水路装置22の設置スペース等を考慮して、例えば1~3mとしてある。水平管部24Bの下端より流出する水は、図示しない水路を介して、用水路や河川等に流下される。
The water conduit 24 comprises a vertical pipe portion 24A and a horizontal pipe portion 24B whose lower end is connected to the ground G at the lower end so that the upper end of the upward elbow is detachably connected to the lower end thereof. Is attached to the vertical pipe portion 24A.
The height of the water from the lower end of the water storage tank 23 to the horizontal pipe portion 24B is, for example, 1 to 3 m in consideration of the installation space and the like of the drop channel device 22. Water flowing out of the lower end of the horizontal pipe portion 24B flows down to a canal, a river or the like via a water channel (not shown).
 貯水槽23の上端の開口面には、比較的大きなごみ等が入り込むのを防止する金網を有する上蓋25が被せられている。また、垂直管部24Aの上端部には、貯水槽23内に入り込んだ細かなごみ等を捕捉するためのフィルタ18が、着脱可能に取り付けられている。 An upper lid 25 having a wire mesh for covering relatively large dust and the like from entering is disposed on the opening surface of the upper end of the water storage tank 23. In addition, a filter 18 for capturing fine dust and the like that has entered the water storage tank 23 is detachably attached to the upper end portion of the vertical pipe portion 24A.
 貯水槽23には、例えば用水路、排水路、河川、湖沼、貯水池、ダム等から引き込まれた水が、給水管26を介して貯水されるようになっている。貯水槽23への給水量は、例えば給水管26の取水口に設けた流量調整用の仕切弁等(図示略)によって調節され、水力発電装置1の稼働中においては、貯留水はほぼ満水状態に保たれるようになっている。 In the water storage tank 23, for example, water drawn in from an irrigation canal, a drainage channel, a river, a lake, a reservoir, a reservoir, a dam, etc. is stored via the water supply pipe 26. The amount of water supplied to the water storage tank 23 is adjusted, for example, by a sluice valve (not shown) for flow rate adjustment provided at the water intake port of the water supply pipe 26, and the stored water is almost full It is supposed to be kept
 貯水槽23及び導水管24は、下端が地面Gにより支持され、上端が貯水槽23の漏斗状部の外周面に固定された複数(例えば3本以上)の垂直支持杆27により、安定的に保持されている。 The water storage tank 23 and the water conduit 24 are stably supported by the ground G at the lower end and by a plurality of (for example, three or more) vertical support rods 27 whose upper ends are fixed to the outer peripheral surface of the funnel-shaped portion of the water storage tank 23 It is held.
 水力発電装置1は、垂直管部24Aの下流側寄りの中心部に配置された、水流方向(上下方向)に長い中空状のロータ支持ケース5と、ロータ支持ケース5の下端において、平面視反時計回り方向に回転する水車ロータ6を備えている。
 水車ロータ6の直上においては、ロータ支持ケース5の長手方向(上下方向)の外周面に固定された複数(本実施例では8枚)の水流偏向板7と、ロータ支持ケース5の上方寄りの右側面に左側端が固着され、垂直管部24Aを貫通する右側部が、垂直管部24Aの右側面に固着された取付ブラケット28により支持された、水平かつ中空状の伝動軸収容アーム29と、取付ブラケット28に取付けられ、水車ロータ6に連係されて発電する発電機9とを備えている。
The hydroelectric power generation device 1 is disposed in a central portion near the downstream side of the vertical pipe portion 24A, and has a hollow rotor support case 5 long in the water flow direction (vertical direction), and the lower end of the rotor support case 5 in plan view. The water turbine rotor 6 rotates in the clockwise direction.
Immediately above the water turbine rotor 6, a plurality of (eight in the present embodiment) water flow deflection plates 7 fixed to the outer peripheral surface in the longitudinal direction (vertical direction) of the rotor support case 5 and the upper side of the rotor support case 5 The horizontal hollow transmission shaft receiving arm 29 is supported by a mounting bracket 28 whose left end is fixed to the right side and the right side passing through the vertical pipe 24A is fixed to the right side of the vertical pipe 24A. , And a generator 9 attached to the mounting bracket 28 and linked to the water turbine rotor 6 to generate electric power.
 図14に示すように、ロータ支持ケース5の上方寄りの外周面は、前記伝動軸収容アーム29と、垂直管部24Aの内面に固定された3本の水平のケース支持アーム15とにより、垂直管部24Aに安定よく支持されている。
 なお、図示は省略するが、伝動軸収容アーム29及びケース支持アーム19は、上部の厚さが厚く、下方に向かって漸次薄くなる、側面視魚形断面を有しており、それらを通過する水流が、増速するようにしてある。
As shown in FIG. 14, the upper outer peripheral surface of the rotor support case 5 is vertical by the transmission shaft accommodation arm 29 and three horizontal case support arms 15 fixed to the inner surface of the vertical pipe portion 24A. It is stably and well supported by the pipe portion 24A.
Although not shown, the transmission shaft receiving arm 29 and the case support arm 19 have a fish-shaped cross section in side view, which has a thick upper portion and gradually decreases downward, and passes through them. The water flow is made to accelerate.
 ロータ支持ケース5は、上部が大径で、下方に向かうに従って漸次小径となる、まぐろ状の形状を有し、上方よりロータ支持ケース5に向かって流れる水流は、ロータ支持ケース5の魚形状に沿って下方に速く流れ、水車ロータ6における後述するブレード13の基部付近を通過する水流の速度が高まるようになっている。 The rotor support case 5 has a tuna-like shape with a large diameter at the top and a gradually smaller diameter toward the bottom, and the water flow from the top toward the rotor support case 5 is shaped like a fish in the rotor support case 5 The velocity of the water flowing fast along the lower side and passing near the base of the blade 13 described later in the water turbine rotor 6 is increased.
 ロータ支持ケース5の内部には、下端部をロータ支持ケース5の下端より突出させた上下方向(水流方向)を向くロータ軸11が、図示しない軸受により、回転自在に支持して収容されている。 Inside the rotor support case 5, a rotor shaft 11 having a lower end protruding from the lower end of the rotor support case 5 and directed in the vertical direction (water flow direction) is rotatably supported and accommodated by a bearing (not shown). .
 水車ロータ6は、ロータ軸11の下端部に固着されたハブ12と、求心方向の基部が、ハブ12に等間隔おきに固定された複数(本実施例では4枚)の揚力型ブレード(以下、ブレードと略称する)13とを備えている。ハブ12及びブレード13は、例えば合成樹脂(繊維強化合成樹脂も含む)、アルミニウム(その合金も含む)等の軽金属、ステンレス鋼やチタン等の金属材料により形成されている。 The water turbine rotor 6 has a hub 12 fixed to the lower end portion of the rotor shaft 11 and a plurality of (four in the present embodiment) lift-type blades (the followings are fixed to the hub 12). And 13). The hub 12 and the blade 13 are made of, for example, a synthetic resin (including a fiber reinforced synthetic resin), a light metal such as aluminum (including an alloy thereof), or a metal material such as stainless steel or titanium.
 ロータ軸11の上端部は、伝動手段(回転軸線を直交させて噛合する2個の傘歯車)、及び伝動手段により伝動軸収容アーム29内で回転させられる水平の伝動軸(いずれも図示略)を介して、発電機9に連係され、ロータ軸11が水車ロータ6と共に平面視反時計回り方向に回転することにより、発電機9が駆動されて発電するようになっている。 The upper end portion of the rotor shaft 11 is a transmission means (two bevel gears meshing with rotating axes orthogonal to each other), and a horizontal transmission shaft (not shown) rotated in the transmission shaft receiving arm 29 by the transmission means The generator 9 is driven to generate electric power by rotating the rotor shaft 11 in a counterclockwise direction in plan view with the water turbine rotor 6 in cooperation with the generator 9 via the.
 各ブレード13は、図3~図6に示したものと変わらない。水車ロータ6としては、図7におけるロータ支持ケース5を縦向きとし、水車ロータ6を下流側に位置させるものである。 Each blade 13 is the same as that shown in FIGS. As the water turbine rotor 6, the rotor support case 5 in FIG. 7 is vertically oriented, and the water turbine rotor 6 is positioned downstream.
 これにより、各ブレード13が上方から偏向水流を受けると、各ブレード13には、回転方向へ作用する反力(推力)によって、水車ロータ6は、平面視反時計回り方向に回転する。
 また、各ブレード13の先端部には、上流向傾斜部13Aが形成されているため、水車ロータ6の回転時に、回転方向後側に傾斜する傾斜面13Cに沿って基端部から遠心方向に流出しようとする水流の一部を、上流向傾斜部13Aにより捕捉し、斜め遠心方向に流出させるので、その反作用によりブレード13の回転方向の推力が増大し、水車ロータ6の回転数及びトルクが高められる。
Thus, when each blade 13 receives a deflected water flow from above, the water turbine rotor 6 rotates counterclockwise in plan view by the reaction force (thrust) acting on each blade 13 in the rotational direction.
Further, since the upstream direction inclined portion 13A is formed at the tip end portion of each blade 13, when the water turbine rotor 6 rotates, along the inclined surface 13C inclined to the rear side in the rotational direction, from the base end to the centrifugal direction Since a part of the water stream to be discharged is captured by the upstream inclined portion 13A and discharged in the oblique centrifugal direction, the reaction increases the thrust in the rotational direction of the blade 13, and the rotation speed and torque of the water turbine rotor 6 increase. Be enhanced.
 図16に拡大して示すように、前述した8枚の水流偏向板7は、伝動軸収容アーム13及びケース支持アーム15と水車ロータ10との間において、ロータ支持ケース9の上下方向の外周面に、放射方向に突出するように等間隔おきに、かつ水車ロータ6の回転軸線に対し、水車ロータ6を増速させる方向、すなわち水車ロータ6の回転方向と反対方向に所定角度傾斜させて基端部が固着されている。 各水流偏向板7の軸方向(上下方向)の寸法は、例えばロータ支持ケース5の上下方向の長さのほぼ1/2とされ、また、放射方向への突出寸法は、例えば先端部がブレード13の最大弦長部13B付近まで延出する長さとしてある。
 なお、各水流偏向板7の放射方向への突出寸法は、ブレード13の先端まで延出する長さ、もしくは、先端を超える長さとすることもある。
As shown in FIG. 16 in an enlarged manner, the eight water flow deflection plates 7 described above have outer peripheral surfaces in the vertical direction of the rotor support case 9 between the transmission shaft accommodation arm 13 and the case support arm 15 and the water turbine rotor 10. In order to project in the radial direction and at a predetermined angle in the direction to accelerate the water turbine rotor 6, that is, in the direction opposite to the rotation direction of the water turbine rotor 6, with respect to the rotation axis of the water turbine rotor 6. The end is fixed. The dimension in the axial direction (vertical direction) of each water flow deflection plate 7 is, for example, approximately 1/2 of the length in the vertical direction of the rotor support case 5, and the projection dimension in the radial direction is, for example, a blade at the tip end The length is extended to the vicinity of the maximum chord length portion 13B of thirteen.
The projection size of each water flow deflection plate 7 in the radial direction may be a length extending to the tip of the blade 13 or a length exceeding the tip.
 水流偏向板7の先端部には、水車ロータ6の回転方向と逆方向に折曲された折曲部7Aが形成されている。なお、水流偏向板7は、ロータ支持ケース5を合成樹脂等により成形する場合、それと一体成形することができる。 A bent portion 7A bent in the direction opposite to the rotation direction of the water turbine rotor 6 is formed at the tip of the water flow deflection plate 7. When the rotor support case 5 is formed of synthetic resin or the like, the water flow deflection plate 7 can be integrally formed therewith.
 本実施例では、水車ロータ6の回転軸線に対する各水流偏向板7の傾斜角度を、ほぼ10°としてあるが、この傾斜角度は、水流偏向板7の枚数によって、例えば5°~45°の範囲内に設定される。
 すなわち、水流偏向板7によって水流抵抗が増大し、水車ロータ6に向かう偏向水流の速度が低下することがないように、水流偏向板7の枚数が多いほど傾斜角度を小さくし、枚数が少なくなるに従って、傾斜角度を漸次大とするのが好ましい。傾斜角度を大きくすると、水流偏向効果は増すが、反対に水流抵抗が増大して、水車ロータ6に向かう流速が小さくなるので、45°を超えないようにするのがよい。なお、水流偏向板7の枚数は、流速を低下させずに水流偏向効果を発揮させるために、水流の落差の大小に応じて、例えば3枚~16枚、好ましくは6枚~12枚とするのがよい。
In the present embodiment, the inclination angle of each water flow deflection plate 7 with respect to the rotation axis of the water turbine rotor 6 is approximately 10 °, but this inclination angle ranges, for example, from 5 ° to 45 ° depending on the number of water flow deflection plates 7 It is set within.
That is, as the number of the water flow deflectors 7 increases, the inclination angle decreases and the number decreases, so that the water flow resistance is not increased by the water flow deflector 7 and the velocity of the deflected water flow toward the water turbine rotor 6 is not reduced. It is preferable to make the inclination angle gradually larger according to If the inclination angle is increased, the water flow deflection effect is increased, but the water flow resistance is increased and the flow velocity toward the water turbine rotor 6 is decreased, so it is preferable not to exceed 45 °. The number of the water flow deflection plates 7 is, for example, 3 to 16, preferably 6 to 12 in accordance with the magnitude of the head of the water flow in order to exert the water flow deflection effect without lowering the flow velocity. That's good.
 前記水力発電装置のように、水車ロータ6よりも上流側に位置するロータ支持ケース5の外周面に、放射方向に突出する複数の水流偏向板7を、水車ロータ6の回転軸線に対し、その回転方向と反対方向に傾斜させて固着してあると、図14及び図16の矢印で示すように、貯水槽23より流出した水流が、8枚の水流偏向板7により水車ロータ6を増速させる方向、すなわち水車ロータ6の回転方向と反対方向に旋回するように偏向させられる。 As in the case of the above-mentioned hydraulic power generator, on the outer peripheral surface of the rotor support case 5 positioned upstream of the water turbine rotor 6, a plurality of water flow deflection plates 7 projecting in the radial direction with respect to the rotation axis of the water turbine rotor 6 When it is fixed by inclining in the direction opposite to the rotation direction, as shown by the arrows in FIG. 14 and FIG. 16, the water flowed out from the water storage tank 23 accelerates the water turbine rotor 6 by the eight water flow deflection plates 7 , I.e., it is deflected to turn in the direction opposite to the rotation direction of the water turbine rotor 6.
 各水流偏向板7を通過した後の偏向水流は、複数のブレード13における基端部から最大弦長部13B付近に広範囲に当たり、各ブレード13に沿って流れる偏向水流の水勢及びコアンダ効果により、各ブレード13に作用する回転方向の揚力が大となる。
 これにより、各ブレード13は回転方向(平面視反時計回り方向)に強く押され、各ブレード13には、水の落差エネルギの外に旋回エネルギが加わり、それらの相乗効果により、水車ロータ6の回転数及びトルクが高められる。
The deflected water flow after passing through each water flow deflection plate 7 strikes a wide range from the base end of the plurality of blades 13 to the vicinity of the maximum chord length 13B, and the waters of the deflected water flows along each blade 13 and the Coanda effect The lift in the rotational direction acting on the blade 13 is increased.
As a result, each blade 13 is strongly pressed in the rotational direction (counterclockwise direction in plan view), and turning energy is added to each blade 13 in addition to the drop energy of the water, and their synergistic effect causes the water turbine rotor 6 to Speed and torque are increased.
 また、ブレード13の先端部には、上流方向に向かって傾斜する上流向傾斜部13Aを設けてある。そのため、ブレード13の先端から遠心方向へ逃げようとする水流は、上流向傾斜部18Aに捕捉されて、回転方向と逆方向の斜め遠心方向に流出し、その反作用により、ブレード13の先端部は回転方向に押され、水車ロータ6の回転効率が高められる。
 従って、貯水槽23の設置スペース等により、導水管3の高さが制限され、水の落差(位置)エネルギが小さい場合であっても、水流偏向板7と上流向傾斜部13Aとの相乗効果により、水車ロータ6の回転数及びトルクを増大させて、発電効率を向上させることができる。
Further, at the tip end portion of the blade 13, an upstream-facing inclined portion 13A that inclines toward the upstream direction is provided. Therefore, the water stream which is going to escape from the tip of the blade 13 in the centrifugal direction is captured by the upstream inclined portion 18A and flows out in the diagonal direction opposite to the rotation direction, and the tip of the blade 13 It is pushed in the rotational direction, and the rotational efficiency of the water turbine rotor 6 is enhanced.
Therefore, the height of the water conduit 3 is limited by the installation space of the water storage tank 23, etc., and even when the drop (position) energy of water is small, the synergistic effect of the water flow deflector 7 and the upstream inclined portion 13A Thus, the rotation speed and torque of the water turbine rotor 6 can be increased to improve the power generation efficiency.
 更に、水流偏向板7の先端部には、水車ロータ6の回転方向と反対方向を向く折曲部7Aが形成されているため、各水流偏向板7によって偏向された水流が遠心方向に流動することが抑制され、水車ロータ6の回転方向と反対方向に向かって偏向される水量及び水勢が増大する。
 その結果、複数のブレード13における基端部から最大弦長部13B付近に至る傾斜面13Cが、コアンダ効果による揚力により回転方向に強く押され、水車ロータ6の回転数及びトルクは大となり、発電効率はより向上する。
Furthermore, since the bent portion 7A facing in the direction opposite to the rotation direction of the water turbine rotor 6 is formed at the tip of the water flow deflection plate 7, the water flow deflected by each water flow deflection plate 7 flows in the centrifugal direction. As a result, the amount and amount of water deflected in the direction opposite to the rotational direction of the water turbine rotor 6 are increased.
As a result, the inclined surface 13C from the base end to the vicinity of the maximum chord length 13B in the plurality of blades 13 is strongly pushed in the rotational direction by the lift force by the Coanda effect, the rotation speed and torque of the water turbine rotor 6 become large, Efficiency is further improved.
 図17は、水流偏向板7の変形例を示すもので、この例では、水流が水車ロータ6の回転方向と反対方向に湾曲して流れるように、各水流偏向板7を曲面状に湾曲させてある。
 このようにすると、各水流偏向板7により水車ロータ6の回転方向と反対方向に偏向された水流が、旋回流になり易くなるため、複数のブレード13が回転方向に効果的に押され、水車ロータ6の回転数及びトルクが高められる。
 なお、各水流偏向板7の先端部に形成してある折曲部7Aを省略し、単に板状をなす水流偏向板7とすることもある。
FIG. 17 shows a modification of the water flow deflector 7. In this example, each water flow deflector 7 is curved in a curved shape so that the water flow is curved in the direction opposite to the rotation direction of the water turbine rotor 6. It is
In this case, the water flow deflected in the direction opposite to the rotation direction of the water turbine rotor 6 by the water flow deflection plates 7 is likely to become a swirling flow, and the plurality of blades 13 are effectively pushed in the rotation direction. The rotational speed and torque of the rotor 6 are increased.
In addition, the bending part 7A currently formed in the front-end | tip part of each water flow deflection | deviation plate 7 may be abbreviate | omitted, and it may be set as the water flow deflection | deviation plate 7 which only makes plate shape.
 図18は、水力発電装置の実施例8の縦断側面図である。なお、前述した実施例と同様の部材には、同じ符号を付して、その詳細な説明を省略する。 FIG. 18 is a longitudinal side view of a hydraulic power generation system according to an eighth embodiment. In addition, the same code | symbol is attached | subjected to the member similar to the Example mentioned above, and the detailed description is abbreviate | omitted.
 実施例8の水力発電装置1は、実施例7と同様に、落差水路装置22の導水管24における水平管部24Bの下流側寄りに、ロータ支持ケース5を水平として配置したものである。
 発電機9は、ロータ支持ケース5の上面に取付けた上向きの伝動軸収容アーム29の上面に、取付ブラケット28を介して固定されている。
In the same manner as in the seventh embodiment, the hydroelectric generator 1 of the eighth embodiment arranges the rotor support case 5 horizontally near the downstream side of the horizontal pipe portion 24B in the water conduit 24 of the down flow water channel device 22.
The generator 9 is fixed to the upper surface of the upward transmission shaft receiving arm 29 attached to the upper surface of the rotor support case 5 via a mounting bracket 28.
 この水力発電装置1においても、水平管部24B内に流入した水流は、複数の水流偏向板7により水車ロータ6の回転方向と反対方向に旋回するように偏向され、この偏向水流によって、複数のブレード13の傾斜面13Cが、コアンダ効果による揚力により、回転方向に押されるので、水車ロータ6の回転数及びトルクが高められる。従って、貯水槽23から水平管部24Bまでの水の落差を大きくできない場合であっても、発電効率を向上させることができる。 Also in this hydraulic power generation device 1, the water flow that has flowed into the horizontal pipe portion 24B is deflected by the plurality of water flow deflection plates 7 so as to turn in the direction opposite to the rotation direction of the water turbine rotor 6. Since the inclined surface 13C of the blade 13 is pushed in the rotational direction by the lift force by the Coanda effect, the number of rotations and the torque of the water turbine rotor 6 are increased. Therefore, even when the water drop from the water storage tank 23 to the horizontal pipe portion 24B can not be increased, the power generation efficiency can be improved.
 図19は、本発明に係る水力発電装置の実施例9の縦断側面図である。なお、前述した実施例7及び8と同様の部材には、同じ符号を付して、その詳細な説明を省略する。 FIG. 19 is a longitudinal side view of a hydraulic power generation system according to a ninth embodiment of the present invention. The same members as those in Examples 7 and 8 described above are denoted by the same reference numerals, and the detailed description thereof will be omitted.
 実施例9に係る水力発電装置は、地面Gに設置された貯水槽23の外周面の下端部に、フィルタ18が装着された排水孔23Aを設け、貯水槽23の下部に、上下方向に傾斜する落差の小さな導水管24の上流端を、排水孔23Aと連通するように連結するとともに、導水管24の下流側の端部に、前記実施例8と同様の水力発電装置1を取付けたものである。 The hydroelectric generator according to the ninth embodiment is provided with a drainage hole 23A to which the filter 18 is attached at the lower end portion of the outer peripheral surface of the water storage tank 23 installed on the ground G, and is inclined in the vertical direction at the lower part of the water storage tank 23 The upstream end of the water pipe 24 having a small head difference is connected to communicate with the drainage hole 23A, and the hydraulic power unit 1 similar to the eighth embodiment is attached to the downstream end of the water pipe 24. It is.
 この実施例9の水力発電装置においても、導水管24内を流れる水流は、複数の水流偏向板7により、水車ロータ6の回転方向と反対方向に旋回するように偏向させられるため、複数のブレード13の傾斜面13Cが、コアンダ効果による揚力により、回転方向に押される。
 従って、落差が小さく水の流速の遅い導水管3であっても、水車ロータ6の回転数及びトルクが高められ、発電効率は向上する。
Also in the hydroelectric generator of this ninth embodiment, the water flow flowing in the water conduit 24 is deflected by the plurality of water flow deflection plates 7 so as to turn in the direction opposite to the rotation direction of the water turbine rotor 6, The 13 inclined surfaces 13C are pushed in the rotational direction by the lift force by the Coanda effect.
Therefore, even if the water guiding pipe 3 has a small head difference and a slow water flow velocity, the rotation speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is improved.
 図20は、本発明に係る水力発電装置の実施例10の縦断側面図で、水力発電装置1を、例えば農業用の用水路30に設置した例である。
 なお、前述した各実施例と同様の部材には、同じ符号を付して、その詳細な説明を省略する。
FIG. 20 is a vertical cross-sectional side view of a hydraulic power generation system according to a tenth embodiment of the present invention, which is an example in which the hydraulic power generation system 1 is installed, for example, in a water channel 30 for agriculture.
The same members as those in each embodiment described above are denoted by the same reference numerals, and the detailed description thereof will be omitted.
 この実施例では、用水路30に、水流を堰止め、上流側の水位を上昇させて、下流側の水流との間に落差を形成するための堰板20を設置し、堰板20における下流側の側面(図の左側面)に、水力発電装置1を取付けたものである。
 なお、堰板31と水力発電装置1とを予め一体的に結合し、それらをユニット化した状態で、用水路30にクレーン等により吊上げて設置しうるようにしてある。そのために、堰板31の上端に固着された後述する堰板保持板34の中央部には、クレーン等のフックを掛止して吊上げ可能なアイボルト等の複数の吊上げ金具32が取り付けられている。
In this embodiment, the weir 30 is provided with a weir plate 20 for blocking the water flow, raising the water level on the upstream side, and forming a head difference with the water flow on the downstream side. The hydroelectric generator 1 is attached to the side surface (left side surface of the figure).
The anchor plate 31 and the hydraulic power generation device 1 are integrally connected in advance, and in a state where they are unitized, they can be lifted and installed on the water channel 30 by a crane or the like. To that end, a plurality of lifting brackets 32 such as eyebolts that can be lifted by hooking a crane or the like are attached to the central portion of a later-described later-described later holding plate 34 fixed to the upper end of the holding plate 31. .
 堰板31の上下寸法は、その下端が用水路30の底面まで到達するように、用水路30の深さとほぼ同寸に形成され、同じく幅寸法は、用水路30とほぼ同じ幅に形成されている。 The upper and lower dimensions of the weir plate 31 are formed substantially the same as the depth of the canal 30 so that the lower end reaches the bottom of the canal 30, and the width dimension is also formed substantially the same width as the canal 30.
 堰板31の上端には、用水路30を横切るように、その上面に横架され、複数の固定具33、33により固定された堰板保持板34が、幅方向に並ぶ三角形の複数の補強板34Aをもって固着されており、堰板31は、この堰板保持板34と補強板34Aにより、用水路30内に不動状態に保持されている。 A plurality of triangular reinforcing plates are arranged at the upper end of the gutter plate 31 so as to cross the water channel 30 and are straddled on the upper surface thereof, and a gutter plate holding plate 34 fixed by a plurality of fasteners 33 and 33 is arranged in the width direction. It is fixed with 34A, and the weir plate 31 is held immobile in the water channel 30 by the weir plate holding plate 34 and the reinforcing plate 34A.
 堰板31の上部寄りには、水位を上昇させた上流側の流水を、後述する導水管24を介して下流側に流出させるための導水孔35が設けられている。堰板31における上流側の壁面の上部には、導水孔35に異物が流入するのを防止するメッシュ状のフィルタ18が、複数の保持具36、36により着脱可能に取り付けられている。 In the upper part of the weir plate 31, a water conduction hole 35 is provided to allow the upstream water whose water level has been raised to flow out to the downstream side via a water conduction pipe 24 described later. A mesh-like filter 18 for preventing foreign matter from flowing into the water passage 35 is detachably attached to the upper portion of the upstream wall surface of the weir plate 31 by a plurality of holders 36, 36.
 堰板31の下端部には、その上流側の水位を調整するための通水孔37が設けられ、堰板31により堰止められた上流側の水の一部を、通水孔37を介して下流側に排水することにより、上流側の水位が上がり過ぎて用水路30から溢れるのを防止するようになっている。通水孔37の大きさや個数は、用水路30の深さや流量等によって適宜に決められる。
 なお、このような通水孔37を設ける代わりに、堰板20の下端を用水路30の底面から離間させ、それらの間に形成される隙間を通水孔としてもよい。用水路30の水量が少ない時には、このような通水孔37を省略して、上流側の水流の全部を堰板31により堰止めるようにしてもよい。
A water passage hole 37 for adjusting the water level on the upstream side is provided at the lower end portion of the weir plate 31, and a part of the upstream water blocked by the weir plate 31 is passed through the water passage hole 37. By draining to the downstream side, it is possible to prevent the water level on the upstream side from rising too much and overflowing from the canal 30. The size and the number of the water flow holes 37 are appropriately determined depending on the depth, the flow rate, and the like of the water channel 30.
In addition, instead of providing such a water flow hole 37, the lower end of the weir plate 20 may be separated from the bottom surface of the water passage 30, and a gap formed between them may be a water flow hole. When the water volume of the canal 30 is small, such a water flow hole 37 may be omitted and the entire upstream water flow may be blocked by the weir plate 31.
 堰板31の下流側の壁面の上部には、用水路30の水位を上昇させた上流側の流水を下流側に流出させるための導水管24が、導水孔35と連通するようにして取り付けられている。
 導水管24は、右端上部が用水路30の上流方向に開口し、その開口端が導水孔34と連通するように、フランジをもって堰板31にボルト止めされた上側エルボ管部24Cと、この上側エルボ管部24Cの下向き開口と連続する垂直管部24Dと、この垂直管部24Dの下端にフランジを介して連結され、左端下部が用水路30の下流方向に開口する下側エルボ管部24Eとからなっている。
In the upper part of the wall surface on the downstream side of the weir plate 31, a water conduit 24 for flowing out the upstream water, which raised the water level of the irrigation channel 30, to the downstream side is attached in communication with the water conduit 35 There is.
The upper elbow pipe portion 24C bolted to the weir plate 31 with a flange so that the right end upper portion of the water conduit 24 opens in the upstream direction of the irrigation conduit 30 and the open end communicates with the water conduit 34; A vertical pipe portion 24D continuous with the downward opening of the pipe portion 24C, and a lower elbow pipe portion 24E connected to the lower end of the vertical pipe portion 24D via a flange and having a lower left end opening in the downstream direction of the irrigation channel 30 ing.
 垂直管部24Dの中間部には、前記実施例8と同様に、ロータ支持ケース5を上下方向を向くように配置し、その下端の水車ロータ6を、平面視反時計回り方向に回転するようにするとともに、複数の水流偏向板7を水車ロータ6の回転方向と反対方向に傾斜させて取付けられている。なお、発電機9は、水没しないように、下流側の水面から離間するようにしてある。 As in the eighth embodiment, the rotor support case 5 is disposed in the middle portion of the vertical pipe portion 24D so as to face the vertical direction, and the water turbine rotor 6 at the lower end is rotated counterclockwise in plan view. The plurality of water flow deflectors 7 are attached to be inclined in the direction opposite to the rotation direction of the water turbine rotor 6. The generator 9 is separated from the water surface on the downstream side so as not to be submerged.
 この水力発電装置1においても、堰板31により堰止められた上流側の水が導水管24に流入すると、水流は、ロータ支持ケース5における複数の水流偏向板7により、水車ロータ6の回転方向と反対方向に旋回するように偏向させられる。 Also in this hydraulic power generation device 1, when the upstream water blocked by the weir plate 31 flows into the water conduit 24, the water flow is in the rotational direction of the water turbine rotor 6 by the plurality of water flow deflection plates 7 in the rotor support case 5. It is deflected to turn in the opposite direction.
 この偏向水流により、ブレード13が、コアンダ効果による揚力により回転方向に押され、各ブレード13には、水の落差エネルギの外に旋回エネルギが加わるため、導水管24の上下寸法を大として水の落差をそれほど大としなくても、水車ロータ6の回転数及びトルクが高められ、発電効率は向上する。 The deflection water flow causes the blades 13 to be pushed in the rotational direction by the lift force by the Coanda effect, and turning energy is added to each blade 13 outside the drop energy of the water, so the vertical dimension of the water conduit 24 is made large. Even if the head is not increased so much, the rotational speed and torque of the water turbine rotor 6 are increased, and the power generation efficiency is improved.
 また、用水路30のように、水の落差を形成することが困難な場合であっても、堰板31により水流を堰止めて上流側の水位を上昇させ、用水路30に落差を形成して発電しうるので、用水路30の自然に流れる水流を利用して発電する水力発電に比して、利用される水流のエネルギは大きく、発電効率は高い。 In addition, even when it is difficult to form a head of water, as in the case of the canal 30, the water flow is blocked by the weir plate 31 to raise the water level on the upstream side, and a head is formed in the canal 30 to generate electricity. Therefore, the energy of the water stream to be used is large and the power generation efficiency is high, as compared with the hydroelectric power generation using the naturally flowing water stream of the canal 30.
 さらに、堰板31により用水路30を一部堰止めて水位を上昇させ、落差を形成しうるので、用水路30の水量が少なく、水位が低い場合であっても、導水管24内の水車ロータ6は効率よく回転し、発電効率を高めることができる。
 また、堰板31により用水路30を堰止めるだけで用水路30に落差を形成しうるので、従来のようなコンクリート堰等を構築するための大がかりな土木工事は不要となり、水力発電装置の設置コストを低減させることができる。
Furthermore, because the canal 30 partially blocks the canal 30 and raises the water level to form a head, water volume in the canal 30 is small and the water rotor in the water conduit 24 is low even if the water level is low. Can efficiently rotate and enhance power generation efficiency.
In addition, since a drop can be formed in the canal 30 simply by holding the canal 30 by the weir plate 31, a large-scale civil engineering work for constructing a concrete weir and the like as in the prior art becomes unnecessary. It can be reduced.
 なお、実施例10においては、下側エルボ管部24Eの下部を下流側に延長して、その延長部分に、ロータ支持ケース5を、図13と同様の形態で設置することも可能である。この場合には、発電機9を防水カバー等により覆うか、伝動軸収容アーム29を上方に延長して、発電機9を水面より離間させればよい。 In the tenth embodiment, the lower portion of the lower elbow pipe portion 24E can be extended downstream, and the rotor support case 5 can be installed in the same manner as in FIG. In this case, the generator 9 may be covered by a waterproof cover or the like, or the transmission shaft accommodation arm 29 may be extended upward to separate the generator 9 from the water surface.
 図21は、本発明に係る水力発電装置の実施例11の縦断側面図で、水力発電装置1を用水路19に設置した別の実施例である。なお、前例と同様の部材には、同じ符号を付して、その詳細な説明を省略する。 FIG. 21 is a vertical cross-sectional side view of a hydraulic power generation system according to an eleventh embodiment of the present invention, which is another embodiment in which the hydraulic power generation system 1 is installed in the water channel 19. In addition, the same code | symbol is attached | subjected to the member similar to a front example, and the detailed description is abbreviate | omitted.
 この実施例11では、前記実施例10と同様の堰板31の上部に、用水路30の下流方向に向かって下向きに傾斜する傾斜導水管38を取付け、この傾斜導水管38の中間部に、前記実施例と同様のロータ支持ケース5を、発電機14が水没しないように設置したものである。 In the eleventh embodiment, the inclined water conduit 38 which inclines downward in the downstream direction of the water channel 30 is attached to the upper part of the gutter plate 31 similar to the tenth embodiment, and the middle portion of the inclined water conduit 38 The rotor support case 5 similar to that of the embodiment is installed so that the generator 14 is not submerged.
 実施例11の水力発電装置1においても、堰板31により堰止められた水が傾斜導水管38に流入すると、水流は、ロータ支持ケース5における複数の水流偏向板7により、水車ロータ6の回転方向と反対方向に旋回するように偏向させられるので、水の落差を大きくすることが困難な用水路30に水力発電装置1を設置した場合でも、水車ロータ6の回転数及びトルクが高められ、発電効率を向上させることができる。 Also in the hydraulic power generation device 1 of the eleventh embodiment, when the water blocked by the weir plate 31 flows into the inclined water conduit 38, the water flow is rotated by the plurality of water flow deflection plates 7 in the rotor support case 5. Because it is deflected to turn in the opposite direction to the direction, even when the hydroelectric generator 1 is installed in a water channel 30 where it is difficult to increase the water drop, the rotational speed and torque of the water turbine rotor 6 are increased, Efficiency can be improved.
 なお、実施例10及び実施例11に係わる水力発電装置1においては、堰板31によって用水路30の水流を完全に堰止めるものではなく、水位を上昇させた上流側の水は、導水管24、38及び通水孔37を介して下流側に流れるので、下流側の水利権等に影響を及ぼすおそれはない。 In the hydroelectric generator 1 according to the tenth embodiment and the eleventh embodiment, the water flow of the irrigation channel 30 is not completely stopped by the weir plate 31, but the upstream water with the water level raised is the water conduit 24, As it flows downstream via the water supply holes 38 and the water holes 37, there is no risk of affecting the water right of the downstream side.
 実施例10及び実施例11において、用水路30の水路幅が比較的大きい場合には、幅寸法を大とした堰板31に、複数の水力発電装置1を幅方向に並べて設置しうるので、より発電効率を高めることができる。
 実施例10及び実施例11に係わる水力発電装置1は、農業用の用水路30の他に、上下水道や工業用水路、川幅の比較的小さな河川などにも設置することができる。
In the tenth and eleventh embodiments, when the water channel width of the irrigation channel 30 is relatively large, the plurality of hydroelectric power generators 1 can be arranged in the width direction on the weir plate 31 having a large width dimension. Power generation efficiency can be improved.
The hydroelectric power generation device 1 according to the tenth and eleventh embodiments can be installed in water and sewage, industrial waterways, rivers with a relatively small river width, and the like in addition to the agricultural waterways 30.
 本発明は、前記各実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で、例えば次のような種々の変形や変更を施すことが可能である。
 上記各実施例では、水車ロータ6のブレード13の数を4枚としたが、これに限定されないことは勿論のこと、先端部に上向傾斜部13Aが形成されていない揚力型ブレードを備える水車ロータを用いた水力発電装置にも、本発明を適用することができる。
The present invention is not limited to the above-described embodiments, and various modifications and changes as described below can be made without departing from the scope of the present invention.
Although the number of the blades 13 of the water turbine rotor 6 is four in each of the above embodiments, the number of the blades 13 is not limited to this, and it is needless to say that a water turbine provided with a lift type blade in which the upward inclined portion 13A is not formed at the tip end The present invention can also be applied to a hydroelectric generator using a rotor.
 また、図22に示すように、複数の抗力型ブレード39を備えるプロペラ型反動水車ロータ、すなわち抗力型水車ロータ40を用いた水力発電装置にも、本発明を適用することができる。このような抗力型水車ロータ40を用いた際には、水流偏向板7を、抗力型水車ロータ40の回転軸線に対し、抗力型水車ロータ40を増速させる方向、すなわち抗力型水車ロータ40の回転方向と同方向に傾斜させればよい。
 このようにしても、水流偏向板7により偏向された旋回水流によって、抗力型ブレード39は回転方向に押されるため、抗力型水車ロータ40を増速させて、その回転数及びトルクを高めることができる。
Further, as shown in FIG. 22, the present invention can be applied to a propeller type reaction water turbine rotor provided with a plurality of drag type blades 39, that is, a hydraulic power generation apparatus using the drag type water turbine rotor 40. When such a drag-type water turbine rotor 40 is used, the direction in which the drag-type water turbine rotor 40 is accelerated with respect to the rotation axis of the water flow deflection plate 7 with respect to the rotation axis of the drag-type water rotor 40. It may be inclined in the same direction as the rotation direction.
Even in this case, since the drag type blade 39 is pushed in the rotation direction by the swirling water flow deflected by the water flow deflection plate 7, the drag type water turbine rotor 40 is accelerated to increase its rotation speed and torque. it can.
 前記各実施例では、発電機9を、ロータ支持ケース5及び導水管24、38の外部に設置しているが、ロータ支持ケース5の内部空間に発電機9を収容し、発電した電力を、ケース支持アーム19に挿通した電気配線を介して、外部に取り出すようにしてもよい。 In each of the above embodiments, the generator 9 is installed outside the rotor support case 5 and the water conduits 24 and 38. However, the generator 9 is accommodated in the internal space of the rotor support case 5 and the generated electric power is It may be taken out to the outside through the electrical wiring inserted in the case support arm 19.
1  水力発電装置
2  用水路
3  支持枠体(支持体)
3A 支柱
3B 下部横杆
3C 上面板
4  固定具
5  ロータ支持ケース
6  水車ロータ
7  水流偏向板
7A 折曲部
8  ケース吊支杆
9  発電機
10 傾斜ブラケット
11 ロータ軸
12 ハブ
13 揚力型ブレード
13A 上流向傾斜部
13B 最大弦長部
13C 傾斜面
14 導水ダクト
14A 開口
15 川床
16 導水ダクト
16A 下向傾斜部
16B 水平部
17 アンカー部材
18 フィルタ
19 ケース支持アーム
20 ケース吊支杆
21 発電機支持台
21A 上面板
22 落差水路装置
23 貯水槽
23A 排水孔
23B 上蓋
24 導水管
24A 垂直管部
24B 水平管部
24C 上側エルボ管部
24D 垂直管部
24E 下側エルボ管部
25 上蓋
26 給水管
27 垂直支持杆
28 取付ブラケット
29 伝動軸収容アーム
30 用水路
31 堰板
32 吊上げ金具
33 固定具
34 堰板保持板
34A補強板
35 導水孔
36 保持具
37 通水孔
38 傾斜導水管
39 抗力型ブレード
40 抗力型水車ロータ
G  地面
1 Hydroelectric generator 2 Water channel 3 Support frame (support)
Reference Signs List 3A post 3B lower cross section 3C upper surface plate 4 fixing member 5 rotor support case 6 water rotor 7 water flow deflection plate 7A bent portion 8 case hanging support 9 generator 10 inclination bracket 11 rotor shaft 12 hub 13 lifting blade 13A upstream direction Inclined portion 13B Maximum chord length 13C Inclined surface 14 Water conducting duct 14A Opening 15 River floor 16 Water conducting duct 16A Downward inclined portion 16B Horizontal part 17 Anchor member 18 Filter 19 Case support arm 20 Case suspension support 21 Generator support 21A Top plate 22 headwater channel device 23 water reservoir 23A drainage hole 23B upper lid 24 water conduit 24A vertical pipe portion 24B horizontal pipe portion 24C upper elbow pipe portion 24D vertical pipe portion 24E lower elbow pipe portion 25 upper cover 26 water supply pipe 27 vertical support rod 28 mounting bracket 29 Transmission shaft housing arm 30 Water channel 31 Base plate 32 Lifting bracket 33 fixed 34 sheathing board holding plate 34A plate 35 water guide hole 36 holder 37 water passage holes 38 inclined conduit 39 drag type blades 40 drag-type hydraulic turbine rotor G ground

Claims (10)

  1.  水流中に配置されるように支持体により支持された、水流方向に長いロータ支持ケースと、
     前記ロータ支持ケースに回転自在に支持された長手方向を向くロータ軸と、
     前記ロータ軸に連係され、該ロータ軸の回転により発電する発電機と、
     前記ロータ軸の下流側の一端部に円周方向に等間隔おきに取付けられ、水流を受けて一定方向に回転する複数のブレードを有する水車ロータと、
     前記ロータ支持ケースの長手方向の外周面に放射方向に突出するようにして、かつ前記水車ロータの回転軸線に対し所定角度傾斜させて固着され、水流を、前記水車ロータを増速させる方向に偏向させうる複数の水流偏向板とを備えることを特徴とする水力発電装置。
    An elongated rotor support case supported by a support so as to be disposed in the water flow;
    A longitudinally oriented rotor shaft rotatably supported on the rotor support case;
    A generator linked to the rotor shaft and generating electricity by rotation of the rotor shaft;
    A water turbine having a plurality of blades mounted at regular intervals in the circumferential direction at one end on the downstream side of the rotor shaft and receiving a flow of water and rotating in a fixed direction;
    It projects radially outward on the outer peripheral surface in the longitudinal direction of the rotor support case, and is fixed at a predetermined angle with respect to the rotation axis of the water rotor, and deflects the water flow in the direction to accelerate the water rotor. And a plurality of water flow deflection plates that can be driven.
  2.  前記水流偏向板の先端部に、水流が遠心方向に流動するのを抑制する折曲部を形成したことを特徴とする請求項1に記載の水力発電装置。 The hydroelectric power generation apparatus according to claim 1, wherein a bent portion for suppressing the flow of the water flow in the centrifugal direction is formed at the front end portion of the water flow deflection plate.
  3.  前記水流偏向板を、水流が前記水車ロータに向かって湾曲して流れるように、曲面状に湾曲させたことを特徴とする請求項1または2に記載の水力発電装置。 The hydroelectric power generation apparatus according to claim 1 or 2, wherein the water flow deflection plate is curved in a curved shape so that the water flow is curved and flows toward the water turbine rotor.
  4.  前記ブレードの上流側の受水面を、基端部に向かって漸次傾斜角度が大となるように、回転方向後外側に向かって傾斜する傾斜面とするとともに、ブレードの弦長を基端部から先端部に向かって漸次大とし、かつブレードを、最大弦長部を基点とする先端部に上流方向に傾斜する傾斜部が形成された揚力型のものとし、前記水流偏向板の放射方向の突出寸法を、当該水流偏向板の先端部が前記最大弦長部付近まで延出する長さとしたことを特徴とする請求項1~3のいずれかに記載の水力発電装置。 The upstream water-receiving surface of the blade is an inclined surface that is inclined toward the rear in the rotational direction so that the inclination angle gradually increases toward the proximal end, and the chord length of the blade is from the proximal end The blade is of a lift type having a gradually increasing size toward the tip and a blade having a slope which is inclined in the upstream direction at the tip starting from the largest chord length, and the projection of the water flow deflection plate in the radial direction The hydroelectric generator according to any one of claims 1 to 3, wherein a dimension of the water flow deflection plate is such that a tip end portion of the water flow deflection plate extends to the vicinity of the maximum chord length portion.
  5.  前記ブレードの上流側の受水面を、基端部に向かって漸次傾斜角度が大となるように、回転方向後外側に向かって傾斜する傾斜面とするとともに、ブレードの弦長を基端部から先端部に向かって漸次大とし、かつブレードを、最大弦長部を基点とする先端部に上流方向に傾斜する傾斜部が形成された揚力型のものとし、前記水流偏向板の放射方向の突出寸法を、当該水流偏向板の先端部が前記ブレードの中間部まで延出する長さとしたことを特徴とする請求項1~3のいずれかに記載の水力発電装置。 The upstream water-receiving surface of the blade is an inclined surface that is inclined toward the rear in the rotational direction so that the inclination angle gradually increases toward the proximal end, and the chord length of the blade is from the proximal end The blade is of a lift type having a gradually increasing size toward the tip and a blade having a slope which is inclined in the upstream direction at the tip starting from the largest chord length, and the projection of the water flow deflection plate in the radial direction The hydroelectric generator according to any one of claims 1 to 3, wherein the dimension of the water flow deflector is such that the tip of the water flow deflector extends to the middle of the blade.
  6.  前記水流偏向板の枚数を、3~16枚とし、各水流偏向板の前記水車ロータの回転軸線に対する傾斜角度を、水流偏向板の枚数が多いほど小さく、枚数が少なくなるほど、45度を超えない範囲内で大きくするようにしたことを特徴とする請求項1~5のいずれかに記載の水力発電装置。 The number of the water flow deflection plates is 3 to 16 and the inclination angle of each water flow deflection plate with respect to the rotation axis of the water turbine rotor is smaller as the number of water flow deflection plates is larger and does not exceed 45 degrees as the number is smaller. The hydroelectric generator according to any one of claims 1 to 5, characterized in that the size is increased within the range.
  7.  前記ロータ支持ケース、前記水車ロータ、及び前記水流偏向板を、水流中に配置される円筒形の導水ダクトにより囲繞したことを特徴とする請求項1~6のいずれかに記載の水力発電装置。 The hydroelectric generator according to any one of claims 1 to 6, wherein the rotor support case, the water turbine rotor, and the water flow deflection plate are surrounded by a cylindrical water guiding duct disposed in a water flow.
  8.  前記ロータ支持ケースを、上流側が大径で、下流側に向かって漸次小径をなす魚形状としたことを特徴とする請求項1~7のいずれかに記載の水力発電装置。 The hydroelectric generator according to any one of claims 1 to 7, wherein the rotor support case has a fish shape having a large diameter on the upstream side and a gradually smaller diameter on the downstream side.
  9.  前記、水流方向に長いロータ支持ケースが、落差水路装置の貯水槽の貯留水または水路の流水を、落差を利用して下方に流出させる導水管内の水中に支持体により支持され、前記ロータ支持ケースの長手方向下流側の外周面に放射方向に突出するようにして、かつ前記水車ロータの回転軸線に対し所定角度傾斜させて固着され、前記導水管内の水流を前記水車ロータを増速させる方向に偏向させうる複数の水流偏向板とを備えることを特徴とする請求項1~6のいずれかに記載の水力発電装置。 The rotor supporting case long in the water flow direction is supported by the support in the water in the water guiding pipe which causes the stored water in the water storage tank of the head channel device or the flowing water in the water channel to flow downward using the head. In the longitudinal direction on the downstream side of the outer peripheral surface of the water turbine, and is fixed at a predetermined angle to the rotation axis of the water turbine rotor so that the water flow in the water guiding tube is accelerated in the water turbine rotor The hydroelectric power generation apparatus according to any one of claims 1 to 6, further comprising a plurality of water flow deflection plates that can be deflected.
  10.  前記落差水路装置の水路は用水路であり、この用水路に、上流側の水流の水位を上昇させて下流側の水流との間に落差を形成する堰板を設置し、この堰板の上部に、前記導水管の上端部を、前記堰板の上部に形成された、前記水位を上昇させた上流側の水を下流側に流出させる導水孔と連通するように連結したことを特徴とする請求項9に記載の水力発電装置。 The water channel of the head channel device is an irrigation channel, and in this irrigation channel a weir plate is installed to raise the water level of the upstream water flow to form a head between the downstream water flow, and above the weir plate The upper end portion of the water conduit is connected to a water conduction hole formed at the upper portion of the weir plate, which causes the upstream water whose water level has been raised to flow downstream. The hydraulic power unit according to 9.
PCT/JP2018/032922 2017-09-06 2018-09-05 Hydraulic power generation device WO2019049901A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017170735A JP2019044732A (en) 2017-09-06 2017-09-06 Hydraulic power generator
JP2017-170735 2017-09-06
JP2017186014A JP2019060293A (en) 2017-09-27 2017-09-27 Head-drop type hydraulic power generation device
JP2017-186014 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019049901A1 true WO2019049901A1 (en) 2019-03-14

Family

ID=65634245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032922 WO2019049901A1 (en) 2017-09-06 2018-09-05 Hydraulic power generation device

Country Status (1)

Country Link
WO (1) WO2019049901A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190055913A1 (en) * 2016-02-24 2019-02-21 Kabushiki Kaisha Bellsion Hydroelectric generating device
US20210246867A1 (en) * 2018-06-08 2021-08-12 Global Energy Co., Ltd. Horizontal shaft rotor
JP7214801B1 (en) 2021-07-27 2023-01-30 株式会社東芝 hydro power plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226148A (en) * 2005-02-15 2006-08-31 Fjc:Kk Horizontal-shaft windmill and propeller
JP2008151151A (en) * 2008-03-31 2008-07-03 Seabell International Co Ltd Low head hydraulic power generation device
JP2012132335A (en) * 2010-12-20 2012-07-12 Bellsion:Kk Fluid rotary wheel
JP2014005765A (en) * 2012-06-22 2014-01-16 Toshiba Corp Water flow generation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226148A (en) * 2005-02-15 2006-08-31 Fjc:Kk Horizontal-shaft windmill and propeller
JP2008151151A (en) * 2008-03-31 2008-07-03 Seabell International Co Ltd Low head hydraulic power generation device
JP2012132335A (en) * 2010-12-20 2012-07-12 Bellsion:Kk Fluid rotary wheel
JP2014005765A (en) * 2012-06-22 2014-01-16 Toshiba Corp Water flow generation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190055913A1 (en) * 2016-02-24 2019-02-21 Kabushiki Kaisha Bellsion Hydroelectric generating device
US10584674B2 (en) * 2016-02-24 2020-03-10 Ntn Corporation Hydroelectric generating device
US20210246867A1 (en) * 2018-06-08 2021-08-12 Global Energy Co., Ltd. Horizontal shaft rotor
JP7214801B1 (en) 2021-07-27 2023-01-30 株式会社東芝 hydro power plant
JP2023018350A (en) * 2021-07-27 2023-02-08 株式会社東芝 Hydraulic power generation device

Similar Documents

Publication Publication Date Title
JP5084890B2 (en) Structure of ultra low drop turbine with flow rate and flow control
WO2019049901A1 (en) Hydraulic power generation device
KR20080032187A (en) Electricity generating apparatus from a flow of water such as tide, river or the like
JP2007278297A (en) Kinetic hydropower generation from slow-moving water flow
WO2010027774A1 (en) Force fluid flow energy harvester
ES2931325T3 (en) hydraulic turbine
JP4856134B2 (en) Hydroelectric generator
KR20170129791A (en) Simplified hydropower
NL1023999C1 (en) Improved vertical axis water turbine, called hydro-turby.
JP4157590B1 (en) Simple installation type hydroelectric generator
KR20160014293A (en) Portable hydro power generation apparatus
KR101692166B1 (en) Hydroelectric power generation system
JP2019060293A (en) Head-drop type hydraulic power generation device
JP6282236B2 (en) Hydroelectric generator
JP4669899B2 (en) Structure for water flow acceleration
JP2018076841A (en) Axial flow water turbine power generator
KR101318480B1 (en) Multi-stage tidal current power plant with high efficiency
RU2347935C2 (en) In-channel river plant
CA2480988C (en) Turbine with a downstream tube
KR101782055B1 (en) Apparatus for small hydropower generation
JP2019044732A (en) Hydraulic power generator
JP6065162B1 (en) Aiba facility
KR101611857B1 (en) Underwater installation type small hydroelectric power generator
KR102145589B1 (en) Power generator for piping
SK287751B6 (en) Flow turbine with pivoted blades

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854873

Country of ref document: EP

Kind code of ref document: A1