WO2019049699A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2019049699A1
WO2019049699A1 PCT/JP2018/031481 JP2018031481W WO2019049699A1 WO 2019049699 A1 WO2019049699 A1 WO 2019049699A1 JP 2018031481 W JP2018031481 W JP 2018031481W WO 2019049699 A1 WO2019049699 A1 WO 2019049699A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
mirror
illumination
state
unit
Prior art date
Application number
PCT/JP2018/031481
Other languages
English (en)
French (fr)
Inventor
誠 秦
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Publication of WO2019049699A1 publication Critical patent/WO2019049699A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source

Definitions

  • the present invention relates to a display device that displays an image by, for example, a field sequential method.
  • Patent Document 1 discloses a display device for a vehicle, and the display device for a vehicle includes an illumination device, an illumination optical system, a display element, a projection optical system, a screen, a plane mirror, and a concave mirror A housing having a window from which display light is emitted to the outside.
  • the display apparatus for vehicles of patent document 1 is controlled by a control part, an illumination control part, and a display control part.
  • a frame which is a cycle for displaying a display image by the display element, includes a display period in which each mirror of the display element is normally driven and a non-display period in which the non-display period is driven.
  • the ratio of the display period (period in which the display element can display the display image on the screen) within the frame period is, for example, 50%.
  • the lighting control unit of Patent Document 1 turns off all the light sources, and the display control unit turns on / off individual mirrors, thereby the ratio of on-time driving of individual mirrors in the frame.
  • the on-frame on-drive ratio is controlled to be, for example, 50%. That is, control is performed so that the in-frame off drive ratio, which is the ratio of the individual mirrors in the frame being driven off, is also 50%, for example. This makes it possible to equalize the load on the hinges (fulcrum points of the mirrors) possessed by the individual mirrors on the on drive side and the off drive side, and to prevent the mirrors from being stuck in either the on / off state.
  • Patent Document 2 discloses a display device, and the display device includes an illumination device, a light intensity detection unit, an illumination optical system, a display element, a projection optical system, a screen, a flat mirror, and a concave mirror , A housing, and a light transmitting portion. Further, the display device of Patent Document 2 is controlled by a control unit, a lighting control unit, and a display control unit. The control unit of the display device of Patent Document 2 acquires light intensity data from the light intensity detection unit, and an appropriate method is used for the difference between the luminance required for the display image displayed on the screen and the light emission luminance of the actual lighting device.
  • the display device of Patent Document 2 for example, two driving methods are adopted as a driving method of the light source unit of the lighting device, and necessary for a control value (for example, Duty ratio) required for PWM driving method and PAM driving method
  • a control value for example, Duty ratio
  • PWM driving method for example, PWM driving method
  • PAM driving method The luminance of the lighting device can be changed by changing the combination with a specific control value (e.g., current value).
  • the ratio of the display period (period in which the display element can display the display image on the screen) in the frame period may be constant (for example, 50 [%]). Alternatively, it may be determined (for example, 50 [%] or 70 [%]) according to the luminance required for the display image.
  • the illumination control unit of Patent Document 2 turns off all the light sources, and the display control unit drives each mirror on / off.
  • control is performed so that the in-frame on-drive ratio, which is the ratio of on-time driving of the individual mirrors in the frame, becomes, for example, 50%.
  • Patent Document 1 and Patent Document 2 it is possible to suppress that the state of a pixel (specifically, a mirror) constituting a display element is fixed.
  • the present inventors recognize that the pixel may be fixed, that is, the display element may be broken, and the display device is appropriately treated in the situation where the display image (defective image) is generated by the broken display element. It is desirable to be able to In other words, in the conventional display device, while controlling the display element, it is not possible to grasp whether the display element is actually operating correctly.
  • a driver visually recognizes a virtual image of a display image that is not normal.
  • the dots in the display image corresponding to the mirror always show white (bright spots), so the scenery of the destination of the virtual image portion of white (bright spots) Specifically, it becomes difficult to recognize a part of roads, leading vehicles, etc.).
  • the dots in the display image corresponding to the mirror are always black (black points), so vehicle information by a virtual image (specifically, vehicle speed (actual speed) It becomes difficult to recognize a part of the legal speed, the white line on the road, and the traveling direction (in a broad sense, navigation information).
  • vehicle speed actual speed
  • the driver may be made to visually recognize an unintended display image.
  • An object of the present invention is to provide a display capable of detecting a defect in a display image.
  • the display device An illumination unit having a light source unit capable of emitting light; A lighting control unit that controls the lighting unit; A display element having a plurality of pixels, wherein illumination light from the illumination unit is reflected in a first direction according to the state of the plurality of pixels, and displayed by ON illumination light which is the illumination light directed to the screen A display element capable of forming an image; A display control unit that controls the states of the plurality of pixels; A control unit that controls the illumination control unit and the display control unit based on a video signal; The ON illumination light which is the illumination light directed to the screen when the illumination light from the illumination unit travels in the first direction by the ON pixel which is a predetermined pixel having the ON state of the plurality of pixels An ON state detection unit that detects an intensity; Equipped with
  • a predetermined pixel for example, k (for example, 0 ⁇ k ⁇ M ⁇ N) pixels among a plurality of pixels (for example, M ⁇ N pixels) configured by the display element is in the ON state).
  • an ON state detection unit is provided that detects the intensity of illumination light (ON illumination light) directing illumination light from the illumination unit in a first direction (direction toward the screen) by the predetermined pixel (ON pixel). It features. More specifically, in the first aspect, all or part of a plurality of predetermined pixels are controlled to be in an ON state, for example, and when all the controls are operating correctly, the ON state detection unit It is possible to detect the intensity (expected value) of the ON illumination light according to.
  • the control unit can detect or recognize that the display image has a defect.
  • the defect of the display image may be caused, for example, when some or all of predetermined pixels are fixed in the ON state or are not operated as controlled.
  • the predetermined pixel causes the illumination light from the illumination unit to travel or be reflected not in the first direction (the direction toward the screen) but in the second direction (the direction not toward the screen).
  • all or part of a plurality of predetermined pixels are controlled to, for example, an OFF state, and when all the controls are operating correctly, the ON state detection unit It is possible to detect the intensity (expected value) of the ON illumination light according to.
  • the control unit can detect or recognize that the display image has a defect.
  • the defect of the display image may be caused, for example, when all or part of the predetermined pixels are fixed in the ON state or the OFF state, or are not operated as controlled.
  • the illumination unit can emit infrared light
  • the ON state detection unit can detect the intensity of the infrared light. Good.
  • the control unit is configured to detect a defect in a display image based on the intensity of the ON illumination light detected by the ON state detection unit at an ON control timing at which all or a part of the plurality of pixels are controlled to be in an ON state. It may be determined whether or not it has.
  • the ON state detection unit when all of the control is operating properly at a timing (ON control timing) at which all or part of the plurality of pixels constituting the display element are controlled to be in the ON state Can detect the intensity (expected value) of the ON illumination light according to the control.
  • the ON state detection unit does not match the expected value with the ON illumination light
  • the controller can detect or recognize that there is a defect in the displayed image.
  • the frame which is a cycle for displaying the display image by the display element, is a display period in which the display element can display the display image on the screen, and the display element displays the display image on the screen
  • a non-display period which is a non-displayable period may be included, and the ON control timing may correspond to the display period.
  • the control unit determines whether the display image has a defect based on the intensity of the ON illumination light detected by the ON state detection unit at the OFF control timing at which all of the plurality of pixels are controlled to be in the OFF state. It may be determined whether or not.
  • the ON state detection unit is configured to operate when all the controls are operating correctly.
  • the expected value for example, zero
  • the ON state detector does not match the expected value with ON illumination light
  • the controller can detect or recognize that there is a defect in the displayed image.
  • all of the plurality of pixels constituting the display element can be controlled to be in the OFF state, for example, in the display period Fa of the frame.
  • the illumination light from the illumination unit is directed to the second direction (the direction not to the screen), for example, driving
  • the control unit can determine whether the display image has a defect.
  • the frame which is a cycle for displaying the display image by the display element, is a display period in which the display element can display the display image on the screen, and the display element displays the display image on the screen
  • a non-display period which is a non-displayable period may be included, and the OFF control timing may correspond to the non-display period.
  • the control unit is detected by the ON state detection unit at an ON control timing which is a timing at which all or part of the plurality of pixels are controlled to be in an ON state. Based on the intensity of the infrared light, it may be determined whether the display element has a defective pixel fixed in an ON state of the plurality of pixels. Therefore, the control unit can use infrared rays to determine whether or not the display image has a defect regardless of, for example, the luminance, the brightness, and the display period of the display image.
  • the ON state detection unit when all of the control is operating properly at a timing (ON control timing) at which all or part of the plurality of pixels constituting the display element are controlled to be in the ON state Can detect the intensity (expected value) of infrared rays according to the control.
  • the ON state detection unit determines the infrared intensity not meeting the expected value The controller can detect or recognize that there is a defect in the displayed image.
  • the frame which is a cycle for displaying the display image by the display element, is a display period in which the display element can display the display image on the screen, and the display element displays the display image on the screen
  • a non-display period which is a non-displayable period may be included, and the ON control timing may correspond to the display period.
  • control unit may decrease the brightness or lightness of the illumination unit.
  • the control unit decreases the brightness or brightness of the illumination unit, so that it is difficult for the driver to visually recognize the virtual image of the display image which is not normal.
  • the control unit turns off the lighting unit, so that, for example, the driver does not view a virtual image of a display image that is not normal.
  • the control unit reduces the brightness or the brightness of the illumination unit including the turning off of the illumination unit, thereby suppressing or omitting the display of the display image which is not normal. Power can be reduced.
  • control unit may execute notification of a failure.
  • the control unit when the display image has a defect, the control unit performs notification of the failure, so that, for example, the driver can recognize the failure of the display element.
  • FIG. 7 is an illustration of one application of a display device according to the invention. It is explanatory drawing of the display mechanism of the head-up display apparatus of FIG. It is a figure which shows the structural example of the display apparatus according to this invention. It is explanatory drawing of the flame
  • FIG. It is explanatory drawing of the detection value (expected value) of the detection part PD2 (ON state detection part) of FIG. 2, and the control method (1st Embodiment) of the display element 30.
  • FIG. It is explanatory drawing of the detection value (expected value) of the detection part PD2 (ON state detection part) of FIG.
  • FIG. It is explanatory drawing of the detection value (expected value) of the detection part PD2 (ON state detection part) of FIG. 2, and the control method (3rd Embodiment) of the display element 30.
  • FIG. It is explanatory drawing of the detection value (expected value) of the detection part PD2 (ON state detection part) of FIG. 2, and the control method (4th Embodiment) of the display element 30.
  • FIG. It is a flowchart showing the outline operation example of the display apparatus of FIG.
  • FIG. 1 is an illustration of one application of a display device according to the invention.
  • a head-up display device 100 is shown as a display device, and the head-up display device 100 is suitable for a vehicle, for example, an automobile.
  • the head-up display device 100 is provided in a dashboard of a vehicle, and reflects the display light L representing the display image M (see FIG. 2) by the windshield 200, whereby an occupant such as the driver 250 etc.
  • the virtual image V of the display image M representing the vehicle speed (actual speed), legal speed, and traveling direction (navigation information in a broad sense)) can be visually recognized.
  • FIG. 2 is an explanatory view of a display mechanism of the head-up display device 100 of FIG.
  • the head-up display device 100 includes, for example, the illumination unit 10, the illumination optical system 20, the display element 30, the detection unit PD2, the projection optical system 50, the screen 60, and the plane mirror 70. , A concave mirror 75, and a housing 80 having a window 81 from which the display image M is emitted.
  • the head-up display device 100 can further include a detection unit PD1.
  • the present invention is not limited to the example of FIG. 2, and the display device, for example, the head-up display device 100 may be provided with only the necessary components in accordance with the object and the spirit of the present invention.
  • the illumination unit 10 of FIG. 2 has a light source unit 11 (see FIG. 3) capable of emitting light, and, for example, a circuit board (not shown) on which the light source unit 11 is mounted and a reflection / transmission optical unit (not shown) And a brightness non-uniformity reduction optical unit (not shown).
  • the light source unit 11 includes, for example, a light emitting diode 11 r that emits red light (in a broad sense, a first light emitting element), and a light emitting diode 11 g that emits, for example, green light (a second light emitting element in a broad sense); And a light emitting diode 11b (in a broad sense, a third light emitting element).
  • the illumination optical system 20 of FIG. 2 is configured of, for example, a concave lens, and can adjust the illumination light C emitted from the illumination unit 10 to the size of the display element 30.
  • the display device 30 of FIG. 2 is, for example, a DMD (Digital Micro-mirror Device) provided with a plurality of movable micro mirrors. And each of the plurality of micro mirrors is individually controlled by the display control unit 92 (see FIG. 3).
  • the micro mirror When the micro mirror is ON, the micro mirror is inclined, for example, +12 degrees with a hinge (not shown) as a fulcrum, and the illumination light C emitted from the illumination optical system 20 is directed to the projection optical system 50 (first direction) Can be reflected.
  • the micro mirror is OFF, the micro mirror is inclined, for example, by -12 degrees with the hinge as a fulcrum, and can not reflect the illumination light C in the direction of the projection optical system 50 (first direction).
  • the detection unit PD2 (ON state detection unit) is provided in a direction (first direction) in which the illumination light C reflected by the display element 30 is directed to the projection optical system 50, and the projection optical system 50 (in a broad sense, the screen 60).
  • the intensity of the illumination light (ON illumination light) heading for) can be detected.
  • the position of the detection unit PD2 in FIG. 2 is illustrated in a simplified or conceptual manner, and does not represent the exact arrangement in the housing 80. In other words, the position of the detection unit PD2 is not limited to the example of FIG. 2, and the illumination light when the micro mirror is in the ON state so that the detection unit PD2 is not visually recognized by the driver 250 of FIG. It may be arranged to be able to detect (ON illumination light).
  • the illumination light C emitted from the illumination optical system 20 travels or is reflected in a direction (second direction) different from the direction of the projection optical system 50 (first direction).
  • the head-up display device 100 sets the light absorbing member 41 (for example, a blackboard) so that illumination light (OFF illumination light) which travels in the second direction does not enter the projection optical system 50 when the micro mirror is OFF. It can be equipped.
  • the position of the light absorbing member 41 in FIG. 2 is illustrated in a simplified or conceptual manner, and does not represent the exact arrangement in the housing 80. In other words, the position of the light absorbing member 41 is not limited to the example of FIG. 2, and the micro mirror is arranged to be able to absorb the OFF illumination light so as not to be visually recognized by the driver 250 of FIG. Just do it.
  • the predetermined pixel (ON pixel or ON mirror) among the plurality of pixels (typically, a plurality of mirrors constituting the DMD) constituting the display element 30 is in the ON state
  • the predetermined pixel (ON pixel or ON mirror) is In view of the property of advancing or reflecting the illumination light C from the illumination unit 10 in the first direction (the direction toward the screen 60), the present inventors have detected the detection unit PD2 (ON state detection unit) in the display device.
  • the detection unit PD2 is disposed in the housing 80 of the display device, and one example of the housing 80 may further store at least one of the lighting unit 10 and the display element 30, for example. Good.
  • a portion of the detection unit PD2 can control the intensity of the on-illumination light (illumination light directed to the screen 60) according to the control.
  • the detection unit PD2 ON state detection unit
  • the control unit 90 detects or recognizes that the display image M has a defect. can do.
  • the predetermined pixel (typically, a plurality of mirrors constituting the DMD) constituting the display element 30 is in the OFF state
  • the predetermined pixel (the OFF pixel or the OFF mirror)
  • the detection unit PD2 (ON state detection unit)
  • the intensity of the ON illumination light (illumination light directed to the screen 60) can be detected.
  • the detection unit PD2 (ON state detection unit) detects the intensity of ON illumination light that is not detected when the control of the plurality of mirrors is correctly controlled.
  • the control unit 90 detects or recognizes that the display image M has a defect. can do.
  • the detection unit PD1 in FIG. 2 is a light intensity detection unit capable of detecting the output intensity of the light source unit 11 of the illumination unit 10.
  • the detection unit PD1 may be, for example, a light intensity and light source temperature detection unit capable of further detecting the temperature of the light source unit 11.
  • the control unit 90 appropriately shifts the difference between the brightness required for the display image M displayed on the screen 60 and the light emission brightness (output intensity) of the illumination unit 10 by an appropriate method (including a correction method at the light source temperature). It can be corrected.
  • the head-up display device 100 may not include the detection unit PD1, and the luminance required for the display image M may not be strictly managed. Alternatively, the luminance required for the display image M may be managed by the detection unit PD2 without the detection unit PD1.
  • the projection optical system 50 of FIG. 2 is configured of, for example, a concave lens or a convex lens, and can efficiently irradiate the screen 60 with the display light L of the display image M projected from the display element 30.
  • the screen 60 of FIG. 2 includes, for example, a diffusion plate, a holographic diffuser, a microlens array, and the like, receives the display light L from the projection optical system 50 at the lower surface of the screen 60, and displays the display image M on the upper surface of the screen 60. It can be displayed.
  • the flat mirror 70 of FIG. 2 can reflect the display image M displayed on the screen 60 toward the concave mirror 75.
  • the concave mirror 75 in FIG. 2 is, for example, a concave mirror or the like, and reflects the display light L from the flat mirror 70 on a concave surface, and the reflected light is emitted toward the window portion 81.
  • the display light L reaches the driver 250 in FIG. 1 via such a display mechanism, and the virtual image V recognized by the driver 250 has a size in which the display image M displayed on the screen 60 is enlarged. Have.
  • the material of the housing 80 of FIG. 2 is, for example, a hard resin, and a window 81 having a predetermined size is provided above the housing 80.
  • the material of the window 81 in FIG. 2 is, for example, a translucent resin such as acrylic, and the shape of the window 81 is, for example, a curved shape.
  • the window portion 81 can transmit the display light L from the concave mirror 75.
  • FIG. 3 shows a configuration example of a display device according to the present invention.
  • the display device is shown as a head-up display device 100, and the head-up display device 100 is controlled by, for example, the control unit 90, the illumination control unit 91, and the display control unit 92 of FIG.
  • an electronic control unit ECU
  • the control unit 90 can input the video signal 300 by communication of, for example, a low voltage differential signal (LVDS) method.
  • the control unit 90 is typically configured of, for example, a field programmable gate array (FPGA), but may be configured of an application specific integrated circuit (ASIC), a microcomputer, or the like.
  • the control unit 90, the illumination control unit 91, and the display control unit 92 may be configured by, for example, an integrated IC.
  • the control unit 90 in FIG. 3 outputs to the illumination control unit 91 illumination control data D1 for controlling the illumination unit 10 in accordance with the brightness and light emission timing of the light requested by the video signal 300, and the display requested by the video signal 300.
  • Display control data D 2 for forming the image M by the display element 30 can be output to the display control unit 92.
  • a frame F which is a cycle for displaying the display image M, is composed of subframes SF divided into a plurality of times (see FIG. 5), and the illumination control unit 91 in FIG.
  • the illumination unit 10 can be controlled by a field sequential drive method in which the diodes 11r, 11g, and 11b are sequentially switched at high speed sequentially at the light intensity and timing required by the illumination control data D1.
  • the display control unit 92 shown in FIG. 3 performs on / off control of each micro mirror of the display element 30 according to, for example, the PWM method based on the display control data D2, and the illumination light C emitted from the illumination unit 10 is directed to the screen 60.
  • light emitting diodes 11r, 11g and 11b can be used as basic colors to express display image M in additive color mixing or full color.
  • Each of the detection units PD2 and PD1 in FIG. 3 includes, for example, a sensor, which is a photodiode, and an A / D converter that converts analog data into digital data, and the detection unit PD2 detects the illumination that has reached the detection unit PD2.
  • the output intensity data of the light C can be output to the control unit 90, and the detection unit PD1 can output the output intensity data of the light source unit 11 to the control unit 90.
  • the detection unit PD1 is typically configured of three light intensity detection sensors provided for each of the light emitting diodes 11r, 11g, and 11b, but the light intensity of one of the light emitting diodes 11r, 11g, and 11b is different.
  • the light intensity detection sensor may be configured to detect.
  • the detection unit PD2 is provided for one light emitting diode (for example, the light emitting diode 11r or the light emitting diode 11b), and the sensor is typically configured of one light intensity detection sensor (specifically, a photodiode) Be done.
  • FIG. 4 is an explanatory view of a frame F which is a cycle of displaying the display image of FIG.
  • the frame F includes a display period Fa in which the individual micro mirrors of the display element 30 normally drive, and a non-display period Fb in which the non-display period is driven.
  • the ratio of the display period Fa occupying in the frame F is, for example, 50%, it is not limited thereto, and may be set to, for example, 70% or 100%.
  • the proportion of the display period Fa occupied in the frame F may be constant or may be determined according to the required luminance.
  • the display period Fa is a period for projecting the illumination light C from the illumination unit 10 toward the screen 60 as a display image M.
  • the non-display period Fb is a period in which the illumination unit 10 is turned off (for example, all of the three light emitting diodes 11r, 11g, and 11b are turned off) (see FIGS. 5D to 5F).
  • a plurality of pixels which configure the display element 30 in a state where the display element 30 operates normally.
  • the driver 250 recognizes blue light at the timing in the non-display period Fb when all of the plurality of micro mirrors are actually set to the OFF state in the state where the display element 30 is operating normally.
  • the display image M is not visually recognized at the timing in the non-display period Fb.
  • the driver 250 performs the non-display period Fb. There is a possibility of visually recognizing the display image M which is not assumed. Therefore, among the three light emitting diodes 11r, 11g, and 11b, it is preferable that the light emitting diode lit at the timing is a blue light emitting diode 11b having the lowest relative visibility.
  • the on-drive period Fap in the display period in FIGS. 5A to 5C is a period during which the micro mirror is turned on in the display period Fa, and the off-drive period Faq in the display period is a micro period in the display period Fa. It is a period when the mirror is turned off.
  • the non-display period on-drive period Fbp is a period in which the micro mirror is turned on in the non-display period Fb
  • the non-display period off-drive period Fbq is a period in which the micro mirror is turned off in the non-display period Fb.
  • the control unit 90 performs the non-display period on-drive period Fbp and the non-display period so that the sum of the off-drive period Faq and the non-display period off-drive period Fbq (total off-drive period Fq) is substantially equal.
  • the inside off drive period Fbq is adjusted.
  • FIG. 5 is an explanatory diagram of a method of driving the display element 30 and the illumination unit 10 of FIG.
  • the display element 30 displays, for example, a single color mirror Ea that displays green in a single color, a mixed color mirror Eb that displays mixed red and green colors, nothing A non-displayed off mirror Ec can be included.
  • the monochromatic mirror Ea is turned on at the lighting timing (see FIG. 5E) of the light emitting diode 11g in the display period Fa based on the display control data D2 as shown in FIG. 5A, and in the non-display period Fb.
  • the inside off drive period Fbq can be adjusted.
  • the control unit 90 turns ON and OFF in the non-display period Fb into the non-display period ON drive period Fbp and the non-display period OFF drive period Fbq. It is possible to adjust so that the total on-drive period Fp and the total off-drive period Fq become substantially equal by repeating the cycle according to the same period. Further, as shown in FIG. 5C, the non-displaying period driving can be turned on for the non-displaying period Fb because the non-displaying mirror Ec is the off-driving for the display period Fa.
  • FIG. 6 is an explanatory diagram of a detection value (expected value) of the detection unit PD2 (ON state detection unit) of FIG. 2 and a control method of the display element 30.
  • the display element 30 displays, for example, a mirror 1 for displaying red in a single color, a mixed color of red, green and blue (white). It is possible to include the mirror 2 to be displayed and the mirror 3 not to display anything.
  • a detection value expected value
  • the detection unit PD2 ON state detection unit of FIG. 2
  • the display element 30 displays, for example, a mirror 1 for displaying red in a single color, a mixed color of red, green and blue (white). It is possible to include the mirror 2 to be displayed and the mirror 3 not to display anything.
  • the detection unit PD2 (ON state detection unit) can detect the intensity of illumination light (ON illumination light) directed to the projection optical system 50 (in a broad sense, the screen 60).
  • the detection unit PD2 starts integrating the intensity of the ON illumination light from the start point of the ON control timing to the end point of the ON control timing. Integration of the intensity of the ON illumination light is continued, and the value (integrated value) is output to the control unit 90 when the integration is completed.
  • the control unit 90 typically causes the detection unit PD2 to reset the integral value (the previous integration value) at the start point of the ON control timing at which the integration of the intensity of the ON illumination light is started.
  • the integrated value (the previous integrated value) may be reset by the detection unit PD2 before the start point of the ON control timing.
  • FIG. 6D the detection unit PD2 starts integrating the intensity of the ON illumination light from the start point of the ON control timing to the end point of the ON control timing. Integration of the intensity of the ON illumination light is continued, and the value (integrated value) is output to the control unit 90 when the integration is completed.
  • the control unit 90 typically causes the detection unit PD2 to reset the integral value (the previous integration value) at the start point of the ON
  • each of the plurality of mirrors (including the mirror 1, the mirror 2 and the mirror 3) is not fixed in the ON state, and all controls of all the plurality of mirrors are operating correctly.
  • the integral value output from the detection unit PD2 to the control unit 90 matches the expected value of the integral value.
  • the expected value of the integral value is, for example, the control value of the light source unit 11 (specifically, the light emitting diodes 11r, 11g, and 11b) which are lit at the length of the period from the start point to the end point of the ON control timing and the ON control timing. And the current value for PAM driving the light emitting diodes 11r, 11g and 11b.
  • each of the mirror 1 and the mirror 2 increases the integral value. If the mirror 1 is fixed in the ON state, the mirror 1 always directs the illumination light C to the detection unit PD2, so the integral value output from the detection unit PD2 to the control unit 90 is an integral higher than the expected value. It becomes a value.
  • the fixation is permitted. It is done.
  • the control unit 90 can determine whether the integrated value is equal to or more than the threshold Th1 and determine whether a defect of the display image M exists.
  • the total number of mirrors that can be fixed can be set in a range in which the virtual image V of the display image M that is not normal does not affect the driving of the driver 250.
  • mirror 1 In the situation where mirror 1 is fixed in the ON state, not only red light but also green light and blue light are directed to screen 60 at ON control timing, so that driver 250 controls mirror 1 to be controlled to be red (pixel 1 ) Is recognized as white (a bright spot in a broad sense). If the mirror 3 is also fixed in the ON state, the mirror 3 (pixel) controlled to be black (black point) at the ON control timing is recognized by the driver 250 as white (bright point). Therefore, as the total number of mirrors fixed in the ON state increases, the area of the white (bright spot) portion in the display image increases. If all the plurality of mirrors (including the mirror 1, the mirror 2 and the mirror 3) are fixed in the ON state, all the display image M will be white.
  • the ON light intensity integral value shown in FIG. 6 (D) is simplified or exaggerated so that those skilled in the art can easily understand the integral value detected by the detection unit PD2, and is limited to the example of FIG. is not.
  • the detection unit PD2 detects the integral value from the start point to the end point of the ON control timing, but the detection unit PD2 detects only the integral value corresponding to a part of the ON control timing. It is also good.
  • the expected value of the integral value is determined according to the integration period within the ON control timing, and the integral value higher than the expected value is set to the upper limit or threshold value Th1 of the normal range.
  • the control unit 90 may determine whether or not the display image M has a defect based on the integral value corresponding to a part of the ON control timing and the threshold value Th1 (first modified example of the first embodiment) .
  • the timing (ON control timing) at which all or part of the plurality of mirrors (including the mirror 1, the mirror 2 and the mirror 3) constituting the display element 30 are controlled to the ON state It is a continuous period that is part of However, the continuous period may be dispersed.
  • the control unit 90 can determine whether or not the sum of the plurality of dispersed integral values is equal to or larger than the threshold Th1 (a second modified example of the first embodiment).
  • FIG. 7 is an explanatory diagram of a detection value (expected value) of the detection unit PD2 (ON state detection unit) of FIG. 2 and a control method of the display element 30.
  • the display element 30 displays, for example, a mirror 1 that displays red in a single color, red, green and blue
  • the mirror 2 which displays mixed color (white), and the mirror 3 which displays nothing can be included.
  • the pixels of a plurality of mirrors including the mirror 1, the mirror 2 and the mirror 3) constituting the display element 30 are in the ON state.
  • the predetermined pixel advances or reflects the illumination light from the illumination unit in the first direction (the direction toward the screen) to form a plurality of mirrors (mirror 1, mirror 2 and mirrors) constituting the display element 30.
  • the pixel including 3) is in the OFF state, the predetermined pixel (OFF pixel) is not directed to the illumination light from the illumination unit in the first direction (the direction toward the screen) but in the second direction (the direction toward the screen). Travel or reflect).
  • the detection unit PD2 starts integrating the intensity of the ON illumination light from the start point of the ON control timing to the end point of the ON control timing. Integration of the intensity of the ON illumination light is continued, and the value (integrated value) is output to the control unit 90 when the integration is completed.
  • the control unit 90 typically causes the detection unit PD2 to reset the integral value (the previous integration value) at the start point of the ON control timing at which the integration of the intensity of the ON illumination light is started.
  • the integrated value (the previous integrated value) may be reset by the detection unit PD2 before the start point of the ON control timing.
  • FIG. 7D the detection unit PD2 starts integrating the intensity of the ON illumination light from the start point of the ON control timing to the end point of the ON control timing. Integration of the intensity of the ON illumination light is continued, and the value (integrated value) is output to the control unit 90 when the integration is completed.
  • the control unit 90 typically causes the detection unit PD2 to reset the integral value (the previous integration value) at the start point of the ON
  • each of the plurality of mirrors (including the mirror 1, the mirror 2 and the mirror 3) is not fixed in the ON state or the OFF state, and all controls of all the plurality of mirrors are all correct.
  • the integrated value output from the detection unit PD2 to the control unit 90 matches the expected value of the integrated value.
  • the expected value of the integral value is, for example, the control value of the light source unit 11 (specifically, the light emitting diodes 11r, 11g, and 11b) which are lit at the length of the period from the start point to the end point of the ON control timing and the ON control timing. And the current value for PAM driving the light emitting diodes 11r, 11g and 11b.
  • each of the mirror 1 and the mirror 2 increases the integral value. If the mirror 1 is fixed in the ON state, the mirror 1 always directs the illumination light C to the detection unit PD2, so the integral value output from the detection unit PD2 to the control unit 90 is an integral higher than the expected value. It becomes a value. Or, temporarily, in a situation where the mirror 1 is fixed in the OFF state, the mirror 1 always directs the illumination light C in the second direction (the direction not directed to the screen), so the detection unit PD2 outputs it to the control unit 90 The integral value will be an integral value lower than the expected value.
  • the integral value output from the detection unit PD2 to the control unit 90 is an integral value higher than the expected value or an integral lower than the expected value It can be a value.
  • the integral value higher than the expected value is set to the upper limit or threshold value Th1 of the normal range
  • the low integral value is set to the lower limit or threshold value Th2 of the normal range.
  • the control unit 90 can determine whether or not there is a defect in the display image M by determining whether the integral value is equal to or greater than the threshold Th1 and equal to or smaller than the threshold Th2.
  • the fixing is permitted, but the total number of mirrors permitted to be fixed is the virtual image V of the display image M which is not normal. It can be set within a range that does not affect the driving of the driver 250.
  • mirror 1 In the situation where mirror 1 is fixed in the ON state, not only red light but also green light and blue light are directed to screen 60 at ON control timing, so that driver 250 controls mirror 1 to be controlled to be red (pixel 1 ) Is recognized as white (a bright spot in a broad sense). If the mirror 3 is also fixed in the ON state, the mirror 3 (pixel) controlled to be black (black point) at the ON control timing is recognized by the driver 250 as white (bright point). Therefore, as the total number of mirrors fixed in the ON state increases, the area of the white (bright spot) portion in the display image increases. If all the plurality of mirrors (including the mirror 1, the mirror 2 and the mirror 3) are fixed in the ON state, all the display image M will be white.
  • the driver 250 is controlled to be red because not only red light but also green light and blue light are directed in a different direction from the screen 60 at ON control timing.
  • the mirror 1 (pixel) is recognized as black (black dot in a broad sense).
  • the mirror 2 (pixel) controlled to be black (black point) at the ON control timing is recognized by the driver 250 as black (black point). Therefore, as the total number of mirrors fixed in the OFF state increases, the area of the black (black dot) portion in the display image increases. Assuming that all of the plurality of mirrors (including the mirror 1, the mirror 2 and the mirror 3) are fixed in the OFF state, all the display image M becomes black. Alternatively, when all or some of the plurality of mirrors are not operating properly as controlled, the driver 250 will visually recognize an unintended display image at the ON control timing.
  • the ON light intensity integral value shown in FIG. 7D is simplified or exaggerated so that those skilled in the art can easily understand the integral value detected by the detection unit PD2, and is limited to the example of FIG. is not.
  • the detection unit PD2 detects the integral value from the start point to the end point of the ON control timing, but the detection unit PD2 detects only the integral value corresponding to a part of the ON control timing. It is also good.
  • the expected value of the integral value is determined according to the integration period in the ON control timing, and the integral value higher than the expected value is the upper limit or threshold value Th1 of the normal range, and the integral value lower than the expected value is the normal range Is set to the lower limit or threshold value Th2.
  • the control unit 90 may determine whether or not the display image M has a defect based on the integral value corresponding to a part of the ON control timing and the threshold values Th1 and Th2 (first modification of the second embodiment) Example).
  • the timing (ON control timing) at which all or a part of the plurality of mirrors (including the mirror 1, the mirror 2 and the mirror 3) constituting the display element 30 is controlled to the ON state is the display period Fa It is a continuous period that is part of However, the continuous period may be dispersed.
  • the control unit 90 can determine whether the sum of the plurality of integrated values dispersed is equal to or more than the threshold Th1 or less than the threshold Th2 (second modified example of the second embodiment). .
  • FIG. 8 is an explanatory diagram of a detection value (expected value) of the detection unit PD2 (ON state detection unit) of FIG. 2 and a control method of the display element 30.
  • the display element 30 displays, for example, the mirror 1 that displays red in a single color, a mixed color of red, green and blue (white).
  • a mirror 2 for displaying, a mirror 3 for displaying nothing, and a mirror 4 for displaying blue in a single color can be included.
  • FIG. 8A to FIG. 8D the display period Fa of the frame F.
  • the display element 30 displays, for example, the mirror 1 that displays red in a single color, a mixed color of red, green and blue (white).
  • a mirror 2 for displaying, a mirror 3 for displaying nothing, and a mirror 4 for displaying blue in a single color can be included.
  • the detection unit PD2 detects, for example, blue light (for example, one light emitting diode) of illumination light (ON illumination light) directed to the projection optical system 50 (screen 60 in a broad sense) 11b) can be detected.
  • the detection unit PD2 starts integrating the intensity of the ON illumination light from the start point of the OFF control timing to the end point of the OFF control timing. Integration of the intensity of the ON illumination light is continued, and the value (integrated value) is output to the control unit 90 when the integration is completed.
  • the control unit 90 typically causes the detection unit PD2 to reset the integral value (the previous integration value) at the start point of the OFF control timing at which integration of the intensity of the ON illumination light is started.
  • the integral value (the integral value of the previous time) may be reset in the detection unit PD2 before the start point of the OFF control timing. In the example of FIG.
  • each of the plurality of mirrors (including the mirror 1, the mirror 2, the mirror 3 and the mirror 4) is not fixed in the ON state, and all controls of all the plurality of mirrors operate correctly.
  • the integrated value output from the detection unit PD2 to the control unit 90 matches the expected value (zero) of the integrated value.
  • the expected value of the integral value is, for example, the control value of the light source unit 11 (specifically, the light emitting diodes 11r, 11g, and 11b) which are lit at the length of the period from the start point to the end point of the OFF control timing and the OFF control timing. And the current value for PAM driving the light emitting diodes 11r, 11g and 11b.
  • each of mirror 1, mirror 2, mirror 3 and mirror 4 does not increase the integral value.
  • the integrated value output from the detection unit PD2 to the control unit 90 is an expected value (zero). Too high integral value.
  • the sticking is acceptable. It is done.
  • the control unit 90 can determine whether the integrated value is greater than or equal to the threshold value Th, and determine whether or not sticking on the ON state side is present.
  • the total number of mirrors that can be fixed can be set in a range in which the virtual image V of the display image M that is not normal does not affect the driving of the driver 250.
  • the driver 250 controls the mirror 4 to ) Is recognized as white (a bright spot in a broad sense).
  • the mirror 3 is also fixed in the ON state, the mirror 3 (pixel) controlled to be black (black point) at the ON control timing is recognized by the driver 250 as white (bright point). Therefore, as the total number of mirrors fixed in the ON state increases, the area of the white (bright spot) portion in the display image increases. If all of the plurality of mirrors (including the mirror 1, the mirror 2, the mirror 3 and the mirror 4) are fixed in the ON state, all the display image M will be white.
  • the ON light intensity integral value shown in FIG. 8E is simplified or exaggerated so that those skilled in the art can easily understand the integral value detected by the detection unit PD2, and is limited to the example of FIG. is not.
  • the detection unit PD2 detects the integral value from the start point to the end point of the OFF control timing, but the detection unit PD2 detects only the integral value corresponding to a part of the OFF control timing. It is also good.
  • the expected value of the integral value is determined according to the integration period in the OFF control timing, and the integral value higher than the expected value is set to the upper limit or threshold value Th of the normal range.
  • the control unit 90 may determine whether or not the display image M has a defect based on the integral value corresponding to a part of the OFF control timing and the threshold value Th (first modified example of the third embodiment) .
  • the timing (OFF control timing) at which all of the plurality of mirrors (including the mirror 1, the mirror 2, the mirror 3 and the mirror 4) constituting the display element 30 are controlled to the OFF state It is a continuous period which is a part of Fb.
  • the continuous period may be dispersed.
  • the control unit 90 can determine whether or not the sum of the plurality of dispersed integral values is equal to or greater than the threshold value Th (a second modified example of the third embodiment).
  • FIG. 9 is an explanatory diagram of a detection value (expected value) of the detection unit PD2 (ON state detection unit) of FIG. 2 and a control method of the display element 30.
  • a detection value expected value
  • the detection unit PD2 ON state detection unit
  • the detection unit PD2 can detect the intensity of infrared light traveling toward the projection optical system 50 (in a broad sense, the screen 60). That is, in the fourth embodiment, the lighting unit 10 can emit infrared light.
  • the head-up display apparatus 100 can typically execute any one of the first to third embodiments and the fourth embodiment, it is possible to execute only the fourth embodiment. Good.
  • infrared rays finally reach the driver 250 at a timing (ON control timing) at which all or part of the plurality of mirrors are controlled to be in the ON state
  • the driver 250 does not recognize the infrared rays. In other words, detection or determination of the presence or absence of fixation using infrared light does not affect the driving of the driver 250. Therefore, it does not depend on the control value of the light source unit 11 (specifically, the duty ratio for PWM driving the light emitting diodes 11r, 11g, 11b, the current value for PAM driving the light emitting diodes 11r, 11g, 11b, etc.)
  • the strength can always be kept constant.
  • the illumination unit 10 can include not only the light emitting diodes 11r, 11g, and 11b, but also, for example, an infrared diode (not shown).
  • the illumination light C can include not only visible light but also infrared light that is not recognized by the driver 250.
  • the detection unit PD2 ON state detection unit
  • the detection unit PD2 starts integration of the infrared intensity from the start point of the ON control timing, and continues integration of the infrared intensity until the end point of the ON control timing.
  • the value (integrated value) is output to the control unit 90.
  • all the controls of the plurality of mirrors (including the mirror 1, the mirror 2 and the mirror 3) all operate correctly, in other words, all of the plurality of mirrors are fixed in the ON state.
  • the detection unit PD2 matches the expected value of the integral value.
  • each of the mirror 1 and the mirror 2 increases the integral value. If the mirror 1 is fixed in the ON state, the mirror 1 directs infrared light to the detection unit PD2, so the integrated value output from the detection unit PD2 to the control unit 90 is an integrated value higher than the expected value. It will In other words, the integral value output from the detection unit PD2 to the control unit 90 increases as the total number of mirrors fixed in the ON state increases. In the example of FIG.
  • the integral value higher than the expected value is set to the upper limit or threshold value Th1 of the normal range
  • the integral value lower than the expected value is set to the lower limit or threshold value Th2 of the normal range
  • the total number of mirrors permitted to be fixed can be set within a range in which the virtual image V of the display image M which is not normal during the display period Fa does not affect the driving of the driver 250.
  • the detection unit PD2 detects the integral value from the start point to the end point of the ON control timing, but the detection unit PD2 detects only the integral value corresponding to a part of the ON control timing. It is also good.
  • the expected value of the integral value is determined according to the integration period in the ON control timing, and the integral value higher than the expected value is the upper limit or threshold value Th1 of the normal range, and the integral value lower than the expected value is the normal range Is set to the lower limit or threshold value Th2.
  • the control unit 90 may determine whether or not the display image M has a defect based on the integral value corresponding to a part of the ON control timing and the threshold values Th1 and Th2 (first modification of the fourth embodiment) Example).
  • the timing (ON control timing) at which all or part of the plurality of mirrors (including the mirror 1, the mirror 2 and the mirror 3) constituting the display element 30 are controlled to be in the ON state It is a continuous period that is part of However, the continuous period may be dispersed.
  • the control unit 90 can determine whether the sum of the plurality of integrated values dispersed is equal to or more than the threshold Th1 or less than the threshold Th2 (second modified example of the second embodiment). .
  • FIG. 10 shows a flowchart representing a schematic operation example of the display device of FIG.
  • the control unit 90 determines the target period and the target mirror as in the first to fourth embodiments and their modifications (step S1).
  • the target period is, for example, all of the display period Fa, and the target mirror is all or part of a plurality of mirrors.
  • the target period is, for example, all of the display period Fa, and the target mirror is all or part of a plurality of mirrors.
  • the target period is, for example, all of the non-display periods Fb, and the target mirror is all of the plurality of mirrors.
  • the target period is, for example, all of the display period Fa, and the target mirror is all or part of a plurality of mirrors.
  • the control unit 90 determines a normal range (step S2).
  • the normal range is between the expected value and a threshold Th1 higher than the expected value.
  • the normal range is between a threshold Th1 higher than the expected value and a threshold Th2 lower than the expected value.
  • the normal range is between zero (expected value) and a threshold value Th higher than zero (expected value).
  • the normal range is between a threshold Th1 higher than the expected value and a threshold Th2 lower than the expected value.
  • control unit 90 determines whether or not the integral value actually detected is within the normal range (step S3), and when the integral value is not within the normal range, the control unit 90 selects the illumination unit 10 While being able to make it go out (Step S4), control part 90 can transmit failure of a display pixel, for example to other ECUs (not shown) connected with ECU, or that ECU, for example (Step S5).
  • the control unit 90 transmits or outputs a notification signal such as light or sound representing the failure to the driver's 250 vision, hearing, etc. via, for example, the ECU or another ECU, to the driver 250.
  • the control unit 90 may decrease the brightness or brightness of the illumination light C emitted from the illumination unit 10 from the illumination unit 10.
  • DESCRIPTION OF SYMBOLS 10 ... illumination part, 11 ... light source part, 11r, 11g, 11b ... light emitting diode, 20 ... illumination optical system, 30 ... display element, 41 ... light absorption member, 50 * ⁇ ⁇ ⁇ Projection optical system, 60 ⁇ ⁇ ⁇ screen ⁇ 70 ⁇ ⁇ ⁇ flat mirror, 75 ⁇ ⁇ ⁇ concave mirror, 80 ⁇ ⁇ ⁇ housing ⁇ 81 ⁇ ⁇ ⁇ window portion, 90 ⁇ ⁇ ⁇ control portion, 91 ⁇ ⁇ ⁇ Lighting control unit 92: Display control unit 100: Head-up display device (display device in a broad sense) 200: Wind shield 250: Driver 300: Video signal D1: illumination control data, D2: display control data, F: frame, L: display light, M: display image, SF: subframe, PD1, PD2: detection (Typically, a light intensity detector, an ON state detector , V ⁇ virtual image.
  • D1 illumination control data

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

表示画像の欠陥を検出可能な表示装置を提供する。 表示装置100は、発光可能な光源部11を有する照明部10と、照明部を制御する照明制御部91と、複数の画素を有する表示素子30であって、複数の画素の状態に応じて照明部10からの照明光Cを第1の方向に反射させて、スクリーン60に向かう照明光(ON照明光)によって表示画像Mを形成可能な表示素子30と、複数の画素の状態を制御する表示制御部92と、映像信号300に基づき照明制御部91及び表示制御部92を制御する制御部90と、複数の画素のうちのON状態を有する所定画素(ON画素)によって照明光Cが第1の方向に進行する時に、スクリーン60に向かう照明光(ON照明光)の強度を検出するON状態検出部PD2と、を備える。

Description

表示装置
 本発明は、例えばフィールドシーケンシャル方式により画像を表示する表示装置に関する。
 例えば特許文献1は、車両用表示装置を開示し、その車両用表示装置は、照明装置と、照明光学系と、表示素子と、投射光学系と、スクリーンと、平面ミラーと、凹面ミラーと、表示光が外部へ射出する窓部を有するハウジングと、を備える。また、特許文献1の車両用表示装置は、制御部、照明制御部及び表示制御部によって制御される。特許文献1の車両用表示装置では、表示素子による表示画像を表示する周期であるフレームは、表示素子の個々のミラーが通常駆動する表示期間と、非表示期間駆動する非表示期間と、を備える。
 特許文献1の車両用表示装置では、フレーム期間内に占める表示期間(表示素子がスクリーンでの表示画像を表示可能な期間)の割合は、例えば50[%]である。また、非表示期間において、特許文献1の照明制御部は、光源を全て消灯させ、表示制御部は、個々のミラーをオン/オフ駆動させることにより、フレーム内における個々のミラーがオン駆動した割合であるフレーム内オン駆動割合が例えば50[%]になるように制御する。つまり、フレーム内における個々のミラーがオフ駆動した割合であるフレーム内オフ駆動割合も例えば50[%]になるように制御する。これにより、個々のミラーが持つヒンジ(ミラーの支点)にかかる負担をオン駆動側とオフ駆動側とで均等にし、ミラーがオン/オフどちらかの状態で固着されるのを抑制できる。
 例えば特許文献2は、表示装置を開示し、その表示装置は、照明装置と、光強度検出部と、照明光学系と、表示素子と、投射光学系と、スクリーンと、平面ミラーと、凹面ミラー、筐体と、透光部と、を備える。また、特許文献2の表示装置は、制御部、照明制御部及び表示制御部によって制御される。特許文献2の表示装置の制御部は、光強度検出部から光強度データを取得し、スクリーンに表示される表示画像に要求される輝度と実際の照明装置の発光輝度とのずれを適宜の手法で補正することができる。具体的には、特許文献2の表示装置では、照明装置の光源部の駆動方法として例えば2つの駆動方式を採用し、PWM駆動方式に必要な制御値(例えばDuty比)とPAM駆動方式に必要な制御値(例えば電流値)との組み合わせを変更することで、照明装置の輝度を変更することができる。
 なお、特許文献2の表示装置では、フレーム期間内に占める表示期間(表示素子がスクリーンでの表示画像を表示可能な期間)の割合は、一定(例えば50[%])であってもよく、或いは、表示画像に要求される輝度に応じて決定(例えば50[%]又は70[%])されてもよい。また、特許文献2の表示装置では、フレーム期間内に占める非表示期間において、特許文献2の照明制御部は、光源を全て消灯させ、表示制御部は、個々のミラーをオン/オフ駆動させることにより、フレーム内における個々のミラーがオン駆動した割合であるフレーム内オン駆動割合が例えば50[%]になるように制御する。
特開2013-178344号公報 特開2014-066920号公報
 特許文献1及び特許文献2では、表示素子を構成する画素(具体的には、ミラー)の状態が固着されることを抑制することができる。しかしながら、画素が固着し得ること、即ち表示素子が故障し得ることを本発明者らは認識し、仮に故障した表示素子によって表示画像(欠陥画像)が生じてしまう状況では表示装置が適切な処置を実行できることが望ましい。言い換えれば、従来の表示装置では、表示素子を制御している間、表示素子が実際に正しく動作しているか否かを把握することができない。
 特に、表示素子としてDMDを備える車両用表示装置(例えばヘッドアップディスプレイ)において、DMDを構成するミラーが固着される状況では、運転者が正常でない表示画像の虚像を視認してしまう。具体的には、ミラーがON状態に固着される時に、そのミラーに対応する表示画像中のドットは、常に白色(輝点)を表すので、白色(輝点)の虚像部分の先の風景(具体的には、道路、先行車両等)の一部を認識し難くなってしまう。また、ミラーがOFF状態に固着される状況では、そのミラーに対応する表示画像中のドットは、常に黒色(黒点)となるので、虚像による車両情報(具体的には、車速(実際の速度)、法定速度、道路上の白線、進行方向(広義には、ナビゲーション情報))の一部を認識し難くなってしまう。あるいは、DMDが制御通りに動作していない状況では、運転者に意図しない表示画像を視認させることになってしまう。
 本発明の1つの目的は、表示画像の欠陥を検出可能な表示装置を提供することである。本発明の他の目的は、以下に例示する態様及び最良の実施形態、並びに添付の図面を参照することによって、当業者に明らかになるであろう。
 以下に、本発明の概要を容易に理解するために、本発明に従う態様を例示する。
 第1の態様において、表示装置は、
 発光可能な光源部を有する照明部と、
 前記照明部を制御する照明制御部と、
 複数の画素を有する表示素子であって、前記複数の画素の状態に応じて前記照明部からの照明光を第1の方向に反射させて、スクリーンに向かう前記照明光であるON照明光によって表示画像を形成可能な表示素子と、
 前記複数の画素の前記状態を制御する表示制御部と、
 映像信号に基づき前記照明制御部及び前記表示制御部を制御する制御部と、
 前記複数の画素のうちのON状態を有する所定画素であるON画素によって前記照明部からの前記照明光が前記第1の方向に進行する時に、前記スクリーンに向かう前記照明光であるON照明光の強度を検出するON状態検出部と、
 を備える。
 第1の態様では、表示素子により構成される複数の画素(例えばM×N個の画素)のうちの所定画素(例えばk(0<k≦M×N)個の画素)がON状態である時に、その所定画素(ON画素)によって、照明部からの照明光を第1の方向(スクリーンに向かう方向)に向かう照明光(ON照明光)の強度を検出するON状態検出部を備えることを特徴とする。より具体的には、第1の態様では、複数の画素の全て又は一部の所定画素を例えばON状態に制御し、その制御が全て正しく動作している時に、ON状態検出部は、その制御に応じたON照明光の強度(期待値)を検出することができる。言い換えれば、ON状態検出部によって検出された強度がON照明光の強度(期待値)に合致しない時に、制御部は、表示画像に欠陥があることを検出又は認識することができる。前記表示画像の前記欠陥は、例えば所定画素の一部又は全てがON状態に固着されている、あるいは制御通りに動作していない、などが原因となる。
 第1態様に従属する第2の態様において、
 表示素子により構成される複数の画素(例えばM×N個の画素)のうちの所定画素(例えばj(0<j≦j+k=M×N)個の画素)がOFF状態である時に、その所定画素(OFF画素)によって、照明部からの照明光を第1の方向(スクリーンに向かう方向)ではなく、第2の方向(スクリーンに向かわない方向)に進行又は反射させる。より具体的には、第2の態様では、複数の画素の全て又は一部の所定画素を例えばOFF状態に制御し、その制御が全て正しく動作している時に、ON状態検出部は、その制御に応じたON照明光の強度(期待値)を検出することができる。言い換えれば、ON状態検出部によって検出された強度がON照明光の強度(期待値)に合致しない時に、制御部は、表示画像に欠陥があることを検出又は認識することができる。前記表示画像の欠陥は、例えば所定画素の全て又は一部がON状態、またはOFF状態に固着されている、あるいは制御通りに動作していない、などが原因となる。
 第1の態様乃至第2の態様の何れかに従属する第3の態様において、前記照明部は、赤外線を放出可能であり、前記ON状態検出部は前記赤外線の強度を検出可能であってもよい。
 第1の態様乃至第3の態様の何れかに従属する第4の態様において、
 前記制御部は、前記複数の画素の全て又は一部がON状態に制御されるタイミングであるON制御タイミングにおいて前記ON状態検出部によって検出された前記ON照明光の強度に基づき、表示画像が欠陥を有するか否かを判定してもよい。
 第4の態様では、表示素子を構成する複数の画素の全て又は一部がON状態に制御されるタイミング(ON制御タイミング)において、その制御の全てが正しく動作している時に、ON状態検出部は、その制御に応じたON照明光の強度(期待値)を検出することができる。他方、複数の画素の一部又は全てがON状態に固着される時、あるいは、その制御の全て又は一部が正しく動作していない時に、ON状態検出部は、期待値に合致しないON照明光の強度を検出するので、制御部は、表示画像に欠陥があることを検出又は認識することができる。
 第4の態様に従属する第5の態様において、
 前記表示素子による前記表示画像を表示する周期であるフレームは、前記表示素子が前記スクリーンでの前記表示画像を表示可能な期間である表示期間と、前記表示素子が前記スクリーンでの前記表示画像を表示不可能な期間である非表示期間と、を含んでもよく、前記ON制御タイミングは、前記表示期間に対応してもよい。
 第2の態様に従属する第6の態様において、
 前記制御部は、前記複数の画素の全てがOFF状態に制御されるタイミングであるOFF制御タイミングにおいて前記ON状態検出部によって検出された前記ON照明光の強度に基づき、表示画像が欠陥を有するか否かを判定してもよい。
 第6の態様では、表示素子を構成する複数の画素の全てがOFF状態に制御されるタイミング(OFF制御タイミング)において、その制御の全てが正しく動作している時に、ON状態検出部は、その制御に応じたON照明光の強度の期待値(例えば、ゼロ)を検出することができる。他方、複数の画素の全て又は一部がON状態に固着される時、あるいは、その制御の全て又は一部が正しく動作していない時に、ON状態検出部は、期待値に合致しないON照明光の強度を検出するので、制御部は、表示画像に欠陥があることを検出又は認識することができる。
 代替的に、第6の態様では、フレームの例えば表示期間Faにおいて、表示素子を構成する複数の画素の全てをOFF状態に制御することができる。具体的には、表示画像(映像信号)のすべて(全画像又は全画面)が黒である表示タイミングに、或いは、検出又は判定のタイミングだけ表示画像(映像信号)の全て(全画像又は全画面)を黒に強制的に制御する表示タイミングに、その制御の全てが正しく動作している時に、照明部からの照明光は、第2の方向(スクリーンに向かわない方向)に向かうので、例えば運転者は、非表示期間に表示画像の虚像を視認しない。従って、例えば運転者に気付かれることなく、制御部は、表示画像が欠陥を有するか否かを判定することができる。
 第6の態様に従属する第7の態様において、
 前記表示素子による前記表示画像を表示する周期であるフレームは、前記表示素子が前記スクリーンでの前記表示画像を表示可能な期間である表示期間と、前記表示素子が前記スクリーンでの前記表示画像を表示不可能な期間である非表示期間と、を含んでもよく、前記OFF制御タイミングは、前記非表示期間に対応してもよい。
 第3の態様に従属する第8の態様において、前記制御部は、前記複数の画素の全て又は一部がON状態に制御されるタイミングであるON制御タイミングにおいて前記ON状態検出部によって検出された前記赤外線の強度に基づき、前記複数の画素のうちのON状態に固着された欠陥画素を前記表示素子が有するか否かを判定してもよい。従って制御部は、赤外線を利用して、例えば表示画像の輝度、明度、及び表示期間の割合に関わらず、表示画像が欠陥を有するか否かを判定することができる。
 第8の態様では、表示素子を構成する複数の画素の全て又は一部がON状態に制御されるタイミング(ON制御タイミング)において、その制御の全てが正しく動作している時に、ON状態検出部は、その制御に応じた赤外線の強度(期待値)を検出することができる。他方、複数の画素の一部又は全てがON状態に固着される時、あるいは、その制御の全て又は一部が正しく動作していない時に、ON状態検出部は、期待値に合致しない赤外線の強度を検出するので、制御部は、表示画像に欠陥があることを検出又は認識することができる。
 第8の態様に従属する第9の態様において、
 前記表示素子による前記表示画像を表示する周期であるフレームは、前記表示素子が前記スクリーンでの前記表示画像を表示可能な期間である表示期間と、前記表示素子が前記スクリーンでの前記表示画像を表示不可能な期間である非表示期間と、を含んでもよく、前記ON制御タイミングは、前記表示期間に対応してもよい。
 第4の態様乃至第9の態様の何れか1つの態様に従属する第10の態様において、
 前記表示画像が欠陥を有する時に、前記制御部は、前記照明部の輝度または明度を減少させてもよい。
 第10の態様では、表示画像が欠陥を有する時に、制御部は、照明部の輝度または明度を減少させるので、例えば運転者に、正常でない表示画像の虚像を視認させ難い。第10の態様の好ましい態様において、制御部は、照明部を消灯させるので、例えば運転者に、正常でない表示画像の虚像を視認させることはない。或いは、第10の態様では、表示画像が欠陥を有する時に、制御部は、照明部の消灯を含む照明部の輝度又は明度を減少させるので、正常でない表示画像の表示を抑制又は省略し、消費電力を軽減させることができる。
 第4の態様乃至第10の態様の何れか1つの態様に従属する第11の態様において、
 前記表示画像が欠陥を有する時に、前記制御部は、故障の報知を実行してもよい。
 第11の態様では、表示画像が欠陥を有する時に、制御部は、故障の報知を実行するので、例えば運転者に、表示素子の故障を認識させることができる。
 当業者は、例示した本発明に従う態様が、本発明の精神を逸脱することなく、さらに変更され得ることを容易に理解できるであろう。
本発明に従う表示装置の1つの用途の説明図である。 図1のヘッドアップディスプレイ装置の表示機構の説明図である。 本発明に従う表示装置の構成例を示す図である。 図2の表示画像を表示する周期であるフレームの説明図である。 図2の表示素子30及び照明部10の駆動方法の説明図である。 図2の検出部PD2(ON状態検出部)の検出値(期待値)及び表示素子30の制御方法(第1の実施形態)の説明図である。 図2の検出部PD2(ON状態検出部)の検出値(期待値)及び表示素子30の制御方法(第2の実施形態)の説明図である。 図2の検出部PD2(ON状態検出部)の検出値(期待値)及び表示素子30の制御方法(第3の実施形態)の説明図である。 図2の検出部PD2(ON状態検出部)の検出値(期待値)及び表示素子30の制御方法(第4の実施形態)の説明図である。 図3の表示装置の概略動作例を表すフローチャートである。
 以下に説明する最良の実施形態は、本発明を容易に理解するために用いられている。従って、当業者は、本発明が、以下に説明される実施形態によって不当に限定されないことを留意すべきである。
 図1は、本発明に従う表示装置の1つの用途の説明図である。図1の例において、表示装置として、例えばヘッドアップディスプレイ装置100が示され、ヘッドアップディスプレイ装置100は、例えば自動車である車両に適している。ヘッドアップディスプレイ装置100は、車両のダッシュボード内に設けられ、表示画像M(図2参照)を表す表示光Lをウインドシールド200で反射させることにより、運転者250等の乗員は、例えば車両情報(具体的には、車速(実際の速度)、法定速度、進行方向(広義には、ナビゲーション情報))を表す表示画像Mの虚像Vを視認することができる。
 図2は、図1のヘッドアップディスプレイ装置100の表示機構の説明図である。図2の例において、ヘッドアップディスプレイ装置100は、例えば、照明部10と、照明光学系20と、表示素子30と、検出部PD2と、投射光学系50と、スクリーン60と、平面ミラー70と、凹面ミラー75と、表示画像Mが出射する窓部81を有するハウジング80と、を備えている。好ましくは、ヘッドアップディスプレイ装置100は、検出部PD1を更に備えることができる。なお、本発明は、図2の例に限定されるものではなく、例えばヘッドアップディスプレイ装置100である表示装置は、本発明の目的及び精神に従って必要な構成要素だけを備えていればよい。
 図2の照明部10は、発光可能な光源部11(図3参照)を有し、例えば、光源部11を実装する回路基板(図示せず)と、反射透過光学部(図示せず)と、輝度ムラ低減光学部(図示せず)と、を更に有することができる。光源部11は、例えば赤色光を発する発光ダイオード11r(広義には、第1の発光素子)と、例えば緑色光を発する発光ダイオード11g(広義には、第2の発光素子)と、例えば青色光を発する発光ダイオード11b(広義には、第3の発光素子)と、を備えている(図3参照)。
 図2の照明光学系20は、例えば凹状のレンズ等で構成され、照明部10から出射された照明光Cを表示素子30の大きさに調整することができる。図2の表示素子30は、例えば、可動式の複数のマイクロミラーを備えたDMD(Digital Micro-mirror Device)
であり、複数のマイクロミラーの各々は、表示制御部92(図3参照)によって個別に制御される。マイクロミラーがONである時に、マイクロミラーは、ヒンジ(図示せず)を支点に例えば+12度傾斜し、照明光学系20から出射された照明光Cを投射光学系50方向(第1の方向)に反射することができる。マイクロミラーがOFFである時に、マイクロミラーは、ヒンジを支点に例えば-12度傾斜し、照明光Cを投射光学系50方向(第1の方向)に反射することができない。
 検出部PD2(ON状態検出部)は、表示素子30で反射された照明光Cが投射光学系50に向かう方向(第1の方向)に備えられ、投射光学系50(広義には、スクリーン60)に向かう照明光(ON照明光)の強度を検出することができる。図2の検出部PD2の位置は、簡略化又は概念的に図示されており、ハウジング80内の正確な配置を表すものではない。言い換えれば、検出部PD2の位置は、図2の例に限定されるものではなく、検出部PD2は、図1の運転者250に視認されないように、マイクロミラーがON状態である時の照明光(ON照明光)を検出できるように配置されていればよい。
 マイクロミラーがOFFである時に、照明光学系20から出射された照明光Cは、投射光学系50方向(第1方向)と異なる方向(第2方向)に進行し又は反射される。
 なお、マイクロミラーがOFFである時に第2の方向に進行する照明光(OFF照明光)が投射光学系50に入らないように、ヘッドアップディスプレイ装置100は、光吸収部材41(例えば黒板)を備えることができる。図2の光吸収部材41の位置は、簡略化又は概念的に図示されており、ハウジング80内の正確な配置を表すものではない。言い換えれば、光吸収部材41の位置は、図2の例に限定されるものではなく、図1の運転者250に視認されないように、マイクロミラーがOFF照明光を吸収できるように配置されていればよい。
 表示素子30を構成する複数の画素(典型的には、DMDを構成する複数のミラー)のうちの所定画素(所定ミラー)がON状態である時に、その所定画素(ON画素又はONミラー)は、照明部10からの照明光Cを第1の方向(スクリーン60に向かう方向)に進行又は反射させるという性質に鑑み、本発明者らは、表示装置内に検出部PD2(ON状態検出部)を配置した。なお、好ましくは、検出部PD2は、表示装置のハウジング80内に配置され、そのハウジング80の1例は、例えば、照明部10及び表示素子30のうちの少なくとも1つだけを更に格納してもよい。
 ヘッドアップディスプレイ装置100(広義には、表示装置)の具体的な制御例(例えば第1の実施形態、第2の実施形態及び第4の実施形態)は後述するが、複数のミラーの例えば全て又は一部を例えばON状態に制御し、検出部PD2(ON状態検出部)は、その制御に応じたON照明光(スクリーン60に向かう照明光)の強度を検出することができる。言い換えれば、検出部PD2(ON状態検出部)は、表示画像MのON照明光の強度を検出している。検出部PD2(ON状態検出部)によって検出された強度がON照明光の強度の期待値に合致しない時に、制御部90(図3参照)は、表示画像Mに欠陥があることを検出又は認識することができる。
 また、表示素子30を構成する複数の画素(典型的には、DMDを構成する複数のミラー)のうちの所定画素(所定ミラー)がOFF状態である時に、その所定画素(OFF画素又はOFFミラー)は、照明部10からの照明光Cを第1の方向(スクリーン60に向かう方向)ではなく、第2方向(スクリーン60に向かわない方向)に進行又は反射させる。
 ヘッドアップディスプレイ装置100の別の制御例(例えば第3の実施形態)は後述するが、複数のミラーの例えば全てを例えばOFF状態に制御し、検出部PD2(ON状態検出部)は、その制御に応じたON照明光(スクリーン60に向かう照明光)の強度を検出することができる。言い換えれば、検出部PD2(ON状態検出部)は、前記複数のミラーの制御が正しく制御されている時には検出されないON照明光の強度を検出している。検出部PD2(ON状態検出部)によって検出された強度がON照明光の強度の期待値に合致しない時に、制御部90(図3参照)は、表示画像Mに欠陥があることを検出又は認識することができる。
 図2の検出部PD1は、照明部10の光源部11の出力強度を検出することができる光強度検出部である。なお、検出部PD1は、例えば、光源部11の温度を更に検出することができる光強度及び光源温度検出部であってもよい。制御部90は、スクリーン60に表示される表示画像Mに要求される輝度と実際の照明部10の発光輝度(出力強度)とのずれを適宜の手法(光源温度での補正手法も含む)で補正することができる。しかしながら、ヘッドアップディスプレイ装置100は、検出部PD1を備えなくてもよく、表示画像Mに要求される輝度が厳密に管理されなくてもよい。あるいは検出部PD1を備えず、検出部PD2によって表示画像Mに要求される輝度を管理してもよい。図2の投射光学系50は、例えば凹レンズ又は凸レンズ等で構成され、表示素子30から投影された表示画像Mの表示光Lをスクリーン60に効率よく照射することができる。図2のスクリーン60は、例えば拡散板、ホログラフィックディフューザ、マイクロレンズアレイ等で構成され、投射光学系50からの表示光Lをスクリーン60の下面で受光し、スクリーン60の上面に表示画像Mを表示することができる。
 図2の平面ミラー70は、スクリーン60に表示された表示画像Mを凹面ミラー75に向かって反射させることができる。図2の凹面ミラー75は、例えば凹面鏡等であり、平面ミラー70からの表示光Lを凹面で反射させ、反射光は、窓部81に向かって出射する。このような表示機構を介して表示光Lは、図1の運転者250に到達し、運転者250によって認識される虚像Vは、スクリーン60に表示された表示画像Mが拡大された大きさを有する。
 図2のハウジング80の材料は、例えば硬質樹脂等であり、ハウジング80の上方に所定の大きさの窓部81が設けられている。図2の窓部81の材料は、例えばアクリル等の透光性樹脂であり、窓部81の形状は、例えば湾曲形状である。窓部81は、凹面ミラー75からの表示光Lを透過させることができる。
 図3は、本発明に従う表示装置の構成例を示す。図1において、表示装置は、ヘッドアップディスプレイ装置100として示され、ヘッドアップディスプレイ装置100は、例えば図3の制御部90、照明制御部91及び表示制御部92によって制御される。図3の例において、ECU(Electronic Control Unit)は、映像信号300を生成し、制御部90は、例えばLVDS(Low Voltage Differential Signal)方式の通信で映像信号300を入力することができる。制御部90は、典型的には、例えばFPGA(Field Programmable Gate Array)で構成されるが、ASIC(Application Specific Integrated Circuit)、マイクロコンピュータ等で構成されてもよい。また、制御部90、照明制御部91及び表示制御部92は、例えば統合ICで構成されてもよい。
 図3の制御部90は、映像信号300の要求する光の輝度と発光タイミングで照明部10を制御するための照明制御データD1を照明制御部91に出力するとともに、映像信号300の要求する表示画像Mを表示素子30で形成するための表示制御データD2を表示制御部92に出力することができる。表示画像Mを表示する周期であるフレームFは、複数の時間に分割されたサブフレームSFにより構成され(図5参照)、図3の照明制御部91は、サブフレームSF毎に異なる色の発光ダイオード11r,11g,11bを照明制御データD1の要求する光強度とタイミングで高速に順次切替えさせるフィールドシーケンシャル駆動方式により照明部10を制御することができる。
 図3の表示制御部92は、表示制御データD2に基づき、表示素子30の個々のマイクロミラーを例えばPWM方式により、ON/OFF制御し、照明部10の出射する照明光Cをスクリーン60の方向へ反射させる時に、発光ダイオード11r,11g,11bを基本色として利用し、加法混色又はフルカラーで表示画像Mを表現することができる。図3の検出部PD2及びPD1の各々は、例えばフォトダイオードであるセンサと、アナログデータをデジタルデータに変換するA/D変換器と、を含み、検出部PD2は、検出部PD2に到達した照明光Cの出力強度データを制御部90に出力することができ、検出部PD1は、光源部11の出力強度データを制御部90に出力することができる。検出部PD1は、典型的には、発光ダイオード11r,11g,11b毎に設けられる3つの光強度検出センサで構成されるが、発光ダイオード11r,11g,11bのうち異なる色の光強度を1つの光強度検出センサで検出するように構成されてもよい。例えば検出部PD2は、1つの発光ダイオード(例えば発光ダイオード11rや発光ダイオード11b)用に設けられ、センサは、典型的には、1つの光強度検出センサ(具体的には、フォトダイオード)で構成される。
 図4は、図2の表示画像を表示する周期であるフレームFの説明図である。フレームFは、表示素子30の個々のマイクロミラーが通常駆動する表示期間Faと、非表示期間駆動する非表示期間Fbと、を備える。フレームF内に占める表示期間Faの割合は、例えば50[%]であるが、これに限定されず、例えば70[%]又は100[%]に設定されてもよい。フレームF内に占める表示期間Faの割合は、一定でもよく、要求輝度に応じて決定されてもよい。表示期間Faは、照明部10からの照明光Cをスクリーン60に向けて表示画像Mとして投影する期間である。非表示期間Fbは、照明部10が消灯する(例えば3つの発光ダイオード11r,11g,11bのすべてが消灯する)期間である(図5(D)乃至図5(F)参照)。
 但し、例えば図8の第3の実施形態で後述するように、非表示期間Fbは、表示素子30が正常に動作している状態で表示素子30を構成する複数の画素(複数のマイクロミラー)の全てがOFF状態に制御される時に例えば1つの発光ダイオード11bだけが点灯するタイミングを有することができる。言い換えれば、表示素子30が正常に動作している状態で複数のマイクロミラーの全てがOFF状態に実際に設定されている時に運転者250は、非表示期間Fb内の前記タイミングで青色光を認識しない、言い換えれば、非表示期間Fb内の前記タイミングで表示画像Mは視認されない。もし、表示素子30が正常に動作せず表示素子30を構成する複数の画素(複数のマイクロミラー)の全て、又は一部がON状態に制御される時に、運転者250は非表示期間Fbに想定しない表示画像Mを視認する可能性がある。そのため、前記タイミングで点灯する発光ダイオードは、3つの発光ダイオード11r,11g,11bの内、比視感度が最も低い青色の発光ダイオード11bであることが望ましい。
 図5(A)乃至図5(C)の表示期間内オン駆動期間Fapは、表示期間Fa内でマイクロミラーがONする期間であり、表示期間内オフ駆動期間Faqは、表示期間Fa内でマイクロミラーがOFFする期間である。非表示期間内オン駆動期間Fbpは、非表示期間Fb内でマイクロミラーがONする期間であり、非表示期間内オフ駆動期間Fbqは、非表示期間Fb内でマイクロミラーがOFFする期間である。マイクロミラーを駆動する時に、マイクロミラーの固着を防止するために、好ましくは、表示期間内オン駆動期間Fapと非表示期間内オン駆動期間Fbpとの和(総オン駆動期間Fp)と、表示期間内オフ駆動期間Faqと非表示期間内オフ駆動期間Fbqとの和(総オフ駆動期間Fq)とが略均等になるように、制御部90は、非表示期間内オン駆動期間Fbpと非表示期間内オフ駆動期間Fbqとを調整する。
 図5は、図3の表示素子30及び照明部10の駆動方法の説明図である。図5(A)乃至図5(C)に示すように、フレームFにおいて、表示素子30は、例えば緑色を単色で表示する単色ミラーEa、赤色と緑色の混色を表示する混色ミラーEb、何も表示しない消灯ミラーEcを含むことができる。単色ミラーEaは、図5(A)に示すように、表示制御データD2に基づき、表示期間Faにおいては発光ダイオード11gの点灯タイミング(図5(E)参照)でONされ、非表示期間FbにおいてはフレームF内のONする期間の和である総オン駆動期間Fpが、フレームFの略半分になるように、制御部90が非表示期間Fbにおける非表示期間内オン駆動期間Fbpと非表示期間内オフ駆動期間Fbqとを調整することができる。
 制御部90は、図5(B)に示す混色ミラーEbのように、非表示期間Fb内におけるONとOFFとを、非表示期間内オン駆動期間Fbpと非表示期間内オフ駆動期間Fbqとに即した周期で繰り返すことで、総オン駆動期間Fpと総オフ駆動期間Fqとが略均等になるように、調整することができる。また、図5(C)に示すように、消灯ミラーEcは、表示期間Faに渡ってオフ駆動であるため、非表示期間駆動は、非表示期間Fbに渡ってONすることができる。
 (第1の実施形態)
 図6は、図2の検出部PD2(ON状態検出部)の検出値(期待値)及び表示素子30の制御方法の説明図である。図6(A)乃至図6(C)に示すように、フレームFの表示期間Faにおいて、表示素子30は、例えば赤色を単色で表示するミラー1、赤色と緑色と青色の混色(白色)を表示するミラー2、何も表示しないミラー3を含むことができる。図6に示すように、フレームFの表示期間Faにおいて、表示素子30を構成する複数のミラー(ミラー1、ミラー2及びミラー3を含む)の全て又は一部がON状態に制御されるタイミング(ON制御タイミング)において、検出部PD2(ON状態検出部)は、投射光学系50(広義には、スクリーン60)に向かう照明光(ON照明光)の強度を検出することができる。
 具体的には、図6(D)に示すように、第1の実施形態において、検出部PD2は、ON制御タイミングの始点からON照明光の強度の積分を開始し、ON制御タイミングの終点までON照明光の強度の積分を継続し、その積分が終了した時点でその値(積分値)を制御部90に出力する。なお、制御部90は、典型的には、ON照明光の強度の積分を開始するON制御タイミングの始点で検出部PD2に積分値(前回の積分値)をリセットさせるが、制御部90は、ON制御タイミングの始点までに検出部PD2に積分値(前回の積分値)をリセットさせていればよい。図6(D)の例では、複数のミラー(ミラー1、ミラー2及びミラー3を含む)の各々がON状態に固着しておらず、かつ複数のミラー全ての制御が全て正しく動作している時、検出部PD2から制御部90に出力された積分値は、積分値の期待値と一致している。なお、積分値の期待値は、ON制御タイミングの始点から終点までの期間の長さ及びON制御タイミングで点灯される例えば光源部11の制御値(具体的には、発光ダイオード11r,11g,11bをPWM駆動するDuty比、発光ダイオード11r,11g,11bをPAM駆動する電流値等)に依存する。
 図6(A)及び図6(B)では、ミラー1及びミラー2がON状態である時に、ミラー1及びミラー2の各々が積分値を増加させている。仮に、ミラー1がON状態に固着する状況では、ミラー1が照明光Cを常に検出部PD2に向かわせるので、検出部PD2から制御部90に出力される積分値は、期待値よりも高い積分値となってしまう。図6(D)の例では、期待値よりも高い積分値が正常範囲の上限又は閾値Th1に設定され、ある程度の個数のミラーがON状態に固着される状況であっても、その固着は許容されている。
制御部90は、積分値が閾値Th1以上であるか否かを判定して、表示画像Mの欠陥が存在するか否かを判定することができる。もっとも、固着が許容されるミラーの総数は、正常でない表示画像Mの虚像Vが運転者250の運転に影響を与えない範囲内に設定することができる。
 なお、仮に、ミラー1がON状態に固着する状況では、ON制御タイミングにおいて赤色光だけでなく緑色光及び青色光もスクリーン60に向うので、運転者250は、赤色に制御されるミラー1(画素)を白色(広義には輝点)として認識してしまう。仮に、ミラー3もON状態に固着する状況では、ON制御タイミングにおいて黒色(黒点)に制御されるミラー3(画素)は、運転者250に白色(輝点)として認識されてしまう。従って、ON状態に固着するミラーの総数が多い程に、表示画像中の白色(輝点)部分の面積は、大きくなってしまう。仮に、複数のミラー(ミラー1、ミラー2及びミラー3を含む)の全てがON状態に固着する状況では、表示画像Mの全てが白色となってしまう。
 図6(D)に示されるON光強度積分値は、検出部PD2によって検出される積分値を当業者が分かり易く理解できるよう簡略化又は誇張されており、図6の例に限定されるものではない。
 図6の例において、検出部PD2は、ON制御タイミングの始点から終点までの積分値を検出しているが、検出部PD2は、ON制御タイミングの一部に対応する積分値だけを検出してもよい。この場合、積分値の期待値は、ON制御タイミング内の積分期間に応じて決定され、この期待値よりも高い積分値が正常範囲の上限又は閾値Th1に設定される。制御部90は、ON制御タイミングの一部に対応する積分値及び閾値Th1に基づき表示画像Mが欠陥を有するか否かを判定してもよい(第1の実施形態の第1の変形例)。
 図6の例において、表示素子30を構成する複数のミラー(ミラー1、ミラー2及びミラー3を含む)の全て又は一部がON状態に制御されるタイミング(ON制御タイミング)は、表示期間Faの一部である連続期間である。しかしながら、その連続期間は、分散されていてもよい。この場合、制御部90は、分散された複数の積分値の合計が閾値Th1以上であるか否かを判定することができる(第1の実施形態の第2の変形例)。
 (第2の実施形態)
 図7は、図2の検出部PD2(ON状態検出部)の検出値(期待値)及び表示素子30の制御方法の説明図である。図7(A)乃至図7(C)に示すように、フレームFの表示期間Fa、及び非表示期間Fbにおいて、表示素子30は、例えば赤色を単色で表示するミラー1、赤色と緑色と青色の混色(白色)を表示するミラー2、何も表示しないミラー3を含むことができる。図7に示すように、フレームFの表示期間Fa、及び非表示期間Fbにおいて、表示素子30を構成する複数のミラー(ミラー1、ミラー2及びミラー3を含む)の画素がON状態である時に、その所定画素(ON画素)は、照明部からの照明光を第1の方向(スクリーンに向かう方向)に進行又は反射させ、表示素子30を構成する複数のミラー(ミラー1、ミラー2及びミラー3を含む)の画素がOFF状態である時に、その所定画素(OFF画素)は、照明部からの照明光を第1の方向(スクリーンに向かう方向)ではなく、第2の方向(スクリーンに向かわない方向)に進行又は反射させる。
 具体的には、図7(D)に示すように、第2の実施形態において、検出部PD2は、ON制御タイミングの始点からON照明光の強度の積分を開始し、ON制御タイミングの終点までON照明光の強度の積分を継続し、その積分が終了した時点でその値(積分値)を制御部90に出力する。なお、制御部90は、典型的には、ON照明光の強度の積分を開始するON制御タイミングの始点で検出部PD2に積分値(前回の積分値)をリセットさせるが、制御部90は、ON制御タイミングの始点までに検出部PD2に積分値(前回の積分値)をリセットさせていればよい。図7(D)の例では、複数のミラー(ミラー1、ミラー2及びミラー3を含む)の各々がON状態、又はOFF状態に固着しておらず、かつ複数のミラー全ての制御が全て正しく動作している時、検出部PD2から制御部90に出力された積分値は、積分値の期待値と一致している。なお、積分値の期待値は、ON制御タイミングの始点から終点までの期間の長さ及びON制御タイミングで点灯される例えば光源部11の制御値(具体的には、発光ダイオード11r,11g,11bをPWM駆動するDuty比、発光ダイオード11r,11g,11bをPAM駆動する電流値等)に依存する。
 図7(A)及び図7(B)では、ミラー1及びミラー2がON状態である時に、ミラー1及びミラー2の各々が積分値を増加させている。仮に、ミラー1がON状態に固着する状況では、ミラー1が照明光Cを常に検出部PD2に向かわせるので、検出部PD2から制御部90に出力される積分値は、期待値よりも高い積分値となってしまう。または、仮に、ミラー1がOFF状態に固着する状況では、ミラー1が照明光Cを常に第2の方向(スクリーンに向かわない方向)に向かわせるので、検出部PD2から制御部90に出力される積分値は、期待値よりも低い積分値となってしまう。あるいは、複数のミラー全て又は一部が制御通りに正しく動作していない時に、検出部PD2から制御部90に出力される積分値は、期待値よりも高い積分値、又は期待値よりも低い積分値となりうる。図7(D)の例では、期待値よりも高い積分値が正常範囲の上限又は閾値Th1に設定され、低い積分値が正常範囲の下限又は閾値Th2に設定される。制御部90は、積分値が閾値Th1以上であるか否か、及び閾値Th2以下であるかを判定して、表示画像Mの欠陥が存在するか否かを判定することができる。ある程度の個数のミラーがON状態、またはOFF状態に固着される状況であっても、その固着は許容されているが、固着が許容されるミラーの総数は、正常でない表示画像Mの虚像Vが運転者250の運転に影響を与えない範囲内に設定することができる。
 なお、仮に、ミラー1がON状態に固着する状況では、ON制御タイミングにおいて赤色光だけでなく緑色光及び青色光もスクリーン60に向うので、運転者250は、赤色に制御されるミラー1(画素)を白色(広義には輝点)として認識してしまう。仮に、ミラー3もON状態に固着する状況では、ON制御タイミングにおいて黒色(黒点)に制御されるミラー3(画素)は、運転者250に白色(輝点)として認識されてしまう。従って、ON状態に固着するミラーの総数が多い程に、表示画像中の白色(輝点)部分の面積は、大きくなってしまう。仮に、複数のミラー(ミラー1、ミラー2及びミラー3を含む)の全てがON状態に固着する状況では、表示画像Mの全てが白色となってしまう。または、仮に、ミラー1がOFF状態に固着する状況では、ON制御タイミングにおいて赤色光だけでなく緑色光及び青色光もスクリーン60とは異なる方向に向うので、運転者250は、赤色に制御されるミラー1(画素)を黒色(広義には黒点)として認識してしまう。仮に、ミラー2もOFF状態に固着する状況では、ON制御タイミングにおいて黒色(黒点)に制御されるミラー2(画素)は、運転者250に黒色(黒点)として認識されてしまう。従って、OFF状態に固着するミラーの総数が多い程に、表示画像中の黒色(黒点)部分の面積は、大きくなってしまう。仮に、複数のミラー(ミラー1、ミラー2及びミラー3を含む)の全てがOFF状態に固着する状況では、表示画像Mの全てが黒色となってしまう。あるいは、複数のミラー全て又は一部が制御通りに正しく動作していない時に、ON制御タイミングにおいて運転者250は、意図しない表示画像を視認することになってしまう。
 図7(D)に示されるON光強度積分値は、検出部PD2によって検出される積分値を当業者が分かり易く理解できるよう簡略化又は誇張されており、図7の例に限定されるものではない。
 図7の例において、検出部PD2は、ON制御タイミングの始点から終点までの積分値を検出しているが、検出部PD2は、ON制御タイミングの一部に対応する積分値だけを検出してもよい。この場合、積分値の期待値は、ON制御タイミング内の積分期間に応じて決定され、この期待値よりも高い積分値が正常範囲の上限又は閾値Th1、この期待値より低い積分値が正常範囲の下限又は閾値Th2、に設定される。制御部90は、ON制御タイミングの一部に対応する積分値及び閾値Th1,Th2に基づき表示画像Mが欠陥を有するか否かを判定してもよい(第2の実施形態の第1の変形例)。
 図7の例において、表示素子30を構成する複数のミラー(ミラー1、ミラー2及びミラー3を含む)の全て又は一部がON状態に制御されるタイミング(ON制御タイミング)は、表示期間Faの一部である連続期間である。しかしながら、その連続期間は、分散されていてもよい。この場合、制御部90は、分散された複数の積分値の合計が閾値Th1以上、又は閾値Th2以下であるか否かを判定することができる(第2の実施形態の第2の変形例)。
 (第3の実施形態)
 図8は、図2の検出部PD2(ON状態検出部)の検出値(期待値)及び表示素子30の制御方法の説明図である。図8(A)乃至図8(D)に示すように、フレームFの表示期間Faにおいて、表示素子30は、例えば赤色を単色で表示するミラー1、赤色と緑色と青色の混色(白色)を表示するミラー2、何も表示しないミラー3、青色を単色で表示するミラー4を含むことができる。図8に示すように、フレームFの非表示期間Fbにおいて、表示素子30を構成する複数のミラー(ミラー1、ミラー2、ミラー3及びミラー4を含む)の全てがOFF状態に制御されるタイミング(OFF制御タイミング)において、検出部PD2(ON状態検出部)は、投射光学系50(広義には、スクリーン60)に向かう照明光(ON照明光)のうち例えば青色光(例えば1つの発光ダイオード11bだけの点灯)の強度を検出することができる。
 具体的には、図8(E)に示すように、第3の実施形態において、検出部PD2は、OFF制御タイミングの始点からON照明光の強度の積分を開始し、OFF制御タイミングの終点までON照明光の強度の積分を継続し、その積分が終了した時点でその値(積分値)を制御部90に出力する。なお、制御部90は、典型的には、ON照明光の強度の積分を開始するOFF制御タイミングの始点で検出部PD2に積分値(前回の積分値)をリセットさせるが、制御部90は、OFF制御タイミングの始点までに検出部PD2に積分値(前回の積分値)をリセットさせていればよい。図8(E)の例では、複数のミラー(ミラー1、ミラー2、ミラー3及びミラー4を含む)の各々がON状態に固着しておらず、かつ複数のミラー全ての制御が全て正しく動作している時、検出部PD2から制御部90に出力された積分値は、積分値の期待値(ゼロ)と一致している。なお、積分値の期待値は、OFF制御タイミングの始点から終点までの期間の長さ及びOFF制御タイミングで点灯される例えば光源部11の制御値(具体的には、発光ダイオード11r,11g,11bをPWM駆動するDuty比、発光ダイオード11r,11g,11bをPAM駆動する電流値等)に依存する。
 図8(A)乃至図8(D)では、ミラー1、ミラー2、ミラー3及びミラー4がOFF状態である時に、ミラー1、ミラー2、ミラー3及びミラー4の各々は積分値を増加させない。仮に、ミラー4がON状態に固着する状況では、ミラー4が照明光Cを常に検出部PD2に向かわせるので、検出部PD2から制御部90に出力される積分値は、期待値(ゼロ)よりも高い積分値となってしまう。図8(E)の例では、期待値よりも高い積分値が正常範囲の上限又は閾値Thに設定され、ある程度の個数のミラーがON状態に固着される状況であっても、その固着は許容されている。制御部90は、積分値が閾値Th以上であるか否かを判定して、ON状態側の固着が存在するか否かを判定することができる。もっとも、固着が許容されるミラーの総数は、正常でない表示画像Mの虚像Vが運転者250の運転に影響を与えない範囲内に設定することができる。
 なお、仮に、ミラー4がON状態に固着する状況では、ON制御タイミングにおいて青色光だけでなく赤色光及び緑色光もスクリーン60に向うので、運転者250は、青色に制御されるミラー4(画素)を白色(広義には輝点)として認識してしまう。仮に、ミラー3もON状態に固着する状況では、ON制御タイミングにおいて黒色(黒点)に制御されるミラー3(画素)は、運転者250に白色(輝点)として認識されてしまう。従って、ON状態に固着するミラーの総数が多い程に、表示画像中の白色(輝点)部分の面積は、大きくなってしまう。仮に、複数のミラー(ミラー1、ミラー2、ミラー3及びミラー4を含む)の全てがON状態に固着する状況では、表示画像Mの全てが白色となってしまう。
 図8(E)に示されるON光強度積分値は、検出部PD2によって検出される積分値を当業者が分かり易く理解できるよう簡略化又は誇張されており、図8の例に限定されるものではない。
 図8の例において、検出部PD2は、OFF制御タイミングの始点から終点までの積分値を検出しているが、検出部PD2は、OFF制御タイミングの一部に対応する積分値だけを検出してもよい。この場合、積分値の期待値は、OFF制御タイミング内の積分期間に応じて決定され、この期待値よりも高い積分値が正常範囲の上限又は閾値Thに設定される。制御部90は、OFF制御タイミングの一部に対応する積分値及び閾値Thに基づき表示画像Mが欠陥を有するか否かを判定してもよい(第3の実施形態の第1の変形例)。
 図8の例において、表示素子30を構成する複数のミラー(ミラー1、ミラー2、ミラー3及びミラー4を含む)の全てがOFF状態に制御されるタイミング(OFF制御タイミング)は、非表示期間Fbの一部である連続期間である。しかしながら、その連続期間は、分散されていてもよい。この場合、制御部90は、分散された複数の積分値の合計が閾値Th以上であるか否かを判定することができる(第3の実施形態の第2の変形例)。
 (第4の実施形態)
 図9は、図2の検出部PD2(ON状態検出部)の検出値(期待値)及び表示素子30の制御方法の説明図である。図9に示すように、フレームFの表示期間Faに対応する、表示素子30を構成する複数のミラー(ミラー1、ミラー2及びミラー3を含む)の全て又は一部がON状態に制御されるタイミング(ON制御タイミング)において、検出部PD2(ON状態検出部)は、投射光学系50(広義には、スクリーン60)に向かう赤外線の強度を検出することができる。即ち、第4の実施形態において、照明部10は、赤外線を放出可能である。ヘッドアップディスプレイ装置100は、典型的には、第1乃至第3の実施形態の何れか1つ及び第4の実施形態を実行することができるが、第4の実施形態だけを実行してもよい。
 なお、複数のミラーの全て又は一部がON状態に制御されるタイミング(ON制御タイミング)において、赤外線は、最終的には運転者250に到達するが、運転者250は、赤外線を認識しない。言い換えれば、赤外線を利用した固着の有無の検出又は判定は、運転者250の運転に影響を与えない。そのため、光源部11の制御値(具体的には、発光ダイオード11r,11g,11bをPWM駆動するDuty比、発光ダイオード11r,11g,11bをPAM駆動する電流値等)に依存せず、赤外線の強度は常に一定に保つことが出来る。
 具体的には、照明部10は、発光ダイオード11r,11g,11bだけでなく、図示せぬ例えば赤外線ダイオードも含むことができる。この場合、照明光Cは、可視光だけでなく、運転者250に認識されない赤外線も含むことができる。また、検出部PD2(ON状態検出部)は、可視光(例えば第1の実施形態の赤色光、青色光、緑色光)だけでなく、赤外線も検出できるようなフォトダイオードで構成することができる。
 図9(D)に示すように、第4の実施形態において、検出部PD2は、ON制御タイミングの始点から赤外線の強度の積分を開始し、ON制御タイミングの終点まで赤外線の強度の積分を継続し、その積分が終了した時点でその値(積分値)を制御部90に出力する。図9(D)の例では、複数のミラー(ミラー1、ミラー2及びミラー3を含む)の全ての制御が全て正しく動作し、言い換えれば、複数のミラーの全てがON状態に固着しておらず、検出部PD2は、積分値の期待値と一致している。
 図9(A)乃至図9(C)では、ミラー1、及びミラー2がON状態である時に、ミラー1、及びミラー2の各々が積分値を増加させている。仮に、ミラー1がON状態に固着する状況では、ミラー1が赤外線を検出部PD2に向かわせるので、検出部PD2から制御部90に出力される積分値は、期待値よりも高い積分値となってしまう。言い換えれば、ON状態に固着するミラーの総数が多い程に、検出部PD2から制御部90に出力される積分値は、高くなる。図9(D)の例では、期待値よりも高い積分値が正常範囲の上限又は閾値Th1に設定され、期待値よりも低い積分値が正常範囲の下限又は閾値Th2に設定され、ある程度の個数のミラーがON状態又はOFF状態に固着される状況であっても、その固着は許容されている。もっとも、固着が許容されるミラーの総数は、表示期間Faにおける正常でない表示画像Mの虚像Vが運転者250の運転に影響を与えない範囲内に設定することができる。
 図9の例において、検出部PD2は、ON制御タイミングの始点から終点までの積分値を検出しているが、検出部PD2は、ON制御タイミングの一部に対応する積分値だけを検出してもよい。この場合、積分値の期待値は、ON制御タイミング内の積分期間に応じて決定され、この期待値よりも高い積分値が正常範囲の上限又は閾値Th1、この期待値より低い積分値が正常範囲の下限又は閾値Th2、に設定される。制御部90は、ON制御タイミングの一部に対応する積分値及び閾値Th1,Th2に基づき表示画像Mが欠陥を有するか否かを判定してもよい(第4の実施形態の第1の変形例)。
 図9の例において、表示素子30を構成する複数のミラー(ミラー1、ミラー2及びミラー3を含む)の全て又は一部がON状態に制御されるタイミング(ON制御タイミング)は、表示期間Faの一部である連続期間である。しかしながら、その連続期間は、分散されていてもよい。この場合、制御部90は、分散された複数の積分値の合計が閾値Th1以上、又は閾値Th2以下であるか否かを判定することができる(第2の実施形態の第2の変形例)。
 図10は、図3の表示装置の概略動作例を表すフローチャートを示す。制御部90は、第1乃至第4の実施形態及びそれらの変形例のように、対象期間及び対象ミラーを決定する(ステップS1)。図6で示される第1の実施形態において、対象期間は、例えば表示期間Faの全てであり、対象ミラーは、複数のミラーの全て又は一部である。図7で示される第2の実施形態において、対象期間は、例えば表示期間Faの全てであり、対象ミラーは、複数のミラーの全て又は一部である。図8で示される第3の実施形態において、対象期間は、例えば非表示期間Fbの全てであり、対象ミラーは、複数のミラーの全てである。図9で示される第4の実施形態において、対象期間は、例えば表示期間Faの全てであり、対象ミラーは、複数のミラーの全て又は一部である。
 次に、制御部90は、正常範囲を決定する(ステップS2)。図6で示される第1の実施形態において、正常範囲は、期待値と、期待値よりも高い閾値Th1と、の間である。図7で示される第2の実施形態において、正常範囲は、期待値よりも高い閾値Th1と、期待値よりも低い閾値Th2と、の間である。図8で示される第3の実施形態において、正常範囲は、ゼロ(期待値)と、ゼロ(期待値)よりも高い閾値Thと、の間である。図9で示される第4の実施形態において、正常範囲は、期待値よりも高い閾値Th1と、期待値よりも低い閾値Th2と、の間である。
 次に、制御部90は、実際に検出された積分値が正常範囲内であるか否かを判定し(ステップS3)、積分値が正常範囲内でない時に、制御部90は、照明部10を消灯させることができるとともに(ステップS4)、制御部90は、例えばECUに、或いは、そのECUと接続される他のECU(図示せず)に、表示画素の故障を伝達することができる(ステップS5)。ステップS5では、制御部90は、例えばECU又は他のECUを介して、その故障を表す光、音等の報知信号を運転者250の視覚、聴覚等に伝達又は出力し、運転者250に対して表示画素の故障を報知することができる。なお、ステップS4では、制御部90は、照明部10を消灯させる代わりに、照明部10からの照明部10から出射された照明光Cの輝度または明度を減少させてもよい。
 本発明は、上述の例示的な実施形態に限定されず、また、当業者は、上述の例示的な実施形態を特許請求の範囲に含まれる範囲まで、容易に変更することができるであろう。
 10・・・照明部、11・・・光源部、11r,11g,11b・・・発光ダイオード、20・・・照明光学系、30・・・表示素子、41・・・光吸収部材、50・・・投射光学系、60・・・スクリーン、70・・・平面ミラー、75・・・凹面ミラー、80・・・ハウジング、81・・・窓部、90・・・制御部、91・・・照明制御部、92・・・表示制御部、100・・・ヘッドアップディスプレイ装置(広義には、表示装置)、200・・・ウインドシールド、250・・・運転者、300・・・映像信号、D1・・・照明制御データ、D2・・・表示制御データ、F・・・フレーム、L・・・表示光、M・・・表示画像、SF・・・サブフレーム、PD1,PD2・・・検出部(典型的には、光強度検出部、ON状態検出部)、V・・・虚像。

Claims (11)

  1.  発光可能な光源部を有する照明部と、
     前記照明部を制御する照明制御部と、
     複数の画素を有する表示素子であって、前記複数の画素の状態に応じて前記照明部からの照明光を第1の方向に反射させて、スクリーンに向かう前記照明光であるON照明光によって表示画像を形成可能な表示素子と、
     前記複数の画素の前記状態を制御する表示制御部と、
     映像信号に基づき前記照明制御部及び前記表示制御部を制御する制御部と、
     前記複数の画素のうちのON状態を有する所定画素であるON画素によって前記照明部からの前記照明光が前記第1の方向に進行する時に、前記スクリーンに向かう前記照明光であるON照明光の強度を検出するON状態検出部と、
     を備えることを特徴とする表示装置。
  2.  前記表示素子は、
     前記複数の画素のうちのOFF状態を有する所定画素であるOFF画素によって前記照明部からの前記照明光を前記第1の方向とは異なる第2の方向に反射する、
     ことを特徴とする請求項1に記載の表示装置。
  3.  前記照明部は赤外線を放出可能であり、
     前記ON状態検出部は前記赤外線の強度を検出可能である、
     ことを特徴とする請求項1乃至2の何れか1項に記載の表示装置。
  4.  前記制御部は、
     前記複数の画素の全て又は一部が前記ON状態に制御されるタイミングであるON制御タイミングにおいて前記ON状態検出部によって検出された前記ON照明光の強度に基づき、前記表示画像に欠陥があるか否かを判定することを特徴とする請求項1乃至3の何れか1項に記載の表示装置。
  5.  前記表示素子による前記表示画像を表示する周期であるフレームは、
     前記表示素子が前記スクリーンでの前記表示画像を表示可能な期間である表示期間と、前記表示素子が前記スクリーンでの前記表示画像を表示不可能な期間である非表示期間と、を含み、
     前記ON制御タイミングは、前記表示期間に対応することを特徴とする請求項4に記載の表示装置。
  6.  前記制御部は、
     前記複数の画素の全てが前記OFF状態に制御されるタイミングであるOFF制御タイミングにおいて前記ON状態検出部によって検出された前記ON照明光の強度に基づき、前記表示画像に欠陥があるか否かを判定することを特徴とする請求項2に記載の表示装置。
  7.  前記表示素子による前記表示画像を表示する周期であるフレームは、
     前記表示素子が前記スクリーンでの前記表示画像を表示可能な期間である表示期間と、前記表示素子が前記スクリーンでの前記表示画像を表示不可能な期間である非表示期間と、を含み、
     前記OFF制御タイミングは、前記非表示期間に対応することを特徴とする請求項6に記載の表示装置。
  8.  前記制御部は、
     前記複数の画素の全て又は一部が前記ON状態に制御されるタイミングであるON制御タイミングにおいて前記ON状態検出部によって検出された前記赤外線の強度に基づき、前記表示画像に欠陥があるか否かを判定することを特徴とする請求項3に記載の表示装置。
  9.  前記表示素子による前記表示画像を表示する周期であるフレームは、
     前記表示素子が前記スクリーンでの前記表示画像を表示可能な期間である表示期間と、前記表示素子が前記スクリーンでの前記表示画像を表示不可能な期間である非表示期間と、を含み、
     前記ON制御タイミングは、前記表示期間に対応することを特徴とする請求項8に記載の表示装置。
  10.  前記表示画像に前記欠陥がある時に、
     前記制御部は、
     前記照明部の輝度または明度を減少させることを特徴とする請求項4乃至9の何れか1項に記載の表示装置。
  11.  前記表示画像に前記欠陥がある時に、
     前記制御部は、
     故障の報知を実行することを特徴とする請求項4乃至10の何れか1項に記載の表示装置。
PCT/JP2018/031481 2017-09-07 2018-08-27 表示装置 WO2019049699A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017171746 2017-09-07
JP2017-171746 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019049699A1 true WO2019049699A1 (ja) 2019-03-14

Family

ID=65634076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031481 WO2019049699A1 (ja) 2017-09-07 2018-08-27 表示装置

Country Status (1)

Country Link
WO (1) WO2019049699A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133006A (ja) * 2005-11-08 2007-05-31 Shinko Electric Ind Co Ltd 露光機の故障検出装置
US20100067095A1 (en) * 2006-12-18 2010-03-18 Bae Systems Plc Display apparatus
JP2013178344A (ja) * 2012-02-28 2013-09-09 Nippon Seiki Co Ltd 車両用表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007133006A (ja) * 2005-11-08 2007-05-31 Shinko Electric Ind Co Ltd 露光機の故障検出装置
US20100067095A1 (en) * 2006-12-18 2010-03-18 Bae Systems Plc Display apparatus
JP2013178344A (ja) * 2012-02-28 2013-09-09 Nippon Seiki Co Ltd 車両用表示装置

Similar Documents

Publication Publication Date Title
JP5998681B2 (ja) フィールドシーケンシャル画像表示装置
JP6075590B2 (ja) 車両用表示装置
US10147395B2 (en) Field sequential image display device
WO2014050497A1 (ja) 表示装置
US10404956B2 (en) Head-up display emitting light of different colors from a plurality of light sources, and light source control method thereof
JP2010191288A (ja) 表示制御装置
JP6670021B2 (ja) レーザー光源駆動装置及び表示装置
JP6102252B2 (ja) 表示装置
JP2008176024A (ja) 画像表示装置およびプロジェクタ
WO2019049699A1 (ja) 表示装置
JP6908047B2 (ja) 表示装置
WO2018139256A1 (ja) 表示装置
WO2018193980A1 (ja) 表示装置
JP5391730B2 (ja) 表示装置およびヘッドアップディスプレイシステム
WO2016051846A1 (ja) 投写型表示装置及びその光源制御方法
JP6915623B2 (ja) 投写型表示装置
JP2014157320A (ja) 表示装置及び照明装置
JP2017227806A (ja) 表示装置
JP2014194511A (ja) ヘッドアップディスプレイ装置およびヘッドアップディスプレイ装置の表示方法
JP2009122363A (ja) 表示装置
JP2017202762A (ja) 表示画像投影装置及び表示画像投影方法
JP2017167272A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP