WO2019049648A1 - レーダ装置、及びトランスポンダ応答遅延の取得方法 - Google Patents

レーダ装置、及びトランスポンダ応答遅延の取得方法 Download PDF

Info

Publication number
WO2019049648A1
WO2019049648A1 PCT/JP2018/030718 JP2018030718W WO2019049648A1 WO 2019049648 A1 WO2019049648 A1 WO 2019049648A1 JP 2018030718 W JP2018030718 W JP 2018030718W WO 2019049648 A1 WO2019049648 A1 WO 2019049648A1
Authority
WO
WIPO (PCT)
Prior art keywords
response
signal
transponder
reflected wave
racon
Prior art date
Application number
PCT/JP2018/030718
Other languages
English (en)
French (fr)
Inventor
潤 山林
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2019540866A priority Critical patent/JP7018448B2/ja
Priority to EP18854856.4A priority patent/EP3680686B1/en
Publication of WO2019049648A1 publication Critical patent/WO2019049648A1/ja
Priority to JP2022012167A priority patent/JP7379551B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals

Definitions

  • the present invention relates mainly to a radar device.
  • a radar beacon (a racon), which is a kind of route marking of a ship, transmits a racon response wave to the ship in response to a radar wave from the ship.
  • the racon response wave includes racon identification information as a preamble and racon position information including latitude and longitude of the racon.
  • the radar transmitter-receiver when the radar transmitter-receiver receives a racon response wave, it specifies the reception time of racon identification information and subtracts the racon response delay from that time to indicate the time when the racon response wave arrives.
  • the racon response delay is the processing time required for the racon to receive a radar wave and to transmit the racon response wave.
  • the radar transmitter and receiver multiply the time difference from the transmission time of the radar wave to the arrival time of the racon response wave by the traveling speed of the radar wave and divide by two to obtain the distance from the radar transmission to the racon Calculate
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a radar device capable of accurately acquiring a delay time from when a detection signal reaches a transponder to when the transponder transmits a response signal. It is.
  • a radar apparatus having the following configuration. That is, this radar device includes a response signal detection unit, a transponder reflected wave detection unit, and a response delay acquisition unit.
  • the response signal detection unit detects a response signal transmitted by the transponder in response to the detection signal from a reception signal received from a reflected wave of the detection signal transmitted from the antenna.
  • the transponder reflected wave detection unit detects a reflected wave that appears earlier than the response signal in the received signal as a reflected wave of the transponder.
  • the response delay acquisition unit acquires a response delay of the transponder based on a time difference between the reflected wave and the response signal.
  • the radar device can obtain the response delay on the spot based on the reflected wave and the response signal. Therefore, the distance between the radar device and the transponder can be accurately obtained with a simple configuration.
  • the transponder reflected wave detection unit may detect a reflected wave that appears at a timing at which a time difference from the start timing of the response signal in the received signal is within a predetermined range as a reflected wave of the transponder. preferable.
  • the reflected wave of the transponder can be accurately detected by utilizing that the response delay of the transponder is usually equal to or less than a predetermined length.
  • the response signal of the transponder includes a pseudo noise code.
  • the response signal detection unit acquires the head timing of the response signal based on the timing at which the correlation between the received signal and the pseudo noise code becomes a predetermined value or more.
  • the response signal has a structure in which a pseudo noise code appears at a certain position in the signal, it is possible to accurately obtain the start timing of the response signal.
  • the transponder reflected wave detection unit detects, among the reflected waves that appear in the received signal, a reflected wave whose length of time from appearance to disappearance is within a predetermined range as a reflected wave of the transponder.
  • the transmission time of the detection signal in the form of a pulse is included in the predetermined range.
  • this radar device includes a position information acquisition unit, a response time acquisition unit, and a positioning unit.
  • the position information acquisition unit acquires position information indicating the position of the transponder from the response signal detected by the response signal detection unit.
  • the response time acquisition unit acquires a response time which is a time from the transmission of the detection signal to the reception of the response signal.
  • the positioning unit acquires the position of the own device based on the position information, the response time, and the response delay.
  • the following transponder response delay acquisition method is provided. That is, the radio wave of the detection signal is transmitted from the antenna. The antenna receives the reflected wave that the detection signal reflects on the transponder. A response signal, which is a radio wave transmitted by the transponder in response to the detection signal, is received by the antenna. A transponder response delay time is acquired based on the time difference between the reception timing of the reflected wave and the reception timing of the response signal.
  • the response delay of the transponder is variously different due to the type and individual difference, the response delay can be acquired on the spot based on the reflected wave and the response signal. Therefore, with a simple configuration, the distance to the transponder can be accurately obtained.
  • the racon (transponder) 3 transmits a response signal, which is a radio wave, from the racon antenna 32 to the radar device 1.
  • the response signal includes position information representing the position of the racon 3 in latitude and longitude, for example.
  • the radar device 1 can obtain the position of the own device based on the response signal of the racon 3 or the like.
  • the racon 3 includes a computer (not shown), and the computer includes a CPU, a ROM, a RAM, and the like.
  • the ROM stores an appropriate program for transmitting a response signal in response to the detection signal in the racon 3.
  • the circulator 33 outputs the response signal input from the transmission unit 31 to the racon antenna 32. Further, the circulator 33 outputs the detection signal received by the racon antenna 32 to the receiving unit 34.
  • the receiver 34 receives the detection signal from the racon antenna 32 via the circulator 33.
  • the reception unit 34 obtains the reception end timing of the detection signal.
  • the reception end timing of the detection signal can be obtained, for example, by detecting the falling edge of the pulse when the detection signal is in the form of a pulse.
  • the reception unit 34 outputs the reception end timing of the acquired detection signal to the transmission unit 31.
  • the position information storage unit 35 is configured as a storage unit that stores position information of the racon 3 set in advance, specifically, latitude and longitude indicating the position of the racon 3.
  • the position information storage unit 35 outputs the position information of the racon 3 to the transmission waveform generation unit 36.
  • the transmission waveform generation unit 36 generates a packet so as to include the position information input from the position information storage unit 35, and performs an appropriate modulation process on the packet to transmit the response signal transmitted by the transmission unit 31. Generate a waveform.
  • the transmission waveform generation unit 36 outputs the generated waveform of the response signal to the transmission unit 31.
  • the standby time storage unit 37 is configured as a storage unit for storing a timing at which a response signal is transmitted, specifically, a standby time until the response signal is transmitted after the racon 3 finishes receiving the detection signal. There is. In the standby time storage unit 37, an appropriate value is set as the standby time before the racon 3 is operated. The waiting time storage unit 37 outputs the stored waiting time to the transmitting unit 31.
  • the transmission unit 31 waits for the standby time stored in the standby time storage unit 37 from the reception end timing of the detection signal input from the reception unit 34. .
  • the transmitter 31 transmits the transmission waveform input from the transmission waveform generator 36 from the racon antenna 32 to the outside via the circulator 33 as a response signal.
  • FIG. 2 is a block diagram of the response signal.
  • FIG. 2 exemplifies the format of a packet representing a response signal transmitted by the racon 3.
  • Fig.2 (a) shows the packet in the case of responding on the latitude
  • Fig. 2 (b) shows the packet in the case of responding on the longitude.
  • the response signal is a digital signal having a total of 80 bits in length, the first 32 bits of which are the preamble part, the subsequent 32 bits are the information part, and the last 16 bits are the error detection part. There is.
  • the first 16 bits of the 32 bits are the training sequence, and the second 16 bits are the start sequence.
  • the training sequence is composed of bit strings in which 0 and 1 appear alternately.
  • the start sequence is composed of bit sequences of M-sequence code, which is a kind of pseudo noise code.
  • the information section is a section that describes information indicating the position of the racon 3.
  • the information part is a 5-bit bit string "00000” followed by a 27-bit bit string representing the numerical value of the latitude.
  • the information section has a 4-bit bit string "1000” followed by a 28-bit bit string representing the numerical value of the longitude.
  • the error detection unit is a 16-bit checksum value calculated by the known cyclic redundancy check (CRC) method for the contents of the information unit.
  • CRC cyclic redundancy check
  • the radar device 1 includes a computer (not shown), and the computer includes a CPU, a ROM, a RAM, and the like.
  • the ROM stores a program for realizing a method of acquiring a Racon response delay and a positioning method described later.
  • the radar apparatus 1 includes the transmitter 11, the receiver 14, the video generator 15, the response signal detector 16, the position information acquirer 17, the racon direction acquirer 18, and the response time acquirer by cooperation of the software and hardware. 19, it can be made to function as a racon reflected wave detection unit 20, a response delay acquisition unit 21, a positioning unit 22, and the like.
  • the orientation sensor 92 is configured of, for example, a magnetic orientation sensor or a gyro compass.
  • the orientation sensor 92 is attached to an appropriate position of the ship, and can detect the heading (direction in which the bow is pointing) in an absolute orientation based on the earth.
  • the transmitter 11 generates a detection signal.
  • a semiconductor element is used for the transmission unit 11, but a magnetron may be used instead.
  • the transmitting unit 11 amplifies the generated detection signal and outputs the amplified detection signal to the radar antenna 12 via the circulator 13.
  • the radar antenna 12 radiates the detection signal input from the transmission unit 11 to the outside as a radio wave while rotating in the horizontal plane at a predetermined cycle. Further, the radar antenna 12 receives a reflected wave obtained by reflecting the transmitted detection signal. In the following description, an operation of transmitting a pulse-like detection signal once by the radar antenna 12 and receiving a reflected wave may be referred to as a sweep.
  • the radar device 1 detects a target around 360 ° by repeating the sweep at short time intervals while rotating the radar antenna 12.
  • the circulator 13 outputs the detection signal input from the transmission unit 11 to the radar antenna 12. Further, the circulator 13 outputs the reflected wave received by the radar antenna 12 to the receiving unit 14 as a received signal.
  • the received signal may include the response signal transmitted by the racon 3.
  • the receiving unit 14 receives a reception signal from the radar antenna 12 via the circulator 13.
  • the receiver 14 performs various signal processing on the input received signal.
  • the signal processing may include amplification processing and the like, but is not limited thereto.
  • the reception unit 14 outputs the processed reception signal to the video generation unit 15, the response signal detection unit 16, and the racon reflected wave detection unit 20.
  • the image generation unit 15 performs various signal processing on the reception signal input from the reception unit 14. Examples of this signal processing include, but are not limited to, known clutter suppression processing and sensitivity adjustment processing.
  • the image generation unit 15 generates a radar image based on the signal after the above signal processing is performed.
  • the image generation unit 15 displays the generated radar image on the display unit 91 electrically connected to the radar device 1.
  • the display unit 91 can be configured as, for example, a display made of liquid crystal or the like.
  • the response signal detection unit 16 detects a response signal from the racon 3 from the reception signal input from the reception unit 14. When the response signal can be detected from the reception signal, the response signal detection unit 16 obtains the head timing of the response signal by calculation.
  • the response signal detection unit 16 outputs the detected response signal to the position information acquisition unit 17. Further, every time the response signal detection unit 16 processes the reception signal for one sweep, the response signal detection unit 16 outputs, to the racon direction acquisition unit 18, information indicating whether the response signal from the racon 3 is included in the reception signal. Do. Furthermore, when the response signal is included in the processed reception signal, the response signal detection unit 16 sets the head timing of the acquired response signal to the response time acquisition unit 19, the racon reflected wave detection unit 20, and the response delay. Output to acquisition unit 21.
  • the position information acquisition unit 17 demodulates the response signal input from the response signal detection unit 16 and extracts the contents of the information section shown in FIG. 2 to obtain position information included in the response signal, specifically, the information. Acquire the latitude and longitude of Racon 3. At this time, the position information acquisition unit 17 performs a CRC check based on the error detection unit at the end of the response signal, and confirms that the content of the acquired information unit is not erroneous. The position information acquisition unit 17 outputs the acquired position information to the positioning unit 22.
  • the racon reflection wave detection unit 20 detects, from the reception signal input from the reception unit 14, a reflection wave that appears earlier than the start timing of the response signal input from the response signal detection unit 16 as a reflection wave of the racon 3. Do.
  • the racon reflected wave detection unit 20 outputs the detected reception timing of the reflected wave of the racon 3 to the response delay acquisition unit 21.
  • the positioning unit 22 includes the response time obtained by the response time obtaining unit 19, the response delay obtained by the response delay obtaining unit 21, the relative direction of the racon 3 obtained by the racon direction obtaining unit 18, and the direction sensor 92.
  • the position (specifically, the latitude and the longitude) of the own aircraft is obtained based on the absolute direction of the bow obtained in the above and the position information of the racon 3 obtained by the position information acquisition unit 17.
  • the positioning unit 22 subtracts the response delay obtained by the response delay obtaining unit 21 from the response time obtained by the response time obtaining unit 19 to obtain the radar.
  • the time taken for the signal to reciprocate between the device 1 and the racon 3 (hereinafter, also referred to as reciprocation time) is determined.
  • the distance between the radar device 1 and the racon 3 can be obtained by dividing this round trip time by 2 and multiplying the speed of the radio wave.
  • the absolute orientation of the racon 3 viewed from the radar device 1 is based on the relative orientation of the racon 3 to the radar device 1 obtained by the racon orientation acquisition unit 18 and the absolute orientation of the bow obtained by the orientation sensor 92. Can be asked.
  • the positioning unit 22 determines the distance between the radar device 1 and the racon 3, the absolute orientation of the racon 3 viewed from the radar device 1, and the latitude and longitude of the racon 3 obtained by the position information acquiring unit 17.
  • the latitude and longitude of the radar device 1 are obtained by calculation. As described above, the positioning of the own aircraft using the racon 3 can be realized.
  • the four graphs in FIG. 3 are, from the top, the detection signal transmitted by the radar device 1, the detection signal received by the racon 3, the response signal transmitted by the racon 3, and the radar device 1
  • the timing of transmission / reception is shown for each of the response signals to be received.
  • the vertical axis is signal level and the horizontal axis is time.
  • the time, which is the horizontal axis, corresponds among the four graphs.
  • the response time acquisition unit 19 included in the radar device 1 receives time t0 when the radar device 1 transmits a detection signal, and time t4 when the radar device 1 receives a response signal.
  • a response time t R which is a time difference of is determined for positioning.
  • this response time t R are included racon response delay t RD is a time lag from the time t1 to reach the detection signal to the racon 3 to time t3 racon 3 starts the transmission of the response signal.
  • the racon response delay t RD is not unified, and an unknown response delay causes a decrease in the positioning accuracy.
  • the width of the reflected wave of the racon 3 should be approximately equal to the pulse width t PW of the detection signal. It is. Therefore, racon reflected wave detection unit 20, and time t RW to disappear from appeared, and the pulse width t PW is the transmission time of the pulse-like detection signal, the difference of only the reflected wave is within a predetermined, racons It detects as 3 reflected waves.
  • the condition that the width of the reflected wave should satisfy in order to be detected as the reflected wave of the racon 3 is a predetermined range that includes the pulse width t PW of the detection signal. Thereby, the reflected wave of the racon 3 can be detected more accurately.
  • the start sequence is a 16-bit M-sequence code. Since this start sequence is known, the response signal detection unit 16 finds the correlation between the received signal and the 16-bit signal which is a replica of the code of the start sequence.
  • the radar device 1 can obtain the response delay on the spot based on the reflected wave and the response signal. Therefore, the distance between the radar device 1 and the racon 3 can be accurately acquired with a simple configuration.
  • the format of the response signal transmitted by the racon 3 may be arbitrary instead of that shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】探知信号がトランスポンダに到達してから当該トランスポンダが応答信号を送信するまでの遅延時間を正確に取得できるレーダ装置を提供する。 【解 決手段】レーダ装置は、応答信号検出部と、トランスポンダ反射波検出部と、応答遅延取得部と、を備える。前記応答信号検出部は、アンテナから送信した探知 信号の反射波を受信した受信信号から、前記探知信号に反応してトランスポンダが送信する応答信号を検出する。前記トランスポンダ反射波検出部は、前記受信 信号において前記応答信号より早いタイミングで現れる反射波を前記トランスポンダの反射波として検出する。前記応答遅延取得部は、前記反射波と前記応答信 号との時間差に基づいて前記トランスポンダの応答遅延を取得する。

Description

レーダ装置、及びトランスポンダ応答遅延の取得方法
 本発明は、主として、レーダ装置に関する。
 従来から、船舶において、トランスポンダの一種であるレーダビーコンを用いて測位を行うことが提案されている。特許文献1は、この種のレーダ装置を開示する。
  特許文献1のレーダ測位システムでは、船舶の航路標識の一種であるレーダビーコン(レーコン)が、船舶からのレーダ波に応答してレーコン応答波を船舶に送 信する。レーコン応答波には、プリアンブルとしてのレーコン識別情報と、レーコンの緯度及び経度を含むレーコン位置情報と、が含まれる。
  特許文献1において、レーダ送受信機は、レーコン応答波を受信した場合、レーコン識別情報の受信時点を特定するとともに、その時刻からレーコン応答遅延を 減算して、レーコン応答波の到達時点を示す時刻を算定する。ここで、レーコン応答遅延とは、レーコンがレーダ波を受信してからレーコン応答波を送信するま でに要する処理時間である。そして、レーダ送受信機は、レーダ波の送信時点からレーコン応答波の到達時点までの時間差に対してレーダ波の進行速度を乗算す るとともに、2で除算して、レーダ送受信機からレーコンまでの距離を算出する。
特開2013-142661号公報
  レーダ送受信機からレーコンまでの距離を精度良く求めるためには、正確なレーコン応答遅延を取得することが重要である。しかしながら、レーコン応答遅延 は、レーコンの機種毎に異なり、また個体差も生じている。この点、特許文献1は、レーコン応答遅延をどのように求めるかについて開示しておらず、測位精度 の向上という点で改善の余地があった。
 本発明は以上の事情に鑑みてされたものであり、その目的は、探知信号がトランスポンダに到達してから当該トランスポンダが応答信号を送信するまでの遅延時間を正確に取得できるレーダ装置を提供することにある。
課題を解決するための手段及び効果
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
  本発明の第1の観点によれば、以下の構成のレーダ装置が提供される。即ち、このレーダ装置は、応答信号検出部と、トランスポンダ反射波検出部と、応答遅延 取得部と、を備える。前記応答信号検出部は、アンテナから送信した探知信号の反射波を受信した受信信号から、前記探知信号に反応してトランスポンダが送信 する応答信号を検出する。前記トランスポンダ反射波検出部は、前記受信信号において前記応答信号より早いタイミングで現れる反射波を前記トランスポンダの 反射波として検出する。前記応答遅延取得部は、前記反射波と前記応答信号との時間差に基づいて前記トランスポンダの応答遅延を取得する。
  これにより、機種及び個体差等の原因でトランスポンダの応答遅延が様々に異なる場合でも、レーダ装置が、反射波及び応答信号に基づいて応答遅延をその場で 取得することができる。従って、簡素な構成で、レーダ装置とトランスポンダとの間の距離を正確に取得することができる。
 前記のレーダ装置においては、前記トランスポンダ反射波検出部は、前記受信信号において前記応答信号の先頭タイミングとの時間差が所定以内となるタイミングで現れる反射波を、前記トランスポンダの反射波として検出することが好ましい。
 これにより、トランスポンダの応答遅延は通常は所定の長さ以下であることを利用して、トランスポンダの反射波を正確に検出することができる。
  前記のレーダ装置においては、以下の構成とすることが好ましい。即ち、前記トランスポンダの応答信号には疑似雑音符号が含まれる。前記応答信号検出部は、 前記受信信号と前記疑似雑音符号の相関が所定以上になったタイミングに基づいて、前記応答信号の先頭タイミングを取得する。
 これにより、疑似雑音符号が信号中の一定の位置に現れる構造を応答信号が有している場合に、応答信号の先頭タイミングを正確に取得することができる。
  前記のレーダ装置においては、以下の構成とすることが好ましい。即ち、前記トランスポンダ反射波検出部は、前記受信信号において現れる反射波のうち、現れ てから消えるまでの時間の長さが所定の範囲内である反射波を、前記トランスポンダの反射波として検出する。前記所定の範囲に、パルス状である前記探知信号 の送信時間が含まれる。
 これにより、トランスポンダが小型であり、点状の信号反射源とみなせる場合に、トランスポンダの反射波を正確に検出することができる。
 前記のレーダ装置においては、前記トランスポンダ反射波検出部は、複数のスイープを処理することにより前記トランスポンダの反射波を検出することが好ましい。
 これにより、受信信号に含まれるノイズの影響を抑制して、トランスポンダの反射波を正確に検出することができる。
  前記のレーダ装置においては、以下の構成とすることが好ましい。即ち、このレーダ装置は、位置情報取得部と、応答時間取得部と、測位部と、を備える。前記 位置情報取得部は、前記応答信号検出部が検出した応答信号から、前記トランスポンダの位置を示す位置情報を取得する。前記応答時間取得部は、前記探知信号 を送信してから前記応答信号を受信するまでの時間である応答時間を取得する。前記測位部は、前記位置情報、前記応答時間、及び前記応答遅延に基づいて自機 の位置を取得する。
 これにより、応答遅延の影響を正確に考慮した測位を行うことができるので、測位精度を大幅に向上させることができる。
  本発明の第2の観点によれば、以下のトランスポンダ応答遅延の取得方法が提供される。即ち、探知信号の電波をアンテナから送信する。前記探知信号がトラン スポンダに反射した反射波を前記アンテナで受信する。前記探知信号に反応して前記トランスポンダが送信した電波である応答信号を前記アンテナで受信する。 前記反射波の受信タイミングと、前記応答信号の受信タイミングと、の時間差に基づいてトランスポンダ応答遅延時間を取得する。
 これにより、機種及び個体差等の原因でトランスポンダの応答遅延が様々に異なる場合でも、反射波及び応答信号に基づいて応答遅延をその場で取得することができる。従って、簡素な構成で、トランスポンダとの間の距離を正確に取得することができる。
本発明の一実施形態に係るレーダ装置及びレーコンの構成を示すブロック図。 レーコンが送信する応答信号のパケット構成図。 レーダ装置とレーコンとの間で電波の送受信が行われるタイミングを示すグラフ。 変形例において、反射波が検出される複数スイープ分の受信信号を示すグラフ。
 次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の一実施形態に係るレーダ装置1及びレーコン3の構成を示すブロック図である。
 図1に示すレーダ装置1は、移動体としての図略の船舶に備えられている。レーダ装置1は、電波である探知信号をレーダアンテナ(アンテナ)12から送信し、レーダアンテナ12で反射波を受信することで周囲の物標を探知する。
  レーコン(トランスポンダ)3は、レーダ装置1の探知信号に反応して、電波である応答信号をレーコンアンテナ32からレーダ装置1へ送信する。この応答信 号には、レーコン3の位置を例えば緯度及び経度で表した位置情報が含まれている。レーダ装置1は、レーコン3の応答信号等に基づいて、自機の位置を求める ことができる。
 レーコン3を説明する。図1に示すように、レーコン3は、送信部31と、レーコンアンテナ32と、サーキュレータ33と、受信部34と、位置情報記憶部35と、送信波形生成部36と、待機時間記憶部37と、を備える。
  具体的に説明すると、レーコン3は図略のコンピュータを備えており、このコンピュータはCPU、ROM、RAM等を備える。前記ROMには、レーコン3 に、探知信号に反応して応答信号を送信させる適宜のプログラムが記憶されている。このソフトウェアとハードウェアの協働により、レーコン3を、送信部 31、受信部34、位置情報記憶部35、送信波形生成部36、及び待機時間記憶部37等として機能させることが可能となっている。
 送信部31は、レーダ装置1からの探知信号を後述の受信部34が受信した場合に、当該探知信号に応答する応答信号を、サーキュレータ33を介してレーコンアンテナ32に出力する。
 レーコンアンテナ32は、送信部31から入力された応答信号を電波として外部に放射する。また、レーコンアンテナ32は、レーダ装置1の探知信号を受信する。
 サーキュレータ33は、送信部31から入力された応答信号をレーコンアンテナ32へ出力する。また、サーキュレータ33は、レーコンアンテナ32が受信した探知信号を受信部34へ出力する。
  受信部34は、サーキュレータ33を介してレーコンアンテナ32から探知信号を受信する。受信部34は、探知信号を検出すると、当該探知信号の受信終了タ イミングを取得する。探知信号の受信終了タイミングは、例えば探知信号がパルス状である場合は、パルスの立下がりのエッジを検出することにより得ることが できる。受信部34は、取得した探知信号の受信終了タイミングを送信部31に出力する。
 位置情報記憶部35は、予め設定されたレーコン3の位置情報、具体的には、レーコン3の位置を示す緯度及び経度を記憶する記憶部として構成されている。位置情報記憶部35は、レーコン3の位置情報を送信波形生成部36に出力する。
  送信波形生成部36は、位置情報記憶部35から入力した位置情報を含むようにパケットを生成し、当該パケットに対して適宜の変調処理を行うことにより、送 信部31が送信する応答信号の波形を生成する。送信波形生成部36は、生成した応答信号の波形を送信部31に出力する。
  待機時間記憶部37は、応答信号を送信するタイミング、具体的には、レーコン3が探知信号の受信を終了してから応答信号を送信するまでの待機時間を記憶す る記憶部として構成されている。待機時間記憶部37には、レーコン3を稼動させる前に、前記待機時間として適宜の値が予め設定される。待機時間記憶部37 は、記憶している待機時間を送信部31に出力する。
 以上の構成で、レーコン3の受信部34が探知信号を受信すると、送信 部31は、受信部34から入力した探知信号の受信終了タイミングから、待機時間記憶部37が記憶する待機時間だけ待機する。この待機が完了するのと同時 に、送信部31は、送信波形生成部36から入力される送信波形を、応答信号として、サーキュレータ33を介してレーコンアンテナ32から外部へ送信する。
 次に、図2を参照して、レーコン3が送信する応答信号について詳細に説明する。図2は、応答信号のパケット構成図である。
  図2には、レーコン3が送信する応答信号を表すパケットのフォーマットが例示されている。図2(a)は緯度について応答する場合、図2(b)は経度につい て応答する場合のパケットをそれぞれ示している。何れの場合も、応答信号は合計80ビットの長さを有するデジタル信号であり、そのうちの先頭の32ビット がプリアンブル部、それに続く32ビットが情報部、最後の16ビットが誤り検出部となっている。
 プリアンブル部は、32 ビットのうち前半の16ビットがトレーニングシーケンス、後半の16ビットがスタートシーケンスとなっている。トレーニングシーケンスは、0と1が交互に 現れるビット列で構成される。スタートシーケンスは、疑似雑音符号の一種であるM系列符号のビット列で構成される。
 情報 部は、レーコン3の位置を示す情報を記述する部分である。緯度について応答する場合、情報部は図2(a)に示すように、"00000"という5ビットの ビット列の後に、緯度の数値を表す27ビットのビット列が付加されたものとなる。経度について応答する場合、情報部は図2(b)に示すように、 "1000"という4ビットのビット列の後に、経度の数値を表す28ビットのビット列が付加されたものとなる。
 誤り検出部は、情報部の内容に対して公知の巡回冗長検査(CRC)の方法で計算した16ビットのチェックサム値となっている。
  レーダ装置1を説明する。図1に示すように、レーダ装置1は、送信部11と、レーダアンテナ12と、サーキュレータ13と、受信部14と、映像生成部15 と、応答信号検出部16と、位置情報取得部17と、レーコン方位取得部18と、応答時間取得部19と、レーコン反射波検出部(トランスポンダ反射波検出 部)20と、応答遅延取得部21と、測位部22と、を備える。
 具体的に説明すると、レーダ装置1は図略のコンピュータを 備えており、このコンピュータはCPU、ROM、RAM等を備える。前記ROMには、後述するレーコン応答遅延の取得方法及び測位方法を実現するためのプ ログラムが記憶されている。このソフトウェアとハードウェアの協働により、レーダ装置1を、送信部11、受信部14、映像生成部15、応答信号検出部 16、位置情報取得部17、レーコン方位取得部18、応答時間取得部19、レーコン反射波検出部20、応答遅延取得部21及び測位部22等として機能させ ることが可能となっている。
 レーダ装置1には、表示部91と、方位センサ92と、が電気的に接続されている。
 表示部91は、例えば液晶ディスプレイとして構成されており、画面に各種の情報を表示することができる。
 方位センサ92は、例えば磁気方位センサ又はジャイロコンパス等により構成されている。方位センサ92は船舶の適宜の位置に取り付けられており、船首方位(船首が向いている方向)を、地球基準の絶対的な方位で検出することができる。
 送信部11は、探知信号を生成する。本実施形態において送信部11には半導体素子が用いられているが、これに代えてマグネトロンが用いられても良い。送信部11は、生成した探知信号を増幅して、サーキュレータ13を介してレーダアンテナ12に出力する。
  レーダアンテナ12は、所定の周期で水平面内を回転しながら、送信部11から入力された探知信号を電波として外部に放射する。また、レーダアンテナ12 は、送信した探知信号が反射した反射波を受信する。以下の説明では、レーダアンテナ12によってパルス状の探知信号を1回送信して反射波を受信する動作 を、スイープと呼ぶことがある。レーダ装置1は、レーダアンテナ12を回転させながらスイープを短い時間間隔で反復することにより、360°にわたって周 囲の物標を探知する。
 サーキュレータ13は、送信部11から入力された探知信号をレーダアンテナ12へ出力する。また、 サーキュレータ13は、レーダアンテナ12が受信した反射波を、受信信号として受信部14へ出力する。この受信信号には、レーコン3が送信した応答信号が 含まれる場合がある。
 受信部14は、サーキュレータ13を介してレーダアンテナ12から受信信号を受信する。受信部14 は、入力された受信信号に対して各種の信号処理を行う。この信号処理には、増幅処理等を挙げることができるが、これに限られない。受信部14は、処理した 受信信号を、映像生成部15、応答信号検出部16、及びレーコン反射波検出部20に出力する。
 映像生成部15は、受信部 14から入力された受信信号に対して、各種の信号処理を行う。この信号処理としては、公知のクラッタ抑圧処理及び感度調整処理等を挙げることができるが、 これに限られない。映像生成部15は、上記の信号処理が行われた後の信号に基づいてレーダ映像を生成する。映像生成部15は、生成したレーダ映像を、レー ダ装置1に電気的に接続された表示部91に表示する。表示部91は、例えば液晶等からなるディスプレイとして構成することができる。
 応答信号検出部16は、受信部14から入力された受信信号から、レーコン3からの応答信号を検出する。受信信号から応答信号を検出できた場合は、応答信号検出部16は、当該応答信号の先頭タイミングを計算により取得する。
  応答信号検出部16は、検出した応答信号を位置情報取得部17に出力する。また、応答信号検出部16は、1スイープ分の受信信号を処理する毎に、レーコン 3からの応答信号が当該受信信号に含まれていたか否かを示す情報を、レーコン方位取得部18に出力する。更に、応答信号検出部16は、処理した受信信号に 応答信号が含まれていた場合に、取得した応答信号の先頭タイミングを、応答時間取得部19、レーコン反射波検出部20、及び、応答遅延取得部21に出力す る。
 位置情報取得部17は、応答信号検出部16から入力された応答信号を復調し、図2に示す情報部の内容を取り出すこと により、当該応答信号に含まれる位置情報、具体的には、当該レーコン3の緯度及び経度を取得する。このとき、位置情報取得部17は、応答信号の末尾の誤り 検出部に基づいてCRCチェックを行い、取得した情報部の内容に誤りがないことを確認する。位置情報取得部17は、得られた位置情報を測位部22に出力す る。
 レーコン方位取得部18は、応答信号検出部16から入力された情報に基づいて、レーコン3の自機に対する相対方位を 取得する。この相対方位は、応答信号が含まれるスイープに相当する方位として求めることができる。また、複数のスイープから応答信号が検出された場合は、 当該複数のスイープに相当する方位の範囲を2等分する方位とすることができる。
 応答時間取得部19は、応答信号検出部 16から入力される応答信号の先頭タイミングに基づいて、レーダアンテナ12が探知信号を送信してからレーコン3の応答信号を受信するまでの時間(以下、 応答時間と呼ぶことがある。)を取得する。応答時間取得部19は、取得した応答時間を測位部22に出力する。
 レーコン反 射波検出部20は、受信部14から入力された受信信号から、応答信号検出部16から入力された応答信号の先頭タイミングより早いタイミングで現れる反射波 を、レーコン3の反射波として検出する。レーコン反射波検出部20は、検出されたレーコン3の反射波の受信タイミングを、応答遅延取得部21に出力する。
  応答遅延取得部21は、レーコン反射波検出部20から入力されるレーコン3の反射波の受信タイミングと、応答信号検出部16から入力される応答信号の先頭 タイミングと、の時間差を計算することにより、レーコン3の応答遅延を取得する。ここで、レーコン3の応答遅延とは、レーコン3が探知信号を受信してから 応答信号を送信するまでに要する時間である。応答遅延取得部21は、取得した応答遅延を測位部22に出力する。
 測位部 22は、応答時間取得部19で得られた応答時間と、応答遅延取得部21で得られた応答遅延と、レーコン方位取得部18で得られたレーコン3の相対方位と、 方位センサ92で得られた船首の絶対方位と、位置情報取得部17で得られたレーコン3の位置情報と、に基づいて、自機の位置(具体的には、緯度及び経度) を求める。
 測位の方法は公知であるので簡単に説明すると、測位部22は、応答時間取得部19で得られた応答時間から、応 答遅延取得部21で得られた応答遅延を減算することで、レーダ装置1とレーコン3との間で信号が往復するのに掛かった時間(以下、往復時間と呼ぶことがあ る。)を求める。この往復時間を2で除算し、電波の速度を乗算することで、レーダ装置1とレーコン3との間の距離を求めることができる。また、レーダ装置 1から見たレーコン3の絶対方位は、レーコン方位取得部18で得られたレーコン3のレーダ装置1に対する相対方位と、方位センサ92で得られた船首の絶対 方位と、に基づいて求めることができる。
 測位部22は、レーダ装置1とレーコン3との間の距離と、レーダ装置1から見た レーコン3の絶対方位と、位置情報取得部17で得られたレーコン3の緯度及び経度と、により、レーダ装置1の緯度及び経度を計算により求める。以上によ り、レーコン3を用いた自機の測位を実現することができる。
 測位部22は、得られた自機の緯度及び経度を映像生成部15 に出力する。映像生成部15は、生成するレーダ映像と併せて、測位部22の測位結果を表示部91に表示する。測位結果の表示方法としては、緯度及び経度の 数値が直接表示されても良いし、その他の方法で表示されても良い。これにより、レーダ装置1のユーザは、表示部91の画面を見ることで自船の位置を把握す ることができる。
 次に、レーダ装置1が送信する探知信号とレーコン3が送信する応答信号との関係について詳細に説明する。図3は、レーダ装置1とレーコン3との間で電波の送受信が行われるタイミングを示すグラフである。
  図3の4つのグラフは、1スイープ分の電波の送受信に関して、上から順に、レーダ装置1が送信する探知信号、レーコン3が受信する探知信号、レーコン3が 送信する応答信号、レーダ装置1が受信する応答信号のそれぞれについて、送信/受信のタイミングを示すものである。4つのグラフの全てで、縦軸は信号レベ ル、横軸は時間である。横軸である時間は、4つのグラフの間で対応している。
 図3(a)に示す時刻t0において、レーダ装置1から、パルス幅がtPWである探知信号が送信された場合を考える。この探知信号は、図3(b)に示す時刻t1にレーコン3に到達し、レーコン3によって受信される。
 図3(c)に示すように、レーコン3は、探知信号を受信すると、パルス状の探知信号の立下がりタイミングである時刻t2を検出する。レーコン3は、検出された時刻t2から、上述の待機時間twだけ待機した時刻t3において、応答信号の送信を開始する。この応答信号は、図3(d)に示す時刻t4にレーダ装置1に到達し、レーダ装置1によって受信される。
 このように電波の送受信が行われた場合、レーダ装置1が備える応答時間取得部19は、レーダ装置1が探知信号を送信した時刻t0と、レーダ装置1が応答信号を受信した時刻t4と、の時間差である応答時間tRを測位のために求める。しかしながら、この応答時間tRには、レーコン3に探知信号が到達する時刻t1からレーコン3が応答信号の送信を開始する時刻t3までのタイムラグであるレーコン応答遅延tRDが含まれている。船舶用のレーコン3において、レーコン応答遅延tRDは規格上の上限はあるものの統一されておらず、未知である応答遅延が測位精度を低下させる原因となっている。
  この点、本実施形態のレーダ装置1が備えるレーコン反射波検出部20は、図3(d)に示すように、受信信号において応答信号より早いタイミングで現れる反 射波を、レーコン3で探知信号が反射した反射波として検出する。そして、応答遅延取得部21は、レーコン3の反射波を受信した時刻t5と、応答信号を受信 した時刻t4と、の時間差を、レーコン応答遅延tRDEとして取得する。
 反射波のタイムラグはゼロであるので、レーコン反射波検出部20がレーコン3の反射波を正しく検出できれば、応答遅延取得部21が取得したレーコン応答遅延tRDEは、実際のレーコン応答遅延tRDと一致するはずである。本実施形態のレーダ装置1は、測位部22がレーコン応答遅延tRDEを用いて計算を行うことで、精度の良い測位結果を得ることができる。
  ただし、応答信号の先頭のタイミングとの時間差が大き過ぎるタイミングで現れる反射波は、レーコン3で探知信号が反射したものではないと考えられる。従っ て、レーコン反射波検出部20は、応答信号検出部16から入力された応答信号の先頭タイミング(時刻t4)との時間差が所定以内である反射波だけを、レー コン3の反射波として検出する。この時間差の上限は、上述したレーコン応答遅延の規格による上限に適宜のマージンを加算した値とすることが考えられる。こ れにより、レーコン3の反射波を良好に検出することができる。
 また、レーコン3は通常小型に構成されており、殆ど点状の信号反射源であるとみなすことができるので、レーコン3の反射波の幅は、探知信号のパルス幅tPWとほぼ等しくなるはずである。そこで、レーコン反射波検出部20は、現れてから消えるまでの時間tRWと、パルス状の探知信号の送信時間であるパルス幅tPWと、の差が所定以内である反射波だけを、レーコン3の反射波として検出する。言い換えれば、レーコン3の反射波として検出されるために当該反射波の幅が満たすべき条件が、探知信号のパルス幅tPWを範囲内に含む所定の範囲となっている。これにより、レーコン3の反射波をより正確に検出することができる。
 次に、応答信号検出部16による応答信号の先頭タイミングの検出について説明する。
 図2に示すように、応答信号のプリアンブル部のうちスタートシーケンスは、16ビットのM系列符号である。このスタートシーケンスは既知であるので、応答信号検出部16は、スタートシーケンスの符号のレプリカである16ビットの信号と、受信信号と、の相関を求める。
  疑似雑音符号の性質から、レプリカと受信信号とが一致するタイミングが、スタートシーケンスの後に続く情報部の先頭を示している。そこで、応答信号検出部 16は、レプリカと受信信号との相関が所定の閾値を上回るタイミングから、プリアンブル部の長さである32ビット分の時間だけ遡ったタイミングを、応答信 号の先頭タイミング(上述の時刻t4)として検出する。これにより、応答信号の先頭タイミングを正確に求めることができる。
  以上に説明したように、本実施形態のレーダ装置1は、応答信号検出部16と、レーコン反射波検出部20と、応答遅延取得部21と、を備える。応答信号検出 部16は、レーダアンテナ12から送信した探知信号の反射波を受信した受信信号から、前記探知信号に反応してレーコン3が送信する応答信号を検出する。 レーコン反射波検出部20は、前記受信信号において前記応答信号より早いタイミングで現れる反射波を、レーコン3の反射波として検出する。応答遅延取得部 21は、前記反射波の受信タイミングと前記応答信号の受信タイミングとの時間差に基づいて、レーコン3の応答遅延を取得する。
  また、本実施形態のレーダ装置1は、レーコン3の応答遅延を以下の方法により取得している。即ち、探知信号の電波をレーダアンテナ12から送信する。前記 探知信号がレーコン3に反射した反射波をレーダアンテナ12で受信する。前記探知信号に反応してレーコン3が送信した電波である応答信号をレーダアンテナ 12で受信する。前記反射波の受信タイミングと、前記応答信号の受信タイミングと、の時間差に基づいてレーコン3の応答遅延を取得する。
 これにより、機種及び個体差等の原因でレーコン3の応答遅延が様々に異なる場合でも、レーダ装置1が、反射波及び応答信号に基づいて応答遅延をその場で取得することができる。従って、簡素な構成で、レーダ装置1とレーコン3との間の距離を正確に取得することができる。
  次に、上記の実施形態の変形例について説明する。図4は、変形例において、複数スイープ分の受信信号から平均が計算され、この平均からレーコンの反射波を 検出する様子を示すグラフである。なお、以下の説明において、上記実施形態と同一又は類似の構成については、要素名に同一の符号を付して説明を省略する場 合がある。
 上記の実施形態では、レーコン反射波検出部20は、1スイープ分の受信信号からレーコン3の反射波を検出して いる。一方、探知信号はレーダアンテナ12の向きを少しずつ変化させながら反復して送信されるため、図4に示すように、複数のスイープのそれぞれについて レーコン3が応答信号を送信する場合も少なくない。そこで、本変形例では、レーコン反射波検出部20が、応答信号が含まれる複数スイープの受信信号の信号 レベルについて、統計処理の一種である平均処理を行い、得られた平均値に基づいて、レーコン3の反射波を検出している。
 図4には、3つのスイープの受信信号から平均波形を計算した例が示され、この平均波形においては、平均計算前では目立っていたノイズによる反射波が小さくなっていることがわかる。これにより、レーコン3の反射波をより正確に検出することができる。
 以上に本発明の好適な実施の形態及び変形例を説明したが、上記の構成は例えば以下のように変更することができる。
 応答信号の先頭タイミングの検出は、疑似雑音符号のレプリカと受信信号との相関をとることに代えて、例えば、プリアンブル部の電力を検出し、検出した電力が所定の閾値を上回ったタイミングに基づいて行うこともできる。
 レーコン3が送信する応答信号のフォーマットは、図2に示すものに代えて、任意のものを採用することができる。
 図4の変形例においては、反射波を検出するために、複数スイープの受信信号の平均を計算する処理が行われている。しかしながら、平均以外の処理、例えば、複数スイープの受信信号の間で相関を計算する処理が行われても良い。
 レーダ装置1からの探知信号がレーコン3によって良好に反射するように、レーコン3にリフレクタ等が取り付けられても良い。
 レーダ装置1とレーコン3による測位は、単独で用いられても良いし、他の測位装置(例えば、GNSS測位装置)による測位が何らかの理由でできなくなった場合の代替的な手段として用いられても良い。
 1 レーダ装置
 3 レーコン(トランスポンダ)
 12 レーダアンテナ(アンテナ)
 16 応答信号検出部
 17 位置情報取得部
 19 応答時間取得部
 20 レーコン反射波検出部(トランスポンダ反射波検出部)
 21 応答遅延取得部

Claims (7)

  1.  アンテナから送信した探知信号の反射波を受信した受信信号から、前記探知信号に反応してトランスポンダが送信する応答信号を検出する応答信号検出部と、
     前記受信信号において前記応答信号より早いタイミングで現れる反射波を前記トランスポンダの反射波として検出するトランスポンダ反射波検出部と、
     前記反射波の受信タイミングと前記応答信号の受信タイミングとの時間差に基づいて前記トランスポンダの応答遅延を取得する応答遅延取得部と、
    を備えることを特徴とするレーダ装置。
  2.  請求項1に記載のレーダ装置であって、
     前記トランスポンダ反射波検出部は、前記受信信号において前記応答信号の先頭タイミングとの時間差が所定以内となるタイミングで現れる反射波を、前記トランスポンダの反射波として検出することを特徴とするレーダ装置。
  3.  請求項1又は2に記載のレーダ装置であって、
     前記トランスポンダの応答信号には疑似雑音符号が含まれ、
     前記応答信号検出部は、前記受信信号と前記疑似雑音符号の相関が所定以上になったタイミングに基づいて、前記応答信号の先頭タイミングを取得することを特徴とするレーダ装置。
  4.  請求項1から3までの何れか一項に記載のレーダ装置であって、
     前記トランスポンダ反射波検出部は、前記受信信号において現れる反射波のうち、現れてから消えるまでの時間の長さが所定の範囲内である反射波を、前記トランスポンダの反射波として検出し、
     前記所定の範囲に、パルス状である前記探知信号の送信時間が含まれることを特徴とするレーダ装置。
  5.  請求項1から4までの何れか一項に記載のレーダ装置であって、
     前記トランスポンダ反射波検出部は、複数のスイープを処理することにより前記トランスポンダの反射波を検出することを特徴とするレーダ装置。
  6.  請求項1から5までの何れか一項に記載のレーダ装置であって、
     前記応答信号検出部が検出した応答信号から、前記トランスポンダの位置を示す位置情報を取得する位置情報取得部と、
     前記探知信号を送信してから前記応答信号を受信するまでの時間である応答時間を取得する応答時間取得部と、
     前記位置情報、前記応答時間、及び前記応答遅延に基づいて自機の位置を取得する測位部と、
    を備えることを特徴とするレーダ装置。
  7.  探知信号の電波をアンテナから送信し、
     前記探知信号がトランスポンダに反射した反射波を前記アンテナで受信し、
     前記探知信号に反応して前記トランスポンダが送信した電波である応答信号を前記アンテナで受信し、
     前記反射波の受信タイミングと、前記応答信号の受信タイミングと、の時間差に基づいてトランスポンダ応答遅延を取得することを特徴とするトランスポンダ応答遅延の取得方法。
PCT/JP2018/030718 2017-09-05 2018-08-21 レーダ装置、及びトランスポンダ応答遅延の取得方法 WO2019049648A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019540866A JP7018448B2 (ja) 2017-09-05 2018-08-21 レーダ装置、及びトランスポンダ応答遅延の取得方法
EP18854856.4A EP3680686B1 (en) 2017-09-05 2018-08-21 Radar device and transponder response delay acquiring method
JP2022012167A JP7379551B2 (ja) 2017-09-05 2022-01-28 レーダ装置、トランスポンダの反射波の検出方法、及び測位方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017170695 2017-09-05
JP2017-170695 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049648A1 true WO2019049648A1 (ja) 2019-03-14

Family

ID=65634066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030718 WO2019049648A1 (ja) 2017-09-05 2018-08-21 レーダ装置、及びトランスポンダ応答遅延の取得方法

Country Status (3)

Country Link
EP (1) EP3680686B1 (ja)
JP (2) JP7018448B2 (ja)
WO (1) WO2019049648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085719A (ja) * 2019-11-26 2021-06-03 株式会社Soken デジタルキーシステムおよび車載システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961518A (ja) * 1995-08-23 1997-03-07 Nec Corp 二次レーダ装置
JP2000019246A (ja) * 1998-07-03 2000-01-21 Denso Corp 障害物検知システム,レーダ装置,トランスポンダ
US20020186163A1 (en) * 2001-06-07 2002-12-12 Morchel Herman G. Self calibration of transponder apparatus
JP2007132702A (ja) * 2005-11-08 2007-05-31 Mitsubishi Electric Corp デジタルrfメモリ装置
JP2013142661A (ja) 2012-01-12 2013-07-22 Furuno Electric Co Ltd レーダ装置、レーダ測位システム、レーダ測位方法及びレーダ測位プログラム
JP2017026444A (ja) * 2015-07-22 2017-02-02 格一 塩見 反射型レーダ受信機及び二次監視レーダシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO169267C (no) 1989-06-08 1992-05-27 Miros As Fremgangsmaate ved system til deteksjon, lokalisering og klassifisering av maalobjekter
JPH04351987A (ja) * 1991-05-30 1992-12-07 Oki Electric Ind Co Ltd パルスレーダによるデータ通信方法
WO2005088850A1 (ja) 2004-03-17 2005-09-22 Brother Kogyo Kabushiki Kaisha 位置検出システム、応答器及び質問器、無線通信システム、位置検出方法、位置検出用プログラム及び情報記録媒体
JP2011145111A (ja) 2010-01-12 2011-07-28 Panasonic Corp Uwbセンサシステム及びリーダ装置
JP6370121B2 (ja) * 2014-06-11 2018-08-08 古野電気株式会社 自船位置測位装置、レーダ装置、自移動体位置測位装置及び自船位置測位方法
CA2989702A1 (en) * 2015-06-15 2016-12-22 Humatics Corporation High-precision time of flight measurement system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961518A (ja) * 1995-08-23 1997-03-07 Nec Corp 二次レーダ装置
JP2000019246A (ja) * 1998-07-03 2000-01-21 Denso Corp 障害物検知システム,レーダ装置,トランスポンダ
US20020186163A1 (en) * 2001-06-07 2002-12-12 Morchel Herman G. Self calibration of transponder apparatus
JP2007132702A (ja) * 2005-11-08 2007-05-31 Mitsubishi Electric Corp デジタルrfメモリ装置
JP2013142661A (ja) 2012-01-12 2013-07-22 Furuno Electric Co Ltd レーダ装置、レーダ測位システム、レーダ測位方法及びレーダ測位プログラム
JP2017026444A (ja) * 2015-07-22 2017-02-02 格一 塩見 反射型レーダ受信機及び二次監視レーダシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085719A (ja) * 2019-11-26 2021-06-03 株式会社Soken デジタルキーシステムおよび車載システム

Also Published As

Publication number Publication date
JP7379551B2 (ja) 2023-11-14
JP7018448B2 (ja) 2022-02-10
EP3680686A1 (en) 2020-07-15
JPWO2019049648A1 (ja) 2020-10-15
EP3680686A4 (en) 2021-06-02
JP2022051800A (ja) 2022-04-01
EP3680686B1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
US20050226099A1 (en) Quantitative echo souner and method of quantitative sounding of fish
JP2007500348A (ja) 超音波を用いる距離の測定方法と装置
CN109073740A (zh) 测距和对象定位系统及其使用方法
RU2007145206A (ru) Радиочастотная система для слежения за объектами
JP6324327B2 (ja) パッシブレーダ装置
CN101473243A (zh) 电子支持测量系统中的方法、所述方法的使用和装置
US20200003867A1 (en) Partially coordinated radar system
JP7379551B2 (ja) レーダ装置、トランスポンダの反射波の検出方法、及び測位方法
JP2009270863A (ja) バイスタティックレーダ装置
KR101454827B1 (ko) 초음파 신호의 위상천이 검출에 의한 정밀 거리측정방법
US7460012B2 (en) Method and system for synchronizing geographically distributed RF sensors using a pair of RF triggering devices
JP2010038832A (ja) パルスレーダ装置
US8639462B2 (en) Method and system for determining the time-of-flight of a signal
JP2004264070A (ja) バイスタティック方位検出システム及び検出方法
JPS60263880A (ja) 地下埋設物探査方法
JPH1164507A (ja) 距離測定方法
JP2865082B2 (ja) 電波受信装置
KR100752584B1 (ko) 위치파악시스템에서 거리오차 보정방법
JP2006125947A (ja) レーダー装置
US11841424B2 (en) Methods and electronic device for dynamic distance measurements
US11226394B2 (en) Direction finding system and method for radio direction finding of a target
JP2012202698A (ja) 時間差方位探知装置
JP6311230B2 (ja) 目標物検出装置、目標物検出方法、プログラム及び記録媒体
RU2468388C2 (ru) Гидроакустическая синхронная дальномерная навигационная система
JP2015190784A (ja) レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018854856

Country of ref document: EP

Effective date: 20200406