WO2019049644A1 - Dissolved gas-containing ice production device and production method - Google Patents

Dissolved gas-containing ice production device and production method Download PDF

Info

Publication number
WO2019049644A1
WO2019049644A1 PCT/JP2018/030675 JP2018030675W WO2019049644A1 WO 2019049644 A1 WO2019049644 A1 WO 2019049644A1 JP 2018030675 W JP2018030675 W JP 2018030675W WO 2019049644 A1 WO2019049644 A1 WO 2019049644A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
pressure
gas
container
resistant
Prior art date
Application number
PCT/JP2018/030675
Other languages
French (fr)
Japanese (ja)
Inventor
博 胡
怜那 秋山
Original Assignee
アイスマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイスマン株式会社 filed Critical アイスマン株式会社
Publication of WO2019049644A1 publication Critical patent/WO2019049644A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice

Definitions

  • the present invention relates to an apparatus and method for producing a gas-dissolved ice such as carbonated ice by solidifying a solution in which a gas such as carbonated water is dissolved.
  • carbonated water can be frozen to obtain carbonated ice
  • carbonated ice can be divided into a suitable size and put in a drink, put in a carbonated drink so as not to lower the concentration of carbonated, eat as it is and have a new texture It can be expected that a large demand can be expected from obtaining carbon dioxide, but it is considered difficult to produce carbonated ice. This is because, when it is attempted to freeze carbonated water, carbonic acid contained in carbonated water is released to the atmosphere as crystallization of ice progresses.
  • Patent Document 1 a pressure-resistant ice container into which raw carbon dioxide-containing ice-making water is injected, and a pressurized medium are supplied to expand so as to contact the ice-raw water surface injected into the pressure-resistant ice container.
  • a hollow elastic pressurized capsule disposed in the pressure-resistant ice container, a brine covering portion for cooling the pressure-resistant ice container from the outside, and a cooling means comprising a central brine supply portion for cooling from the center side as well
  • the invention of an apparatus for producing carbonated ice is disclosed.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide an apparatus and method for producing gas-melted ice capable of mass-producing gas-melted ice automatically.
  • the present invention comprises the following inventions.
  • a gas melting ice producing apparatus for solidifying a solution in which gas is melted to produce gas melting ice, A pressure resistant ice making container for storing and solidifying the solution; Pressurizing means for pressurizing the solution in the pressure resistant ice making container; A cooling means for cooling the solution in the pressure-resistant ice making container; and a heating means for heating the gas-melted ice; An outlet provided in the pressure-resistant ice making container;
  • a gas melting ice manufacturing apparatus having: The “solution in which the gas is dissolved” is sufficient if the molecules of the gas exist in the solvent as they are or in combination with other molecules, and the dissolution mechanism does not matter.
  • gas melted ice it is sufficient if gas molecules are present as they are or in combination with other molecules in the ice in which the solvent is solidified.
  • “Ice” includes not only water solidified but also liquid solidified other than water.
  • the term “pressurize” means that pressure can be applied directly or indirectly to the stored solution.
  • “Cooling the solution” includes not only cooling the solution directly, but also cooling the solution indirectly by cooling the pressure-resistant ice container and other members in contact with the solution.
  • To heat gas melting ice refers to heating the gas melting ice directly, heating the other components in contact with the pressure-resistant ice making container or the gas melting ice, and indirectly heating the gas melting ice. Including heating.
  • the discharge port is provided on the lower surface of the pressure-resistant ice-making container.
  • the gas melting ice manufacturing apparatus according to the first invention. (Third Invention) Furthermore, it has an open valve for reducing the pressure inside the pressure-resistant ice making container, The gas-melted ice manufacturing apparatus according to the first or second invention. “To reduce” may be reduced internal pressure, and may be reduced to a pressure higher than atmospheric pressure as well as reduced to atmospheric pressure.
  • the open valve is connected to a surface other than the surface on which the discharge port of the pressure-resistant ice making container is provided.
  • the "surface” includes a plane as well as a curved surface.
  • the gas is carbon dioxide,
  • the solution is carbonated water
  • the gas melting ice is carbonated ice
  • FIG. 1 It is a block diagram which shows the structure of the carbonated ice manufacturing apparatus based on one Example of this invention. It is a perspective view of the pressure-resistant ice making container which comprises the carbonic acid ice manufacturing apparatus.
  • A is a plan view of the electric ball valve
  • B is a side sectional view when the electric ball valve is opened
  • C is a side sectional view when the electric ball valve is closed.
  • the present invention means the invention described in the claims or in the section of means for solving the problems, and is not limited to the following examples.
  • the terms in at least the brackets mean the terms described in the claims or in the section of means for solving the problems, and are not limited to the following examples as well.
  • the order of the steps is arbitrary as long as there is no restriction that there is a relation of utilizing the result of the other step in one step.
  • any configuration and method in the present invention any constitution and method are used in the sense that the constitutions and methods described in the embodiments in the case where the description of the claims is wider than the descriptions of the embodiments are also examples of the constitutions and methods of the present invention. is there.
  • the essential configuration and method of the present invention are described in the independent claims in the claims.
  • the effects described in the examples are effects in the case of having the configuration of the example of the present invention, and are not necessarily the effects of the present invention.
  • the configuration disclosed in each embodiment is not limited to each embodiment alone, and can be combined across the embodiments.
  • the configuration disclosed in one embodiment may be combined with another embodiment.
  • the disclosed configurations may be collected and combined in each of a plurality of embodiments.
  • the problem described in the problem to be solved by the invention is not a known problem, but is a fact which the present inventors have uniquely found, and affirms the inventive step of the invention together with the constitution and method of the invention.
  • carbon dioxide is selected as the gas to be dissolved
  • raw material water water
  • carbonated water corresponding to the “solution” of the present invention
  • the configuration of a carbonated ice producing apparatus 10 (corresponding to the "gas melted ice producing apparatus" of the present invention) according to an embodiment of the present invention is shown in FIG.
  • the carbonated ice manufacturing apparatus 10 stores the carbonated water supplied from the carbonated water pressure-resistant container 11 used for manufacturing carbonated water and stores the carbonated water after manufacture, and freezes (solidifies) the carbonated water supplied from the carbonated water pressure-resistant container 11
  • An inert gas cylinder (inert gas supply means) for supplying an inert gas to pressurize the carbonated water into a gas cylinder (carbon dioxide gas supply means) 16 and a pressure-resistant ice making container 12 with carbonated water injected to a set water level.
  • And 17 (corresponding to the "pressure unit"
  • the vacuum pump 15 is connected to the pressure resistant container 11 for carbonated water through the pipes 51 and 50, and is connected to the pressure-resistant ice-making container 12 through the pipes 51, 54 and 52.
  • the motor-operated valve 23 is installed on the path of the pipe 51, and the motor-operated valve 25 is installed on the path of the pipe 54.
  • Carbon dioxide gas is supplied from the carbon dioxide gas cylinder 16 to the pressure resistant container 11 for carbonated water via the pipes 52 and 50, and from the carbon dioxide gas cylinder 16 to the pressure-resistant ice making container 12 via the pipe 52.
  • the motor-operated valve 26 and the check valve 36 are installed on the path of the pipe 50, and the motor-operated valve 27 and the check valve 37 are installed on the path of the pipe 52.
  • An inert gas is fed from the inert gas cylinder 17 to the pressure-resistant ice making container 12 through a pipe 53.
  • An electrically operated valve 28 is installed on the path of the pipe 53. Nitrogen, argon or the like can be used as the inert gas.
  • the carbonated water pressure container 11 has a pipe 45 with a motorized valve 21 for injecting the raw material water into the carbonated water pressure container 11 and a level meter 39 which operates to stop the injection when the raw material water reaches the set water level. Is installed. Further, in order to carbonate the raw material water in the pressure container 11 for carbonated water, the pressure container 11 for carbonated water is provided with a facility for circulating the raw material water (carbonated water) in the pressure container 11 for carbonated water. .
  • the pipes 46 and 47 connecting the circulation pump 18 and the spray nozzle 38 and the three-way valve 34 are provided.
  • cooling means such as a heat exchanger may be separately provided on the pipe 47. By providing the cooling means, it is possible to prevent the temperature of the carbonated water from rising while circulating the carbonated water, and to prevent the concentration of carbon dioxide in the raw material water from decreasing.
  • the three-way valve 34 is switched to operate the circulation pump 18 and carbonated water is supplied to the ice container 12 through the pipes 46 and 48. .
  • the electrically operated valve 22 and the check valve 35 are installed on the path of the pipe 48.
  • the pressure container 11 for carbonated water and the pressure-resistant ice container 12 are connected by a pipe 49 having a pressure equalizing valve 33. ing.
  • the reason that the pressure in the carbonated water pressure container 11 and the pressure in the pressure forming ice container 12 are set to the same level is to smoothly supply carbonated water from the carbonated water pressure container 11 to the pressure forming ice container 12. It is. If there is a pressure difference between the two, carbonated water will stagnate in the carbonated water pressure container 11 or carbonated water will vigorously flow toward the pressure-made ice container 12 and the carbonated water can not be supplied smoothly. I will. Also, the pressure does not necessarily have to be at the same level, and it is sufficient to control to reduce the pressure difference. For example, by setting the pressure in the carbonated water pressure container 11 a little higher than the pressure in the pressure-made ice container 12, the carbonated water supply rate can be increased.
  • the pressure equalizing valve 33 and the pipe 49 are used as pressure equalizing means, but other means may be used.
  • a pressure regulator such as a compressor or an open valve may be connected to each of the pressure container 11 for carbonated water and the pressure-resistant ice container 12 so as to control them so as to reduce the pressure difference between them.
  • the pressure-resistant ice making container 12 has a vertical cylindrical shape, and a carbonated ice outlet (not shown) provided on the lower surface (corresponding to the “discharge outlet” of the present invention) has the same or larger diameter as the carbonated ice outlet.
  • the motorized ball valve 14 is connected (see FIG. 2).
  • the electric ball valve 14 includes a tube 14a connected to the carbonated ice discharge port, and an actuator 14b for rotating the ball 14c fitted in the tube 14a via the pivot shaft 14d (see FIG. 3 (A) to (C)).
  • a through hole having a diameter equal to or larger than that of the carbonated ice discharge port is formed in the central portion of the ball 14c, and the electric ball valve 14 is opened and closed by rotating the rotation shaft 14d by ⁇ 90 °.
  • the carbonated ice discharge port is provided on the lower surface of the pressure-resistant ice making container 12, the carbonated ice can be taken out by naturally dropping it, which contributes to automation of a series of operations.
  • the carbonated ice outlet may be provided on the side surface of the pressure-resistant ice-making container 12.
  • the upper surface of the pressure resistant ice making container 12 is sealed with a flange 12a, and carbon dioxide gas cylinders (carbon dioxide gas feeding means) 16 and inert gas cylinders (inert gas feeding (inert gas feeding) via pipes 52, 53, 55 penetrating the flange 12a.
  • the feeding means 17 is connected to a motor-operated valve 24 for exhaust (corresponding to the "open valve” of the present invention) and a pressure sensor 40, respectively.
  • the motor-operated valve 24 for exhausting is provided to reduce the pressure in the pressure-resistant ice-making container 12 and is provided on a surface other than the surface provided with the carbonated ice discharge port, that is, the opposite surface.
  • the pressure on the motorized valve 24 side is different from the pressure on the carbonated water outlet side without interference between the carbonated ice outlet and the motorized valve 24. As a result, it is possible to smoothly discharge carbonated ice from the carbonated ice outlet.
  • the peripheral wall 13 of the pressure resistant ice making container 12 has a double pipe structure, and the brine circulates inside the double pipe.
  • the cooling brine flows from the cooling brine tank (corresponding to the “cooling means” of the present invention) 43 into the peripheral wall 13 of the pressure resistant ice made container 12 via the pipe 56.
  • the cooling brine that has flowed out of the peripheral wall 13 of the pressure resistant ice making container 12 flows into the cooling brine tank 43 via the pipe 58.
  • the circulation pump 19 and the motor-operated valve 31 are provided on the pipe 56, and the motor-operated valve 30 is provided on the pipe 58.
  • the heating brine is applied to the peripheral wall 13 of the pressure resistant ice making container 12 through the piping 57 from the heating brine tank (corresponding to the “heating means” of the present invention) 44.
  • the heating brine that has flowed out of the peripheral wall 13 of the pressure resistant ice making container 12 flows into the heating brine tank 44 via the pipe 59.
  • the circulation pump 20 and the motor-operated valve 32 are installed on the pipe 57, and the motor-operated valve 29 is installed on the pipe 59.
  • PLC programmable logic controller
  • the method of producing carbonated ice is roughly divided into three processes: production of carbonated water, injection of carbonated water into a pressure-resistant ice container, and production of carbonated ice. The following will be described in order.
  • the motor operated valve 21 is opened, and the raw material water is injected into the carbonated water pressure container 11.
  • the raw material water should be low temperature water as close to 0 ° C. as possible.
  • the level meter 39 operates and the motor operated valve 21 closes.
  • the motor operated valve 26 is opened, and carbon dioxide gas is fed from the carbon dioxide gas cylinder 16 to the pressure container 11 for carbonated water.
  • the injection pressure is appropriately determined by presupposing the carbonic acid concentration of carbonic acid ice. In general, it is about 0.15 MPa to 1.0 MPa. If the inside of the pressure container 11 for carbonated water is not evacuated in the step (1), the carbon dioxide gas having a larger specific gravity than air is accumulated from the bottom of the pressure container 11 for carbonated water by supplying the carbon dioxide gas. Carbon dioxide gas can be filled in the pressure capacity 11 for carbonated water by discharging air from an open valve or the like. (6) When the feed of carbon dioxide gas is completed, the motor operated valve 26 is closed.
  • the motor operated valve 27 is opened to feed carbon dioxide gas from the carbon dioxide gas cylinder 16 to the pressure-resistant ice making container 12.
  • the injection pressure is about 0.15 MPa to about 1.0 MPa as described above.
  • the carbon dioxide gas having a specific gravity larger than that of air is accumulated from the bottom of the pressure forming ice container 12 by supplying carbon dioxide gas. By evacuating the air, carbon dioxide gas can be filled in the pressure-resistant ice making container 12.
  • the motor operated valve 27 is closed.
  • the motor operated valve 22 and the pressure equalizing valve 33 are opened, the A valve of the three-way valve 34 is closed and the B valve is opened to operate the circulation pump 18 to make the pressure container 11 for carbon dioxide gas pressure resistant.
  • Supply carbonated water At this time, a space of at least 20% or more of the volume of the carbonated water is provided above the pressure-resistant ice making container 12 in order to prevent the container breakage due to the freezing and expansion of the carbonated water.
  • the carbonated water supply is started after the pressure equalizing valve 33 is opened, but the timing of the two may be simultaneous. Alternatively, the pressure equalizing valve 33 may be opened after the start of the carbonated water supply.
  • the circulation pump 18 is stopped and the motor operated valve 22 and the pressure equalizing valve 33 are closed.
  • the carbonated water pressure container 11 for producing and storing carbonated water and the pressure-resistant ice making container 12 are separate, carbonated water is generated and stored in the pressure-resistant ice container as one unit. Alternatively, the carbonic acid ice may be produced as it is.
  • the pressure-resistant ice making container 12 may be horizontally placed, a carbonated ice outlet may be provided on one side, and the motorized valve 24 may be provided on the other side. Then, by controlling the pressure in the pressure-resistant ice making container 12 by the motor-operated valve 24 so as to reduce the pressure, the carbonated ice can be discharged so as to be pushed out from the carbonated ice discharge port. Can be prevented.
  • the raw material water described in the embodiment of the present invention naturally includes various aqueous solutions as well as the case of using ordinary water as the raw material water.
  • aqueous solutions include, but are not limited to, all beverages such as juice, coffee, black tea, milk, etc., basic cosmetics such as beauty essence, medicines applied to the body surface, naturally-generated or artificially adjusted mineral springs, etc. Absent.
  • liquids other than water are also included.
  • carbon dioxide is mentioned as a gas which is a solute dissolved in a solvent, but any kind of gas may be used as long as it is a gas dissolved in a solvent. Also, the degree of solubility in the solvent does not matter. Examples of gases other than carbon dioxide include ozone, nitrogen, oxygen, helium, argon and ammonia.
  • Applications of the carbonated ice (or ice which contains other gas) produced in one embodiment of the present invention mainly include, but are not limited to, food and drinking.
  • this as a means to isolate carbon dioxide from the atmosphere, there is also a possibility that it can be used for measures against global warming by carbon dioxide.
  • the present invention can be used to produce gas-melted ice. At that time, according to the present invention, since a series of operations from the production to the discharge of the gas-melted ice is automated, the gas-melted ice can be mass-produced without a loss of working time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

A dissolved gas-containing ice production device and production method which automate production of and enable mass production of dissolved gas-containing ice are provided. This dissolved gas-containing ice production device 10, for producing dissolved gas-containing ice by solidifying a solution in which a gas has been dissolved, is provided with: a pressure resistant ice making container 12 which stores and solidifies the aforementioned solution; a pressurizing means 17 which pressurizes the aforementioned solution in the pressure resistant ice making container 12; a cooling means 43 which cools the solution in the pressure resistant ice making container 12 and a heating means 44 which heats the aforementioned dissolved gas-containing ice; and a discharge port which is provided in the pressure resistant ice making container 12.

Description

気体溶解氷製造装置及び製造方法Gas melting ice manufacturing apparatus and manufacturing method
 本発明は、炭酸水等の気体を溶解した溶液を固化させて、炭酸氷等の気体溶解氷を製造する装置及び方法に関する。 The present invention relates to an apparatus and method for producing a gas-dissolved ice such as carbonated ice by solidifying a solution in which a gas such as carbonated water is dissolved.
 炭酸水を氷結させて炭酸氷を得ることができれば、炭酸氷を適当な大きさに割って飲み物に入れたり、炭酸飲料に入れて炭酸の濃度を下げないようにしたり、そのまま食して新しい食感が得られることから大きな需要が期待できるが、炭酸氷の製造は困難とされている。なぜなら、炭酸水を氷結させようとすると、氷の結晶化が進むにつれて炭酸水に含まれている炭酸が大気中に放出されてしまうからである。 If carbonated water can be frozen to obtain carbonated ice, carbonated ice can be divided into a suitable size and put in a drink, put in a carbonated drink so as not to lower the concentration of carbonated, eat as it is and have a new texture It can be expected that a large demand can be expected from obtaining carbon dioxide, but it is considered difficult to produce carbonated ice. This is because, when it is attempted to freeze carbonated water, carbonic acid contained in carbonated water is released to the atmosphere as crystallization of ice progresses.
 そこで、特許文献1では、炭酸ガス入りの製氷原水が注水される耐圧製氷容器と、加圧媒体が供給されることで膨脹し、耐圧製氷容器内に注水されている製氷原水面に接触するよう、耐圧製氷容器内に配装されている中空弾性加圧嚢と、耐圧製氷容器をその外部から冷却するブライン包覆部、同じく中心側から冷却する中央ブライン供給部からなる冷却手段とを備えたことを特徴とする炭酸入り氷の製造装置の発明が開示されている。
 また、特許文献2では、製氷原水を耐圧容器に所定の位置まで注水し、前記製氷原水にアルコール類と炭酸ガスを溶解させて不溶性ガスにて加圧し、耐圧容器を冷却して前記製氷原水を凍結させることを特徴とする炭酸入り氷の製造方法の発明が開示されている。
Therefore, in Patent Document 1, a pressure-resistant ice container into which raw carbon dioxide-containing ice-making water is injected, and a pressurized medium are supplied to expand so as to contact the ice-raw water surface injected into the pressure-resistant ice container. A hollow elastic pressurized capsule disposed in the pressure-resistant ice container, a brine covering portion for cooling the pressure-resistant ice container from the outside, and a cooling means comprising a central brine supply portion for cooling from the center side as well The invention of an apparatus for producing carbonated ice is disclosed.
Further, in Patent Document 2, raw ice-making water is poured into a pressure-resistant vessel to a predetermined position, alcohol and carbon dioxide gas are dissolved in the raw ice-making water, pressurized with insoluble gas, and the pressure-proof vessel is cooled to make the raw ice-making water The invention of a method of producing carbonated ice characterized by freezing is disclosed.
日本国特開平7-120123号公報Japanese Patent Application Laid-Open No. 7-122012 日本国特開2014-219194号公報Japanese Patent Application Laid-Open No. 2014-219194
 しかしながら、特許文献1及び2の発明は、耐圧(製氷)容器の上蓋を外して耐圧(製氷)容器内に製氷原水を注水し、製氷後に再び耐圧(製氷)容器の上蓋を外して耐圧(製氷)容器内の炭酸氷を取り出さなければならないため、炭酸氷を大量に自動生産することができない。 However, according to the inventions of Patent Documents 1 and 2, the upper lid of the pressure resistant (ice making) container is removed and ice raw water is injected into the pressure resistant (ice making) container. After ice making, the upper lid of the pressure resistant (ice making) container is removed again to 2.) Carbonated ice can not be produced automatically in large quantities because the carbonated ice in the container must be removed.
 本発明はかかる事情に鑑みてなされたもので、気体溶解氷の製造を自動化して大量生産することが可能な気体溶解氷製造装置及び製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an apparatus and method for producing gas-melted ice capable of mass-producing gas-melted ice automatically.
 上記目的を達成するため、本発明は以下に掲げる発明から構成される。
(第1の発明)
 気体を溶解した溶液を固化させて気体溶解氷を製造する気体溶解氷製造装置であって、
 前記溶液を貯留して固化させる耐圧製氷容器と、
 前記耐圧製氷容器内の前記溶液を加圧する加圧手段と、
 前記耐圧製氷容器内の前記溶液を冷却する冷却手段、及び前記気体溶解氷を加温する加温手段と、
 前記耐圧製氷容器に設けられた排出口と、
 を有する気体溶解氷製造装置。
 「気体を溶解した溶液」とは、気体の分子が溶媒中にそのままあるいは他の分子と結合して存在していれば足り、溶解のメカニズムは問わない。
 「気体溶解氷」とは、気体の分子が、溶媒が固化した氷の中にそのままあるいは他の分子と結合して存在していれば足りる。
 「氷」とは、水が固化したものの他、水以外の他の液体が固化したものも含む。
 「加圧する」とは、貯留されている溶液に対して直接的又は間接的に圧力を加えることができればよい。
 「溶液を冷却する」とは、溶液を直接冷却する場合の他、前記耐圧製氷容器や溶液と接触する他の部材を冷却して間接的に溶液を冷却する場合も含む。
 「気体溶解氷を加温する」とは、気体溶解氷を直接加温する場合の他、前記耐圧製氷容器や気体溶解氷と接触する他の部材を加温して間接的に気体溶解氷を加温する場合も含む。
(第2の発明)
 前記排出口は、前記耐圧製氷容器の下面に設けられている、
 第1の発明に記載の気体溶解氷製造装置。
(第3の発明)
 さらに、前記耐圧製氷容器の内部の圧力を低減させる開放弁を有する、
 第1又は第2の発明に記載の気体溶解氷製造装置。
 「低減させる」とは、内部の圧力を低減させればよく、大気圧まで低減させることはもちろん、大気圧超の圧力に低減させるまでに留めても良い。
(第4の発明)
 前記開放弁は、前記耐圧製氷容器の前記排出口が設けられている面以外の面に接続されている、
 第3の発明に記載の気体溶解氷製造装置。
 「面」とは、平面はもちろん、曲面も含む。
(第5の発明)
 前記気体は二酸化炭素であり、
 前記溶液は炭酸水であり、
 前記気体溶解氷は炭酸氷である、
 第1ないし第4の発明のいずれか1に記載の気体溶解氷製造装置。
In order to achieve the above object, the present invention comprises the following inventions.
(First Invention)
A gas melting ice producing apparatus for solidifying a solution in which gas is melted to produce gas melting ice,
A pressure resistant ice making container for storing and solidifying the solution;
Pressurizing means for pressurizing the solution in the pressure resistant ice making container;
A cooling means for cooling the solution in the pressure-resistant ice making container; and a heating means for heating the gas-melted ice;
An outlet provided in the pressure-resistant ice making container;
A gas melting ice manufacturing apparatus having:
The “solution in which the gas is dissolved” is sufficient if the molecules of the gas exist in the solvent as they are or in combination with other molecules, and the dissolution mechanism does not matter.
With "gas melted ice", it is sufficient if gas molecules are present as they are or in combination with other molecules in the ice in which the solvent is solidified.
"Ice" includes not only water solidified but also liquid solidified other than water.
The term "pressurize" means that pressure can be applied directly or indirectly to the stored solution.
“Cooling the solution” includes not only cooling the solution directly, but also cooling the solution indirectly by cooling the pressure-resistant ice container and other members in contact with the solution.
“To heat gas melting ice” refers to heating the gas melting ice directly, heating the other components in contact with the pressure-resistant ice making container or the gas melting ice, and indirectly heating the gas melting ice. Including heating.
(The second invention)
The discharge port is provided on the lower surface of the pressure-resistant ice-making container.
The gas melting ice manufacturing apparatus according to the first invention.
(Third Invention)
Furthermore, it has an open valve for reducing the pressure inside the pressure-resistant ice making container,
The gas-melted ice manufacturing apparatus according to the first or second invention.
“To reduce” may be reduced internal pressure, and may be reduced to a pressure higher than atmospheric pressure as well as reduced to atmospheric pressure.
(The fourth invention)
The open valve is connected to a surface other than the surface on which the discharge port of the pressure-resistant ice making container is provided.
The gas melting ice manufacturing apparatus according to the third invention.
The "surface" includes a plane as well as a curved surface.
(Fifth Invention)
The gas is carbon dioxide,
The solution is carbonated water,
The gas melting ice is carbonated ice,
An apparatus for producing gas-melted ice according to any one of the first to fourth inventions.
(第6の発明)
 耐圧製氷容器内に気体を溶解した溶液を貯留し、
 前記溶液を加圧し、
 前記溶液を冷却し、
 前記溶液を冷却することにより前記溶液が固化した気体溶解氷を加温し、
 前記耐圧製氷容器の排出口から前記気体溶解氷を排出する、
 気体溶解氷製造方法。
 「気体を溶解した溶液を貯留する」とは、耐圧製氷容器外から溶液を供給して貯留する場合の他、耐圧製氷容器内で溶液を生成して貯留する場合も含む。
(第7の発明)
 さらに、前記溶液を冷却した後に、前記耐圧製氷容器の内部の圧力を低減させる、
 第6の発明に記載の気体溶解氷製造方法。
 「冷却した後」とは、冷却工程の終了後であればよく、加温工程や他の工程との前後は問わない。
(Sixth Invention)
A solution of dissolved gas is stored in a pressure-resistant ice-making vessel,
Pressurize the solution,
Cool the solution;
The solution is cooled to heat the gas-dissolved ice solidified from the solution;
Discharging the gas melted ice from the outlet of the pressure resistant ice making container;
Gas melted ice manufacturing method.
The term "reserve a solution in which gas is dissolved" includes the case where a solution is generated and stored in a pressure resistant ice making container as well as the case where the solution is supplied and stored from outside the pressure resistant ice making container.
(Seventh Invention)
Furthermore, after the solution is cooled, the pressure in the pressure-resistant ice-making vessel is reduced.
The method for producing gas melted ice according to the sixth invention.
“After cooling” may be after the end of the cooling step, and may be before or after the heating step or another step.
 本発明に係る気体溶解氷製造装置及び製造方法では、気体溶解氷の製造から排出までの一連の作業が自動化されているので、作業時間のロスがなく、気体溶解氷を大量生産することができる。 In the apparatus and method for producing gas-melted ice according to the present invention, a series of operations from production to discharge of gas-melted ice are automated, so that gas-melted ice can be mass-produced without loss of working time. .
本発明の一実施例に係る炭酸氷製造装置の構成を示すブロック図である。It is a block diagram which shows the structure of the carbonated ice manufacturing apparatus based on one Example of this invention. 同炭酸氷製造装置を構成する耐圧製氷容器の斜視図である。It is a perspective view of the pressure-resistant ice making container which comprises the carbonic acid ice manufacturing apparatus. (A)は電動ボール弁の平面図、(B)は電動ボール弁が開いたときの側断面図、(C)は電動ボール弁が閉じたときの側断面図である。(A) is a plan view of the electric ball valve, (B) is a side sectional view when the electric ball valve is opened, and (C) is a side sectional view when the electric ball valve is closed.
 実施例を説明する前に、本発明と実施例との関係等について説明する。
 本発明とは、特許請求の範囲又は課題を解決するための手段の項に記載された発明を意味するものであり、以下の実施例に限定されるものではない。また、少なくともかぎ括弧内の語句は、特許請求の範囲又は課題を解決するための手段の項に記載された語句を意味し、同じく以下の実施例に限定されるものではない。また、方法の発明においては、一の工程で他の工程の結果を利用する関係にある等の制約がない限り、工程の順序は任意である。
 特許請求の範囲の従属項に記載の構成及び方法、従属項に記載の構成及び方法に対応する実施例の構成及び方法、並びに特許請求の範囲に記載がなく実施例のみに記載の構成及び方法は、本発明においては任意の構成及び方法である。特許請求の範囲の記載が実施例の記載よりも広い場合における実施例に記載の構成及び方法も、本発明の構成及び方法の例示であるという意味で、本発明においては任意の構成及び方法である。いずれの場合も、特許請求の範囲の独立項に記載することで、本発明の必須の構成及び方法となる。
 実施例に記載した効果は、本発明の例示としての実施例の構成を有する場合の効果であり、必ずしも本発明が有する効果ではない。
 複数の実施例がある場合、各実施例に開示の構成は各実施例のみで閉じるものではなく、実施例をまたいで組み合わせることが可能である。例えば一の実施例に開示の構成を、他の実施例に組み合わせても良い。また、複数の実施例それぞれに開示の構成を集めて組み合わせても良い。
 発明が解決しようとする課題に記載した課題は公知の課題ではなく、本発明者が独自に知見したものであり、本発明の構成及び方法と共に発明の進歩性を肯定する事実である。
Before describing the embodiments, the relationship between the present invention and the embodiments will be described.
The present invention means the invention described in the claims or in the section of means for solving the problems, and is not limited to the following examples. Also, the terms in at least the brackets mean the terms described in the claims or in the section of means for solving the problems, and are not limited to the following examples as well. Moreover, in the invention of the method, the order of the steps is arbitrary as long as there is no restriction that there is a relation of utilizing the result of the other step in one step.
Configurations and methods described in the dependent claims of the claims, configurations and methods of embodiments corresponding to the configurations and methods described in the dependent claims, and configurations and methods described only in the embodiments without description in the claims. Is any configuration and method in the present invention. In the present invention, any constitution and method are used in the sense that the constitutions and methods described in the embodiments in the case where the description of the claims is wider than the descriptions of the embodiments are also examples of the constitutions and methods of the present invention. is there. In any case, the essential configuration and method of the present invention are described in the independent claims in the claims.
The effects described in the examples are effects in the case of having the configuration of the example of the present invention, and are not necessarily the effects of the present invention.
In the case where there are a plurality of embodiments, the configuration disclosed in each embodiment is not limited to each embodiment alone, and can be combined across the embodiments. For example, the configuration disclosed in one embodiment may be combined with another embodiment. Further, the disclosed configurations may be collected and combined in each of a plurality of embodiments.
The problem described in the problem to be solved by the invention is not a known problem, but is a fact which the present inventors have uniquely found, and affirms the inventive step of the invention together with the constitution and method of the invention.
 続いて、添付した図面を参照しつつ、本発明を具体化した実施例について説明し、本発明の理解に供する。
 なお、以下の実施例では、溶解する気体として二酸化炭素、気体を溶解する溶媒として原料水(水)を選択しており、炭酸水(本発明の「溶液」に相当)を固化させて炭酸氷(本発明の「気体溶解氷」に相当)を製造する場合を説明する。
Next, embodiments of the present invention will be described with reference to the attached drawings for understanding of the present invention.
In the following examples, carbon dioxide is selected as the gas to be dissolved, and raw material water (water) is selected as the solvent for dissolving the gas, and carbonated water (corresponding to the “solution” of the present invention) is solidified to form carbonated ice. The case of producing (corresponding to “gas melted ice” of the present invention) will be described.
 本発明の一実施例に係る炭酸氷製造装置10(本発明の「気体溶解氷製造装置」に相当)の構成を図1に示す。
 炭酸氷製造装置10は、炭酸水の製造に使用され製造後の炭酸水を貯留する炭酸水用耐圧容器11と、炭酸水用耐圧容器11から供給される炭酸水を貯留して氷結(固化)させる耐圧製氷容器12と、炭酸水用耐圧容器11内及び耐圧製氷容器12内を真空にする真空ポンプ15と、炭酸水用耐圧容器11内及び耐圧製氷容器12内に炭酸ガスを送給する炭酸ガスボンベ(炭酸ガス送給手段)16と、設定水位まで炭酸水が注水された耐圧製氷容器12内に不活性ガスを送給して炭酸水を加圧する不活性ガスボンベ(不活性ガス送給手段)17(本発明の「加圧手段」に相当)とを備えている。
The configuration of a carbonated ice producing apparatus 10 (corresponding to the "gas melted ice producing apparatus" of the present invention) according to an embodiment of the present invention is shown in FIG.
The carbonated ice manufacturing apparatus 10 stores the carbonated water supplied from the carbonated water pressure-resistant container 11 used for manufacturing carbonated water and stores the carbonated water after manufacture, and freezes (solidifies) the carbonated water supplied from the carbonated water pressure-resistant container 11 The pressure-resistant ice making container 12 to be made, the vacuum pump 15 making the inside of the pressure-resistant ice forming container 12 and the pressure forming ice-forming container 12 vacuum, the carbonated water supplying the carbon dioxide gas into the pressure forming container 12 for carbonated water An inert gas cylinder (inert gas supply means) for supplying an inert gas to pressurize the carbonated water into a gas cylinder (carbon dioxide gas supply means) 16 and a pressure-resistant ice making container 12 with carbonated water injected to a set water level. And 17 (corresponding to the "pressure unit" of the present invention).
 真空ポンプ15は、配管51、50を介して炭酸水用耐圧容器11に接続され、配管51、54、52を介して耐圧製氷容器12に接続されている。配管51の経路上には電動弁23が、配管54の経路上には電動弁25がそれぞれ設置されている。 The vacuum pump 15 is connected to the pressure resistant container 11 for carbonated water through the pipes 51 and 50, and is connected to the pressure-resistant ice-making container 12 through the pipes 51, 54 and 52. The motor-operated valve 23 is installed on the path of the pipe 51, and the motor-operated valve 25 is installed on the path of the pipe 54.
 炭酸ガスボンベ16から炭酸水用耐圧容器11へは配管52、50を介して、炭酸ガスボンベ16から耐圧製氷容器12へは配管52を介して、それぞれ炭酸ガスが送給される。配管50の経路上には電動弁26と逆止弁36が、配管52の経路上には電動弁27と逆止弁37がそれぞれ設置されている。 Carbon dioxide gas is supplied from the carbon dioxide gas cylinder 16 to the pressure resistant container 11 for carbonated water via the pipes 52 and 50, and from the carbon dioxide gas cylinder 16 to the pressure-resistant ice making container 12 via the pipe 52. The motor-operated valve 26 and the check valve 36 are installed on the path of the pipe 50, and the motor-operated valve 27 and the check valve 37 are installed on the path of the pipe 52.
 不活性ガスボンベ17から耐圧製氷容器12へは配管53を介して不活性ガスが送給される。配管53の経路上には電動弁28が設置されている。
 なお、不活性ガスには窒素やアルゴン等を使用することができる。
An inert gas is fed from the inert gas cylinder 17 to the pressure-resistant ice making container 12 through a pipe 53. An electrically operated valve 28 is installed on the path of the pipe 53.
Nitrogen, argon or the like can be used as the inert gas.
 炭酸水用耐圧容器11には、炭酸水用耐圧容器11内に原料水を注水するための電動弁21付きの配管45と、原料水が設定水位になると作動して注水を停止させるレベル計39が設置されている。
 また、炭酸水用耐圧容器11内の原料水を炭酸化させるため、炭酸水用耐圧容器11には、炭酸水用耐圧容器11内の原料水(炭酸水)を循環させる設備が設置されている。具体的には、炭酸水用耐圧容器11内の原料水(炭酸水)を循環させる循環ポンプ18と、循環させた原料水(炭酸水)を炭酸水用耐圧容器11内に噴射するスプレーノズル38と、循環ポンプ18とスプレーノズル38とを繋ぐ配管46、47及び三方弁34が設置されている。
 なお、配管47上に別途熱交換器等の冷却手段を備えていても良い。冷却手段を備えることにより、炭酸水を循環させる間に炭酸水の温度が上がり、原料水中の二酸化炭素濃度が低下することを防止することができる。
The carbonated water pressure container 11 has a pipe 45 with a motorized valve 21 for injecting the raw material water into the carbonated water pressure container 11 and a level meter 39 which operates to stop the injection when the raw material water reaches the set water level. Is installed.
Further, in order to carbonate the raw material water in the pressure container 11 for carbonated water, the pressure container 11 for carbonated water is provided with a facility for circulating the raw material water (carbonated water) in the pressure container 11 for carbonated water. . Specifically, a circulation pump 18 for circulating the raw material water (carbonated water) in the pressure container 11 for carbonated water, and a spray nozzle 38 for jetting the circulated raw material water (carbonated water) into the pressure container 11 for carbonated water The pipes 46 and 47 connecting the circulation pump 18 and the spray nozzle 38 and the three-way valve 34 are provided.
Note that cooling means such as a heat exchanger may be separately provided on the pipe 47. By providing the cooling means, it is possible to prevent the temperature of the carbonated water from rising while circulating the carbonated water, and to prevent the concentration of carbon dioxide in the raw material water from decreasing.
 炭酸水用耐圧容器11から耐圧製氷容器12へ炭酸水を供給する際は、三方弁34を切り替えて循環ポンプ18を作動させ、配管46、48を介して耐圧製氷容器12に炭酸水を供給する。配管48の経路上には電動弁22と逆止弁35が設置されている。
 その際、炭酸水用耐圧容器11内の圧力と耐圧製氷容器12内の圧力を同じレベルにするため、炭酸水用耐圧容器11と耐圧製氷容器12は、均圧弁33を有する配管49により接続されている。
 本実施例で、炭酸水用耐圧容器11内の圧力と耐圧製氷容器12内の圧力を同じレベルにするのは、炭酸水用耐圧容器11から耐圧製氷容器12にスムーズに炭酸水を供給するためである。両者の間に圧力差があると、炭酸水が炭酸水用耐圧容器11に滞留したり、あるいは炭酸水が耐圧製氷容器12に向けて勢いよく流れてしまい、スムーズに炭酸水を供給できなくなってしまう。また、圧力は必ずしも同じレベルでなくてもよく、圧力差を低減させるように制御すれば足りる。例えば炭酸水用耐圧容器11内の圧力を耐圧製氷容器12内の圧力よりも少し高めにすることにより、炭酸水の供給速度を早めることができる。
 また、本実施例では、均圧手段として均圧弁33と配管49を用いたが、他の手段を用いても良い。例えば炭酸水用耐圧容器11と耐圧製氷容器12のそれぞれにコンプレッサや開放弁などの圧力調整装置を接続し、これらが連動して両者の圧力差を低減するように制御しても良い。
When carbonated water is supplied from the carbonated water pressure container 11 to the ice container 12, the three-way valve 34 is switched to operate the circulation pump 18 and carbonated water is supplied to the ice container 12 through the pipes 46 and 48. . The electrically operated valve 22 and the check valve 35 are installed on the path of the pipe 48.
At this time, in order to make the pressure in the pressure container 11 for carbonated water and the pressure in the pressure-resistant ice container 12 be at the same level, the pressure container 11 for carbonated water and the pressure-resistant ice container 12 are connected by a pipe 49 having a pressure equalizing valve 33. ing.
In this embodiment, the reason that the pressure in the carbonated water pressure container 11 and the pressure in the pressure forming ice container 12 are set to the same level is to smoothly supply carbonated water from the carbonated water pressure container 11 to the pressure forming ice container 12. It is. If there is a pressure difference between the two, carbonated water will stagnate in the carbonated water pressure container 11 or carbonated water will vigorously flow toward the pressure-made ice container 12 and the carbonated water can not be supplied smoothly. I will. Also, the pressure does not necessarily have to be at the same level, and it is sufficient to control to reduce the pressure difference. For example, by setting the pressure in the carbonated water pressure container 11 a little higher than the pressure in the pressure-made ice container 12, the carbonated water supply rate can be increased.
In the present embodiment, the pressure equalizing valve 33 and the pipe 49 are used as pressure equalizing means, but other means may be used. For example, a pressure regulator such as a compressor or an open valve may be connected to each of the pressure container 11 for carbonated water and the pressure-resistant ice container 12 so as to control them so as to reduce the pressure difference between them.
 耐圧製氷容器12は竪型円筒状とされ、下面に設けられた炭酸氷排出口(図示省略)(本発明の「排出口」に相当)には炭酸氷排出口と同じ若しくはそれを超える口径を有する電動ボール弁14が接続されている(図2参照)。
 電動ボール弁14は、炭酸氷排出口に接続される管体14aと、管体14a内に嵌め込まれたボール14cを回動軸14dを介して回動させるアクチュエータ14bとから構成されている(図3(A)~(C)参照)。ボール14cの中央部には、炭酸氷排出口と同じ若しくはそれを超える口径を有する貫通孔が形成されており、回動軸14dを±90°回動させることにより電動ボール弁14が開閉する。
 本実施例では、炭酸氷排出口は、耐圧製氷容器12の下面に設けられているので、炭酸氷を自然落下させることにより取り出すことができ、一連の作業の自動化に資するものである。もっとも、耐圧製氷容器12を横置きにする場合は、炭酸氷排出口は耐圧製氷容器12の横面に設けてもよい。
The pressure-resistant ice making container 12 has a vertical cylindrical shape, and a carbonated ice outlet (not shown) provided on the lower surface (corresponding to the “discharge outlet” of the present invention) has the same or larger diameter as the carbonated ice outlet. The motorized ball valve 14 is connected (see FIG. 2).
The electric ball valve 14 includes a tube 14a connected to the carbonated ice discharge port, and an actuator 14b for rotating the ball 14c fitted in the tube 14a via the pivot shaft 14d (see FIG. 3 (A) to (C)). A through hole having a diameter equal to or larger than that of the carbonated ice discharge port is formed in the central portion of the ball 14c, and the electric ball valve 14 is opened and closed by rotating the rotation shaft 14d by ± 90 °.
In this embodiment, since the carbonated ice discharge port is provided on the lower surface of the pressure-resistant ice making container 12, the carbonated ice can be taken out by naturally dropping it, which contributes to automation of a series of operations. However, when the pressure-resistant ice-making container 12 is placed horizontally, the carbonated ice outlet may be provided on the side surface of the pressure-resistant ice-making container 12.
 一方、耐圧製氷容器12の上面はフランジ12aで封止され、フランジ12aを貫通する配管52、53、55を介して、炭酸ガスボンベ(炭酸ガス送給手段)16、不活性ガスボンベ(不活性ガス送給手段)17、排気用の電動弁24(本発明の「開放弁」に相当)及び圧力センサー40にそれぞれ接続されている。
 排気用の電動弁24は、耐圧製氷容器12内の圧力を低減させるために設けられており、炭酸氷排出口が設けられている面以外の面、ここでは対向する面に設けられている。炭酸氷排出口が設けられている面以外の面に設けることにより、炭酸氷排出口と電動弁24とが干渉することなく、また電動弁24側の圧力が炭酸水排出口側の圧力に差を設けるようにすることにより、スムーズに炭酸氷を炭酸氷排出口から排出することが可能となる。
On the other hand, the upper surface of the pressure resistant ice making container 12 is sealed with a flange 12a, and carbon dioxide gas cylinders (carbon dioxide gas feeding means) 16 and inert gas cylinders (inert gas feeding (inert gas feeding) via pipes 52, 53, 55 penetrating the flange 12a. The feeding means 17 is connected to a motor-operated valve 24 for exhaust (corresponding to the "open valve" of the present invention) and a pressure sensor 40, respectively.
The motor-operated valve 24 for exhausting is provided to reduce the pressure in the pressure-resistant ice-making container 12 and is provided on a surface other than the surface provided with the carbonated ice discharge port, that is, the opposite surface. By providing it on the surface other than the surface where the carbonated ice outlet is provided, the pressure on the motorized valve 24 side is different from the pressure on the carbonated water outlet side without interference between the carbonated ice outlet and the motorized valve 24. As a result, it is possible to smoothly discharge carbonated ice from the carbonated ice outlet.
 耐圧製氷容器12を冷却及び加温するため、耐圧製氷容器12の周壁13は二重管構造とされ、二重管の内部をブラインが循環する。
 耐圧製氷容器12を冷却する際は、冷却用ブラインタンク(本発明の「冷却手段」に相当)43から配管56を介して冷却用ブラインが耐圧製氷容器12の周壁13に流入する。耐圧製氷容器12の周壁13から流出した冷却用ブラインは配管58を介して冷却用ブラインタンク43に流入する。配管56上には循環ポンプ19と電動弁31が、配管58上には電動弁30が設置されている。
 一方、耐圧製氷容器12を加温する際は、加温用ブラインタンク(本発明の「加温手段」に相当)44から配管57を介して加温用ブラインが耐圧製氷容器12の周壁13に流入する。耐圧製氷容器12の周壁13から流出した加温用ブラインは配管59を介して加温用ブラインタンク44に流入する。配管57上には循環ポンプ20と電動弁32が、配管59上には電動弁29が設置されている。
In order to cool and heat the pressure resistant ice making container 12, the peripheral wall 13 of the pressure resistant ice making container 12 has a double pipe structure, and the brine circulates inside the double pipe.
When the pressure resistant ice making container 12 is cooled, the cooling brine flows from the cooling brine tank (corresponding to the “cooling means” of the present invention) 43 into the peripheral wall 13 of the pressure resistant ice made container 12 via the pipe 56. The cooling brine that has flowed out of the peripheral wall 13 of the pressure resistant ice making container 12 flows into the cooling brine tank 43 via the pipe 58. The circulation pump 19 and the motor-operated valve 31 are provided on the pipe 56, and the motor-operated valve 30 is provided on the pipe 58.
On the other hand, when heating the pressure resistant ice making container 12, the heating brine is applied to the peripheral wall 13 of the pressure resistant ice making container 12 through the piping 57 from the heating brine tank (corresponding to the “heating means” of the present invention) 44. To flow. The heating brine that has flowed out of the peripheral wall 13 of the pressure resistant ice making container 12 flows into the heating brine tank 44 via the pipe 59. The circulation pump 20 and the motor-operated valve 32 are installed on the pipe 57, and the motor-operated valve 29 is installed on the pipe 59.
 なお、上述した電動弁を含む各機器の制御には、図示していないPLC(プログラマブル・ロジック・コントローラ)が使用される。 In addition, PLC (programmable logic controller) which is not shown in figure is used for control of each apparatus containing the electrically-driven valve mentioned above.
 次に、上記構成を有する炭酸氷製造装置10を用いた炭酸氷の製造方法(本発明の「気体溶解氷製造方法」に相当)について説明する。
 炭酸氷の製造方法は、大きく分けて、炭酸水の製造、炭酸水の耐圧製氷容器への注入、炭酸氷の製造の3つのプロセスから構成される。以下、順に説明する。
Next, a method of producing carbonated ice using the carbonated ice production apparatus 10 having the above configuration (corresponding to the “gas melted ice production method” of the present invention) will be described.
The method of producing carbonated ice is roughly divided into three processes: production of carbonated water, injection of carbonated water into a pressure-resistant ice container, and production of carbonated ice. The following will be described in order.
[炭酸水の製造]
(1)電動弁23を開けて真空ポンプ15を作動させ、炭酸水用耐圧容器11内を真空にする。
 このステップは必須ではないが、真空にすることにより原料水に含まれる不純物を気化させて取り除くことができる。
(2)真空引きが完了した時点で電動弁23を閉じ、真空ポンプ15を停止する。
[Production of carbonated water]
(1) The motor operated valve 23 is opened, the vacuum pump 15 is operated, and the interior of the carbonated water pressure container 11 is evacuated.
Although this step is not essential, the impurities contained in the raw material water can be vaporized and removed by applying a vacuum.
(2) When the vacuuming is completed, the motor operated valve 23 is closed and the vacuum pump 15 is stopped.
(3)電動弁21を開き、原料水を炭酸水用耐圧容器11に注入する。炭酸の溶解度を上げるため、原料水は、できるだけ0℃近い低温水が良い。
(4)原料水が設定水位になるとレベル計39が作動し、電動弁21が閉じる。
(3) The motor operated valve 21 is opened, and the raw material water is injected into the carbonated water pressure container 11. In order to increase the solubility of carbonic acid, the raw material water should be low temperature water as close to 0 ° C. as possible.
(4) When the raw water reaches the set water level, the level meter 39 operates and the motor operated valve 21 closes.
(5)電動弁26を開き、炭酸ガスボンベ16から炭酸水用耐圧容器11へ炭酸ガスを送給する。注入圧力は、炭酸氷の炭酸濃度を予め想定し適宜決定する。概ね0.15MPa~1.0MPa程度である。
 上記(1)のステップで炭酸水用耐圧容器11内を真空にしない場合は、炭酸ガスを供給することにより空気より比重の大きい炭酸ガスが炭酸水用耐圧容器11の底からたまるので、別途設ける開放弁等から空気を追い出すことにより、炭酸ガスを炭酸水用耐圧容11内に満たすことができる。
(6)炭酸ガスの送給が完了した時点で電動弁26を閉じる。
(5) The motor operated valve 26 is opened, and carbon dioxide gas is fed from the carbon dioxide gas cylinder 16 to the pressure container 11 for carbonated water. The injection pressure is appropriately determined by presupposing the carbonic acid concentration of carbonic acid ice. In general, it is about 0.15 MPa to 1.0 MPa.
If the inside of the pressure container 11 for carbonated water is not evacuated in the step (1), the carbon dioxide gas having a larger specific gravity than air is accumulated from the bottom of the pressure container 11 for carbonated water by supplying the carbon dioxide gas. Carbon dioxide gas can be filled in the pressure capacity 11 for carbonated water by discharging air from an open valve or the like.
(6) When the feed of carbon dioxide gas is completed, the motor operated valve 26 is closed.
(7)三方弁34のB弁を閉じてA弁を開き、循環ポンプ18を作動させる。これにより、スプレーノズル38から炭酸水用耐圧容器11内に原料水(炭酸水)が噴射され、炭酸水用耐圧容器11内の原料水(炭酸水)が循環混合される。水量にもよるが3分~30分程度で炭酸水は最大濃度に達する。
 このような循環ポンプとスプレーを使う以外の方法として、例えば撹拌、あるいは螺旋状のプレートに原料水を落下させるなどの方法がある。つまり、炭酸ガスと原料水との接触面積を増大させる方法であれば、任意の方法を用いることができる。
(8)原料水の炭酸化作業が完了した時点で循環ポンプ18を停止する。
(7) Close the B valve of the three-way valve 34, open the A valve, and operate the circulation pump 18. Thereby, the raw material water (carbonated water) is injected from the spray nozzle 38 into the pressure container 11 for carbonated water, and the raw material water (carbonated water) in the pressure container 11 for carbonated water is circulated and mixed. Carbonated water reaches its maximum concentration in about 3 to 30 minutes depending on the amount of water.
As a method other than using such a circulation pump and a spray, for example, there is a method such as stirring or dropping raw material water on a spiral plate. That is, any method can be used as long as the contact area between carbon dioxide gas and raw water is increased.
(8) The circulation pump 18 is stopped when the carbonation work of the raw material water is completed.
[炭酸水の耐圧製氷容器への注入]
(1)電動弁25を開け、電動ボール弁14を閉じて真空ポンプ15を作動させ、耐圧製氷容器12内を真空にする。
 このステップも必須ではないが、真空にすることにより次のステップで炭酸ガスを効率よく供給することが可能となる。
(2)真空引きが完了した時点で電動弁25を閉じ、真空ポンプ15を停止する。
[Injection of carbonated water into a pressure-resistant ice-making container]
(1) The motor-operated valve 25 is opened, the motor-operated ball valve 14 is closed, the vacuum pump 15 is operated, and the inside of the pressure-resistant ice making container 12 is evacuated.
This step is also not essential, but the vacuuming makes it possible to supply carbon dioxide gas efficiently in the next step.
(2) When the vacuuming is completed, the motor operated valve 25 is closed and the vacuum pump 15 is stopped.
(3)電動弁27を開き、炭酸ガスボンベ16から耐圧製氷容器12へ炭酸ガスを送給する。注入圧力は、前述したように、概ね0.15MPa~1.0MPa程度である。
 上記(1)のステップで耐圧製氷容器12内を真空にしない場合は、炭酸ガスを供給することにより空気より比重の大きい炭酸ガスが耐圧製氷容器12の底からたまるので、電動弁24を開いて空気を追い出すことにより、炭酸ガスを耐圧製氷容器12内に満たすことができる。
(4)炭酸ガスの送給が完了した時点で電動弁27を閉じる。
(3) The motor operated valve 27 is opened to feed carbon dioxide gas from the carbon dioxide gas cylinder 16 to the pressure-resistant ice making container 12. The injection pressure is about 0.15 MPa to about 1.0 MPa as described above.
When the inside of the pressure-resistant ice making container 12 is not evacuated in the step (1), the carbon dioxide gas having a specific gravity larger than that of air is accumulated from the bottom of the pressure forming ice container 12 by supplying carbon dioxide gas. By evacuating the air, carbon dioxide gas can be filled in the pressure-resistant ice making container 12.
(4) When the feed of carbon dioxide gas is completed, the motor operated valve 27 is closed.
(5)電動弁22と均圧弁33を開くと共に、三方弁34のA弁を閉じてB弁を開いて循環ポンプ18を作動させ、炭酸水用耐圧容器11から炭酸ガス雰囲気の耐圧製氷容器12へ炭酸水を供給する。その際、炭酸水の凍結膨張による容器破壊を防止するため、炭酸水の体積の少なくとも2割以上の空間を耐圧製氷容器12の上方に設ける。
 なお、本実施例では均圧弁33を開いた後に炭酸水の供給を開始しているが、両者のタイミングを同時としても良い。あるいは、炭酸水の供給の開始後に均圧弁33を開いても良い。
(6)炭酸水用耐圧容器11から耐圧製氷容器12への炭酸水の供給が完了(設定水位まで注水)した時点で循環ポンプ18を停止し、電動弁22と均圧弁33を閉じる。
(5) The motor operated valve 22 and the pressure equalizing valve 33 are opened, the A valve of the three-way valve 34 is closed and the B valve is opened to operate the circulation pump 18 to make the pressure container 11 for carbon dioxide gas pressure resistant. Supply carbonated water. At this time, a space of at least 20% or more of the volume of the carbonated water is provided above the pressure-resistant ice making container 12 in order to prevent the container breakage due to the freezing and expansion of the carbonated water.
In the present embodiment, the carbonated water supply is started after the pressure equalizing valve 33 is opened, but the timing of the two may be simultaneous. Alternatively, the pressure equalizing valve 33 may be opened after the start of the carbonated water supply.
(6) When the supply of carbonated water from the carbonated water pressure container 11 to the pressure-made ice container 12 is completed (water injection to the set water level), the circulation pump 18 is stopped and the motor operated valve 22 and the pressure equalizing valve 33 are closed.
[炭酸氷の製造]
(1)電動弁28を開き、不活性ガスボンベ17から耐圧製氷容器12へ不活性ガスを送給して耐圧製氷容器12内の炭酸水を加圧する。注入圧力は、炭酸ガス注入圧力より高く、概ね0.5MPa~1.5MPa程度である。
 このように炭酸水を加圧することにより、原料水から炭酸ガスが抜けにくくなり、炭酸氷の炭酸ガス濃度を保つことができる。
 なお、供給するガスは不活性ガスには限らない。例えば、コンプレッサを用いて空気で加圧しても良い。あるいは、炭酸ガスボンベ16を用いて炭酸ガスで加圧しても良い。炭酸ガスボンベ16を用いる場合、圧力が不足するときはコンプレッサを併用しても良い。
(2)不活性ガスの送給が完了した時点で電動弁28を閉じる。
[Manufacture of carbonated ice]
(1) The motor operated valve 28 is opened, and the inert gas is supplied from the inert gas cylinder 17 to the pressure-resistant ice making container 12 to pressurize the carbonated water in the pressure resistant ice-making container 12. The injection pressure is higher than the carbon dioxide gas injection pressure, and is approximately 0.5 MPa to 1.5 MPa.
By pressurizing carbonated water in this manner, carbon dioxide gas is less likely to escape from the raw material water, and the carbon dioxide concentration of carbonated ice can be maintained.
Note that the gas supplied is not limited to the inert gas. For example, a compressor may be used to pressurize with air. Alternatively, the carbon dioxide gas may be pressurized using a carbon dioxide gas cylinder 16. When the carbon dioxide gas cylinder 16 is used, a compressor may be used together when the pressure is insufficient.
(2) Close the motor-operated valve 28 when the feed of the inert gas is completed.
(3)電動弁31と電動弁30を開き、循環ポンプ19を作動させ、冷却用ブラインタンク43からの冷却用ブラインにより耐圧製氷容器12(炭酸水)を冷却して炭酸氷の製造(以下、「製氷」と記す。)を開始する。冷却用ブラインの温度は概ね-10℃~-40℃程度である。
(4)製氷が完了した時点で、電動弁31と電動弁30を閉じ、循環ポンプ19を停止する。
(3) The motor-operated valve 31 and the motor-operated valve 30 are opened, the circulation pump 19 is operated, and the pressure-resistant ice container 12 (carbonated water) is cooled by the cooling brine from the cooling brine tank 43 to produce carbonated ice (hereinafter referred to as Mark as "ice making". The temperature of the cooling brine is about -10.degree. C. to -40.degree.
(4) When ice making is completed, the motor-operated valve 31 and the motor-operated valve 30 are closed, and the circulation pump 19 is stopped.
(5)電動ボール弁14と電動弁24を開く。これにより、耐圧製氷容器12内の圧力を低減させ、炭酸氷が耐圧製氷容器から炭酸氷排出口から勢いよく排出されて炭酸氷が砕けるのを防止することができる。
(6)電動弁32と電動弁29を開き、循環ポンプ20を作動させ、加温用ブラインタンク44からの加温用ブラインにより耐圧製氷容器12(炭酸氷)を加温して炭酸氷を耐圧製氷容器12の内面から剥離(以下、「脱氷」と記す。)を開始する。加温用ブラインの温度は概ね10℃~40℃程度である。耐圧製氷容器12の内面から炭酸氷が剥離すると、炭酸氷は自重により炭酸氷排出口を介して電動ボール弁14から外部に排出される。
(7)脱氷が完了した時点で、電動弁32と電動弁29を閉じ、循環ポンプ20を停止する。
(5) Open the motor-operated ball valve 14 and the motor-operated valve 24. As a result, the pressure in the pressure-proof ice making container 12 can be reduced, and carbon dioxide can be prevented from being crushed from the pressure-proof ice making container vigorously discharged from the carbon dioxide ice outlet.
(6) Open the motor-operated valve 32 and the motor-operated valve 29, operate the circulation pump 20, heat the pressure-resistant ice container 12 (carbonated ice) with the heating brine from the heating brine tank 44, Peeling (hereinafter referred to as “de-icing”) is started from the inner surface of the ice making container 12. The temperature of the heating brine is about 10 ° C to 40 ° C. When the carbonated ice is peeled off from the inner surface of the pressure resistant ice making container 12, the carbonated ice is discharged to the outside from the electric ball valve 14 through the carbonated ice outlet by its own weight.
(7) When the deicing is completed, the motor-operated valve 32 and the motor-operated valve 29 are closed, and the circulation pump 20 is stopped.
 以上、本発明の一実施例について説明してきたが、本発明は何ら上記した実施例に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。例えば、上記実施例では、炭酸水用耐圧容器及び耐圧製氷容器は各1個としているが、それぞれ複数個としてもよい。 As mentioned above, although one Example of this invention was described, this invention is not limited to the structure as described in the above-mentioned Example at all, It is considered within the range described in the claim. Other embodiments and modifications are also included. For example, in the above-mentioned embodiment, although the pressure container for carbonated water and the pressure-resistant ice making container are one each, the number may be plural.
(その他の実施例)
 本発明の一実施例では、炭酸水を生成して貯留する炭酸水用耐圧容器11と耐圧製氷容器12を別としたが、これを一つにして耐圧製氷容器で炭酸水を生成して貯留し、そのまま炭酸氷の製造を行うように構成しても良い。
(Other embodiments)
In one embodiment of the present invention, although the carbonated water pressure container 11 for producing and storing carbonated water and the pressure-resistant ice making container 12 are separate, carbonated water is generated and stored in the pressure-resistant ice container as one unit. Alternatively, the carbonic acid ice may be produced as it is.
 本発明の一実施例では、耐圧製氷容器12を縦置きにしたが、これを横置きにして一側面に炭酸氷排出口を設け、他の側面に電動弁24を設けるようにしても良い。そして、電動弁24で耐圧製氷容器12内の圧力を低減させるように制御することにより、炭酸氷排出口から炭酸氷が押し出されるように排出させることができ、排出時の炭酸氷の割れや欠けを防止することができる。 In the embodiment of the present invention, although the pressure-resistant ice making container 12 is vertically placed, it may be horizontally placed, a carbonated ice outlet may be provided on one side, and the motorized valve 24 may be provided on the other side. Then, by controlling the pressure in the pressure-resistant ice making container 12 by the motor-operated valve 24 so as to reduce the pressure, the carbonated ice can be discharged so as to be pushed out from the carbonated ice discharge port. Can be prevented.
 本発明の一実施例で説明した原料水は、原料水として通常の水を用いる場合はもちろん、各種の水溶液も当然原料水に含まれる。例えば、ジュース、コーヒー、紅茶、牛乳などのあらゆる飲料、美容液などの基礎化粧品、体表に塗布する医薬品、自然に湧出するあるいは人工的に成分調整をした鉱泉、なども含まれ、これらに限らない。 The raw material water described in the embodiment of the present invention naturally includes various aqueous solutions as well as the case of using ordinary water as the raw material water. Examples include, but are not limited to, all beverages such as juice, coffee, black tea, milk, etc., basic cosmetics such as beauty essence, medicines applied to the body surface, naturally-generated or artificially adjusted mineral springs, etc. Absent.
 また、溶媒としては、これら水を含め原料水の他、水以外の液体も含まれる。 Moreover, as a solvent, in addition to raw material water including these waters, liquids other than water are also included.
 本発明の一実施例では、溶媒に溶解する溶質である気体として二酸化炭素を挙げたが、溶媒に溶ける気体であればその種類は問わない。また、溶媒に対する溶解度の高低は問わない。二酸化炭素以外の気体として、例えばオゾン、窒素、酸素、ヘリウム、アルゴン、アンモニアなどが挙げられる。 In the embodiment of the present invention, carbon dioxide is mentioned as a gas which is a solute dissolved in a solvent, but any kind of gas may be used as long as it is a gas dissolved in a solvent. Also, the degree of solubility in the solvent does not matter. Examples of gases other than carbon dioxide include ozone, nitrogen, oxygen, helium, argon and ammonia.
 本発明の一実施例で製造した炭酸氷(あるいはその他の気体を封じ込めた氷)の用途としては、主として食用や飲用が挙げられるが、これに限られるものではない。例えば、野菜の冷蔵/冷凍輸送時に野菜と共に同包して野菜の鮮度を保つために用いることが考えられる。あるいは気体を安全に輸送するために氷に封じ込めたり、香り成分を保存するために香り成分を閉じ込めたり、等、気体の安全な輸送や保管に用いることが考えられる。さらにこれを応用して、二酸化炭素を大気から隔離する手段とすることにより、二酸化炭素による温暖化対策に用いることができる可能性もある。 Applications of the carbonated ice (or ice which contains other gas) produced in one embodiment of the present invention mainly include, but are not limited to, food and drinking. For example, it is conceivable to use the same package with vegetables at the time of refrigeration / freezing transportation of vegetables to maintain the freshness of vegetables. Alternatively, it may be used for safe transportation or storage of gas, such as confinement in ice for safe transportation of gas, confinement of aroma component for preservation of aroma component, and the like. Furthermore, by applying this as a means to isolate carbon dioxide from the atmosphere, there is also a possibility that it can be used for measures against global warming by carbon dioxide.
 本発明は、気体溶解氷の製造に利用することができる。その際、本発明によれば、気体溶解氷の製造から排出までの一連の作業が自動化されているので、作業時間のロスがなく、気体溶解氷を大量生産することができる。 The present invention can be used to produce gas-melted ice. At that time, according to the present invention, since a series of operations from the production to the discharge of the gas-melted ice is automated, the gas-melted ice can be mass-produced without a loss of working time.
10:炭酸氷製造装置、11:炭酸水用耐圧容器、12:耐圧製氷容器、12a:フランジ、13:周壁、14:電動ボール弁、14a:管体、14b:アクチュエータ、14c:ボール、14d:回動軸、15:真空ポンプ、16:炭酸ガスボンベ(炭酸ガス送給手段)、17:不活性ガスボンベ(不活性ガス送給手段)、18~20:循環ポンプ、21~32:電動弁、33:均圧弁、34:三方弁、35~37:逆止弁、38:スプレーノズル、39:レベル計、40:圧力センサー、43:冷却用ブラインタンク(冷却手段)、44:加温用ブラインタンク(加温手段)、45~59:配管 10: carbonated ice manufacturing apparatus, 11: pressure container for carbonated water, 12: pressure-resistant ice container, 12a: flange, 13: peripheral wall, 14: electric ball valve, 14a: tube, 14b: actuator, 14c: ball, 14d: Rotary shaft 15: Vacuum pump 16: Carbon dioxide gas cylinder (carbon dioxide gas delivery means) 17: Inert gas cylinder (inert gas delivery means) 18-20: Circulating pump 21-32: Motor-operated valve 33 : Pressure equalization valve, 34: Three-way valve, 35 to 37: Check valve, 38: Spray nozzle, 39: Level gauge, 40: Pressure sensor, 43: Cooling brine tank (cooling means), 44: Warming brine tank (Heating means), 45-59: Piping

Claims (7)

  1.  気体を溶解した溶液を固化させて気体溶解氷を製造する気体溶解氷製造装置であって、
     前記溶液を貯留して固化させる耐圧製氷容器と、
     前記耐圧製氷容器内の前記溶液を加圧する加圧手段と、
     前記耐圧製氷容器内の前記溶液を冷却する冷却手段、及び前記気体溶解氷を加温する加温手段と、
     前記耐圧製氷容器に設けられた排出口と、
     を有する気体溶解氷製造装置。
    A gas melting ice producing apparatus for solidifying a solution in which gas is melted to produce gas melting ice,
    A pressure resistant ice making container for storing and solidifying the solution;
    Pressurizing means for pressurizing the solution in the pressure resistant ice making container;
    A cooling means for cooling the solution in the pressure-resistant ice making container; and a heating means for heating the gas-melted ice;
    An outlet provided in the pressure-resistant ice making container;
    A gas melting ice manufacturing apparatus having:
  2.  前記排出口は、前記耐圧製氷容器の下面に設けられている、
     請求項1記載の気体溶解氷製造装置。
    The discharge port is provided on the lower surface of the pressure-resistant ice-making container.
    The gas melting ice manufacturing apparatus according to claim 1.
  3.  さらに、前記耐圧製氷容器の内部の圧力を低減させる開放弁を有する、
     請求項1又は2記載の気体溶解氷製造装置。
    Furthermore, it has an open valve for reducing the pressure inside the pressure-resistant ice making container,
    The gas melting ice manufacturing apparatus according to claim 1 or 2.
  4.  前記開放弁は、前記耐圧製氷容器の前記排出口が設けられている面以外の面に接続されている、
     請求項3記載の気体溶解氷製造装置。
    The open valve is connected to a surface other than the surface on which the discharge port of the pressure-resistant ice making container is provided.
    The gas melting ice manufacturing apparatus according to claim 3.
  5.  前記気体は二酸化炭素であり、
     前記溶液は炭酸水であり、
     前記気体溶解氷は炭酸氷である、
     請求項1ないし4のいずれか1記載の気体溶解氷製造装置。
    The gas is carbon dioxide,
    The solution is carbonated water,
    The gas melting ice is carbonated ice,
    The gas melting ice manufacturing apparatus according to any one of claims 1 to 4.
  6.  耐圧製氷容器内に気体を溶解した溶液を貯留し、
     前記溶液を加圧し、
     前記溶液を冷却し、
     前記溶液を冷却することにより前記溶液が固化した気体溶解氷を加温し、
     前記耐圧製氷容器の排出口から前記気体溶解氷を排出する、
     気体溶解氷製造方法。
    A solution of dissolved gas is stored in a pressure-resistant ice-making vessel,
    Pressurize the solution,
    Cool the solution;
    The solution is cooled to heat the gas-dissolved ice solidified from the solution;
    Discharging the gas melted ice from the outlet of the pressure resistant ice making container;
    Gas melted ice manufacturing method.
  7.  さらに、前記溶液を冷却した後に、前記耐圧製氷容器の内部の圧力を低減させる、
     請求項6記載の気体溶解氷製造方法。
    Furthermore, after the solution is cooled, the pressure in the pressure-resistant ice-making vessel is reduced.
    The method for producing gas melted ice according to claim 6.
PCT/JP2018/030675 2017-09-05 2018-08-20 Dissolved gas-containing ice production device and production method WO2019049644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-170257 2017-09-05
JP2017170257A JP6368413B1 (en) 2017-09-05 2017-09-05 Carbonated ice production apparatus and production method

Publications (1)

Publication Number Publication Date
WO2019049644A1 true WO2019049644A1 (en) 2019-03-14

Family

ID=63036690

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/012842 WO2019049407A1 (en) 2017-09-05 2018-03-28 Production device and production method of carbonated ice
PCT/JP2018/030675 WO2019049644A1 (en) 2017-09-05 2018-08-20 Dissolved gas-containing ice production device and production method
PCT/JP2018/030679 WO2019049645A1 (en) 2017-09-05 2018-08-20 Dissolved gas-containing ice production device and production method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012842 WO2019049407A1 (en) 2017-09-05 2018-03-28 Production device and production method of carbonated ice

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030679 WO2019049645A1 (en) 2017-09-05 2018-08-20 Dissolved gas-containing ice production device and production method

Country Status (2)

Country Link
JP (1) JP6368413B1 (en)
WO (3) WO2019049407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445282B2 (en) 2019-11-25 2024-03-07 アイスマン株式会社 Granular gas melt ice production equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020538A (en) * 2018-08-02 2020-02-06 アイスマン株式会社 Gas dissolved ice production device and production method
JP2020046130A (en) * 2018-09-20 2020-03-26 J’sファクトリー株式会社 Gas-containing ice manufacturing device and gas-containing ice manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359372A (en) * 1989-07-28 1991-03-14 Nakayama Eng Kk Manufacture of ice containing carbon dioxide or high-pressure bubble
JP2005069548A (en) * 2003-08-22 2005-03-17 Iceman Corp Ice making machine
JP2005077040A (en) * 2003-09-02 2005-03-24 Fukuoka Prefecture Method and device for producing ozone-containing ice

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114681A (en) * 1987-10-28 1989-05-08 Nkk Corp Method and device for manufacturing carbon-filled ice
JPH06343398A (en) * 1993-06-03 1994-12-20 Nakayama Eng Kk Production of carbonated ice and carbonated shaped frozen sweet and apparatus for producing the same
JP2744976B2 (en) * 1993-10-27 1998-04-28 中山エンジニヤリング株式会社 Method and apparatus for producing carbonated ice
JP2014219194A (en) * 2013-04-08 2014-11-20 株式会社Kiyoraきくち Method of manufacturing carbonic acid containing ice
EP3042136A1 (en) * 2013-09-05 2016-07-13 Ecochroma AG Preparation system for the preparation of white ice
WO2016056059A1 (en) * 2014-10-07 2016-04-14 株式会社Kiyoraきくち Method for manufacturing carbonated ice, and carbonated ice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359372A (en) * 1989-07-28 1991-03-14 Nakayama Eng Kk Manufacture of ice containing carbon dioxide or high-pressure bubble
JP2005069548A (en) * 2003-08-22 2005-03-17 Iceman Corp Ice making machine
JP2005077040A (en) * 2003-09-02 2005-03-24 Fukuoka Prefecture Method and device for producing ozone-containing ice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445282B2 (en) 2019-11-25 2024-03-07 アイスマン株式会社 Granular gas melt ice production equipment

Also Published As

Publication number Publication date
WO2019049645A1 (en) 2019-03-14
JP6368413B1 (en) 2018-08-01
JP2019045101A (en) 2019-03-22
WO2019049407A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US10973240B1 (en) System for providing a single serving of a frozen confection
US10334868B2 (en) System for providing a single serving of a frozen confection
WO2019049644A1 (en) Dissolved gas-containing ice production device and production method
JP6271552B2 (en) Apparatus and method for producing sparkling beverages
US11781808B2 (en) Brewing and cooling a beverage
EP3737239A1 (en) System for providing a single serving of a frozen confection
US10932479B2 (en) Process for the manufacture of a frozen product
US20190195544A1 (en) Preparation system for the preparation of white ice
WO1998056480A1 (en) Freeze-concentrating apparatus for aqueous solutions, ice pillar producing apparatus, and freeze-concentrating method for aqueous solutions
TWI657224B (en) System and method for producing block ice treated with nitrogen substitution
JP2020020537A (en) Gas dissolved ice production device and production method
JP2020020538A (en) Gas dissolved ice production device and production method
US20110197622A1 (en) Device and method for dosing cooling medium for the purpose of cooling drinks
RU2721577C1 (en) Method of granulating and freezing microbial biomass and device for implementation thereof
WO2020059241A1 (en) Device for producing gas-containing ice, and method for producing gas-containing ice
JP2008064356A (en) Ozone ice manufacturing method and device, and ozone ice manufactured thereby
US20230373708A1 (en) Frozen protein shakes
JPS6348670Y2 (en)
AU2019430918A1 (en) An apparatus for making texture controlled edible ice products instantly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852813

Country of ref document: EP

Kind code of ref document: A1