JP2020020537A - Gas dissolved ice production device and production method - Google Patents

Gas dissolved ice production device and production method Download PDF

Info

Publication number
JP2020020537A
JP2020020537A JP2018145847A JP2018145847A JP2020020537A JP 2020020537 A JP2020020537 A JP 2020020537A JP 2018145847 A JP2018145847 A JP 2018145847A JP 2018145847 A JP2018145847 A JP 2018145847A JP 2020020537 A JP2020020537 A JP 2020020537A
Authority
JP
Japan
Prior art keywords
ice
pressure
resistant
gas
carbonated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018145847A
Other languages
Japanese (ja)
Inventor
博 胡
Haku KO
博 胡
怜那 秋山
Rena Akiyama
怜那 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iceman Co Ltd
Original Assignee
Iceman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iceman Co Ltd filed Critical Iceman Co Ltd
Priority to JP2018145847A priority Critical patent/JP2020020537A/en
Publication of JP2020020537A publication Critical patent/JP2020020537A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)

Abstract

To provide a gas dissolved ice production device and a production method which automate production of gas dissolved ice to enable mass production.SOLUTION: A gas dissolved ice production device 10 solidifies a solution in which a gas is dissolved to produce gas dissolved ice and includes: a pressure-resistant ice making container 12 which stores the solution to solidify the solution; compressing means 17 which compresses the solution in the pressure-resistant ice making container 12; cooling means 43 which cools the solution in the pressure-resistant ice making container 12 and heating means 44 which heats the gas dissolved ice; and a discharge port provided at the pressure-resistant ice making container 12.SELECTED DRAWING: Figure 1

Description

本発明は、炭酸水等の気体を溶解した溶液を固化させて、炭酸氷等の気体溶解氷を製造する装置及び方法に関する。   The present invention relates to an apparatus and a method for producing gas-melted ice such as carbonated ice by solidifying a solution in which a gas such as carbonated water is dissolved.

炭酸水を氷結させて炭酸氷を得ることができれば、炭酸氷を適当な大きさに割って飲み物に入れたり、炭酸飲料に入れて炭酸の濃度を下げないようにしたり、そのまま食して新しい食感が得られることから大きな需要が期待できるが、炭酸氷の製造は困難とされている。なぜなら、炭酸水を氷結させようとすると、氷の結晶化が進むにつれて炭酸水に含まれている炭酸が大気中に放出されてしまうからである。   If carbonated water can be frozen and carbonated ice can be obtained, the carbonated ice can be divided into appropriate sizes and added to drinks, or added to carbonated drinks so as not to lower the concentration of carbonic acid, or can be eaten as it is to have a new texture. However, it is difficult to produce carbonated ice. This is because, when trying to freeze carbonated water, as the crystallization of ice proceeds, carbonic acid contained in the carbonated water is released into the atmosphere.

そこで、特許文献1では、炭酸ガス入りの製氷原水が注水される耐圧製氷容器と、加圧媒体が供給されることで膨脹し、耐圧製氷容器内に注水されている製氷原水面に接触するよう、耐圧製氷容器内に配装されている中空弾性加圧嚢と、耐圧製氷容器をその外部から冷却するブライン包覆部、同じく中心側から冷却する中央ブライン供給部からなる冷却手段とを備えたことを特徴とする炭酸入り氷の製造装置の発明が開示されている。
また、特許文献2では、製氷原水を耐圧容器に所定の位置まで注水し、前記製氷原水にアルコール類と炭酸ガスを溶解させて不溶性ガスにて加圧し、耐圧容器を冷却して前記製氷原水を凍結させることを特徴とする炭酸入り氷の製造方法の発明が開示されている。
Therefore, in Patent Document 1, a pressure-resistant ice-making container into which raw ice making water containing carbon dioxide gas is injected, and a pressurized medium are supplied so that the container expands and comes into contact with the original ice-making water surface poured into the pressure-resistant ice making container. A hollow elastic pressure sac provided in the pressure-resistant ice-making container, a brine covering portion for cooling the pressure-resistant ice-making container from the outside, and a cooling means including a central brine supply portion for cooling from the center side as well. An invention of an apparatus for producing carbonated ice, which is characterized by the above, is disclosed.
Further, in Patent Document 2, ice making raw water is poured into a pressure-resistant container to a predetermined position, alcohols and carbon dioxide are dissolved in the ice making raw water and pressurized with an insoluble gas, and the pressure-resistant container is cooled to cool the ice making raw water. An invention of a method for producing carbonated ice, which is characterized by freezing, is disclosed.

特開平7−120123号公報JP-A-7-120123 特開2014−219194号公報JP 2014-219194 A

しかしながら、特許文献1及び2の発明は、耐圧(製氷)容器の上蓋を外して耐圧(製氷)容器内に製氷原水を注水し、製氷後に再び耐圧(製氷)容器の上蓋を外して耐圧(製氷)容器内の炭酸氷を取り出さなければならないため、炭酸氷を大量に自動生産することができない。   However, the inventions of Patent Documents 1 and 2 disclose the upper lid of the pressure-resistant (ice making) container, remove the upper lid of the pressure-resistant (ice making) container, pour the raw water for ice making into the pressure-resistant (ice-making) container, remove the upper lid of the pressure-resistant (ice making) container again after ice making, and remove the upper lid. ) Since the carbonated ice in the container must be removed, it is not possible to automatically produce a large amount of carbonated ice.

本発明はかかる事情に鑑みてなされたもので、気体溶解氷の製造を自動化して大量生産することが可能な気体溶解氷製造装置及び製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a gas melting ice manufacturing apparatus and a manufacturing method capable of automating the production of gas melting ice and mass-producing it.

上記目的を達成するため、本発明は以下に掲げる発明から構成される。
(第1の発明)
気体を溶解した溶液を固化させて気体溶解氷を製造する気体溶解氷製造装置であって、
前記溶液を貯留して固化させる耐圧製氷容器と、
前記耐圧製氷容器内の前記溶液を加圧する加圧手段と、
前記耐圧製氷容器内の前記溶液を冷却する冷却手段、及び前記気体溶解氷を加温する加温手段と、
前記耐圧製氷容器に設けられた排出口と、
を有する気体溶解氷製造装置。
「気体を溶解した溶液」とは、気体の分子が溶媒中にそのままあるいは他の分子と結合して存在していれば足り、溶解のメカニズムは問わない。
「気体溶解氷」とは、気体の分子が、溶媒が固化した氷の中にそのままあるいは他の分子と結合して存在していれば足りる。
「氷」とは、水が固化したものの他、水以外の他の液体が固化したものも含む。
「加圧する」とは、貯留されている溶液に対して直接的または間接的に圧力を加えることができればよい。
「溶液を冷却する」とは、溶液を直接冷却する場合の他、前記耐圧製氷容器や溶液と接触する他の部材を冷却して間接的に溶液を冷却する場合も含む。
「気体溶解氷を加温する」とは、気体溶解氷を直接加温する場合の他、前記耐圧製氷容器や気体溶解氷と接触する他の部材を加温して間接的に気体溶解氷を加温する場合も含む。
(第2の発明)
前記排出口は、前記耐圧製氷容器の下面に設けられている、
第1の発明に記載の気体溶解氷製造装置。
(第3の発明)
さらに、前記耐圧製氷容器の内部の圧力を低減させる開放弁を有する、
第1または第2の発明に記載の気体溶解氷製造装置。
「低減させる」とは、内部の圧力を低減させればよく、大気圧まで低減させることはもちろん、大気圧超の圧力に低減させるまでに留めても良い。
(第4の発明)
前記開放弁は、前記耐圧製氷容器の前記排出口が設けられている面以外の面に接続されている、
第3の発明に記載の気体溶解氷製造装置。
「面」とは、平面はもちろん、曲面も含む。
(第5の発明)
前記気体は二酸化炭素であり、
前記溶液は炭酸水であり、
前記気体溶解氷は炭酸氷である、
第1ないし第4の発明のいずれか1に記載の気体溶解氷製造装置。
To achieve the above object, the present invention comprises the following inventions.
(First invention)
A gas melting ice manufacturing apparatus for manufacturing a gas melting ice by solidifying a solution in which a gas is melted,
A pressure-resistant ice-making container for storing and solidifying the solution,
Pressurizing means for pressurizing the solution in the pressure-resistant ice maker,
Cooling means for cooling the solution in the pressure-resistant ice making container, and heating means for heating the gas melting ice,
An outlet provided in the pressure-resistant ice-making container,
The apparatus for producing gas melting ice having the following.
The “solution in which a gas is dissolved” suffices as long as gas molecules are present in the solvent as it is or in combination with other molecules, and the dissolution mechanism is not limited.
The “gas-melted ice” is sufficient as long as gas molecules are present as they are or in combination with other molecules in ice in which the solvent is solidified.
"Ice" includes not only water solidified but also solidified liquid other than water.
The term "pressurize" means that the pressure can be directly or indirectly applied to the stored solution.
“Cooling the solution” includes not only cooling the solution directly but also cooling the solution indirectly by cooling the pressure-resistant ice-making container and other members in contact with the solution.
"Heating the gas melting ice" means, in addition to directly heating the gas melting ice, or indirectly heating the gas melting ice by heating the pressure-resistant ice making container or other members that come into contact with the gas melting ice. Includes heating.
(Second invention)
The outlet is provided on a lower surface of the pressure-resistant ice making container,
The gas melting ice manufacturing apparatus according to the first aspect.
(Third invention)
Furthermore, it has an opening valve for reducing the pressure inside the pressure-resistant ice making container,
The gas melting ice manufacturing apparatus according to the first or second invention.
The term "reduce" means that the internal pressure may be reduced. The pressure may be reduced to atmospheric pressure or may be reduced to a pressure higher than atmospheric pressure.
(Fourth invention)
The release valve is connected to a surface other than the surface where the discharge port of the pressure-resistant ice making container is provided,
The gas melting ice producing apparatus according to the third invention.
The “surface” includes a curved surface as well as a flat surface.
(Fifth invention)
The gas is carbon dioxide;
The solution is carbonated water,
The gas melting ice is carbonated ice;
The gas melting ice manufacturing apparatus according to any one of the first to fourth inventions.

(第6の発明)
耐圧製氷容器内に気体を溶解した溶液を貯留し、
前記溶液を加圧し、
前記溶液を冷却し、
前記溶液を冷却することにより前記溶液が固化した気体溶解氷を加温し、
前記耐圧製氷容器の排出口から前記気体溶解氷を排出する、
気体溶解氷製造方法。
「気体を溶解した溶液を貯留する」とは、耐圧製氷容器外から溶液を供給して貯留する場合の他、耐圧製氷容器内で溶液を生成して貯留する場合も含む。
(第7の発明)
さらに、前記溶液を冷却した後に、前記耐圧製氷容器の内部の圧力を低減させる、
第6の発明に記載の気体溶解氷製造方法。
「冷却した後」とは、冷却工程の終了後であればよく、加温工程や他の工程との前後は問わない。
(Sixth invention)
The solution in which the gas is dissolved is stored in the pressure-resistant ice-making container,
Pressurizing the solution,
Cooling the solution,
Heating the gas-melted ice in which the solution has solidified by cooling the solution,
Discharging the gas-melted ice from an outlet of the pressure-resistant ice making container,
Gas melting ice production method.
“Storing a solution in which a gas is dissolved” includes not only a case where the solution is supplied and stored from outside the pressure-resistant ice-making container, but also a case where the solution is generated and stored inside the pressure-resistant ice-making container.
(Seventh invention)
Further, after cooling the solution, reduce the pressure inside the pressure-resistant ice making container,
The method for producing gas-melted ice according to the sixth invention.
“After cooling” may be any time after the cooling step is completed, and does not matter before or after the heating step or another step.

本発明に係る気体溶解氷製造装置及び製造方法では、気体溶解氷の製造から排出までの一連の作業が自動化されているので、作業時間のロスがなく、気体溶解氷を大量生産することができる。   In the gas melting ice manufacturing apparatus and the manufacturing method according to the present invention, since a series of operations from the production to the discharge of the gas melting ice are automated, there is no loss of operation time, and the gas melting ice can be mass-produced. .

本発明の一実施形態に係る炭酸氷製造装置の構成を示すブロック図である。It is a block diagram showing composition of a carbonated ice manufacturing device concerning one embodiment of the present invention. 同炭酸氷製造装置を構成する耐圧製氷容器の斜視図である。It is a perspective view of the pressure-resistant ice-making container which comprises the same carbonated ice manufacturing apparatus. (A)は電動ボール弁の平面図、(B)は電動ボール弁が開いたときの側断面図、(C)は電動ボール弁が閉じたときの側断面図である。(A) is a plan view of the electric ball valve, (B) is a side sectional view when the electric ball valve is opened, and (C) is a side sectional view when the electric ball valve is closed.

実施形態を説明する前に、本発明と実施形態との関係等について説明する。
本発明とは、特許請求の範囲又は課題を解決するための手段の項に記載された発明を意味するものであり、以下の実施形態に限定されるものではない。また、少なくともかぎ括弧内の語句は、特許請求の範囲又は課題を解決するための手段の項に記載された語句を意味し、同じく以下の実施形態に限定されるものではない。また、方法の発明においては、一の工程で他の工程の結果を利用する関係にある等の制約がない限り、工程の順序は任意である。
特許請求の範囲の従属項に記載の構成及び方法、従属項に記載の構成及び方法に対応する実施形態の構成及び方法、並びに特許請求の範囲に記載がなく実施形態のみに記載の構成及び方法は、本発明においては任意の構成及び方法である。特許請求の範囲の記載が実施形態の記載よりも広い場合における実施形態に記載の構成及び方法も、本発明の構成及び方法の例示であるという意味で、本発明においては任意の構成及び方法である。いずれの場合も、特許請求の範囲の独立項に記載することで、本発明の必須の構成及び方法となる。
実施形態に記載した効果は、本発明の例示としての実施形態の構成を有する場合の効果であり、必ずしも本発明が有する効果ではない。
複数の実施形態がある場合、各実施形態に開示の構成は各実施形態のみで閉じるものではなく、実施形態をまたいで組み合わせることが可能である。例えば一の実施形態に開示の構成を、他の実施形態に組み合わせても良い。また、複数の実施形態それぞれに開示の構成を集めて組み合わせても良い。
発明が解決しようとする課題に記載した課題は公知の課題ではなく、本発明者が独自に知見したものであり、本発明の構成及び方法と共に発明の進歩性を肯定する事実である。
Before describing the embodiments, the relationship between the present invention and the embodiments will be described.
The present invention means the invention described in the claims or the section for solving the problems, and is not limited to the following embodiments. In addition, at least the terms in angle brackets mean the terms described in the claims or the section for solving the problem, and are not limited to the following embodiments. In addition, in the method invention, the order of the steps is arbitrary as long as there is no restriction such that the result of one step uses the result of another step.
Configurations and methods described in the dependent claims of the claims, configurations and methods of the embodiments corresponding to the configurations and the methods described in the dependent claims, and configurations and methods described only in the embodiments without being described in the claims Is an arbitrary configuration and method in the present invention. The configuration and method described in the embodiment when the description of the claims is wider than the description of the embodiment is also an example of the configuration and method of the present invention. is there. In any case, the essential configuration and method of the present invention are described in the independent claims.
The effects described in the embodiments are effects in the case of having the configuration of the exemplary embodiment of the present invention, and are not necessarily the effects of the present invention.
When there are a plurality of embodiments, the configuration disclosed in each embodiment is not limited to each embodiment alone, but can be combined across the embodiments. For example, the configuration disclosed in one embodiment may be combined with another embodiment. Also, the disclosed configurations may be collected and combined in each of the plurality of embodiments.
The problem described in the problem to be solved by the invention is not a known problem, but is independently discovered by the inventor, and is a fact that confirms the inventive step together with the configuration and method of the invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施形態について説明し、本発明の理解に供する。
なお、以下の実施形態では、溶解する気体として二酸化炭素、気体を溶解する溶媒として原料水(水)を選択しており、炭酸水(本発明の「溶液」に相当)を固化させて炭酸氷(本発明の「気体溶解氷」に相当)を製造する場合を説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
In the following embodiment, carbon dioxide is selected as a gas to be dissolved, and raw material water (water) is selected as a solvent to dissolve the gas. Carbonated water (corresponding to the “solution” of the present invention) is solidified to form carbonated ice. A case of producing (corresponding to “gas melting ice” of the present invention) will be described.

本発明の一実施形態に係る炭酸氷製造装置10(本発明の「気体溶解氷製造装置」に相当)の構成を図1に示す。
炭酸氷製造装置10は、炭酸水の製造に使用され製造後の炭酸水を貯留する炭酸水用耐圧容器11と、炭酸水用耐圧容器11から供給される炭酸水を貯留して氷結(固化)させる耐圧製氷容器12と、炭酸水用耐圧容器11内及び耐圧製氷容器12内を真空にする真空ポンプ15と、炭酸水用耐圧容器11内及び耐圧製氷容器12内に炭酸ガスを送給する炭酸ガスボンベ(炭酸ガス送給手段)16と、設定水位まで炭酸水が注水された耐圧製氷容器12内に不活性ガスを送給して炭酸水を加圧する不活性ガスボンベ(不活性ガス送給手段)17(本発明の「加圧手段」に相当)とを備えている。
FIG. 1 shows the configuration of a carbonated ice producing apparatus 10 according to one embodiment of the present invention (corresponding to the “gas melting ice producing apparatus” of the present invention).
The carbonated ice producing apparatus 10 is used for producing carbonated water and stores the carbonated water after the production. The carbonated water pressure container 11 stores carbonated water supplied from the carbonated water pressure container 11 and freezes (solidifies). Pressure-resistant ice-making container 12, a vacuum pump 15 for evacuating the inside of the pressure-resistant container 11 for carbonated water and the inside of the pressure-resistant ice-making container 12, and a carbonic acid for supplying carbon dioxide gas into the pressure-resistant container 11 for carbonated water and the pressure-resistant ice making container 12. A gas cylinder (carbon dioxide gas supply means) 16 and an inert gas cylinder (inert gas supply means) for supplying an inert gas into the pressure-resistant ice-making container 12 filled with carbonated water to a set water level to pressurize the carbonated water. 17 (corresponding to the “pressurizing means” of the present invention).

真空ポンプ15は、配管51、50を介して炭酸水用耐圧容器11に接続され、配管51、54、52を介して耐圧製氷容器12に接続されている。配管51の経路上には電動弁23が、配管54の経路上には電動弁25がそれぞれ設置されている。   The vacuum pump 15 is connected to the pressure-resistant container for carbonated water 11 via pipes 51 and 50, and connected to the ice-resistant container 12 via pipes 51, 54 and 52. The motor-operated valve 23 is provided on the path of the pipe 51, and the motor-operated valve 25 is provided on the path of the pipe 54.

炭酸ガスボンベ16から炭酸水用耐圧容器11へは配管52、50を介して、炭酸ガスボンベ16から耐圧製氷容器12へは配管52を介して、それぞれ炭酸ガスが送給される。配管50の経路上には電動弁26と逆止弁36が、配管52の経路上には電動弁27と逆止弁37がそれぞれ設置されている。   Carbon dioxide gas is supplied from the carbon dioxide gas cylinder 16 to the pressure-resistant container for carbonated water 11 via pipes 52 and 50, and from the carbon dioxide gas cylinder 16 to the pressure-resistant ice making vessel 12 via pipe 52. The motor-operated valve 26 and the check valve 36 are provided on the path of the pipe 50, and the motor-operated valve 27 and the check valve 37 are provided on the path of the pipe 52.

不活性ガスボンベ17から耐圧製氷容器12へは配管53を介して不活性ガスが送給される。配管53の経路上には電動弁28が設置されている。
なお、不活性ガスには窒素やアルゴン等を使用することができる。
An inert gas is supplied from the inert gas cylinder 17 to the pressure-resistant ice maker 12 via a pipe 53. The motor-operated valve 28 is provided on the path of the pipe 53.
Note that nitrogen, argon, or the like can be used as the inert gas.

炭酸水用耐圧容器11には、炭酸水用耐圧容器11内に原料水を注水するための電動弁21付きの配管45と、原料水が設定水位になると作動して注水を停止させるレベル計39が設置されている。
また、炭酸水用耐圧容器11内の原料水を炭酸化させるため、炭酸水用耐圧容器11には、炭酸水用耐圧容器11内の原料水(炭酸水)を循環させる設備が設置されている。具体的には、炭酸水用耐圧容器11内の原料水(炭酸水)を循環させる循環ポンプ18と、循環させた原料水(炭酸水)を炭酸水用耐圧容器11内に噴射するスプレーノズル38と、循環ポンプ18とスプレーノズル38とを繋ぐ配管46、47及び三方弁34が設置されている。
なお、配管47上に別途熱交換器等の冷却手段を備えていても良い。冷却手段を備えることにより、炭酸水を循環させる間に炭酸水の温度が上がり、原料水中の二酸化炭素濃度が低下することを防止することができる。
The pressure-resistant container for carbonated water 11 has a pipe 45 with an electric valve 21 for injecting the raw water into the pressure-resistant container 11 for carbonated water, and a level meter 39 that operates when the raw water reaches a set water level and stops the water injection. Is installed.
In addition, in order to carbonate the raw water in the pressure-resistant container for carbonated water 11, equipment for circulating the raw water (carbonated water) in the pressure-resistant container for carbonated water 11 is installed in the pressure-resistant container for carbonated water 11. . Specifically, a circulation pump 18 for circulating the raw water (carbonated water) in the pressure-resistant container for carbonated water 11, and a spray nozzle 38 for injecting the circulated raw water (carbonated water) into the pressure-resistant container 11 for carbonated water And piping 46 and 47 connecting the circulation pump 18 and the spray nozzle 38 and the three-way valve 34 are provided.
Note that a separate cooling means such as a heat exchanger may be provided on the pipe 47. By providing the cooling means, it is possible to prevent the temperature of the carbonated water from rising while circulating the carbonated water, and prevent the carbon dioxide concentration in the raw water from decreasing.

炭酸水用耐圧容器11から耐圧製氷容器12へ炭酸水を供給する際は、三方弁34を切り替えて循環ポンプ18を作動させ、配管46、48を介して耐圧製氷容器12に炭酸水を供給する。配管48の経路上には電動弁22と逆止弁35が設置されている。
その際、炭酸水用耐圧容器11内の圧力と耐圧製氷容器12内の圧力を同じレベルにするため、炭酸水用耐圧容器11と耐圧製氷容器12は、均圧弁33を有する配管49により接続されている。
本実施形態で、炭酸水用耐圧容器11内の圧力と耐圧製氷容器12内の圧力を同じレベルにするのは、炭酸水用耐圧容器11から耐圧製氷容器12にスムーズに炭酸水を供給するためである。両者の間に圧力差があると、炭酸水が炭酸水用耐圧容器11に滞留したり、あるいは炭酸水が耐圧製氷容器12に向けて勢いよく流れてしまい、スムーズに炭酸水を供給できなくなってしまう。また、圧力は必ずしも同じレベルでなくてもよく、圧力差を低減させるように制御すれば足りる。例えば炭酸水用耐圧容器11内の圧力を耐圧製氷容器12内の圧力よりも少し高めにすることにより、炭酸水の供給速度を早めることができる。
また、本実施形態では、均圧手段として均圧弁33と配管49を用いたが、他の手段を用いても良い。例えば炭酸水用耐圧容器11と耐圧製氷容器12のそれぞれにコンプレッサや開放弁などの圧力調整装置を接続し、これらが連動して両者の圧力差を低減するように制御しても良い。
When supplying carbonated water from the carbonated water pressure-resistant container 11 to the pressure-resistant ice making container 12, the three-way valve 34 is switched to operate the circulation pump 18, and the carbonated water is supplied to the pressure-resistant ice making container 12 through the pipes 46 and 48. . The motor-operated valve 22 and the check valve 35 are installed on the path of the pipe 48.
At this time, in order to make the pressure in the pressure-resistant container for carbonated water 11 and the pressure in the pressure-resistant ice making container 12 the same level, the pressure-resistant container for carbonated water 11 and the pressure-resistant ice making container 12 are connected by a pipe 49 having a pressure equalizing valve 33. ing.
In the present embodiment, the pressure in the pressure-resistant container 11 for carbonated water and the pressure in the pressure-resistant ice making container 12 are set to the same level in order to smoothly supply carbonated water from the pressure-resistant container 11 for carbonated water to the pressure-resistant ice container 12. It is. If there is a pressure difference between the two, the carbonated water stays in the pressure-resistant container 11 for carbonated water, or the carbonated water flows vigorously toward the pressure-resistant ice-making container 12, so that the carbonated water cannot be supplied smoothly. I will. Further, the pressures do not necessarily have to be at the same level, and it is sufficient to perform control so as to reduce the pressure difference. For example, by setting the pressure in the pressure-resistant container 11 for carbonated water slightly higher than the pressure in the pressure-resistant ice making container 12, the supply speed of the carbonated water can be increased.
Further, in this embodiment, the equalizing valve 33 and the pipe 49 are used as the equalizing means, but other means may be used. For example, a pressure adjusting device such as a compressor or an opening valve may be connected to each of the pressure-resistant container for carbonated water 11 and the pressure-resistant ice making container 12, and these may be linked to control such that the pressure difference between them is reduced.

耐圧製氷容器12は竪型円筒状とされ、下面に設けられた炭酸氷排出口(図示省略)(本発明の「排出口」に相当)には炭酸氷排出口と同じ若しくはそれを超える口径を有する電動ボール弁14が接続されている(図2参照)。
電動ボール弁14は、炭酸氷排出口に接続される管体14aと、管体14a内に嵌め込まれたボール14cを回動軸14dを介して回動させるアクチュエータ14bとから構成されている(図3(A)〜(C)参照)。ボール14cの中央部には、炭酸氷排出口と同じ若しくはそれを超える口径を有する貫通孔が形成されており、回動軸14dを±90°回動させることにより電動ボール弁14が開閉する。
本実施形態では、炭酸氷排出口は、耐圧製氷容器12の下面に設けられているので、炭酸氷を自然落下させることにより取り出すことができ、一連の作業の自動化に資するものである。もっとも、耐圧製氷容器12を横置きにする場合は、炭酸氷排出口は耐圧製氷容器12の横面に設けてもよい。
The pressure-resistant ice making container 12 has a vertical cylindrical shape, and a carbonated ice discharge port (not shown) provided on the lower surface (corresponding to the “discharge port” of the present invention) has a diameter equal to or larger than the carbonated ice discharge port. The electrically operated ball valve 14 is connected (see FIG. 2).
The electric ball valve 14 includes a tube 14a connected to the carbonated ice discharge port, and an actuator 14b for rotating a ball 14c fitted in the tube 14a via a rotation shaft 14d (FIG. 3 (A) to (C)). A through hole having a diameter equal to or larger than the carbonated ice discharge port is formed in the center of the ball 14c, and the electric ball valve 14 opens and closes by rotating the rotating shaft 14d by ± 90 °.
In the present embodiment, since the carbonated ice discharge port is provided on the lower surface of the pressure-resistant ice making container 12, the carbonated ice can be taken out by allowing it to fall naturally, which contributes to automation of a series of operations. However, when the pressure-resistant ice maker 12 is placed horizontally, the carbonated ice discharge port may be provided on the lateral surface of the pressure-resistant ice maker 12.

一方、耐圧製氷容器12の上面はフランジ12aで封止され、フランジ12aを貫通する配管52、53、55を介して、炭酸ガスボンベ(炭酸ガス送給手段)16、不活性ガスボンベ(不活性ガス送給手段)17、排気用の電動弁24(本発明の「開放弁」に相当)及び圧力センサー40にそれぞれ接続されている。
排気用の電動弁24は、耐圧製氷容器12内の圧力を低減させるために設けられており、炭酸氷排出口が設けられている面以外の面、ここでは対向する面に設けられている。炭酸氷排出口が設けられている面以外の面に設けることにより、炭酸氷排出口と電動弁24とが干渉することなく、また電動弁24側の圧力が炭酸水排出口側の圧力に差を設けるようにすることにより、スムーズに炭酸氷を炭酸氷排出口から排出することが可能となる。
On the other hand, the upper surface of the pressure-resistant ice-making container 12 is sealed with a flange 12a, and a carbon dioxide gas cylinder (carbon dioxide gas supply means) 16 and an inert gas cylinder (inert gas gas supply) are provided through pipes 52, 53, and 55 passing through the flange 12a. (Opening valve) of the present invention, and a pressure sensor 40.
The motor-operated exhaust valve 24 is provided to reduce the pressure in the pressure-resistant ice-making container 12, and is provided on a surface other than the surface provided with the carbonated ice discharge port, here, on the opposite surface. By providing it on a surface other than the surface where the carbonated ice discharge port is provided, the carbonated ice discharge port does not interfere with the electric valve 24, and the pressure on the electric valve 24 side is different from the pressure on the carbonated water discharge port side. Is provided, the carbonated ice can be smoothly discharged from the carbonated ice discharge port.

耐圧製氷容器12を冷却及び加温するため、耐圧製氷容器12の周壁13は二重管構造とされ、二重管の内部をブラインが循環する。
耐圧製氷容器12を冷却する際は、冷却用ブラインタンク(本発明の「冷却手段」に相当)43から配管56を介して冷却用ブラインが耐圧製氷容器12の周壁13に流入する。耐圧製氷容器12の周壁13から流出した冷却用ブラインは配管58を介して冷却用ブラインタンク43に流入する。配管56上には循環ポンプ19と電動弁31が、配管58上には電動弁30が設置されている。
一方、耐圧製氷容器12を加温する際は、加温用ブラインタンク(本発明の「加温手段」に相当)44から配管57を介して加温用ブラインが耐圧製氷容器12の周壁13に流入する。耐圧製氷容器12の周壁13から流出した加温用ブラインは配管59を介して加温用ブラインタンク44に流入する。配管57上には循環ポンプ20と電動弁32が、配管59上には電動弁29が設置されている。
In order to cool and heat the pressure-resistant ice making container 12, the peripheral wall 13 of the pressure-resistant ice making container 12 has a double pipe structure, and the brine circulates inside the double pipe.
When cooling the pressure-resistant ice making container 12, the cooling brine flows into the peripheral wall 13 of the pressure-resistant ice making container 12 from a cooling brine tank (corresponding to “cooling means” of the present invention) 43 via a pipe 56. The cooling brine flowing out of the peripheral wall 13 of the pressure-resistant ice making container 12 flows into the cooling brine tank 43 via the pipe 58. The circulation pump 19 and the electric valve 31 are provided on the pipe 56, and the electric valve 30 is provided on the pipe 58.
On the other hand, when heating the pressure-resistant ice making container 12, the heating brine is supplied from the heating brine tank (corresponding to the “heating means” of the present invention) 44 to the peripheral wall 13 of the pressure-resistant ice making container 12 via the pipe 57. Inflow. The heating brine flowing out of the peripheral wall 13 of the pressure-resistant ice making container 12 flows into the heating brine tank 44 via the pipe 59. The circulation pump 20 and the electric valve 32 are provided on the pipe 57, and the electric valve 29 is provided on the pipe 59.

なお、上述した電動弁を含む各機器の制御には、図示していないPLC(プログラマブル・ロジック・コントローラ)が使用される。   Note that a PLC (Programmable Logic Controller), not shown, is used to control each device including the above-described electric valve.

次に、上記構成を有する炭酸氷製造装置10を用いた炭酸氷の製造方法(本発明の「気体溶解氷製造方法」に相当)について説明する。
炭酸氷の製造方法は、大きく分けて、炭酸水の製造、炭酸水の耐圧製氷容器への注入、炭酸氷の製造の3つのプロセスから構成される。以下、順に説明する。
Next, a method for producing carbonated ice using the carbonated ice producing apparatus 10 having the above configuration (corresponding to the “method for producing gas-melted ice” of the present invention) will be described.
The method for producing carbonated ice is roughly divided into three processes: production of carbonated water, injection of carbonated water into a pressure-resistant ice-making container, and production of carbonated ice. Hereinafter, description will be made in order.

[炭酸水の製造]
(1)電動弁23を開けて真空ポンプ15を作動させ、炭酸水用耐圧容器11内を真空にする。
このステップは必須ではないが、真空にすることにより原料水に含まれる不純物を気化させて取り除くことができる。
(2)真空引きが完了した時点で電動弁23を閉じ、真空ポンプ15を停止する。
[Production of carbonated water]
(1) The electric valve 23 is opened and the vacuum pump 15 is operated to evacuate the inside of the pressure-resistant container 11 for carbonated water.
Although this step is not essential, impurities contained in the raw water can be vaporized and removed by applying a vacuum.
(2) When the evacuation is completed, the electric valve 23 is closed and the vacuum pump 15 is stopped.

(3)電動弁21を開き、原料水を炭酸水用耐圧容器11に注入する。炭酸の溶解度を上げるため、原料水は、できるだけ0℃近い低温水が良い。
(4)原料水が設定水位になるとレベル計39が作動し、電動弁21が閉じる。
(3) Open the electric valve 21 and inject the raw water into the pressure-resistant container 11 for carbonated water. In order to increase the solubility of carbonic acid, the raw water is preferably low-temperature water as close to 0 ° C. as possible.
(4) When the raw water reaches the set water level, the level gauge 39 operates, and the electric valve 21 closes.

(5)電動弁26を開き、炭酸ガスボンベ16から炭酸水用耐圧容器11へ炭酸ガスを送給する。注入圧力は、炭酸氷の炭酸濃度を予め想定し適宜決定する。概ね0.15MPa〜1.0MPa程度である。
上記(1)のステップで炭酸水用耐圧容器11内を真空にしない場合は、炭酸ガスを供給することにより空気より比重の大きい炭酸ガスが炭酸水用耐圧容器11の底からたまるので、別途設ける開放弁等から空気を追い出すことにより、炭酸ガスを炭酸水用耐圧容11内に満たすことができる。
(6)炭酸ガスの送給が完了した時点で電動弁26を閉じる。
(5) Open the motor-operated valve 26 and feed the carbon dioxide gas from the carbon dioxide gas cylinder 16 to the pressure-resistant container for carbonated water 11. The injection pressure is appropriately determined by assuming the carbonic acid concentration of the carbonated ice in advance. It is about 0.15 MPa to about 1.0 MPa.
If the inside of the pressure-resistant container for carbonated water 11 is not evacuated in the step (1), the carbon dioxide gas having a specific gravity higher than that of air is accumulated from the bottom of the pressure-resistant container for carbonated water 11 by supplying carbon dioxide gas. By expelling the air from an opening valve or the like, the carbon dioxide gas can be filled in the carbonated water pressure-resistant capacity 11.
(6) When the supply of the carbon dioxide gas is completed, the electric valve 26 is closed.

(7)三方弁34のB弁を閉じてA弁を開き、循環ポンプ18を作動させる。これにより、スプレーノズル38から炭酸水用耐圧容器11内に原料水(炭酸水)が噴射され、炭酸水用耐圧容器11内の原料水(炭酸水)が循環混合される。水量にもよるが3分〜30分程度で炭酸水は最大濃度に達する。
このような循環ポンプとスプレーを使う以外の方法として、例えば撹拌、あるいは螺旋状のプレートに原料水を落下させるなどの方法がある。つまり、炭酸ガスと原料水との接触面積を増大させる方法であれば、任意の方法を用いることができる。
(8)原料水の炭酸化作業が完了した時点で循環ポンプ18を停止する。
(7) The B valve of the three-way valve 34 is closed, the A valve is opened, and the circulation pump 18 is operated. Thereby, the raw water (carbonated water) is injected from the spray nozzle 38 into the pressure-resistant container for carbonated water 11, and the water (carbonated water) in the pressure-resistant container 11 for carbonated water is circulated and mixed. The carbonated water reaches the maximum concentration in about 3 to 30 minutes, depending on the amount of water.
As a method other than using such a circulating pump and a spray, there is a method of, for example, stirring or dropping raw water on a spiral plate. That is, any method can be used as long as the contact area between the carbon dioxide gas and the raw water is increased.
(8) When the carbonation of the raw water is completed, the circulation pump 18 is stopped.

[炭酸水の耐圧製氷容器への注入]
(1)電動弁25を開け、電動ボール弁14を閉じて真空ポンプ15を作動させ、耐圧製氷容器12内を真空にする。
このステップも必須ではないが、真空にすることにより次のステップで炭酸ガスを効率よく供給することが可能となる。
(2)真空引きが完了した時点で電動弁25を閉じ、真空ポンプ15を停止する。
[Injection of carbonated water into pressure-resistant ice maker]
(1) The electric valve 25 is opened, the electric ball valve 14 is closed, the vacuum pump 15 is operated, and the inside of the pressure-resistant ice making container 12 is evacuated.
Although this step is not essential, the vacuum can make it possible to supply carbon dioxide gas efficiently in the next step.
(2) When the evacuation is completed, the electric valve 25 is closed and the vacuum pump 15 is stopped.

(3)電動弁27を開き、炭酸ガスボンベ16から耐圧製氷容器12へ炭酸ガスを送給する。注入圧力は、前述したように、概ね0.15MPa〜1.0MPa程度である。
上記(1)のステップで耐圧製氷容器12内を真空にしない場合は、炭酸ガスを供給することにより空気より比重の大きい炭酸ガスが耐圧製氷容器12の底からたまるので、電動弁24を開いて空気を追い出すことにより、炭酸ガスを耐圧製氷容器12内に満たすことができる。
(4)炭酸ガスの送給が完了した時点で電動弁27を閉じる。
(3) The electric valve 27 is opened, and the carbon dioxide gas is fed from the carbon dioxide gas cylinder 16 to the pressure-resistant ice making container 12. As described above, the injection pressure is generally about 0.15 MPa to 1.0 MPa.
When the inside of the pressure-resistant ice making container 12 is not evacuated in the step (1), the electric valve 24 is opened by supplying the carbon dioxide gas, since the carbon dioxide gas having a higher specific gravity than the air accumulates from the bottom of the pressure-resistant ice making container 12. By expelling the air, carbon dioxide gas can be filled in the pressure-resistant ice making container 12.
(4) When the supply of the carbon dioxide gas is completed, the electric valve 27 is closed.

(5)電動弁22と均圧弁33を開くと共に、三方弁34のA弁を閉じてB弁を開いて循環ポンプ18を作動させ、炭酸水用耐圧容器11から炭酸ガス雰囲気の耐圧製氷容器12へ炭酸水を供給する。その際、炭酸水の凍結膨張による容器破壊を防止するため、炭酸水の体積の少なくとも2割以上の空間を耐圧製氷容器12の上方に設ける。
なお、本実施形態では均圧弁33を開いた後に炭酸水の供給を開始しているが、両者のタイミングを同時としても良い。あるいは、炭酸水の供給の開始後に均圧弁33を開いても良い。
(6)炭酸水用耐圧容器11から耐圧製氷容器12への炭酸水の供給が完了(設定水位まで注水)した時点で循環ポンプ18を停止し、電動弁22と均圧弁33を閉じる。
(5) The electric valve 22 and the equalizing valve 33 are opened, the three-way valve A is closed, the B valve is opened, and the circulating pump 18 is operated. Supply carbonated water to At this time, in order to prevent the destruction of the container due to the freezing and expansion of the carbonated water, a space of at least 20% of the volume of the carbonated water is provided above the pressure-resistant ice making container 12.
In the present embodiment, the supply of the carbonated water is started after the equalizing valve 33 is opened, but the timing of both may be the same. Alternatively, the equalizing valve 33 may be opened after the supply of the carbonated water is started.
(6) When the supply of carbonated water from the pressure-resistant container for carbonated water 11 to the pressure-resistant ice-making container 12 is completed (water is injected to the set water level), the circulating pump 18 is stopped, and the electric valve 22 and the equalizing valve 33 are closed.

[炭酸氷の製造]
(1)電動弁28を開き、不活性ガスボンベ17から耐圧製氷容器12へ不活性ガスを送給して耐圧製氷容器12内の炭酸水を加圧する。注入圧力は、炭酸ガス注入圧力より高く、概ね0.5MPa〜1.5MPa程度である。
このように炭酸水を加圧することにより、原料水から炭酸ガスが抜けにくくなり、炭酸氷の炭酸ガス濃度を保つことができる。
なお、供給するガスは不活性ガスには限らない。例えば、コンプレッサを用いて空気で加圧しても良い。あるいは、炭酸ガスボンベ16を用いて炭酸ガスで加圧しても良い。炭酸ガスボンベ16を用いる場合、圧力が不足するときはコンプレッサを併用しても良い。(2)不活性ガスの送給が完了した時点で電動弁28を閉じる。
[Production of carbonated ice]
(1) The electric valve 28 is opened, and an inert gas is fed from the inert gas cylinder 17 to the pressure-resistant ice making container 12 to pressurize the carbonated water in the pressure-resistant ice making container 12. The injection pressure is higher than the carbon dioxide gas injection pressure, and is approximately 0.5 MPa to 1.5 MPa.
By pressurizing the carbonated water in this way, it becomes difficult for carbon dioxide gas to escape from the raw water, and the carbon dioxide concentration of the carbonated ice can be maintained.
The supplied gas is not limited to the inert gas. For example, you may pressurize with air using a compressor. Alternatively, carbon dioxide gas may be pressurized using a carbon dioxide gas cylinder 16. When the carbon dioxide gas cylinder 16 is used, a compressor may be used together when the pressure is insufficient. (2) When the supply of the inert gas is completed, the electric valve 28 is closed.

(3)電動弁31と電動弁30を開き、循環ポンプ19を作動させ、冷却用ブラインタンク43からの冷却用ブラインにより耐圧製氷容器12(炭酸水)を冷却して炭酸氷の製造(以下、「製氷」と記す。)を開始する。冷却用ブラインの温度は概ね−10℃〜−40℃程度である。
(4)製氷が完了した時点で、電動弁31と電動弁30を閉じ、循環ポンプ19を停止する。
(3) The electric valve 31 and the electric valve 30 are opened, the circulation pump 19 is operated, and the pressure-resistant ice making container 12 (carbonated water) is cooled by the cooling brine from the cooling brine tank 43 to produce carbonated ice (hereinafter, referred to as “carbonated ice”). Starts ice making.) The temperature of the cooling brine is generally about -10C to -40C.
(4) When the ice making is completed, the electric valves 31 and 30 are closed, and the circulation pump 19 is stopped.

(5)電動ボール弁14と電動弁24を開く。これにより、耐圧製氷容器12内の圧力を低減させ、炭酸氷が耐圧製氷容器から炭酸氷排出口から勢いよく排出されて炭酸氷が砕けるのを防止することができる。
(6)電動弁32と電動弁29を開き、循環ポンプ20を作動させ、加温用ブラインタンク44からの加温用ブラインにより耐圧製氷容器12(炭酸氷)を加温して炭酸氷を耐圧製氷容器12の内面から剥離(以下、「脱氷」と記す。)を開始する。加温用ブラインの温度は概ね10℃〜40℃程度である。耐圧製氷容器12の内面から炭酸氷が剥離すると、炭酸氷は自重により炭酸氷排出口を介して電動ボール弁14から外部に排出される。
(7)脱氷が完了した時点で、電動弁32と電動弁29を閉じ、循環ポンプ20を停止する。
(5) The electric ball valve 14 and the electric valve 24 are opened. Thereby, the pressure in the pressure-resistant ice making container 12 can be reduced, and it is possible to prevent the carbonated ice from being vigorously discharged from the pressure-resistant ice making container from the carbonated ice discharge port to break the carbonated ice.
(6) The electric valve 32 and the electric valve 29 are opened, the circulation pump 20 is operated, and the pressure-resistant ice making container 12 (carbonic ice) is heated by the heating brine from the heating brine tank 44 to withstand the carbonated ice. Peeling from the inner surface of the ice making container 12 (hereinafter, referred to as “de-icing”) is started. The temperature of the heating brine is generally about 10C to 40C. When the carbonated ice comes off from the inner surface of the pressure-resistant ice making container 12, the carbonated ice is discharged from the electric ball valve 14 to the outside through the carbonated ice discharge port by its own weight.
(7) When the deicing is completed, the electric valves 32 and 29 are closed, and the circulation pump 20 is stopped.

以上、本発明の一実施形態について説明してきたが、本発明は何ら上記した実施形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施形態や変形例も含むものである。例えば、上記実施形態では、炭酸水用耐圧容器及び耐圧製氷容器は各1個としているが、それぞれ複数個としてもよい。   As described above, one embodiment of the present invention has been described, but the present invention is not limited to the configuration described in the above embodiment, and can be considered within the scope of the matters described in the claims. Other embodiments and modifications are also included. For example, in the above-described embodiment, the number of pressure-resistant containers for carbonated water and the number of pressure-resistant ice-making containers are each one, but a plurality of pressure-resistant containers may be provided.

(その他の実施形態)
本発明の一実施形態では、炭酸水を生成して貯留する炭酸水用耐圧容器11と耐圧製氷容器12を別としたが、これを一つにして耐圧製氷容器で炭酸水を生成して貯留し、そのまま炭酸氷の製造を行うように構成しても良い。
(Other embodiments)
In one embodiment of the present invention, the pressure-resistant container 11 for carbonated water and the pressure-resistant ice making container 12 for generating and storing carbonated water are separated, but these are combined into one to generate and store carbonated water in the pressure-resistant ice making container. Alternatively, the production of carbonated ice may be performed as it is.

本発明の一実施形態では、耐圧製氷容器12を縦置きにしたが、これを横置きにして一側面に炭酸氷排出口を設け、他の側面に電動弁24を設けるようにしても良い。そして、電動弁24で耐圧製氷容器12内の圧力を低減させるように制御することにより、炭酸氷排出口から炭酸氷が押し出されるように排出させることができ、排出時の炭酸氷の割れや欠けを防止することができる。   In one embodiment of the present invention, the pressure-resistant ice-making container 12 is placed vertically, but the pressure-resistant ice making container 12 may be placed horizontally to provide a carbonated ice discharge port on one side and an electric valve 24 on another side. Then, by controlling the pressure in the pressure-resistant ice making container 12 with the electric valve 24 to reduce the pressure, the carbonated ice can be discharged so as to be pushed out from the carbonated ice discharge port, and cracking or chipping of the carbonated ice at the time of discharging is performed. Can be prevented.

本発明の一実施形態で説明した原料水は、原料水として通常の水を用いる場合はもちろん、各種の水溶液も当然原料水に含まれる。例えば、ジュース、コーヒー、紅茶、牛乳などのあらゆる飲料、美容液などの基礎化粧品、体表に塗布する医薬品、自然に湧出するあるいは人工的に成分調整をした鉱泉、なども含まれ、これらに限らない。   The raw water described in the embodiment of the present invention includes not only a case where ordinary water is used as the raw water but also various aqueous solutions. Examples include, but are not limited to, all beverages such as juice, coffee, tea, and milk, basic cosmetics such as serums, pharmaceuticals to be applied to the body surface, and mineral springs that spring naturally or whose ingredients have been artificially adjusted. Absent.

また、溶媒としては、これら水を含め原料水の他、水以外の液体も含まれる。   In addition, the solvent includes liquids other than water in addition to raw water including these waters.

本発明の一実施形態では、溶媒に溶解する溶質である気体として二酸化炭素を挙げたが、溶媒に溶ける気体であればその種類は問わない。また、溶媒に対する溶解度の高低は問わない。二酸化炭素以外の気体として、例えばオゾン、窒素、酸素、ヘリウム、アルゴン、アンモニアなどが挙げられる。   In one embodiment of the present invention, carbon dioxide is mentioned as a gas that is a solute that dissolves in a solvent, but any kind of gas can be used as long as it is a gas that dissolves in a solvent. Also, the degree of solubility in the solvent does not matter. Gases other than carbon dioxide include, for example, ozone, nitrogen, oxygen, helium, argon, ammonia and the like.

本発明の一実施形態で製造した炭酸氷(あるいはその他の気体を封じ込めた氷)の用途としては、主として食用や飲用が挙げられるが、これに限られるものではない。例えば、野菜の冷蔵/冷凍輸送時に野菜と共に同包して野菜の鮮度を保つために用いることが考えられる。あるいは気体を安全に輸送するために氷に封じ込めたり、香り成分を保存するために香り成分を閉じ込めたり、等、気体の安全な輸送や保管に用いることが考えられる。さらにこれを応用して、二酸化炭素を大気から隔離する手段とすることにより、二酸化炭素による温暖化対策に用いることができる可能性もある。   Uses of the carbonated ice (or ice containing another gas) manufactured in one embodiment of the present invention mainly include, but are not limited to, food and drinking. For example, it is conceivable that the vegetables are packed together with the vegetables during refrigerated / frozen transportation and used to maintain the freshness of the vegetables. Alternatively, it may be used for safe transport and storage of gas, such as enclosing the gas in ice to transport the gas safely, or confining the scent component to preserve the scent component. Furthermore, by applying this method to a means for isolating carbon dioxide from the atmosphere, it may be possible to use it as a measure against global warming caused by carbon dioxide.

10:炭酸氷製造装置、11:炭酸水用耐圧容器、12:耐圧製氷容器、12a:フランジ、13:周壁、14:電動ボール弁、14a:管体、14b:アクチュエータ、14c:ボール、14d:回動軸、15:真空ポンプ、16:炭酸ガスボンベ(炭酸ガス送給手段)、17:不活性ガスボンベ(不活性ガス送給手段)、18〜20:循環ポンプ、21〜32:電動弁、33:均圧弁、34:三方弁、35〜37:逆止弁、38:スプレーノズル、39:レベル計、40:圧力センサー、43:冷却用ブラインタンク(冷却手段)、44:加温用ブラインタンク(加温手段)、45〜59:配管 10: carbonated ice producing apparatus, 11: pressure-resistant container for carbonated water, 12: pressure-resistant container, 12a: flange, 13: peripheral wall, 14: electric ball valve, 14a: pipe, 14b: actuator, 14c: ball, 14d: Rotating shaft, 15: vacuum pump, 16: carbon dioxide gas cylinder (carbon dioxide gas supply means), 17: inert gas cylinder (inert gas gas supply means), 18-20: circulation pump, 21-32: electric valve, 33 : Equalizing valve, 34: three-way valve, 35 to 37: check valve, 38: spray nozzle, 39: level gauge, 40: pressure sensor, 43: cooling brine tank (cooling means), 44: heating brine tank (Heating means) 45-59: Piping

Claims (7)

気体を溶解した溶液を固化させて気体溶解氷を製造する気体溶解氷製造装置であって、
前記溶液を貯留して固化させる耐圧製氷容器と、
前記耐圧製氷容器内の前記溶液を加圧する加圧手段と、
前記耐圧製氷容器内の前記溶液を冷却する冷却手段、及び前記気体溶解氷を加温する加温手段と、
前記耐圧製氷容器に設けられた排出口と、
を有する気体溶解氷製造装置。
A gas melting ice manufacturing apparatus for manufacturing a gas melting ice by solidifying a solution in which a gas is melted,
A pressure-resistant ice-making container for storing and solidifying the solution,
Pressurizing means for pressurizing the solution in the pressure-resistant ice maker,
Cooling means for cooling the solution in the pressure-resistant ice making container, and heating means for heating the gas melting ice,
An outlet provided in the pressure-resistant ice-making container,
The apparatus for producing gas melting ice having the following.
前記排出口は、前記耐圧製氷容器の下面に設けられている、
請求項1記載の気体溶解氷製造装置。
The outlet is provided on a lower surface of the pressure-resistant ice making container,
The apparatus for producing gas-melted ice according to claim 1.
さらに、前記耐圧製氷容器の内部の圧力を低減させる開放弁を有する、
請求項1または2記載の気体溶解氷製造装置。
Furthermore, it has an opening valve for reducing the pressure inside the pressure-resistant ice making container,
The apparatus for producing gas-melted ice according to claim 1 or 2.
前記開放弁は、前記耐圧製氷容器の前記排出口が設けられている面以外の面に接続されている、
請求項3記載の気体溶解氷製造装置。
The release valve is connected to a surface other than the surface where the discharge port of the pressure-resistant ice making container is provided,
The apparatus for producing gas-melted ice according to claim 3.
前記気体は二酸化炭素であり、
前記溶液は炭酸水であり、
前記気体溶解氷は炭酸氷である、
請求項1ないし4のいずれか1記載の気体溶解氷製造装置。
The gas is carbon dioxide;
The solution is carbonated water,
The gas melting ice is carbonated ice;
The gas melting ice manufacturing apparatus according to any one of claims 1 to 4.
耐圧製氷容器内に気体を溶解した溶液を貯留し、
前記溶液を加圧し、
前記溶液を冷却し、
前記溶液を冷却することにより前記溶液が固化した気体溶解氷を加温し、
前記耐圧製氷容器の排出口から前記気体溶解氷を排出する、
気体溶解氷製造方法。
The solution in which the gas is dissolved is stored in the pressure-resistant ice-making container,
Pressurizing the solution,
Cooling the solution,
Heating the gas-melted ice in which the solution has solidified by cooling the solution,
Discharging the gas-melted ice from an outlet of the pressure-resistant ice making container,
Gas melting ice production method.
さらに、前記溶液を冷却した後に、前記耐圧製氷容器の内部の圧力を低減させる、
請求項6記載の気体溶解氷製造方法。
Further, after cooling the solution, reduce the pressure inside the pressure-resistant ice making container,
The method for producing gas-melted ice according to claim 6.
JP2018145847A 2018-08-02 2018-08-02 Gas dissolved ice production device and production method Pending JP2020020537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018145847A JP2020020537A (en) 2018-08-02 2018-08-02 Gas dissolved ice production device and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018145847A JP2020020537A (en) 2018-08-02 2018-08-02 Gas dissolved ice production device and production method

Publications (1)

Publication Number Publication Date
JP2020020537A true JP2020020537A (en) 2020-02-06

Family

ID=69588469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018145847A Pending JP2020020537A (en) 2018-08-02 2018-08-02 Gas dissolved ice production device and production method

Country Status (1)

Country Link
JP (1) JP2020020537A (en)

Similar Documents

Publication Publication Date Title
US10973240B1 (en) System for providing a single serving of a frozen confection
WO2019049644A1 (en) Dissolved gas-containing ice production device and production method
US10334868B2 (en) System for providing a single serving of a frozen confection
US11781808B2 (en) Brewing and cooling a beverage
KR20200103028A (en) A system for serving 1 frozen dessert
JP2011101610A (en) Method for cooling and freezing food and apparatus for cooling and freezing food
EP3383197B1 (en) Process for the manufacture of a frozen product
WO1998056480A1 (en) Freeze-concentrating apparatus for aqueous solutions, ice pillar producing apparatus, and freeze-concentrating method for aqueous solutions
JP2020020537A (en) Gas dissolved ice production device and production method
US5524451A (en) Method and apparatus for freezing food products
JP2020020538A (en) Gas dissolved ice production device and production method
US20160216019A1 (en) Preparation system for the preparation of white ice
TWI657224B (en) System and method for producing block ice treated with nitrogen substitution
AU2021106487A4 (en) Continuous ice production
US20110197622A1 (en) Device and method for dosing cooling medium for the purpose of cooling drinks
WO2020059241A1 (en) Device for producing gas-containing ice, and method for producing gas-containing ice
RU2721577C1 (en) Method of granulating and freezing microbial biomass and device for implementation thereof
FR3048163B1 (en) METHOD AND SYSTEM FOR DEGASSING AND RE-INJECTING FOOD FLUIDS
US1933258A (en) Refrigerating apparatus and method
US20230373708A1 (en) Frozen protein shakes
JP2021105488A (en) Method and device for manufacturing gas-containing ice
JPH11339121A (en) Automatic beverage vending machine
JPS58216518A (en) Manufacture of canned provision

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210519