JP7445282B2 - Granular gas melt ice production equipment - Google Patents

Granular gas melt ice production equipment Download PDF

Info

Publication number
JP7445282B2
JP7445282B2 JP2019212547A JP2019212547A JP7445282B2 JP 7445282 B2 JP7445282 B2 JP 7445282B2 JP 2019212547 A JP2019212547 A JP 2019212547A JP 2019212547 A JP2019212547 A JP 2019212547A JP 7445282 B2 JP7445282 B2 JP 7445282B2
Authority
JP
Japan
Prior art keywords
gas
granular
ice
pressure
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019212547A
Other languages
Japanese (ja)
Other versions
JP2021085550A (en
JP2021085550A5 (en
Inventor
知昭 秋山
怜那 秋山
博 胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iceman Co Ltd
Original Assignee
Iceman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iceman Co Ltd filed Critical Iceman Co Ltd
Priority to JP2019212547A priority Critical patent/JP7445282B2/en
Publication of JP2021085550A publication Critical patent/JP2021085550A/en
Publication of JP2021085550A5 publication Critical patent/JP2021085550A5/ja
Application granted granted Critical
Publication of JP7445282B2 publication Critical patent/JP7445282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

本発明は、炭酸ガス等の気体が溶解した溶液を粒状に氷結させた粒状気体溶解氷を製造する装置に関する。 The present invention relates to an apparatus for producing granular gaseous melted ice, which is obtained by freezing a solution in which a gas such as carbon dioxide gas is dissolved into granules.

特許文献1には、炭酸ガス入りの製氷原水が注水される耐圧製氷容器と、加圧媒体が供給されることで膨脹し、耐圧製氷容器内に注水されている製氷原水面に接触するよう、耐圧製氷容器内に配装されている中空弾性加圧嚢と、耐圧製氷容器をその外部から冷却するブライン包覆部、同じく中心側から冷却する中央ブライン供給部からなる冷却手段とを備えたことを特徴とする炭酸入り氷の製造装置の発明が開示されている。
また、特許文献2には、製氷原水を耐圧容器に所定の位置まで注水し、前記製氷原水にアルコール類と炭酸ガスを溶解させて不溶性ガスにて加圧し、耐圧容器を冷却して前記製氷原水を凍結させることを特徴とする炭酸入り氷の製造方法の発明が開示されている。
Patent Document 1 describes a pressure-resistant ice-making container into which ice-making raw water containing carbon dioxide gas is poured, and a pressure-resistant ice-making container that expands by being supplied with a pressurized medium and contacts the surface of the ice-making raw water poured into the pressure-resistant ice-making container. A cooling means comprising a hollow elastic pressurized bag disposed inside the pressure-resistant ice-making container, a brine wrapping section that cools the pressure-resistant ice-making container from the outside, and a central brine supply section that also cools the pressure-resistant ice-making container from the center side. Disclosed is an invention of a carbonated ice production apparatus characterized by the following.
Further, Patent Document 2 discloses that raw water for ice making is poured into a pressure container up to a predetermined position, alcohol and carbon dioxide are dissolved in the raw water for ice making, pressurized with an insoluble gas, the pressure container is cooled, and the raw water for ice making is Disclosed is an invention of a method for producing carbonated ice characterized by freezing carbonated ice.

しかし、特許文献1及び2の発明は、耐圧容器の上蓋を外して耐圧容器内に製氷原水を注水し、製氷後に再び耐圧容器の上蓋を外して耐圧容器内の炭酸氷を取り出さなければならないため、炭酸氷を大量に自動生産することができない。 However, the inventions of Patent Documents 1 and 2 require removing the top lid of the pressure container, pouring raw ice water into the pressure container, and then removing the top lid of the pressure container again after ice making to take out the carbonated ice inside the pressure container. , it is not possible to automatically produce large quantities of carbonated ice.

そこで、本発明者らは、炭酸水を貯留する炭酸水用耐圧容器から耐圧製氷容器に炭酸水を供給して耐圧製氷容器内の炭酸水を不活性ガスで加圧し、耐圧製氷容器を冷却して炭酸水を氷結させた後、耐圧製氷容器を加温して耐圧製氷容器の内面から炭酸氷を剥離させ、電動ボール弁を開いて炭酸氷排出口から炭酸氷を排出する炭酸氷製造装置を開発した(特許文献3参照)。 Therefore, the present inventors supplied carbonated water from a pressure-resistant container for carbonated water that stores carbonated water to a pressure-resistant ice-making container, pressurized the carbonated water in the pressure-resistant ice-making container with an inert gas, and cooled the pressure-resistant ice-making container. After freezing carbonated water, the pressure-resistant ice-making container is heated to separate the carbonated ice from the inner surface of the pressure-resistant ice-making container, and the carbonated ice is discharged from the carbonated ice outlet by opening an electric ball valve. (See Patent Document 3).

特開平7-120123号公報Japanese Patent Application Publication No. 7-120123 特開2014-219194号公報Japanese Patent Application Publication No. 2014-219194 特開2019-45101号公報Japanese Patent Application Publication No. 2019-45101

炭酸氷は、飲み物に入れたり、冷菓として利用されるため粒状であることが好ましい。しかし、従来の炭酸氷製造装置では、炭酸氷が大きな塊として製造される。そのため、製造された炭酸氷を粒状に破砕する装置が別途必要となる。このことが、炭酸氷製造装置の普及を妨げる一因となっている。 Carbonated ice is preferably granular because it is used in drinks or as frozen desserts. However, in conventional carbonated ice production equipment, carbonated ice is produced in large chunks. Therefore, a separate device is required to crush the produced carbonated ice into particles. This is one of the reasons that prevents the spread of carbonated ice production equipment.

本発明はかかる事情に鑑みてなされたもので、製造された気体溶解氷を粒状に破砕することなく、粒状気体溶解氷を大量に製造することが可能な装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an apparatus capable of producing a large amount of granular gaseous melted ice without crushing the produced gaseous melted ice into particles.

上記目的を達成するため、本発明は、気体が溶解した溶液を粒状に氷結させた粒状気体溶解氷を製造する装置であって、
前記気体が圧入される耐圧容器と、
前記気体を冷却する冷却手段と、
複数の凹部が表面に形成され、前記耐圧容器内を移動するコンベアベルトと、
前記気体が溶解する溶媒を前記凹部に注入する溶媒供給手段と、
前記凹部内に形成された粒状気体溶解氷を前記耐圧容器から排出する排出口に接続され、前記耐圧容器内の圧力を保持する氷排出弁とを備えることを特徴としている。
In order to achieve the above object, the present invention provides an apparatus for producing granular gas melted ice in which a solution in which a gas is dissolved is frozen into granules,
a pressure-resistant container into which the gas is pressurized;
a cooling means for cooling the gas;
a conveyor belt having a plurality of recesses formed on its surface and moving within the pressure container;
a solvent supply means for injecting a solvent in which the gas is dissolved into the recess;
It is characterized by comprising an ice discharge valve that is connected to an outlet for discharging the granular gaseous melted ice formed in the recessed portion from the pressure vessel and maintains the pressure within the pressure vessel.

コンベアベルトに形成された凹部に適量の溶媒を注入すると、凹部内の溶媒は、表面張力により水玉のように盛り上がった形状を呈する。耐圧容器内に圧入された気体は凹部内の溶媒中に微細気泡として溶け込む。気体が溶解した凹部内の溶液は耐圧容器内の気体によって冷却されて氷結し、粒状の気体溶解氷となる。 When an appropriate amount of solvent is injected into the recesses formed in the conveyor belt, the solvent within the recesses takes on a raised shape like a polka dot due to surface tension. The gas pressurized into the pressure container dissolves into the solvent in the recess as fine bubbles. The solution in the recess in which the gas has been dissolved is cooled by the gas in the pressure-resistant container and freezes, forming particulate gas-melted ice.

また、本発明に係る粒状気体溶解氷製造装置では、前記コンベアベルトが撥水性を有することを好適とする。これにより、凹部内で氷結した粒状気体溶解氷は凹部に付着することなく凹部から容易に離脱する。 Further, in the granular gas melt ice manufacturing apparatus according to the present invention, it is preferable that the conveyor belt has water repellency. As a result, the granular gaseous melted ice that has frozen within the recess easily leaves the recess without adhering to the recess.

本発明に係る粒状気体溶解氷製造装置では、コンベアベルトに形成された凹部に溶媒を注入し、該溶媒に気体を溶け込ませて冷却することにより粒状の気体溶解氷を製造する。これにより、製造された気体溶解氷を破砕することなく、粒状気体溶解氷を大量に製造することができる。 In the granular gaseous melted ice production apparatus according to the present invention, a solvent is injected into the recesses formed in the conveyor belt, and the gas is dissolved in the solvent and cooled to produce granular gaseous melted ice. Thereby, a large amount of granular gaseous melted ice can be produced without crushing the produced gaseous melted ice.

本発明の一実施の形態に係る粒状気体溶解氷製造装置の平断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional plan view of a granular gas melted ice manufacturing apparatus according to an embodiment of the present invention. 同粒状気体溶解氷製造装置の側断面図である。It is a sectional side view of the same granular gas melt ice production apparatus. 同粒状気体溶解氷製造装置の斜視断面図である。It is a perspective sectional view of the same granular gas melt ice production device. 粒状気体溶解氷製造装置を構成するベルトコンベアの終端部のイメージ図である。FIG. 2 is an image diagram of the terminal end of a belt conveyor constituting the granular gas melted ice manufacturing device.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。
なお、以下の実施の形態では、溶解する気体として二酸化炭素、気体を溶解する溶媒として原料水(水)を選択して粒状炭酸氷(本発明における「粒状気体溶解氷」に相当)を製造する場合について説明する。
Next, embodiments embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention.
In the following embodiments, carbon dioxide is selected as the gas to be dissolved, and raw water (water) is selected as the solvent for dissolving the gas to produce granular carbonated ice (corresponding to "granular gas melted ice" in the present invention). Let me explain the case.

本発明の一実施の形態に係る粒状気体溶解氷製造装置10を図1~図3に示す。
本実施の形態に係る粒状気体溶解氷製造装置10は、二酸化炭素が圧入される耐圧容器11と、耐圧容器11内に設置されたベルトコンベア12と、二酸化炭素が溶解する原料水を供給する溶媒供給手段23と、耐圧容器11内に圧入される二酸化炭素を冷却する冷却手段と、製造された粒状炭酸氷を耐圧容器11から排出する排出口19とを備えている。
A granular gas melt ice manufacturing apparatus 10 according to an embodiment of the present invention is shown in FIGS. 1 to 3.
The granular gas melt ice production apparatus 10 according to the present embodiment includes a pressure container 11 into which carbon dioxide is pressurized, a belt conveyor 12 installed in the pressure container 11, and a solvent that supplies raw water in which carbon dioxide is dissolved. It includes a supply means 23, a cooling means for cooling the carbon dioxide pressurized into the pressure vessel 11, and an outlet 19 for discharging the produced granular carbonated ice from the pressure vessel 11.

耐圧容器11は、水平に配置された円筒状容器から構成されている。円筒状容器の両端部は、それぞれお碗型のフランジで開閉可能に封止されている。 The pressure container 11 is composed of a horizontally arranged cylindrical container. Both ends of the cylindrical container are openably and closably sealed with bowl-shaped flanges.

ベルトコンベア12は耐圧容器11の中心軸方向に配置され、無端状のコンベアベルト13が2本のローラ15、16間に巻き掛けられている。上側に位置するコンベアベルト13が往路ベルト13a、下側に位置するコンベアベルト13が復路ベルト13bとなる。
往路ベルト13aの始端部側に従動ローラ15、終端部側に駆動ローラ16が配置されている。駆動ローラ16の一方の端部には、駆動ローラ16を回転させるモータ17が設置されている。これによりコンベアベルト13は耐圧容器11内を移動する。
The belt conveyor 12 is arranged in the direction of the central axis of the pressure container 11, and an endless conveyor belt 13 is wound between two rollers 15 and 16. The conveyor belt 13 located on the upper side is the forward belt 13a, and the conveyor belt 13 located on the lower side is the return belt 13b.
A driven roller 15 is arranged on the starting end side of the outgoing belt 13a, and a driving roller 16 is arranged on the trailing end side. A motor 17 for rotating the drive roller 16 is installed at one end of the drive roller 16 . As a result, the conveyor belt 13 moves within the pressure container 11.

コンベアベルト13の表面には複数の凹部14が形成されている。凹部14は半球状とされ、コンベアベルト13の幅方向と移動方向についてそれぞれ所定の間隔をあけてマトリックス状に配置されている。凹部14は、往路ベルト13aでは上方に向けて開口し、復路ベルト13bでは下方に向けて開口している。
コンベアベルト13は撥水性を備えていることが好ましく、撥水性素材として熱可塑性シリコーンゴムなどを使用することができる。
A plurality of recesses 14 are formed on the surface of the conveyor belt 13. The recesses 14 are hemispherical and are arranged in a matrix at predetermined intervals in the width direction and movement direction of the conveyor belt 13, respectively. The concave portion 14 opens upward in the forward belt 13a, and opens downward in the backward belt 13b.
The conveyor belt 13 is preferably water-repellent, and thermoplastic silicone rubber or the like can be used as the water-repellent material.

往路ベルト13aの始端部の上方には、各凹部14に原料水を適量注入する溶媒供給手段23が設置されている。本実施の形態では、溶媒供給手段23として定量バッチ式の溶媒注入管を複数使用する。溶媒注入管の吐出口は、コンベアベルト13の幅方向に配置された各凹部14の直上に位置するように配置されている。溶媒注入管の周囲は断熱材24で被覆されている。 A solvent supply means 23 for injecting an appropriate amount of raw water into each recess 14 is installed above the starting end of the outgoing belt 13a. In this embodiment, a plurality of quantitative batch type solvent injection pipes are used as the solvent supply means 23. The discharge port of the solvent injection tube is arranged to be located directly above each recess 14 arranged in the width direction of the conveyor belt 13. The solvent injection tube is surrounded by a heat insulating material 24.

冷却手段は、耐圧容器11内の二酸化炭素を冷却するガス冷却機27と、耐圧容器11内の二酸化炭素をガス冷却機27に送給する往き配管28と、ガス冷却機27で冷却された二酸化炭素を耐圧容器11に送給する戻り配管29とから概略構成されている。
往き配管28の一端部と戻り配管29の一端部はそれぞれガス冷却機27に接続されている。往き配管28の他端部は、耐圧容器11の端部を封止する、往路ベルト13aの終端部側フランジの下部に接続され、戻り配管29の他端部は終端部側フランジの上部に接続されている。
The cooling means includes a gas cooler 27 that cools the carbon dioxide in the pressure vessel 11, an outgoing pipe 28 that supplies the carbon dioxide in the pressure vessel 11 to the gas cooler 27, and a carbon dioxide cooled by the gas cooler 27. It is generally composed of a return pipe 29 that supplies carbon to the pressure vessel 11.
One end of the outgoing pipe 28 and one end of the return pipe 29 are each connected to a gas cooler 27. The other end of the outgoing pipe 28 is connected to the lower part of the flange on the terminal end side of the outgoing belt 13a that seals the end of the pressure vessel 11, and the other end of the return pipe 29 is connected to the upper part of the flange on the terminal end side. has been done.

往き配管28の他端部と戻り配管29の他端部の間には、終端部側フランジに基端部が接合され耐圧容器11内に向けて水平方向に突出する整流板25が設置されている。また、戻り配管29の他端部の近傍には、二酸化炭素を耐圧容器11に供給するガス供給管26が接続されている。 Between the other end of the outgoing pipe 28 and the other end of the return pipe 29, a rectifying plate 25 whose base end is joined to the flange on the terminal end side and projects horizontally into the pressure vessel 11 is installed. There is. Further, a gas supply pipe 26 for supplying carbon dioxide to the pressure vessel 11 is connected near the other end of the return pipe 29 .

凹部14内で氷結した粒状炭酸氷は、往路ベルト13aの終端部に配置されたホッパー18を介して、耐圧容器11に形成された排出口19から、氷排出弁21、22を備える排出管20へ排出される。氷排出弁21、22は耐圧容器11内の圧力を保持する。 The granular carbonated ice that has frozen in the recess 14 is passed through a hopper 18 placed at the end of the outbound belt 13a, and then from a discharge port 19 formed in the pressure vessel 11 to a discharge pipe 20 equipped with ice discharge valves 21 and 22. is discharged to. The ice discharge valves 21 and 22 maintain the pressure within the pressure vessel 11.

次に、粒状気体溶解氷製造装置10を用いた粒状炭酸氷の製造方法について説明する。
(1)炭酸ガスボンベ(図示省略)内の二酸化炭素をガス供給管26を介して耐圧容器11内に圧入する。耐圧容器11内における二酸化炭素の圧力は0.5MPa~1.0MPa程度が好ましい。耐圧容器11内の圧力は、耐圧容器11に取り付けた圧力計(図示省略)に基づいて、設定した圧力が維持されるように自動調節される。
なお、二酸化炭素圧入前に真空ポンプを用いて耐圧容器11内を真空状態にしておくと、所定の炭酸濃度を有する粒状炭酸氷が得やすくなる。
Next, a method for producing granular carbonated ice using the granular gas melted ice producing apparatus 10 will be described.
(1) Carbon dioxide in a carbon dioxide gas cylinder (not shown) is pressurized into the pressure vessel 11 via the gas supply pipe 26. The pressure of carbon dioxide in the pressure container 11 is preferably about 0.5 MPa to 1.0 MPa. The pressure inside the pressure vessel 11 is automatically adjusted based on a pressure gauge (not shown) attached to the pressure vessel 11 so that a set pressure is maintained.
Note that if the inside of the pressure container 11 is brought into a vacuum state using a vacuum pump before carbon dioxide is injected, it becomes easier to obtain granular carbonated ice having a predetermined carbon dioxide concentration.

(2)ガス冷却機27を作動させて耐圧容器11内の二酸化炭素を循環冷却する。冷却温度は低いほど良いが経済的に言えば-20℃~-35℃程度で良い。
(3)ベルトコンベア12を駆動し、溶媒注入管から往路ベルト13aの各凹部14に原料水を注入する。原料水の温度は0℃に近い低温であることが好ましい。
(2) The gas cooler 27 is operated to circulate and cool the carbon dioxide in the pressure vessel 11. The lower the cooling temperature, the better, but economically speaking, a temperature of -20°C to -35°C is sufficient.
(3) Drive the belt conveyor 12 and inject raw water into each recess 14 of the outgoing belt 13a from the solvent injection pipe. The temperature of the raw water is preferably a low temperature close to 0°C.

(4)凹部14が往路ベルト13aの始端部から終端部まで移動する間に、耐圧容器11内の二酸化炭素が凹部14内の原料水中に微細気泡として溶け込む。二酸化炭素が溶解した凹部14内の炭酸水は耐圧容器11内の二酸化炭素によって冷却されて氷結し、粒状の炭酸氷となる。凹部14が往路ベルト13aの始端部から終端部まで移動する時間は20分程度とする。
(5)凹部14が往路ベルト13aの終端部まで来ると、駆動ローラ16によって凹部14が押し上げられ、凹部14内の粒状炭酸氷30は凹部14から押し出されてホッパー18内に落下する(図4参照)。
(4) While the recess 14 moves from the start end to the end of the outgoing belt 13a, carbon dioxide in the pressure container 11 dissolves into the raw material water in the recess 14 as fine bubbles. The carbonated water in the recess 14 in which carbon dioxide has been dissolved is cooled and frozen by the carbon dioxide in the pressure container 11, and becomes granular carbonated ice. The time required for the recess 14 to move from the starting end to the ending end of the outgoing belt 13a is approximately 20 minutes.
(5) When the recess 14 reaches the end of the outgoing belt 13a, the recess 14 is pushed up by the drive roller 16, and the granular carbonated ice 30 in the recess 14 is pushed out of the recess 14 and falls into the hopper 18 (Fig. reference).

(6)排出管20に設置されている下側の氷排出弁22を閉じ、上側の氷排出弁21を開けることによりホッパー18内の粒状炭酸氷30は排出管20内に蓄積される。次いで、上側の氷排出弁21を閉じ、下側の氷排出弁22を開くことにより、排出管20内の粒状炭酸氷30が粒状気体溶解氷製造装置10外に排出される。なお、氷排出弁21、22に代えてロータリーバルブを使用すれば、氷排出弁21、22の交互開閉は不要である。 (6) Granular carbonated ice 30 in the hopper 18 is accumulated in the discharge pipe 20 by closing the lower ice discharge valve 22 installed in the discharge pipe 20 and opening the upper ice discharge valve 21. Next, by closing the upper ice discharge valve 21 and opening the lower ice discharge valve 22, the granular carbonated ice 30 in the discharge pipe 20 is discharged to the outside of the granular gaseous melted ice production apparatus 10. Note that if rotary valves are used in place of the ice discharge valves 21 and 22, alternate opening and closing of the ice discharge valves 21 and 22 is not necessary.

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、溶媒に溶解する溶質である気体として二酸化炭素を挙げたが、溶媒に溶ける気体であればその種類は問わない。溶媒に対する溶解度の高低は問わない。二酸化炭素以外の気体として、例えばオゾン、窒素、酸素、ヘリウム、アルゴン、アンモニアなどが挙げられる。また、上記実施の形態では、凹部の形状を半球状としているが、これに限定されるものではなく、サイコロ形や星形などでもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and within the scope of the claims. It also includes other possible embodiments and modifications. For example, in the above embodiment, carbon dioxide is used as a gas that is a solute that dissolves in a solvent, but any type of gas can be used as long as it can be dissolved in a solvent. It does not matter whether the solubility in the solvent is high or low. Examples of gases other than carbon dioxide include ozone, nitrogen, oxygen, helium, argon, and ammonia. Further, in the above embodiment, the shape of the recess is hemispherical, but the shape is not limited to this, and may be a dice shape, a star shape, or the like.

なお、気体と溶媒の組合せが二酸化炭素と原料水でない場合は、粒状気体溶解氷の製造試験を行い、気体の圧力や温度、溶媒の温度、往路ベルトの移動速度などについて調整する必要がある。 In addition, if the combination of gas and solvent is not carbon dioxide and raw water, it is necessary to conduct a production test of granular gaseous melted ice and adjust the pressure and temperature of the gas, the temperature of the solvent, the traveling speed of the forward belt, etc.

10:粒状気体溶解氷製造装置、11:耐圧容器、12:ベルトコンベア、13:コンベアベルト、13a:往路ベルト、13b:復路ベルト、14:凹部、15:従動ローラ(ローラ)、16:駆動ローラ(ローラ)、17:モータ、18:ホッパー、19:排出口、20:排出管、21、22:氷排出弁、23:溶媒供給手段、24:断熱材、25:整流板、26:ガス供給管、27:ガス冷却機(冷却手段)、28:往き配管(冷却手段)、29:戻り配管(冷却手段)、30:粒状炭酸氷 10: Granular gas melt ice production device, 11: Pressure resistant container, 12: Belt conveyor, 13: Conveyor belt, 13a: Outbound belt, 13b: Return belt, 14: Recess, 15: Followed roller (roller), 16: Drive roller (roller), 17: motor, 18: hopper, 19: discharge port, 20: discharge pipe, 21, 22: ice discharge valve, 23: solvent supply means, 24: heat insulator, 25: rectifier plate, 26: gas supply Pipe, 27: Gas cooler (cooling means), 28: Outgoing pipe (cooling means), 29: Return pipe (cooling means), 30: Granular carbonated ice

Claims (8)

気体が溶解した気体溶解溶液を粒状に氷結させた粒状気体溶解氷を製造する装置であって、
前記気体が圧入される耐圧容器と、
前記気体を冷却し、冷却された気体を前記耐圧容器へ送給する冷却手段と、
複数の凹部が表面に形成され、前記気体が溶解した前記凹部内の気体溶解溶液を前記耐圧容器内で移動させるコンベアベルトと、
前記凹部内に形成された粒状気体溶解氷を前記耐圧容器から排出する排出口に接続され、前記耐圧容器内の圧力を保持する氷排出弁とを備えることを特徴とする粒状気体溶解氷製造装置。
An apparatus for producing granular gas melted ice by freezing a gas solution in which gas is dissolved into particles,
a pressure-resistant container into which the gas is pressurized;
a cooling means for cooling the gas and feeding the cooled gas to the pressure-resistant container ;
a conveyor belt having a plurality of recesses formed on its surface and moving a gas- dissolved solution in the recesses in which the gas is dissolved within the pressure-resistant container;
A granular gas melted ice producing device, comprising: an ice discharge valve connected to an outlet for discharging the granular gas melted ice formed in the recess from the pressure container, and maintaining the pressure in the pressure container. .
請求項1記載の粒状気体溶解氷製造装置において、前記コンベアベルトが撥水性を有することを特徴とする粒状気体溶解氷製造装置。 2. The granular gas melt ice production apparatus according to claim 1, wherein the conveyor belt has water repellency. 請求項1記載の粒状気体溶解氷製造装置において、さらに、前記気体が溶解する溶媒を前記凹部に注入する溶媒供給手段を備える粒状気体溶解氷製造装置。 2. The granular gas melted ice production apparatus according to claim 1, further comprising a solvent supply means for injecting a solvent in which the gas is dissolved into the recesses. 請求項1または3記載の粒状気体溶解氷製造装置を用いて前記粒状気体溶解氷を製造する粒状気体溶解氷の製造方法であって、
前記気体が溶解する溶媒を前記凹部に注入し、
前記気体が溶解した前記凹部内の気体溶解溶液を前記コンベアベルトで移動させ、
前記凹部内に形成された粒状気体溶解氷を前記排出口から排出する、
粒状気体溶解氷の製造方法。
A method for producing granular gaseous melted ice, comprising producing the granular gaseous melted ice using the granular gaseous melted ice production apparatus according to claim 1 or 3,
Injecting a solvent in which the gas is dissolved into the recess,
moving the gas-dissolved solution in the recess in which the gas is dissolved by the conveyor belt ;
discharging the granular gaseous melted ice formed in the recess from the outlet;
A method for producing granular gaseous melted ice.
前記コンベアベルトは、前記耐圧容器内に配置された無端状のコンベアベルトであり、前記無端状のコンベアベルトは、上側に位置する往路ベルトと、下側に位置する復路ベルトを備える、
請求項1に記載の粒状気体溶解氷製造装置
The conveyor belt is an endless conveyor belt disposed within the pressure container, and the endless conveyor belt includes an outbound belt located on the upper side and a return belt located on the lower side.
The granular gas melt ice manufacturing device according to claim 1 .
前記冷却手段は、前記気体を冷却する冷却機と、前記冷却機に一端部が接続され前記耐圧容器内の前記気体を前記冷却機に送給する往き配管と、前記冷却機に一端部が接続され前記冷却機で冷却された気体を前記耐圧容器に送給する戻り配管と、を備え、
当該粒状気体溶解氷製造装置は、さらに、
前記往き配管の他端部と前記戻り配管の他端部の間に配置され、前記耐圧容器内に向けて水平方向に突出する整流板と、
を備える、
請求項1に記載の粒状気体溶解氷製造装置
The cooling means includes a cooler that cools the gas, an outgoing pipe that has one end connected to the cooler and feeds the gas in the pressure container to the cooler, and one end that is connected to the cooler. and a return pipe for feeding the gas cooled by the cooler to the pressure-resistant container,
The granular gas melt ice manufacturing device further includes:
a rectifying plate disposed between the other end of the outgoing pipe and the other end of the return pipe, and protruding horizontally into the pressure vessel;
Equipped with
The granular gas melt ice manufacturing device according to claim 1 .
前記整流板の下側に前記排出口が配置される、
請求項6に記載の粒状気体溶解氷製造装置
the discharge port is arranged below the current plate;
The granular gas melt ice manufacturing device according to claim 6 .
前記気体は、二酸化炭素である、
請求項1に記載の粒状気体溶解氷製造装置
the gas is carbon dioxide;
The granular gas melt ice manufacturing device according to claim 1 .
JP2019212547A 2019-11-25 2019-11-25 Granular gas melt ice production equipment Active JP7445282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212547A JP7445282B2 (en) 2019-11-25 2019-11-25 Granular gas melt ice production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212547A JP7445282B2 (en) 2019-11-25 2019-11-25 Granular gas melt ice production equipment

Publications (3)

Publication Number Publication Date
JP2021085550A JP2021085550A (en) 2021-06-03
JP2021085550A5 JP2021085550A5 (en) 2022-11-14
JP7445282B2 true JP7445282B2 (en) 2024-03-07

Family

ID=76087283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212547A Active JP7445282B2 (en) 2019-11-25 2019-11-25 Granular gas melt ice production equipment

Country Status (1)

Country Link
JP (1) JP7445282B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021106487A4 (en) * 2020-10-02 2021-11-04 A.C.N. 639 439 544 Pty Limited Continuous ice production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053503A (en) 2015-09-07 2017-03-16 江崎グリコ株式会社 Ice grain manufacturing method and mounting board for ice grain manufacturing
JP2019007658A (en) 2017-06-22 2019-01-17 株式会社Kiyoraきくち Ice making device
WO2019049644A1 (en) 2017-09-05 2019-03-14 アイスマン株式会社 Dissolved gas-containing ice production device and production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053503A (en) 2015-09-07 2017-03-16 江崎グリコ株式会社 Ice grain manufacturing method and mounting board for ice grain manufacturing
JP2019007658A (en) 2017-06-22 2019-01-17 株式会社Kiyoraきくち Ice making device
WO2019049644A1 (en) 2017-09-05 2019-03-14 アイスマン株式会社 Dissolved gas-containing ice production device and production method

Also Published As

Publication number Publication date
JP2021085550A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7445282B2 (en) Granular gas melt ice production equipment
EP1375630A1 (en) Gas hydrate production device and gas hydrate dehydrating device
NL8005495A (en) METHOD AND APPARATUS FOR INCREASING THE GAS CONTENT OF LIQUIDS
KR20150142288A (en) Apparatus and method for manufacturing slush froth of beer
JP6368413B1 (en) Carbonated ice production apparatus and production method
EP2955466B1 (en) Temperature treatment apparatus and method for solidifying portions of fluid
EP3098545B1 (en) System and method for producing block ice treated with nitrogen substitution
JP2005077040A (en) Method and device for producing ozone-containing ice
US20090208630A1 (en) Spout pouch ice cream and frozen yogurt manufacturing method and device thereof
KR101388900B1 (en) Continuous manufacturing apparatus for hydrate manufacturing and method thereof
WO2020059241A1 (en) Device for producing gas-containing ice, and method for producing gas-containing ice
KR100385897B1 (en) Freeze method and device dip transfer type
JP2744976B2 (en) Method and apparatus for producing carbonated ice
JP2005069548A (en) Ice making machine
JP2020020537A (en) Gas dissolved ice production device and production method
ES2324591T3 (en) DEVICE AND PROCEDURE TO PELETIZE A LIQUID OR PASTRY MASS USING A COOLING CURRENT.
WO2004037966A1 (en) Process and apparatus to cool harvest grapes
US7127900B2 (en) Method and apparatus for producing ice containing ozone
JP7433690B1 (en) Refrigeration equipment
JPS5826942B2 (en) Method for producing pressure-bubbled confectionery granules and pressure-bubbled confectionery liquid coagulation/grinding container used therein
JP2020020538A (en) Gas dissolved ice production device and production method
JP2000304389A (en) Method and plant for making ice from aqueous solution containing impurity as solute
JPH06343398A (en) Production of carbonated ice and carbonated shaped frozen sweet and apparatus for producing the same
JPH056107B2 (en)
JP2021105488A (en) Method and device for manufacturing gas-containing ice

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240216

R150 Certificate of patent or registration of utility model

Ref document number: 7445282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150