WO2019049569A1 - Variable displacement compressor - Google Patents

Variable displacement compressor Download PDF

Info

Publication number
WO2019049569A1
WO2019049569A1 PCT/JP2018/029094 JP2018029094W WO2019049569A1 WO 2019049569 A1 WO2019049569 A1 WO 2019049569A1 JP 2018029094 W JP2018029094 W JP 2018029094W WO 2019049569 A1 WO2019049569 A1 WO 2019049569A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacity
operation mode
displacement
discharge
control
Prior art date
Application number
PCT/JP2018/029094
Other languages
French (fr)
Japanese (ja)
Inventor
広明 岩下
土方 康種
匡志 東山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112018004928.0T priority Critical patent/DE112018004928T5/en
Publication of WO2019049569A1 publication Critical patent/WO2019049569A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/002Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for driven by internal combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3216Control means therefor for improving a change in operation duty of a compressor in a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3261Cooling devices information from a variable is obtained related to temperature of the air at an evaporating unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3275Cooling devices output of a control signal related to a compressing unit to control the volume of a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1872Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1877External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1881Suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present disclosure relates to a variable displacement compressor capable of changing the discharge capacity of a refrigerant.
  • a variable displacement compressor applied to a vehicle air conditioner can change the discharge capacity of the compression mechanism by changing the pressure of the control pressure chamber formed in the housing using the discharge refrigerant.
  • the compression efficiency indicated by the ratio of the theoretical power to the actual power tends to decrease near the minimum displacement.
  • the coefficient of performance that is, the abbreviation COP (coefficient of performance)
  • the discharge capacity is a geometrical volume of the working space for suction and compression of the refrigerant. For example, in a piston type compressor, the cylinder volume between the top dead center and the bottom dead center of the piston stroke is the discharge volume.
  • the discharge displacement of the compressor may change independently of the predetermined displacement control signal value.
  • the air of the evaporator is When the heat load on the side increases or decreases, the displacement changes so as to maintain the suction pressure of the refrigerant.
  • Patent Document 1 when the continuous operation in which the discharge displacement is continuously changed and the intermittent operation in which the discharge displacement is changed intermittently are switched according to the volume control signal value, the continuous operation is performed in a state where the discharge displacement is small. Or, there is a possibility that intermittent operation may be performed in a state where the discharge capacity is large. As described above, in the method of switching between the continuous operation and the intermittent operation according to the capacity control signal value as in Patent Document 1, the compression efficiency can not always be exhibited excellent, and there is room for improvement.
  • An object of the present disclosure is to provide a variable displacement compressor that can improve compression efficiency by avoiding operation with the minimum displacement.
  • the present disclosure is applied to a refrigeration cycle apparatus including an evaporator that cools air blown out to a space to be air-conditioned by the latent heat of evaporation of the refrigerant, and is a variable displacement compression capable of changing the displacement of the refrigerant within the range from the minimum capacity to the maximum capacity. It is intended for aircraft.
  • a variable displacement compressor is A compression mechanism driven by an engine to compress and discharge the refrigerant; A displacement control mechanism that controls the displacement of the refrigerant discharged from the compression mechanism; A clutch that switches a state of connection between the compression mechanism and the engine between a state in which driving force of the engine is transmitted to the compression mechanism and a state in which the driving force of the engine is not transmitted to the compression mechanism; And a controller that controls the displacement control mechanism and the clutch to switch the operation mode.
  • the compression mechanism is provided with a capacity limiting portion which limits the lower limit displacement of the discharge displacement to an intermediate displacement which is larger than the minimum displacement and smaller than the maximum displacement. Then, the control device can switch the operation mode to the variable operation mode and the intermittent operation mode.
  • the variable operation mode the discharge temperature is changed in the range from the lower limit capacity to the maximum capacity by the capacity control mechanism in a state in which the connection state is controlled to the connection state by the clutch. It is an operation mode close to the target evaporator temperature.
  • the intermittent operation mode the discharge temperature is made to approach the target evaporator temperature by switching the connection state between the connection state and the disconnection state intermittently by the clutch while the discharge capacity is controlled to the lower limit capacity by the capacity control mechanism. It is an operation mode.
  • variable displacement compressor of the present disclosure since the lower limit capacity of the discharge capacity of the compression mechanism is limited by the capacity limiting unit to an intermediate capacity larger than the minimum capacity, operation of the compression mechanism with the minimum capacity with low compression efficiency It can be avoided.
  • variable displacement compressor since the variable displacement compressor according to the present disclosure can switch the operation mode to the variable operation mode and the intermittent operation mode, the switching of the operation mode causes the variable range of the discharge capacity to be reduced. It is possible to avoid problems. That is, according to the variable displacement compressor of the present disclosure, it is possible to improve compression efficiency while appropriately exhibiting the cooling capacity of the evaporator.
  • FIG. 1 It is a schematic block diagram of the refrigerating-cycle apparatus to which the variable displacement-type compressor of 1st Embodiment was applied. It is a typical sectional view showing the internal structure of the variable displacement compressor of a 1st embodiment. It is an explanatory view for explaining the relation between discharge capacity and COP. It is a schematic diagram which shows the structure of the capacity
  • capacitance control mechanism of 2nd Embodiment WHEREIN It is a schematic diagram which shows the state which the air supply passage closed and the extraction passage opened. It is a figure which shows the motive power at the time of making the compressor operated only by variable operation mode into a comparative example, the compressor of 1st Embodiment 1st Example, and making the compressor of 2nd Embodiment 2nd Example. It is a figure showing a coefficient of performance at the time of making a compressor operated only by variable operation mode into a comparative example, making a compressor of a 1st embodiment into a 1st example, and making a compressor of a 2nd embodiment into a 2nd example. .
  • a variable displacement compressor 10 of the present disclosure (hereinafter, may be simply referred to as a compressor 10) is applied to a refrigeration cycle apparatus 1 for air conditioning a vehicle interior.
  • the vehicle interior corresponds to the air conditioning target space.
  • the refrigeration cycle apparatus 1 is constituted by a closed circuit in which a compressor 10, a condenser 50, a gas-liquid separator 60, an expansion valve 70, an evaporator 80 and the like are connected in this order by refrigerant piping and the like. It is done.
  • the compressor 10 is an engine driven compressor in which a compression mechanism 12 for compressing a refrigerant is driven by an engine EG for traveling a vehicle.
  • the compressor 10 has a clutch MGC.
  • the clutch MGC constitutes a power transmission device PT that transmits the power of the engine EG to the compression mechanism 12 of the compressor 10 together with the belt mechanism VB.
  • the compression mechanism 12 is rotationally driven by transmitting the driving force from the engine EG via the power transmission device PT.
  • the clutch MGC is in a connected state where the driving force of the engine EG is transmitted to the compression mechanism 12 (ie, in the on state) and in a disconnected state where the driving force of the engine EG is not transmitted to the compression mechanism Switching to the state).
  • the clutch MGC couples the engine EG and the compression mechanism 12 by energization, and releases the coupled state of the engine EG and the compression mechanism 12 when the energization is shut off.
  • the compressor 10 is configured of an external variable displacement compressor capable of changing the discharge displacement of the refrigerant in the range from the minimum displacement to the maximum displacement by a displacement control signal value Ic from a control device 100 described later. The details of the compressor 10 will be described later.
  • a condenser 50 is connected to the refrigerant discharge side of the compressor 10.
  • the condenser 50 is disposed between the engine EG and the front grille (not shown) in the engine room (not shown), and is a radiator for heat exchange between the refrigerant discharged from the compressor 10 and the outside air to dissipate the refrigerant. is there.
  • a gas-liquid separator 60 is connected to the refrigerant outlet side of the condenser 50.
  • the gas-liquid separator 60 is configured to separate the gas-liquid of the refrigerant flowing out of the condenser 50 and to lead out the separated liquid-phase refrigerant.
  • An expansion valve 70 is connected to the liquid-phase refrigerant outlet side of the gas-liquid separator 60.
  • the expansion valve 70 is a decompression device that decompresses and expands the liquid-phase refrigerant separated by the gas-liquid separator 60.
  • the expansion valve 70 is a thermal expansion valve, and includes a temperature sensing unit 72 that detects the temperature of the refrigerant between the refrigerant outlet side of the evaporator 80 and the refrigerant suction side of the compressor 10.
  • the expansion valve 70 is configured to adjust the valve opening based on the temperature and pressure of the refrigerant drawn into the compressor 10 so that the degree of superheat of the refrigerant drawn into the compressor 10 becomes a predetermined value.
  • An evaporator 80 is connected to the refrigerant outlet side of the expansion valve 70.
  • the evaporator 80 is disposed in the air conditioning case 92 of the air conditioning unit 90.
  • the evaporator 80 cools the air flowing in the air conditioning case 92, that is, the air blown into the vehicle compartment, by the latent heat of evaporation of the refrigerant decompressed and expanded by the expansion valve 70.
  • a blower 94 is disposed in the air conditioning case 92. Outside air or inside air introduced from an inside / outside air switching box (not shown) is supplied to the evaporator 80 by the blower 94. The air supplied to the evaporator 80 passes through the evaporator 80 and then blows out into the vehicle compartment through a heater unit (not shown). Further, in the air conditioning case 92, an evaporator temperature sensor 104 is provided which detects the blowout temperature TE of air immediately after passing through the evaporator 80.
  • the compressor 10 is connected to the refrigerant outlet side of the evaporator 80.
  • the refrigerant evaporated by the evaporator 80 is again sucked by the compressor 10.
  • the refrigerant discharged from the compressor 10 is circulated in the order of the condenser 50, the gas-liquid separator 60, the expansion valve 70, the evaporator 80, and the compressor 10. .
  • the compressor 10 includes a compression mechanism 12 that compresses and discharges the refrigerant.
  • the compression mechanism 12 has a cylinder block 142, a front housing 144 fixed to one end of the cylinder block 142, and a rear housing 146 fixed to the other end of the cylinder block 142 via a valve plate 16.
  • the cylinder block 142, the front housing 144, and the rear housing 146 constitute the housing 14 of the compression mechanism 12.
  • a control pressure chamber 18 for changing the displacement of the compressor 10 is defined in a region of the housing 14 surrounded by the cylinder block 142 and the front housing 144.
  • the rotary shaft 20 of the compression mechanism 12 is disposed in the housing 14 so as to penetrate the vicinity of the center of the control pressure chamber 18.
  • the rotating shaft 20 has a tip end on one end side connected to the power transmission device PT.
  • the rotating shaft 20 is rotatably supported by a first radial bearing 144 b disposed in a first shaft hole 144 a formed in the front housing 144 at a circumferential surface on one end side.
  • the rotary shaft 20 is rotatably supported at its other end by a second radial bearing 142 b disposed in a second shaft hole 142 a formed in the cylinder block 142.
  • a shaft seal mechanism for preventing refrigerant leakage from the control pressure chamber 18 is provided between the rotary shaft 20 and the first shaft hole 144a.
  • the rotating shaft 20 is connected to the lug plate 22 in the control pressure chamber 18.
  • the lug plate 22 is a rotating body that rotates integrally with the rotating shaft 20.
  • the lug plate 22 is supported by a thrust bearing 144 c provided on the inner wall surface of the front housing 144.
  • the swash plate 24 is accommodated in the control pressure chamber 18.
  • a through hole 242 is provided at a central portion of the swash plate 24, and the rotation shaft 20 is inserted through the through hole 242.
  • a hinge mechanism 26 is provided between the swash plate 24 and the lug plate 22.
  • the swash plate 24 is connected to the lug plate 22 via the hinge mechanism 26 so that the swash plate 24 rotates in synchronization with the rotation shaft 20 and the lug plate 22.
  • the swash plate 24 is configured such that the inclination angle with respect to the rotation shaft 20 is changed along with the sliding movement of the rotation shaft 20 in the axial direction DRax.
  • a coil spring 25 is wound between the lug plate 22 and the swash plate 24 in the rotation shaft 20.
  • the swash plate 24 is pressed by the biasing force of the coil spring 25 so that its inclination angle is reduced.
  • a cylindrical member 27 is provided between the swash plate 24 and the cylinder block 142 so as to protrude toward the swash plate 24 from the inner wall surface of the cylinder block 142.
  • the cylindrical member 27 restricts the minimum inclination angle of the swash plate 24 by contacting the swash plate 24.
  • a plurality of cylinder bores 148 are formed through the cylinder block 142 so as to surround the rotation shaft 20.
  • a single-headed piston 29 is accommodated in the cylinder bore 148 so as to be capable of reciprocating in the axial direction DRax of the rotating shaft 20.
  • Openings on both axial sides of the cylinder bore 148 are closed by the valve plate 16 and the piston 29.
  • a compression chamber 28 whose volume changes in accordance with the movement of the piston 29 in the axial direction DRax is defined.
  • the piston 29 is anchored to the outer peripheral portion of the swash plate 24 via a shoe 30. Then, the rotational movement of the swash plate 24 along with the rotation of the rotational shaft 20 of the compression mechanism 12 is converted to the reciprocating linear movement of the piston 29 via the shoe 30.
  • a suction chamber 32 and a discharge chamber 34 are defined in the rear housing 146 at a position facing the valve plate 16.
  • the valve plate 16 is provided with a suction port 162 for communicating the suction chamber 32 with the cylinder bore 148, and a suction valve 164 for opening and closing the suction port 162.
  • the valve plate 16 is formed with a discharge port 166 for communicating the discharge chamber 34 with the cylinder bore 148, and a discharge valve 168 for opening and closing the discharge port 166.
  • a suction passage is formed in the rear housing 146 for communicating the refrigerant flow downstream side of the evaporator 80 and the suction chamber 32 in the refrigeration cycle apparatus 1. Further, the rear housing 146 is formed with a discharge passage for communicating the refrigerant flow upstream side of the condenser 50 with the discharge chamber 34.
  • the refrigerant flowing into the suction chamber 32 through the suction passage (not shown) is drawn into the compression chamber 28 through the suction port 162 and the suction valve 164 by the movement from the top dead center position to the bottom dead center side of the piston 29. Further, the refrigerant drawn into the compression chamber 28 is compressed to a predetermined pressure by the movement from the bottom dead center position to the top dead center side of the piston 29, and is discharged into the discharge chamber 34 via the discharge port 166 and the discharge valve 168. Ru. Then, the refrigerant discharged into the discharge chamber 34 flows into the condenser 50 through a discharge passage (not shown).
  • the inclination angle of the swash plate 24 is determined on the basis of the mutual balance of the moment of the rotational movement due to the centrifugal force of the swash plate 24, the moment due to the reciprocal inertia force of the piston 29, the moment due to the pressure of the refrigerant, and the like.
  • the moment due to the pressure of the refrigerant is a moment generated on the basis of the correlation between the pressure in the compression chamber 28 and the pressure in the control pressure chamber 18 acting on the back surface of the piston 29, and corresponds to the pressure fluctuation in the control pressure chamber 18.
  • the inclination angle of the swash plate 24 changes. In the compression mechanism 12, the discharge capacity increases as the inclination angle of the swash plate 24 increases, and the discharge capacity decreases as the inclination angle of the swash plate 24 decreases.
  • the discharge capacity of the compression mechanism 12 configured as described above is controlled by the capacity control mechanism 40. That is, in the compressor 10 of the present embodiment, the displacement control mechanism 40 controls the pressure of the control pressure chamber 18 to change the inclination angle of the swash plate 24 to change the discharge capacity.
  • an air supply passage 140 communicating the control pressure chamber 18 with the discharge chamber 34 and a bleed passage 141 communicating the suction chamber 32 with the control pressure chamber 18 are formed.
  • the displacement control mechanism 40 has an opening adjustment valve 42 for adjusting the passage opening of the air supply passage 140 and a fixed throttle 44 for narrowing the passage opening of the bleed passage 141.
  • the displacement control mechanism 40 is configured to change the displacement of the compression mechanism 12 by adjusting the passage opening degree of the air supply passage 140 by the opening degree adjustment valve 42 and controlling the pressure of the control pressure chamber 18. .
  • the displacement control mechanism 40 of the present embodiment is configured such that the opening degree of the air supply passage 140 is adjusted so that the pressure Ps of the refrigerant drawn into the compression mechanism 12 becomes the target pressure Pso.
  • the opening adjustment valve 42 is attached to the rear housing 146. The structure of the opening adjustment valve 42 of the displacement control mechanism 40 will be described later.
  • FIG. 3 is an explanatory view for explaining the relationship between the discharge capacity of the compression mechanism 12 and the coefficient of performance (that is, the COP).
  • the horizontal axis of FIG. 3 indicates the discharge capacity, and indicates the state in which the discharge capacity is the minimum capacity at zero percent and the state in which the discharge capacity is the maximum capacity at 100%.
  • the vertical axis of FIG. 3 indicates an annual coefficient of performance that takes into account the yearly use and considers the condition of the heat load and the rotational speed of the compressor 10 that may appear and the frequency of appearance of the condition.
  • the annual coefficient of performance has a peak at about 30% of the discharge capacity, and tends to decrease near the minimum capacity.
  • the main factor is that the refrigerant in the discharge chamber 34 is supplied to the control pressure chamber 18 as a control gas in order to change the discharge capacity.
  • the control gas is supplied from the discharge chamber 34 to the control pressure chamber 18 via the air supply passage 140, then flows to the suction chamber 32 via the bleed passage 141 and is compressed again in the compression chamber 28. That is, the control gas circulates within the housing 14 of the compression mechanism 12. And the work which compressed control gas in compression mechanism 12 turns into extra compression work which does not contribute to cooling of air.
  • the compression mechanism 12 when decreasing the discharge capacity, the amount of control gas increases to increase the pressure of the control pressure chamber 18, and the ratio of the amount of control gas to the amount of refrigerant discharged from the compression mechanism 12 increases.
  • the compression efficiency decreases due to the increase of the control gas circulating in the housing 14 near the minimum displacement, and the annual coefficient of performance decreases with the decrease of the compression efficiency.
  • the compression mechanism 12 of the present embodiment regulates the minimum inclination angle of the swash plate 24 by the cylindrical member 27 so that the compression mechanism 12 does not operate at the minimum volume where the coefficient of performance decreases.
  • the cylindrical member 27 constitutes a capacity limiting portion which limits the lower limit displacement of the discharge capacity of the compression mechanism 12 to an intermediate capacity which is larger than the minimum displacement and smaller than the maximum displacement.
  • the cylindrical member 27 of the present embodiment has a capacity such that the lower limit capacity of the discharge capacity is larger than when the coefficient of performance is set to the minimum capacity when the compression mechanism 12 is operated in the range from the minimum capacity to the maximum capacity.
  • the minimum inclination angle of the swash plate 24 is regulated. Specifically, it is desirable to set the lower limit displacement of the discharge displacement in the range of 10% to 50%, so that approximately 30% at which the annual coefficient of performance reaches a peak is included.
  • the opening adjustment valve 42 has a valve body 421 for adjusting the opening degree of the air supply passage 140, a suction pressure response mechanism 422 for generating a force F1 corresponding to the pressure of the suction chamber 32, and a suction pressure
  • An electromagnetic mechanism 423 that generates an electromagnetic force F2 opposed to the force F1 of the response mechanism 422 is provided.
  • the opening adjustment valve 42 changes the position of the valve body 421 by balancing the force F1 and the electromagnetic force F2 according to the pressure in the suction chamber 32.
  • the suction pressure response mechanism 422 is accommodated in a pressure sensing chamber 420 a formed in the valve housing 420, and has a bellows 422 a that can be elastically expanded and contracted in the moving direction of the valve body 421.
  • the pressure of the suction chamber 32 is introduced into the pressure sensing chamber 420a via the pressure introducing passage 420b.
  • a portion fixed to the inner wall surface of the pressure sensing chamber 420a constitutes a fixed end 422b
  • a portion opposite to the fixed end 422b constitutes a movable end 422c displaced by elastic expansion and contraction.
  • a push rod 422d is integrally connected to the movable end 422c of the bellows 422a.
  • a spring for pressing the bellows 422a in the extending direction is provided inside the bellows 422a.
  • the electromagnetic mechanism 423 has an electromagnetic coil 423a, and a plunger 423b is disposed on an inner peripheral portion of the electromagnetic coil 423a so as to be axially displaceable.
  • a movable core 423c is integrally formed at an end of the plunger 423b, and a fixed core 423d is disposed opposite to the movable core 423c.
  • the electromagnetic mechanism 423 is configured to generate an electromagnetic force F2 between the movable iron core 423c and the fixed iron core 423d according to the capacitance control signal value Ic (for example, control current) supplied to the electromagnetic coil 423a. .
  • a valve body 421 is integrally formed on the end of the plunger 423b opposite to the movable core 423c. Further, a push rod 422 d is integrally connected to the valve body 421.
  • the plunger 423b, the valve body 421, and the push rod 422d of this embodiment are integrally configured, and are integrally displaced in the axial direction of the plunger 423b.
  • the opening adjustment valve 42 contracts the bellows 422a as the pressure in the suction chamber 32 increases, and the valve body 421 opens the passage opening of the air supply passage 140 accordingly. Displace in the direction to make smaller. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is reduced, whereby the pressure of the control pressure chamber 18 is reduced.
  • the opening adjustment valve 42 when the electromagnetic force F2 becomes constant, the bellows 422a extends as the pressure in the suction chamber 32 decreases, and the valve body 421 opens the passage of the air supply passage 140 accordingly. Displace in the direction to increase the degree. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is increased, whereby the pressure of the control pressure chamber 18 is increased.
  • the opening degree of the air supply passage 140 is determined by the balance of the force F1 and the electromagnetic force F2 according to the pressure of the suction chamber 32. That is, when the displacement control signal value supplied to the electromagnetic coil 423a increases and the electromagnetic force F2 becomes larger than the force F1 corresponding to the pressure in the suction chamber 32, the valve body 421 sets the passage opening degree of the air supply passage 140 Displace in the direction to make smaller. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is reduced, whereby the pressure of the control pressure chamber 18 is reduced. As a result, when the inclination angle of the swash plate 24 is increased, the discharge displacement is increased.
  • the valve body 421 opens the passage of the air supply passage 140. Displace in the direction to make As a result, the amount of refrigerant supplied to the control pressure chamber 18 is increased, whereby the pressure of the control pressure chamber 18 is increased. As a result, as the inclination angle of the swash plate 24 becomes smaller, the discharge displacement becomes smaller.
  • the displacement control mechanism 40 configured in this manner has a configuration in which the opening degree of the air supply passage 140 is determined by the balance of the force F1, the electromagnetic force F2, etc. according to the pressure of the suction chamber 32.
  • the capacitance may change independently of the capacitance control signal value Ic.
  • the control device 100 shown in FIG. 1 is composed of a known microcomputer including a processor, a memory and the like and its peripheral circuit.
  • the memory is configured of a non-transitional tangible storage medium.
  • the control device 100 compresses the sensor detection signals from the air conditioning sensor groups 101 to 105 and various control signals from the various air conditioning operation switches provided on the air conditioning operation panel 110 disposed near the instrument panel in the front of the vehicle compartment. It controls various devices including the machine 10. Further, the control device 100 stores a control program and the like of an air conditioning control device and the like in a memory, and performs various arithmetic processing based on the control program and the like.
  • an outside air sensor 101 for detecting the outside air temperature Tam an inside air sensor 102 for detecting the inside air temperature Tr, a sunshine sensor 103 for detecting the amount of solar radiation Ts entering the vehicle interior, the above-mentioned evaporator temperature sensor 104, A compressor rotational speed sensor 105 and the like are provided.
  • evaporator temperature sensor 104 a temperature sensor which detects temperature of a heat exchange fin of evaporator 80 as blow-off temperature TE, for example can be adopted.
  • the compressor rotational speed sensor 105 is a sensor that detects the rotational speed Ne of the compressor 10.
  • the compressor rotation number sensor 105 is not limited to one that directly detects the rotation number Ne of the compressor 10, and may be configured to calculate the rotation number Ne of the compressor 10 from the engine rotation number, for example.
  • an air conditioner switch for issuing an operation command signal of the compressor 10 a temperature setting switch serving as temperature setting means for setting a set temperature Tset of a vehicle compartment, and the like are provided.
  • a clutch MGC, a displacement control mechanism 40 and the like are connected to an output side of the control device 100 via drive circuits (not shown) for driving various actuators which are peripheral circuits.
  • the various devices are controlled by the output signal of the control device 100.
  • the lower limit displacement of the discharge displacement is set not to the minimum displacement but to the intermediate displacement in order to avoid the operation at the minimum displacement at which the compression efficiency decreases.
  • variable range of the discharge capacity becomes smaller, for example, the air cooling capacity in the evaporator 80 becomes excessive.
  • the compressor 10 of the present embodiment is configured to switch the operation mode of the compression mechanism 12 to the variable operation mode and the intermittent operation mode by the control device 100.
  • the variable operation mode is an operation mode in which the displacement control mechanism 40 changes the discharge displacement in the range from the lower limit displacement to the maximum displacement with the clutch MGC controlling the engine EG and the compression mechanism 12 in a connected state.
  • the intermittent operation mode is an operation mode in which the engine EG and the compression mechanism 12 are intermittently switched between the connected state and the disconnected state by the clutch MGC while the displacement control mechanism 40 controls the discharge displacement to the lower limit displacement.
  • Each control step of the control process shown in FIG. 5 constitutes a function implementing unit that implements various functions executed by the control device 100.
  • control device 100 controls clutch MGC to the on state and executes the control process shown in FIG. 5 after setting the initial setting of the operation mode to the variable operation mode. Do.
  • the control process shown in FIG. 5 is executed by the control device 100 at a predetermined cycle.
  • step S10 the control device 100 reads various signals from the air conditioning sensor groups 101 to 105 connected to the input side and the air conditioning operation panel 110. Subsequently, in step S20, the control device 100 calculates a target blowout temperature TAO of air blown into the vehicle compartment.
  • the target blowout temperature TAO is a blowout temperature required to maintain the passenger compartment at the set temperature Tset of the temperature setting switch, and is calculated based on the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C (F1)
  • Tset represents a set temperature
  • Tr represents an internal temperature
  • Tam represents an external temperature
  • Ts represents a solar radiation amount
  • Kset, Kr, Kam, and Ks represent control gains.
  • C is a constant for correction.
  • control device 100 calculates the target evaporator temperature TEO of the blowout temperature TE of the air blown out from the evaporator 80.
  • control device 100 refers to a control map that defines the correspondence between target air outlet temperature TAO and target evaporator temperature TEO, and determines target evaporator temperature TEO from target air outlet temperature TAO calculated in step S20. calculate.
  • the target evaporator temperature TEO is associated with the target outlet temperature TAO such that the target evaporator temperature TEO increases as the target outlet temperature TAO increases.
  • the control map is stored in advance in the memory.
  • step S40 the control device 100 calculates a variable signal value Ic_cal which is a first candidate of the capacitance control signal value Ic to be output to the capacitance control mechanism 40.
  • the variable signal value Ic_cal is calculated by feedback control such as PI control or PID control so that the outlet temperature TE of the evaporator 80 approaches the target evaporator temperature TEO.
  • step S50 the control device 100 determines whether the current operation mode of the compression mechanism 12 is the variable operation mode or the intermittent operation mode. As a result of the determination process, when the operation mode is the variable operation mode, the control device 100 proceeds to step S60 and executes the variable operation process. When the operation mode is the intermittent operation mode, the control device 100 proceeds to step S70 and executes the intermittent operation process.
  • control steps of the control process shown in FIGS. 6 and 13 constitute a function implementing unit that implements various functions executed by the control device 100.
  • the control device 100 determines in step S100 whether or not the blowout temperature TE of the evaporator 80 is smaller than the target evaporator temperature TEO.
  • the blowout temperature TE of the evaporator 80 becomes equal to or higher than the target evaporator temperature TEO, by operating the compression mechanism 12 in the variable operation mode, the state where the cooling capacity of the evaporator 80 can be properly maintained or the evaporator 80 is cooled It is considered that there is a lack of ability due to lack of ability.
  • control device 100 maintains the clutch MGC in the on state in step S110. Further, in step S120, the control device 100 determines the capacitance control signal value Ic as the variable signal value Ic_cal calculated in step S40 of FIG. Then, at step S130, control device 100 operates compression mechanism 12 in the variable operation mode. That is, the control device 100 outputs the variable signal value Ic_cal to the capacitance control mechanism 40 as the capacitance control signal value Ic.
  • the displacement control mechanism 40 controls the opening adjustment valve 42 such that the passage opening degree of the air supply passage 140 decreases as the displacement control signal value Ic increases.
  • the displacement control mechanism 40 controls the opening adjustment valve 42 so that the passage opening degree at which the air supply passage 140 is closed as shown in FIG. 7.
  • the pressure of the control pressure chamber 18 is reduced by stopping the supply of the refrigerant from the discharge chamber 34 to the control pressure chamber 18.
  • the displacement of the swash plate 24 increases to the maximum displacement as the inclination angle of the swash plate 24 becomes the maximum inclination angle.
  • the displacement control mechanism 40 controls the opening adjustment valve 42 so that the passage opening degree at which the air supply passage 140 is fully opened.
  • the pressure of the control pressure chamber 18 is increased by the increase of the supply amount of the refrigerant from the discharge chamber 34 to the control pressure chamber 18.
  • the displacement of the swash plate 24 is reduced to the lower limit by the minimum inclination angle.
  • the lower limit displacement of the discharge displacement is limited by the cylindrical member 27 to an intermediate displacement. For this reason, in the variable operation mode, the compression mechanism 12 is not operated at the minimum capacity with low compression efficiency.
  • the control device 100 determines that the variable signal value Ic_cal is a predetermined lower limit signal in step S140. It is determined whether the value is equal to or less than the value Ic_min.
  • the lower limit signal value Ic_min is a determination threshold for determining whether or not the discharge displacement of the compression mechanism 12 is the lower limit displacement from the displacement control signal value Ic.
  • the blowout temperature TE of the evaporator 80 and the displacement control signal value The Ic has a correlation as shown in FIG.
  • the displacement control signal value Ic corresponding to the target evaporator temperature TEO is identified based on a control map in which the blowout temperature TE and the displacement control signal value Ic are associated in advance, and the identified displacement control signal value Ic is greater than the identified displacement control signal value Ic.
  • the lower value is set to the lower limit signal value Ic_min.
  • the lower limit signal value Ic_min is set as a variable threshold value corresponding to the target evaporator temperature TEO which changes in correlation with the heat load on the air side of the evaporator 80.
  • the lower limit signal value Ic_min is a variable threshold that decreases with the increase of the target evaporator temperature TEO.
  • step S140 when the variable signal value Ic_cal becomes larger than the lower limit signal value Ic_min in step S140, it is considered that the discharge displacement of the compression mechanism 12 is not the lower limit displacement. In this case, the control device 100 proceeds to step S110 and maintains the operation mode in the variable operation mode.
  • step S140 when the variable signal value Ic_cal becomes equal to or less than the lower limit signal value Ic_min in step S140, it is considered that the discharge displacement of the compression mechanism 12 is the lower limit displacement. In this case, even if the discharge capacity of the compression mechanism 12 becomes the lower limit capacity, it is considered that the cooling capacity of the evaporator 80 satisfies the required cooling capacity required.
  • the control device 100 proceeds to step S150 and maintains the clutch MGC in the on state. Further, in step S160, control device 100 determines capacitance control signal value Ic as lower limit signal value Ic_min. Then, in step S170, the control device 100 operates the compression mechanism 12 in the intermittent operation mode. That is, the control device 100 outputs the lower limit signal value Ic_min to the capacitance control mechanism 40 as the capacitance control signal value Ic.
  • the above is the description of the variable driving process.
  • the flow of the intermittent operation process will be described with reference to the flowchart of FIG.
  • the intermittent operation process shown in FIG. 13 is a process executed in step S70 of FIG.
  • control device 100 determines whether or not clutch MGC is in the on state. As a result, when it is determined that the clutch MGC is in the on state, the control device 100 determines in step S210 whether or not the outlet temperature TE of the evaporator 80 is smaller than a predetermined off-side threshold Toff.
  • the off-side threshold Toff is a determination threshold for switching the clutch MGC from the on state to the off state.
  • the off-side threshold Toff is, as shown in FIG. 14, set to a temperature lower than the target evaporator temperature TEO in order to avoid frequent switching of the clutch MGC.
  • the control device 100 sets the clutch MGC to the off state in step S220. Thereby, the operation of the compression mechanism 12 is stopped.
  • control device 100 determines the capacitance control signal value as the lower limit signal value Ic_min. Then, in step S240, control device 100 maintains the operation mode of compression mechanism 12 in the intermittent operation mode, and resets timer counter t_cnt in step S250.
  • the timer counter t_cnt measures a period in which the cooling capacity of the evaporator 80 is insufficient for the required cooling capacity which is required even if the clutch MGC is switched to the on state. Is a counter for
  • the controller 100 If the blowout temperature TE of the evaporator 80 is smaller than the off-side threshold Toff, the controller 100 is not in the capability shortage state, so the control device 100 resets the timer counter t_cnt in step S250.
  • the control device 100 determines whether the blowout temperature TE of the evaporator 80 is larger than the target evaporator temperature TEO in step S260. .
  • the control device 100 determines whether or not the timer counter t_cnt is equal to or more than a preset reference time t_set in step S270. Do.
  • control device 100 maintains clutch MGC in the on state in step S280, and determines the displacement control signal value as variable signal value Ic_cal in step S290. Then, in step S300, control device 100 switches the operation mode of compression mechanism 12 to the variable operation mode, and resets timer counter t_cnt in step S250.
  • step S310 when the outlet temperature TE of the evaporator 80 is determined to be equal to or lower than the target evaporator temperature TEO in step S260, the control device 100 proceeds to step S310. Also, when it is determined in step S270 that the timer counter t_cnt is less than the reference time t_set, the control device 100 causes the process to proceed to step S310. Then, control device 100 maintains clutch MGC in the on state in step S310, and determines the displacement control signal value as lower limit signal value Ic_min in step S320. In step S330, control device 100 maintains the operation mode of compression mechanism 12 in the intermittent operation mode.
  • the control device 100 determines that the outlet temperature TE of the evaporator 80 is higher than the predetermined on side threshold value Ton in step S340. It is determined whether or not it is large.
  • the on-side threshold Ton is a determination threshold for switching the clutch MGC from the off state to the on state. As shown in FIG. 14, the on-side threshold Ton is set to a temperature higher than the target evaporator temperature TEO in order to avoid frequent switching of the clutch MGC.
  • the control device 100 sets the clutch MGC to the on state in step S350. Thereby, the operation of the compression mechanism 12 is resumed.
  • control device 100 determines the capacity control signal value as the lower limit signal value Ic_min. Then, control device 100 maintains the operation mode of compression mechanism 12 in the intermittent operation mode in step S370, and starts counting of timer counter t_cnt in step S380.
  • the control device 100 sets the clutch MGC to the off state in step S390. Thereby, the operation of the compression mechanism 12 is maintained in the stop state.
  • control device 100 determines the capacitance control signal value as the lower limit signal value Ic_min. Then, in step S410, control device 100 maintains the operation mode of compression mechanism 12 in the intermittent operation mode.
  • the compressor 10 can switch the operation mode to either the variable operation mode or the intermittent operation mode. That is, even if the control device 100 according to the present embodiment sets the discharge capacity to the lower limit capacity, a case where the air cooling capacity in the evaporator 80 satisfies the required cooling capacity required for the evaporator 80 is satisfied. Switch from the variable operation mode to the intermittent operation mode. Further, even if the control device 100 sets the discharge capacity to the lower limit capacity, the operation mode is satisfied when the capacity insufficient condition for the cooling capacity of the air in the evaporator 80 is insufficient for the required cooling capacity required for the evaporator 80 is satisfied. From the intermittent operation mode to the variable operation mode.
  • FIG. 15 shows the outlet temperature TE of the evaporator 80, the capacity control signal value Ic, the on / off state of the clutch MGC, the discharge capacity, etc. when the operation mode changes in the order of variable operation mode, intermittent operation mode, variable operation mode. It is a timing chart which shows an example of change.
  • the capacity control signal value Ic decreases and the discharge is performed.
  • the capacity also decreases (t0 to t1 in FIG. 15).
  • the operation mode switches from the variable operation mode to the intermittent operation mode (t1 in FIG. 15 ⁇ t2).
  • the displacement control signal value Ic is determined to be the lower limit signal value Ic_min, and the discharge displacement becomes the lower limit displacement.
  • the blowing temperature TE is maintained near the target evaporator temperature TEO by switching the clutch MGC on and off in a state where the discharge displacement is controlled to be the lower limit displacement.
  • the operation mode in a state where the clutch MGC is maintained in the on state, the operation mode is changed from the intermittent operation mode to the variable operation mode when the capacity insufficient state in which the cooling capacity of the evaporator 80 is insufficient continues for a predetermined time.
  • the operation mode switches from the intermittent operation mode to the variable operation mode (tn in FIG. 15 ⁇ tn + 1).
  • the displacement control signal value Ic is determined as the variable signal value Ic_cal while the clutch MGC is maintained in the on state, whereby the blowout temperature TE is controlled to approach the target evaporator temperature TEO.
  • the compression efficiency is low.
  • the operation of the compression mechanism 12 at the minimum capacity can be avoided.
  • the compressor 10 of this embodiment can switch the operation mode to the variable operation mode and the intermittent operation mode, it is possible to avoid the problem caused by the decrease of the variable range of the discharge capacity by the switching of the operation mode. It becomes. That is, according to the compressor 10 of the present embodiment, the compression efficiency can be improved while appropriately exhibiting the cooling capacity of the evaporator 80.
  • the compression mechanism 12 of the present embodiment is set to a capacity whose lower limit capacity is larger than that in the case where the coefficient of performance is set to the minimum capacity when the compression mechanism 12 is operated. According to this, it is possible to increase the coefficient of performance in the intermittent operation mode as compared with the case of operating with the minimum capacity.
  • control device 100 even when the discharge capacity is set to the lower limit capacity, a capacity satisfying condition satisfying the required cooling capacity required of the evaporator 80 for the air cooling capacity in the evaporator 80 is satisfied. Switch from the variable operation mode to the intermittent operation mode. According to this, since it is possible to prevent the cooling capacity of the air in the evaporator 80 from becoming excessive, it is possible to improve the compression efficiency while appropriately exhibiting the cooling capacity in the evaporator 80.
  • the capability satisfaction condition is a condition that is satisfied when the blowout temperature TE of the evaporator 80 is lower than the target evaporator temperature TEO and the variable signal value Ic_cal is equal to or less than the lower limit signal value Ic_min.
  • the lower limit signal value Ic_min is a variable threshold that becomes smaller as the target evaporator temperature TEO rises. According to this, it is avoided that the variable operation mode is switched to the intermittent operation mode when the outlet temperature TE of the evaporator 80 becomes equal to or higher than the target evaporator temperature TEO, that is, the cooling capacity of the evaporator 80 is insufficient. can do.
  • control device 100 even when the discharge capacity is set to the lower limit capacity, a capacity shortage condition in which the cooling capacity of air in the evaporator 80 is insufficient for the required cooling capacity required for the evaporator 80 is satisfied.
  • the insufficient capability condition is a condition that is satisfied when a state in which the outlet temperature TE of the evaporator 80 is higher than the target evaporator temperature TEO continues for a predetermined period while the connected state is controlled to the connected state by the clutch MGC. It has become.
  • the condition of insufficient capability is a condition that is satisfied when the state where the outlet temperature TE of the evaporator 80 is higher than the target evaporator temperature TEO is maintained for a predetermined period, the intermittent operation mode to the variable operation mode Frequent switching can be suppressed.
  • the amount of refrigerant circulated through the air supply passage 140, the control pressure chamber 18, and the extraction passage 141 is smaller than in the variable operation mode. It is different from the first embodiment in that it is configured.
  • the displacement control mechanism 40 of the present embodiment has a displacement control valve 45 capable of adjusting both the passage opening degree of the air supply passage 140 and the passage opening degree of the bleed passage 141.
  • the displacement control mechanism 40 controls the pressure of the control pressure chamber 18 by adjusting the passage opening degree of the air supply passage 140 and the passage opening degree of the bleed passage 141 by the displacement control valve 45 to control the displacement of the compression mechanism 12. It is configured to change.
  • the displacement control valve 45 has a three-way valve type valve structure.
  • the volume control valve 45 includes a valve body 451 for adjusting the passage opening degree of the air supply passage 140 and the passage opening degree of the extraction passage 141, a suction pressure response mechanism 452 for generating force corresponding to the pressure of the suction chamber 32, and suction pressure response mechanism. It has an electromagnetic mechanism 453 which generates an electromagnetic force opposite to the force of the mechanism 452.
  • the suction pressure response mechanism 452 is configured in the same manner as the suction pressure response mechanism 422 described in the first embodiment.
  • the electromagnetic mechanism 453 is configured in the same manner as the electromagnetic mechanism 423 described in the first embodiment.
  • the passage opening degree of the bleed passage 141 decreases as the passage opening degree of the air supply passage 140 increases, and as the passage opening degree of the air supply passage 140 decreases, the passage opening degree of the bleed passage 141 increases. It is configured to be Specifically, the capacity control valve 45 is configured to open the air supply passage 140 and close the bleed passage 141 in the intermittent operation mode.
  • the compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
  • the displacement control mechanism 40 includes the displacement control valve 45 that opens the air supply passage 140 and closes the bleed passage 141 in the intermittent operation mode. According to this, since it is possible to stop the circulation of the refrigerant inside the housing 14 in the intermittent operation mode, it is possible to further improve the compression efficiency.
  • FIG. 19 shows the case where the compressor operated only in the variable operation mode is a comparative example, the compressor 10 of the first embodiment is a first example, and the compressor 10 of this embodiment is a second example. It is a figure which shows the motive power of the compressor 10.
  • FIG. 20 is a figure which shows the coefficient of performance of a comparative example, 1st Example, and 2nd Example. Note that the power shown in FIG. 19 and the coefficient of performance shown in FIG. 20 indicate the conditions of the heat load and the rotational speed of the compressor 10 that may appear and the frequency of appearance of the conditions, assuming the actual use. There is.
  • the compressor 10 may stop in the intermittent operation mode. For this reason, as shown in FIG. 19, the power of the compressor is smaller in the first embodiment and the second embodiment than in the comparative example.
  • the coefficient of performance is higher in the first embodiment and the second embodiment than in the comparative example, as shown in FIG.
  • the bleed passage 141 is closed in the open state of the air supply passage 140 in the intermittent operation mode, so that it is accompanied by the circulation of the refrigerant in the housing 14 in the intermittent operation mode. Loss is suppressed. For this reason, as shown in FIG. 19, the power of the compressor is smaller in the second embodiment than in the first embodiment. As shown in FIG. 20, the coefficient of performance is higher in the second embodiment than in the first embodiment.
  • the present embodiment is different from the first embodiment in that the displacement control mechanism 40 is configured to adjust the passage opening degree of the bleed passage 141 to control the pressure of the control pressure chamber 18.
  • the displacement control mechanism 40 has a fixed throttle 46 for reducing the passage opening degree of the air supply passage 140 and an opening adjustment valve 47 for adjusting the passage opening degree of the bleed passage 141.
  • the displacement control mechanism 40 is configured to change the discharge displacement of the compression mechanism 12 by adjusting the opening degree of the bleed passage 141 by the opening adjustment valve 47 and controlling the pressure of the control pressure chamber 18.
  • the displacement control mechanism 40 of this embodiment is configured such that the passage opening degree of the opening degree adjustment valve 47 is adjusted so that the pressure of the refrigerant drawn into the compression mechanism 12 becomes the target pressure.
  • the opening adjustment valve 47 is a valve element for adjusting the opening of the bleed passage 141, a suction pressure response mechanism for generating a force corresponding to the pressure of the suction chamber 32, and a force corresponding to the force of the suction pressure response mechanism. It has an electromagnetic mechanism that generates an electromagnetic force.
  • the opening control valve 47 is configured to be able to close the bleed passage 141.
  • the suction pressure response mechanism and the electromagnetic mechanism are configured in the same manner as the suction pressure response mechanism 422 and the electromagnetic mechanism 423 described in the first embodiment.
  • the opening adjustment valve 47 for example, a position where the valve body closes the bleed passage 141 Displace.
  • the amount of refrigerant flowing from the control pressure chamber 18 to the suction chamber 32 is reduced, whereby the pressure in the control pressure chamber 18 is increased.
  • the discharge capacity is reduced.
  • the opening adjustment valve 47 opens the bleed passage 141 when the displacement control signal value Ic supplied to the electromagnetic mechanism 453 increases and the electromagnetic force becomes larger than the force corresponding to the pressure of the suction chamber 32. Displace to position. As a result, the amount of refrigerant flowing from the control pressure chamber 18 to the suction chamber 32 increases, and the pressure in the control pressure chamber 18 decreases. As a result, when the inclination angle of the swash plate 24 is increased, the discharge capacity is increased.
  • the compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
  • the displacement control mechanism 40 is configured to include the opening adjustment valve 47 capable of closing the bleed passage 141. According to this, since it is possible to stop the circulation of the refrigerant inside the housing 14 in the intermittent operation mode, it is possible to further improve the compression efficiency.
  • a fourth embodiment will be described with reference to FIG.
  • the present embodiment is different from the first embodiment in that a pressure responsive valve 48 is disposed in place of the fixed throttle 44 with respect to the bleed passage 141.
  • the displacement control mechanism 40 is configured to include two valves such as an opening degree adjusting valve 42 and a pressure responsive valve 48.
  • the pressure responsive valve 48 is configured to reduce the opening degree of the bleed passage 141 as the pressure difference between the discharge chamber 34 and the control pressure chamber 18 decreases.
  • the pressure difference between the discharge chamber 34 and the control pressure chamber 18 decreases as the passage opening degree of the air supply passage 140 increases, and increases as the passage opening degree of the air supply passage 140 decreases.
  • the pressure responsive valve 48 is configured to reduce the passage opening degree of the bleed passage 141 as the passage opening degree of the air supply passage 140 increases.
  • the pressure responsive valve 48 is configured to be able to close the bleed passage 141.
  • the compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
  • the displacement control mechanism 40 is configured to include the pressure responsive valve 48 capable of closing the bleed passage 141. According to this, since it is possible to stop the circulation of the refrigerant inside the housing 14 in the intermittent operation mode, it is possible to further improve the compression efficiency.
  • the capacity control mechanism 40 is configured such that the opening degree of the air supply passage 140 is adjusted so that the flow rate Gr of the refrigerant discharged from the compression mechanism 12 becomes the target flow rate Gro. It is different from the one embodiment.
  • the displacement control mechanism 40 has an opening adjustment valve 49 for adjusting the passage opening of the air supply passage 140 and a fixed throttle 44 for narrowing the passage opening of the bleed passage 141.
  • the opening adjustment valve 49 includes a valve 491, a throttling portion 492 for throttling the outlet side of the discharge chamber 34, a differential pressure response mechanism 493 that generates a force corresponding to the differential pressure ⁇ P generated before and after the throttle portion 492, a differential pressure response mechanism
  • An electromagnetic mechanism 494 that generates an electromagnetic force opposing to the force of 493 is provided.
  • the electromagnetic mechanism 494 is configured in the same manner as the electromagnetic mechanism 423 of the first embodiment.
  • the differential pressure ⁇ P generated before and after the throttle portion 492 is in proportion to the flow rate of the refrigerant discharged from the compression mechanism 12. Therefore, it becomes possible to control the flow rate of the refrigerant discharged from the compression mechanism 12 by controlling the differential pressure ⁇ P.
  • the differential pressure response mechanism 493 is accommodated in a differential pressure introducing chamber 490a formed in the valve housing 490, and has a bellows 493a elastically extendable in the moving direction of the valve body 491.
  • the pressure on the downstream side of the narrowed portion 492 is introduced into the differential pressure introduction chamber 490a via the first pressure introduction passage 490b.
  • a portion fixed to the inner wall surface of the differential pressure introducing chamber 490a constitutes a fixed end 493b
  • a portion opposite to the fixed end 493b constitutes a movable end 493c displaced by elastic expansion and contraction.
  • the pressure on the upstream side of the throttle portion 492 acts on the fixed end 493 b of the bellows 493 a via the second pressure introduction passage 490 c. Further, a push rod 493 d is integrally connected to a movable end 493 c of the bellows 493 a. Although not shown, a spring for pressing the bellows 493a in the extending direction is provided inside the bellows 493a.
  • the opening adjustment valve 49 shrinks the bellows 493a as the differential pressure ⁇ P increases, and the valve body 491 reduces the opening degree of the air supply passage 140 accordingly. Displace. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is reduced, whereby the pressure of the control pressure chamber 18 is reduced.
  • the opening adjustment valve 49 when the electromagnetic force becomes constant, the bellows 493a expands as the differential pressure ⁇ P decreases, and the valve body 491 increases the opening degree of the air supply passage 140 accordingly. Displace in the direction of As a result, the amount of refrigerant supplied to the control pressure chamber 18 is increased, whereby the pressure of the control pressure chamber 18 is increased.
  • the passage opening degree of the air supply passage 140 is determined by the balance of the force F1 and the electromagnetic force F2 according to the pressure difference ⁇ P. That is, when the displacement control signal value Ic supplied to the electromagnetic mechanism 494 increases and the electromagnetic force F2 becomes larger than the force F1 according to the differential pressure ⁇ P, the valve 491 reduces the opening degree of the air supply passage 140. Displace in the direction of As a result, the amount of refrigerant supplied to the control pressure chamber 18 is reduced, whereby the pressure of the control pressure chamber 18 is reduced. As a result, when the inclination angle of the swash plate 24 is increased, the discharge displacement is increased.
  • the valve body 421 increases the opening degree of the air supply passage 140 Displace in the direction of As a result, the amount of refrigerant supplied to the control pressure chamber 18 is increased, whereby the pressure of the control pressure chamber 18 is increased. As a result, as the inclination angle of the swash plate 24 becomes smaller, the discharge displacement becomes smaller.
  • FIG. 24 corresponds to FIG. 6 of the first embodiment.
  • the same steps as those in FIG. 6 are denoted by the same reference numerals as those in the first embodiment.
  • the control device 100 calculates the flow rate Gr_cal of the refrigerant discharged from the compression mechanism 12 in step S102.
  • the flow rate Gr of the refrigerant changes in proportion to the capacity control signal value Ic. Therefore, the control device 100 refers to the control map that defines the correspondence between the variable signal value Ic_cal and the flow rate Gr_cal of the refrigerant, and based on the variable signal value Ic_cal calculated in step S40 of FIG. Calculate
  • the control device 100 calculates the density 100_cal of the refrigerant drawn into the compression mechanism 12 in step S104.
  • the density __cal of the refrigerant drawn into the compression mechanism 12 is determined by the temperature and pressure of the refrigerant drawn into the compression mechanism 12.
  • the temperature and pressure of the refrigerant drawn into the compression mechanism 12 are correlated with the temperature TE of the evaporator 80.
  • the control device 100 refers to a control map that defines the correspondence between the blowout temperature TE of the evaporator 80 and the density __cal of the refrigerant drawn into the compression mechanism 12, and based on the blowout temperature TE of the evaporator 80.
  • the density ⁇ _cal of the refrigerant drawn into the compression mechanism 12 is calculated.
  • control device 100 estimates the displacement of the discharge capacity of the compression mechanism 12 based on the flow rate Gr_cal of the refrigerant at step S106, the density __cal of the refrigerant sucked into the compression mechanism 12, and the rotational speed Ne of the compression mechanism 12. Calculate V.
  • Control device 100 estimates estimated capacity V, for example, using the following formula F2.
  • V Gr_cal / ( ⁇ _cal ⁇ Ne ⁇ ⁇ ) (F2)
  • ⁇ shown in Formula F2 is volumetric efficiency in the compression mechanism 12, and is set to a predetermined value.
  • the volumetric efficiency ⁇ may be determined based on the rotational speed Ne because the rotational speed Ne of the compression mechanism 12 has a large influence.
  • step S108 the control device 100 determines whether the estimated capacity V is equal to or less than the lower limit capacity V_min. As a result, when the estimated displacement V of the compression mechanism 12 becomes larger than the lower limit displacement V_min, the control device 100 maintains the clutch MGC in the on state in step S110. Further, in step S120, the control device 100 determines the capacitance control signal value Ic as the variable signal value Ic_cal. Then, at step S130, control device 100 operates compression mechanism 12 in the variable operation mode. That is, the control device 100 outputs the variable signal value Ic_cal to the capacitance control mechanism 40 as the capacitance control signal value Ic.
  • step S150 control device 100 determines capacitance control signal value Ic as lower limit signal value Ic_min.
  • step S170 the control device 100 operates the compression mechanism 12 in the intermittent operation mode. That is, the control device 100 outputs the lower limit signal value Ic_min to the capacitance control mechanism 40 as the capacitance control signal value Ic.
  • the above is the description of the variable driving process.
  • the intermittent operation process of the present embodiment is the same as the intermittent operation process described in the first embodiment. Therefore, the description of the intermittent operation process of the present embodiment is omitted.
  • the compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
  • the displacement control mechanism 40 changes the discharge displacement according to the displacement control signal value Ic such that the flow amount Gr of the refrigerant discharged from the compression mechanism 12 becomes the target flow amount Gro.
  • the control device 100 satisfies the condition that the cooling capacity of air in the evaporator 80 satisfies the required cooling capacity required of the evaporator 80.
  • the capability satisfying condition is a condition that is satisfied when the estimated displacement V obtained by estimating the discharge displacement of the compression mechanism 12 becomes equal to or less than the lower limit displacement V_min. According to this, since it is possible to prevent the cooling capacity of the air in the evaporator 80 from becoming excessive, it is possible to improve the compression efficiency while appropriately exhibiting the cooling capacity in the evaporator 80.
  • FIGS. 25 to 29 a sixth embodiment will be described with reference to FIGS. 25 to 29.
  • the present embodiment is different from the first embodiment in that a transition operation mode is provided as an operation mode of the compression mechanism 12.
  • FIG. 25 corresponds to FIG. 5 of the first embodiment
  • FIG. 26 corresponds to FIG. 6 of the first embodiment.
  • FIG. 25 and FIG. 26 the same steps as those in FIG. 5 and FIG.
  • the control device 100 determines in step S50A whether the current operation mode of the compression mechanism 12 is the variable operation mode, the intermittent operation mode, or the transition operation mode. As a result of the determination process, when the operation mode is the variable operation mode, the control device 100 proceeds to step S60 and executes the variable operation process. When the operation mode is the intermittent operation mode, the control device 100 proceeds to step S70 and executes the intermittent operation process. Furthermore, when the operation mode is the transition operation mode, the control device 100 proceeds to step S80 and executes transition operation processing.
  • the control device 100 determines in step S100A whether or not the outlet temperature TE of the evaporator 80 is smaller than the first determination threshold Tth1.
  • the first determination threshold Tth1 is set to a temperature lower than the target evaporator temperature TEO, as shown in FIG.
  • control device 100 When the blowout temperature TE of the evaporator 80 becomes equal to or higher than the first determination threshold Tth1, the control device 100 maintains the clutch MGC in the ON state in step S110, and changes the displacement control signal value Ic in step S120. Determine the value Ic_cal. Then, at step S130, control device 100 operates compression mechanism 12 in the variable operation mode.
  • control device 100 shifts to step S150 to maintain the clutch MGC in the on state, and in step S160, the displacement control signal value Ic. Is determined as the lower limit signal value Ic_min. Then, in step S180, control device 100 operates compression mechanism 12 in the transition operation mode. That is, the control device 100 outputs the lower limit signal value Ic_min to the displacement control mechanism 40 as the displacement control signal value Ic while maintaining the clutch MGC in the on state.
  • the transition operation mode is an operation mode in which the lower limit signal value Ic_min is maintained as the displacement control signal value Ic while the clutch MGC is maintained in the on state.
  • step S500 the control device 100 determines whether the outlet temperature TE of the evaporator 80 is larger than the target evaporator temperature TEO. As a result, when the outlet temperature TE of the evaporator 80 is larger than the target evaporator temperature TEO, it is considered that the cooling capacity of the evaporator 80 is insufficient and the capacity is insufficient. Therefore, when the blowout temperature TE of the evaporator 80 becomes higher than the target evaporator temperature TEO, the control device 100 maintains the clutch MGC in the on state in step S510, and in step S520, the capacity control signal value Ic. Is determined as the variable signal value Ic_cal. Then, in step S530, control device 100 operates compression mechanism 12 in the variable operation mode.
  • the control device 100 determines that the blowout temperature TE of the evaporator 80 is lower than the second determination threshold Tth2 in step S540. It is determined whether the The second determination threshold Tth2 is set to a temperature lower than the first determination threshold Tth1, as shown in FIG.
  • control device 100 switches the clutch MGC to the off state in step S550, and the capacity control signal value in step S560. Determine Ic as the lower limit signal value Ic_min. Then, in step S570, control device 100 operates compression mechanism 12 in the intermittent operation mode.
  • control device 100 when the blowout temperature TE of the evaporator 80 becomes a temperature equal to or higher than the second determination threshold Tth2, the control device 100 maintains the clutch MGC in the on state in step S580, and in step S590, the displacement control signal value Ic. Is determined as the lower limit signal value Ic_min. Then, in step S600, control device 100 causes compression mechanism 12 to operate in the transition operation mode.
  • the control device 100 determines in step S700 whether the clutch MGC is in the on state. As a result, when it is determined that the clutch MGC is in the on state, the control device 100 determines whether the outlet temperature TE of the evaporator 80 is higher than the target evaporator temperature TEO in step S710.
  • the control device 100 determines whether the blowout temperature TE of the evaporator 80 is the first determination threshold Tth1 or more in step S720. .
  • control device 100 sets the clutch MGC to the OFF state in step S730.
  • the control device 100 maintains the clutch MGC in the on state in step S740.
  • control device 100 determines that capacity control signal value Ic is lower limit signal value Ic_min, and in step S760, maintains the operation mode of compression mechanism 12 in the intermittent operation mode.
  • the control device 100 controls the blowout temperature TE and the target evaporator temperature TEO in step S770.
  • the integrated value ⁇ E of the temperature difference ⁇ E with the above is calculated.
  • the integrated value ⁇ ⁇ E is used to grasp an insufficient capacity state where the cooling capacity of the evaporator 80 is insufficient for the required cooling capacity.
  • step S780 the control device 100 determines whether the outlet temperature TE of the evaporator 80 is equal to or higher than a fourth determination threshold Tth4.
  • the fourth determination threshold Tth4 is set to a temperature higher than the target evaporator temperature TEO, as shown in FIG.
  • control device 100 maintains clutch MGC in the on state in step S790, and determines the displacement control signal value as variable signal value Ic_cal in step S800. Then, in step S810, control device 100 switches the operation mode of compression mechanism 12 to the variable operation mode.
  • the control device 100 determines that the integration value ⁇ E is equal to or more than the preset integration threshold in step S820. It is determined whether the
  • step S790 If the integrated value ⁇ E is equal to or higher than the integration threshold, it is considered that the capacity shortage state of the evaporator 80 can not be avoided even if the intermittent operation mode is continued. Therefore, the control device 100 shifts to step S790 and switches the operation mode to the variable operation mode.
  • control device 100 proceeds to step S740, and maintains the operation mode in the intermittent operation mode with the clutch MGC in the on state.
  • step S700 when it is determined in step S700 that the clutch MGC is in the off state, the control device 100 determines that the outlet temperature TE of the evaporator 80 is higher than the third determination threshold Tth3 in step S830. It is determined whether or not it is large.
  • the third determination threshold Tth3 is set to a temperature higher than the target evaporator temperature TEO and lower than the fourth determination threshold Tth4, as shown in FIG.
  • the control device 100 when the outlet temperature TE of the evaporator 80 is higher than the third determination threshold Tth3, the control device 100 resets the integrated value ⁇ E in step S840, and switches the clutch MGC to the on state in step S850.
  • the control device 100 when the outlet temperature TE of the evaporator 80 becomes equal to or lower than the third determination threshold Tth3, the control device 100 maintains the clutch MGC in the OFF state in step S860. Then, the control device 100 determines the capacity control signal value Ic to be the lower limit signal value Ic_min in step S870, and maintains the operation mode of the compression mechanism 12 in the intermittent operation mode in step S880.
  • the compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
  • the variable operation mode ⁇ the transition operation mode when the capacity satisfying condition that the cooling capacity of the air in the evaporator 80 satisfies the required cooling capacity is satisfied even if the discharge capacity is set to the lower limit capacity.
  • the operation mode switches in the order of the intermittent operation mode. As described above, by interposing the transition operation mode before switching from the variable operation mode to the intermittent operation mode, it is possible to suppress the frequent occurrence of switching from the variable operation mode to the intermittent operation mode.
  • variable operation is possible from the intermittent operation mode when the capacity insufficient condition in which the cooling capacity of air in the evaporator 80 is insufficient for the required cooling capacity is satisfied.
  • Switch to operation mode is a condition that is satisfied when the integrated value ⁇ E exceeds a predetermined integration threshold in a period in which the clutch MGC is in the on state. According to this, it is possible to suppress frequent switching from the intermittent operation mode to the variable operation mode.
  • the compression mechanism 12 controls a space defined by a moving body for changing the inclination angle of the swash plate 24, the rotation shaft 20, the lug plate 22 and the like. It may be configured to function as 18.
  • the compression mechanism 12 is illustrated as having the single-headed piston 29, but is not limited thereto.
  • the compression mechanism 12 may be configured to have, for example, a double-ended piston.
  • each embodiment demonstrated the example which applies the compressor 10 of this indication with respect to the refrigerating-cycle apparatus 1 for air-conditioning a vehicle interior, it is not limited to this.
  • the compressor 10 of the present disclosure can be widely applied to, for example, a refrigeration cycle apparatus for cooling the inside of a trailer of a trailer.
  • the variable displacement compressor has a lower limit displacement of the discharge displacement greater than the minimum displacement and less than the maximum displacement relative to the compression mechanism.
  • a capacity limiting unit for limiting to an intermediate capacity.
  • the control device is configured to be able to switch the operation mode to the variable operation mode and the intermittent operation mode.
  • the variable operation mode is an operation mode in which the displacement control mechanism changes the discharge displacement in the range from the lower limit displacement to the maximum displacement by controlling the clutch in the connected state.
  • the intermittent operation mode is an operation mode in which the clutch is used to intermittently switch between the connected state and the disconnected state while the displacement control mechanism controls the discharge displacement to the lower limit displacement.
  • variable displacement compressor has a capacity that is larger than that obtained when the compression mechanism is operated in the range from the minimum capacity to the maximum capacity and the lower limit capacity is set to the minimum capacity. It is set. According to this, it is possible to increase the coefficient of performance in the intermittent operation mode as compared with the case of operating with the minimum capacity.
  • the compression mechanism of the variable displacement compressor includes a suction chamber for introducing the refrigerant into a compression chamber for compressing the refrigerant, and a discharge chamber for extracting the refrigerant compressed in the compression chamber. And a housing provided with a control pressure chamber for changing the displacement.
  • the compression mechanism is configured such that the discharge capacity increases as the pressure in the control pressure chamber decreases.
  • the housing is formed with an air supply passage for introducing the refrigerant in the discharge chamber to the control pressure chamber, and a bleed passage for introducing the refrigerant in the control pressure chamber to the suction chamber.
  • the capacity control mechanism is configured to reduce the circulation amount of the refrigerant circulating through the air supply passage, the control pressure chamber, and the bleed passage in the intermittent operation mode as compared with the variable operation mode. According to this, since the loss accompanying the circulation of the refrigerant inside the housing is suppressed in the intermittent operation mode, the compression efficiency can be further improved.
  • the capacity control mechanism of the variable displacement compressor is configured to open the air supply passage and close the bleed passage during the intermittent operation mode. According to this, since it is possible to stop the circulation of the refrigerant inside the housing at the time of the intermittent operation mode, it is possible to further improve the compression efficiency.
  • the passage opening degree of the bleed passage decreases as the passage opening degree of the air supply passage increases, and the passage opening degree of the air supply passage decreases.
  • the displacement control valve is configured such that the passage opening degree of the bleed passage increases. According to this, when the passage opening degree of the air supply passage is increased so that the pressure of the control pressure chamber is increased, the passage opening degree of the bleed passage is decreased, so that the discharge capacity can be reduced rapidly. Further, in the variable displacement compressor of the present disclosure, when the passage opening degree of the air supply passage is reduced so that the pressure in the control pressure chamber is decreased, the passage opening degree of the extraction passage is increased. can do.
  • variable displacement compressor when the discharge capacity decreases, the passage opening degree of the bleed passage decreases, and the circulation amount of the refrigerant in the housing decreases, so compression efficiency can be improved. it can.
  • the displacement control mechanism of the variable displacement compressor controls the opening degree adjusting valve for adjusting the passage opening degree of the air supply passage, and extracts the bleed air as the pressure difference between the discharge chamber and the control pressure chamber decreases. It includes a pressure responsive valve that reduces the passage opening degree of the passage.
  • the displacement control mechanism may be configured to include two valves. Also according to this configuration, when the discharge capacity decreases, the passage opening degree of the bleed passage decreases, and the circulation amount of the refrigerant in the housing decreases, so that the compression efficiency can be improved.
  • the controller of the variable displacement compressor is satisfied with the ability to cool air in the evaporator to satisfy the required cooling ability required of the evaporator even if the discharge capacity is set to the lower limit capacity.
  • the variable operation mode is switched to the intermittent operation mode. According to this, since it is possible to prevent the cooling capacity of air in the evaporator from becoming excessive, it is possible to improve the compression efficiency while appropriately exhibiting the cooling capacity in the evaporator.
  • the control device of the variable displacement compressor calculates the displacement control signal value to be output to the displacement control mechanism so that the difference between the blowout temperature and the target evaporator temperature becomes smaller.
  • the displacement control mechanism is configured to change the discharge displacement in accordance with the displacement control signal value so that the pressure of the refrigerant drawn into the compression mechanism becomes the target pressure.
  • the capability satisfaction condition is a condition that is satisfied when the blowout temperature is lower than the target evaporator temperature and the displacement control signal value is less than or equal to a predetermined determination threshold. According to this, it is possible to avoid switching from the variable operation mode to the intermittent operation mode when the blowout temperature becomes equal to or higher than the target evaporator temperature, that is, in a state where the cooling capacity of the evaporator is insufficient.
  • the determination threshold is a variable threshold that decreases as the target evaporator temperature increases.
  • the displacement of the compressor may change depending on the heat load on the air side of the evaporator regardless of the value of the displacement control signal. For this reason, it is desirable that the determination threshold value to be compared with the capacity control signal value be a variable threshold value corresponding to the target evaporator temperature that changes in correlation with the heat load on the air side of the evaporator.
  • the control device of the variable displacement compressor calculates a displacement control signal value to be output to the displacement control mechanism so that the difference between the blowout temperature and the target evaporator temperature is reduced.
  • the displacement control mechanism is configured to change the displacement according to the displacement control signal value so that the flow rate of the refrigerant discharged from the compression mechanism becomes the target flow rate. Then, the capability satisfaction condition is satisfied when the estimated displacement of the discharge displacement estimated based on the flow rate of the refrigerant discharged from the compression mechanism, the number of rotations of the compression mechanism, and the blowout temperature becomes smaller than the lower limit displacement. It has become. According to this, since it is possible to prevent the cooling capacity of air in the evaporator from becoming excessive, it is possible to improve the compression efficiency while appropriately exhibiting the cooling capacity in the evaporator.
  • the controller of the variable displacement compressor is insufficient in the cooling capacity required for the air in the evaporator and the required cooling capacity required for the evaporator even if the discharge capacity is set to the lower limit capacity.
  • the intermittent operation mode is switched to the variable operation mode. According to this, since it is possible to avoid the shortage of the cooling capacity of air in the evaporator, it is possible to improve the compression efficiency while properly exhibiting the cooling capacity in the evaporator.
  • the condition where the blowout temperature becomes higher than the target evaporator temperature is continued for a predetermined period while the insufficient capacity condition controls the connection state to the connection state by the clutch. It is a condition that holds in the case.
  • condition of insufficient capacity is a condition that is satisfied when the condition where the outlet temperature is higher than the target evaporator temperature is maintained for a predetermined period, frequent switching from the intermittent operation mode to the variable operation mode is suppressed. be able to.
  • the integrated capacity value of the difference between the outlet temperature and the target evaporator temperature integrated during the period in which the clutch is in the engaged state in the underperformance condition is The condition is satisfied when the predetermined integration threshold value is exceeded.
  • the insufficient capacity condition is a condition that is satisfied when the integrated value of the difference between the outlet temperature and the target evaporator temperature in the intermittent operation mode exceeds a predetermined integration threshold, the intermittent operation mode to the variable operation mode The frequency of switching to can be suppressed.
  • the control device of the variable displacement compressor is switchable to the transition operation mode in which the displacement control mechanism controls the discharge displacement to the lower limit displacement by the displacement control mechanism in a state in which the connection state is controlled to the connection state by the clutch. It is configured. And, even if the control device sets the discharge capacity to the lower limit capacity, the variable operation mode ⁇ transition when the capacity satisfying condition satisfying the required cooling capacity required of the evaporator for the air cooling capacity in the evaporator is satisfied. Switch the operation mode in the order of operation mode ⁇ intermittent operation mode. As described above, by interposing the transition operation mode before switching from the variable operation mode to the intermittent operation mode, it is possible to suppress the frequent occurrence of switching from the variable operation mode to the intermittent operation mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

This variable displacement compressor is provided with: a compression mechanism (12); a volume control mechanism (40) for controlling the volume of discharge of a refrigerant from the compression mechanism; a clutch (MGC); and a control device (100) for controlling the volume control mechanism and the clutch to switch between operating modes. The compression mechanism is provided with a volume limiting section for limiting the lower limit of the volume of discharge, to an intermediate volume which is greater than a minimum volume and smaller than a maximum volume. The control device can switch the operating mode to a variable operation mode and an intermittent operation mode. The variable operation mode is an operating mode in which the volume of discharge is changed by the volume control mechanism in a range from the lower limit volume to the maximum volume. The intermittent operation mode is an operating mode in which the state of connection is intermittently switched to a connected state and a disconnected state by the clutch while the volume of discharge is controlled to the lower limit volume by the volume control mechanism.

Description

可変容量型圧縮機Variable displacement compressor 関連出願への相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2017年9月7日に出願された日本出願番号2017-172047号に基づくものであって、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2017-172047 filed on September 7, 2017, the contents of which are incorporated herein by reference.
 本開示は、冷媒の吐出容量を変更可能な可変容量型圧縮機に関する。 The present disclosure relates to a variable displacement compressor capable of changing the discharge capacity of a refrigerant.
 従来、車両用空調装置に適用される可変容量型圧縮機は、ハウジングに形成された制御圧室の圧力を吐出冷媒を利用して変化させることで圧縮機構の吐出容量を変更可能となっている。可変容量型圧縮機では、実測動力に対する理論動力の比で示される圧縮効率が、吐出容量が最小容量付近で低下する傾向がある。これにともない可変容量型圧縮機では、吐出容量が最小容量付近になると、成績係数(すなわち、COP:Coefficient Of Performanceの略)が低下し易い。なお、吐出容量は、冷媒の吸入および圧縮を行う作動空間の幾何学的な容積である。例えば、ピストン型の圧縮機では、ピストンストロークの上死点と下死点との間のシリンダ容積が吐出容量となる。 Conventionally, a variable displacement compressor applied to a vehicle air conditioner can change the discharge capacity of the compression mechanism by changing the pressure of the control pressure chamber formed in the housing using the discharge refrigerant. . In the variable displacement compressor, the compression efficiency indicated by the ratio of the theoretical power to the actual power tends to decrease near the minimum displacement. Accordingly, in the variable displacement compressor, the coefficient of performance (that is, the abbreviation COP (coefficient of performance)) is likely to decrease when the discharge displacement is near the minimum displacement. The discharge capacity is a geometrical volume of the working space for suction and compression of the refrigerant. For example, in a piston type compressor, the cylinder volume between the top dead center and the bottom dead center of the piston stroke is the discharge volume.
 これに対して、圧縮機に入力される容量制御信号値が所定値A以下となる場合、所定の吐出容量に対応する容量制御信号値と最小容量に対応する容量制御信号値とを所定のタイミングで切り替える断続運転を行うものが提案されている(例えば、特許文献1参照)。これにより、特許文献1では、圧縮効率が低下する最小容量付近での運転を抑えようとしている。 On the other hand, when the displacement control signal value input to the compressor becomes equal to or less than the predetermined value A, the displacement control signal value corresponding to the predetermined discharge displacement and the displacement control signal value corresponding to the minimum displacement are at a predetermined timing. What performs intermittent operation switched by is proposed (for example, refer to patent documents 1). Thereby, in patent document 1, it is going to suppress the driving | operation in the minimum capacity vicinity which compression efficiency falls.
特開2011-173491号公報JP, 2011-173491, A
 ところで、圧縮機の吐出容量は、所定の容量制御信号値によらずに変化することがある。例えば、圧縮機の吐出容量を制御する手法として、冷媒の吸入圧を狙いの圧力に制御する吸入圧制御型の容量制御弁を用いる場合、容量制御信号値が変化しなくても蒸発器の空気側の熱負荷が増減すると、冷媒の吸入圧が維持されるように吐出容量が変化する。 By the way, the discharge displacement of the compressor may change independently of the predetermined displacement control signal value. For example, in the case of using a suction control type displacement control valve that controls the suction pressure of the refrigerant to a target pressure as a method of controlling the discharge displacement of the compressor, the air of the evaporator is When the heat load on the side increases or decreases, the displacement changes so as to maintain the suction pressure of the refrigerant.
 このため、特許文献1の如く、容量制御信号値に応じて吐出容量を連続的に変化させる連続運転と間欠的に変化させる断続運転とを切り替えると、吐出容量が小さい状態で連続運転が実施されたり、吐出容量が大きい状態で断続運転が実施されたりする虞がある。このように、特許文献1の如く、容量制御信号値に応じて連続運転と断続運転とを切り替える方式では、必ずしも優れた圧縮効率を発揮できるとは限らず、改善の余地がある。 Therefore, as in Patent Document 1, when the continuous operation in which the discharge displacement is continuously changed and the intermittent operation in which the discharge displacement is changed intermittently are switched according to the volume control signal value, the continuous operation is performed in a state where the discharge displacement is small. Or, there is a possibility that intermittent operation may be performed in a state where the discharge capacity is large. As described above, in the method of switching between the continuous operation and the intermittent operation according to the capacity control signal value as in Patent Document 1, the compression efficiency can not always be exhibited excellent, and there is room for improvement.
 本開示は、最小容量での運転を回避して圧縮効率の向上を図ることが可能な可変容量型圧縮機を提供することを目的とする。 An object of the present disclosure is to provide a variable displacement compressor that can improve compression efficiency by avoiding operation with the minimum displacement.
 本開示は、冷媒の蒸発潜熱によって空調対象空間に吹き出す空気を冷却する蒸発器を備える冷凍サイクル装置に適用され、冷媒の吐出容量を最小容量から最大容量までの範囲で変更可能な可変容量型圧縮機を対象としている。 The present disclosure is applied to a refrigeration cycle apparatus including an evaporator that cools air blown out to a space to be air-conditioned by the latent heat of evaporation of the refrigerant, and is a variable displacement compression capable of changing the displacement of the refrigerant within the range from the minimum capacity to the maximum capacity. It is intended for aircraft.
 本開示の1つの観点によれば、可変容量型圧縮機は、
 エンジンにより駆動され、冷媒を圧縮して吐出する圧縮機構と、
 圧縮機構から吐出される冷媒の吐出容量を制御する容量制御機構と、
 圧縮機構とエンジンとの接続状態を、エンジンの駆動力が圧縮機構に伝達される連結状態と圧縮機構に伝達されない遮断状態とに切り替えるクラッチと、
 容量制御機構およびクラッチを制御して運転モードを切り替える制御装置と、を備える。
According to one aspect of the present disclosure, a variable displacement compressor is
A compression mechanism driven by an engine to compress and discharge the refrigerant;
A displacement control mechanism that controls the displacement of the refrigerant discharged from the compression mechanism;
A clutch that switches a state of connection between the compression mechanism and the engine between a state in which driving force of the engine is transmitted to the compression mechanism and a state in which the driving force of the engine is not transmitted to the compression mechanism;
And a controller that controls the displacement control mechanism and the clutch to switch the operation mode.
 圧縮機構には、吐出容量の下限容量を最小容量よりも大きく最大容量よりも小さい中間容量に制限する容量制限部が設けられている。そして、制御装置は、運転モードを可変運転モードおよび断続運転モードに切替可能になっている。但し、可変運転モードは、クラッチによって接続状態を連結状態に制御した状態で、容量制御機構によって吐出容量を下限容量から最大容量までの範囲で変化させることで、蒸発器から吹き出す空気の吹出温度を目標蒸発器温度に近づける運転モードである。また、断続運転モードは、容量制御機構によって吐出容量を下限容量に制御した状態で、クラッチによって接続状態を連結状態と遮断状態とに断続的に切り替えることで、吹出温度を目標蒸発器温度に近づける運転モードである。 The compression mechanism is provided with a capacity limiting portion which limits the lower limit displacement of the discharge displacement to an intermediate displacement which is larger than the minimum displacement and smaller than the maximum displacement. Then, the control device can switch the operation mode to the variable operation mode and the intermittent operation mode. However, in the variable operation mode, the discharge temperature is changed in the range from the lower limit capacity to the maximum capacity by the capacity control mechanism in a state in which the connection state is controlled to the connection state by the clutch. It is an operation mode close to the target evaporator temperature. In the intermittent operation mode, the discharge temperature is made to approach the target evaporator temperature by switching the connection state between the connection state and the disconnection state intermittently by the clutch while the discharge capacity is controlled to the lower limit capacity by the capacity control mechanism. It is an operation mode.
 本開示の可変容量型圧縮機は、圧縮機構の吐出容量の下限容量が容量制限部によって最小容量よりも大きい中間容量に制限されているので、圧縮効率の低い最小容量での圧縮機構の運転を回避することができる。 In the variable displacement compressor of the present disclosure, since the lower limit capacity of the discharge capacity of the compression mechanism is limited by the capacity limiting unit to an intermediate capacity larger than the minimum capacity, operation of the compression mechanism with the minimum capacity with low compression efficiency It can be avoided.
 ここで、単純に圧縮機構の吐出容量の下限容量を最小容量よりも大きい中間容量に制限すると、吐出容量の可変域が小さくなることで、例えば、蒸発器における空気の冷却能力が過剰になってしまうことが懸念される。 Here, simply limiting the lower limit capacity of the discharge capacity of the compression mechanism to an intermediate capacity larger than the minimum capacity reduces the variable range of the discharge capacity, for example, the air cooling capacity in the evaporator becomes excessive. It is feared that it will
 これに対して、本開示の可変容量型圧縮機は、運転モードを可変運転モードおよび断続運転モードに切替可能となっているので、運転モードの切り替えによって吐出容量の可変域が小さくなることによる生ずる不具合を回避可能となる。すなわち、本開示の可変容量型圧縮機によれば、蒸発器における冷却能力を適切に発揮させつつ、圧縮効率の向上を図ることが可能となる。 On the other hand, since the variable displacement compressor according to the present disclosure can switch the operation mode to the variable operation mode and the intermittent operation mode, the switching of the operation mode causes the variable range of the discharge capacity to be reduced. It is possible to avoid problems. That is, according to the variable displacement compressor of the present disclosure, it is possible to improve compression efficiency while appropriately exhibiting the cooling capacity of the evaporator.
第1実施形態の可変容量型圧縮機が適用された冷凍サイクル装置の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the refrigerating-cycle apparatus to which the variable displacement-type compressor of 1st Embodiment was applied. 第1実施形態の可変容量型圧縮機の内部構造を示す模式的な断面図である。It is a typical sectional view showing the internal structure of the variable displacement compressor of a 1st embodiment. 吐出容量とCOPとの関係を説明するための説明図である。It is an explanatory view for explaining the relation between discharge capacity and COP. 第1実施形態の容量制御機構の構造を示す模式図である。It is a schematic diagram which shows the structure of the capacity | capacitance control mechanism of 1st Embodiment. 第1実施形態の制御装置が実行する制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing which the control apparatus of 1st Embodiment performs. 第1実施形態の制御装置が実行する可変運転処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the variable driving | operation process which the control apparatus of 1st Embodiment performs. 最大容量時における容量制御機構の作動状態を示す模式図である。It is a schematic diagram which shows the operating state of the capacity | capacitance control mechanism in the time of largest capacity | capacitance. 最大容量時における可変容量型圧縮機の作動状態を示す模式図である。It is a schematic diagram which shows the operating state of the variable displacement compressor at maximum capacity. 下限容量時における容量制御機構の作動状態を示す模式図である。It is a schematic diagram which shows the operating state of the capacity | capacitance control mechanism in the time of a lower limit capacity | capacitance. 下限容量時における可変容量型圧縮機の作動状態を示す模式図である。It is a schematic diagram which shows the operating state of the variable displacement compressor at the time of a minimum capacity | capacitance. 吹出温度と容量制御信号値との関係を説明するための説明図である。It is an explanatory view for explaining the relation between blowing temperature and a capacity control signal value. 下限信号値の決定方法を説明するための説明図である。It is explanatory drawing for demonstrating the determination method of a lower limit signal value. 第1実施形態の制御装置が実行する断続運転処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the intermittent operation process which the control apparatus of 1st Embodiment performs. クラッチのオンオフ切替時の判定閾値を説明するための説明図である。It is an explanatory view for explaining a decision threshold at the time of on-off change of a clutch. 運転モードが切り替わる際の吹出温度、容量制御信号値、クラッチのオンオフ状態、吐出容量等の変化の一例を示すタイミングチャートである。It is a timing chart which shows an example of change of a blow-off temperature at the time of change of operation mode, a capacity control signal value, a clutch on-off state, discharge capacity, etc. 第2実施形態の容量制御機構において、給気通路が開き、抽気通路が閉じた状態を示す模式図である。The capacity | capacitance control mechanism of 2nd Embodiment WHEREIN: It is a schematic diagram which shows the state which the air supply passage opened and the extraction passage closed. 第2実施形態の容量制御機構において、給気通路および抽気通路の双方が開いた状態を示す模式図である。In a capacity control mechanism of a 2nd embodiment, it is a mimetic diagram showing the state where both the air supply passage and the extraction passage were opened. 第2実施形態の容量制御機構において、給気通路が閉じ、抽気通路が開いた状態を示す模式図である。The capacity | capacitance control mechanism of 2nd Embodiment WHEREIN: It is a schematic diagram which shows the state which the air supply passage closed and the extraction passage opened. 可変運転モードだけで運転される圧縮機を比較例、第1実施形態の圧縮機を第1実施例、第2実施形態の圧縮機を第2実施例とした際の動力を示す図である。It is a figure which shows the motive power at the time of making the compressor operated only by variable operation mode into a comparative example, the compressor of 1st Embodiment 1st Example, and making the compressor of 2nd Embodiment 2nd Example. 可変運転モードだけで運転される圧縮機を比較例、第1実施形態の圧縮機を第1実施例、第2実施形態の圧縮機を第2実施例とした際の成績係数を示す図である。It is a figure showing a coefficient of performance at the time of making a compressor operated only by variable operation mode into a comparative example, making a compressor of a 1st embodiment into a 1st example, and making a compressor of a 2nd embodiment into a 2nd example. . 第3実施形態の容量制御機構を示す模式図である。It is a schematic diagram which shows the capacity | capacitance control mechanism of 3rd Embodiment. 第4実施形態の容量制御機構を示す模式図である。It is a schematic diagram which shows the capacity control mechanism of 4th Embodiment. 第5実施形態の容量制御機構の構造を示す模式図である。It is a schematic diagram which shows the structure of the displacement control mechanism of 5th Embodiment. 第5実施形態の制御装置が実行する可変運転処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the variable driving | operation process which the control apparatus of 5th Embodiment performs. 第6実施形態の制御装置が実行する制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing which the control apparatus of 6th Embodiment performs. 第6実施形態の制御装置が実行する可変運転処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the variable driving | operation process which the control apparatus of 6th Embodiment performs. 運転モードの切替等に用いる判定閾値等を説明するための説明図である。It is an explanatory view for explaining a judgment threshold etc. which are used for switching etc. of operation mode. 第6実施形態の制御装置が実行する遷移運転処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the transition driving | operation process which the control apparatus of 6th Embodiment performs. 第6実施形態の制御装置が実行する断続運転処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the intermittent operation process which the control apparatus of 6th Embodiment performs.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the portions that are equivalent same or a matters described in the preceding embodiments are denoted by the same reference numerals, it may be omitted from the description. Further, in the embodiment, when describing the only part of the components, with respect to other parts of the components can be applied to components described in previous embodiments. The following embodiments, as long as it does not create an obstacle to the particular combination, even if not specifically stated, it is possible to combine the respective embodiments with each other partially.
 (第1実施形態)
 本実施形態について、図1~図15を参照して説明する。本実施形態では、車室内を空調するための冷凍サイクル装置1に対して、本開示の可変容量型圧縮機10(以下、単に圧縮機10と呼ぶことがある)を適用した例について説明する。なお、本実施形態では、車室内が空調対象空間に相当する。
First Embodiment
The present embodiment will be described with reference to FIGS. 1 to 15. In the present embodiment, an example will be described in which a variable displacement compressor 10 of the present disclosure (hereinafter, may be simply referred to as a compressor 10) is applied to a refrigeration cycle apparatus 1 for air conditioning a vehicle interior. In the present embodiment, the vehicle interior corresponds to the air conditioning target space.
 図1に示すように、冷凍サイクル装置1は、圧縮機10、凝縮器50、気液分離器60、膨張弁70、蒸発器80等がこの順序で冷媒配管等によって連結された閉回路で構成されいる。 As shown in FIG. 1, the refrigeration cycle apparatus 1 is constituted by a closed circuit in which a compressor 10, a condenser 50, a gas-liquid separator 60, an expansion valve 70, an evaporator 80 and the like are connected in this order by refrigerant piping and the like. It is done.
 圧縮機10は、冷媒を圧縮する圧縮機構12が車両走行用のエンジンEGにより駆動されるエンジン駆動式の圧縮機で構成されている。圧縮機10は、クラッチMGCを有している。クラッチMGCは、ベルト機構VBと共にエンジンEGの動力を圧縮機10の圧縮機構12に伝達する動力伝達装置PTを構成している。この動力伝達装置PTを介してエンジンEGから駆動力が伝達されることで圧縮機構12が回転駆動される。 The compressor 10 is an engine driven compressor in which a compression mechanism 12 for compressing a refrigerant is driven by an engine EG for traveling a vehicle. The compressor 10 has a clutch MGC. The clutch MGC constitutes a power transmission device PT that transmits the power of the engine EG to the compression mechanism 12 of the compressor 10 together with the belt mechanism VB. The compression mechanism 12 is rotationally driven by transmitting the driving force from the engine EG via the power transmission device PT.
 クラッチMGCは、圧縮機構12とエンジンEGとの接続状態を、エンジンEGの駆動力が圧縮機構12に伝達される連結状態(すなわち、オン状態)と圧縮機構12に伝達されない遮断状態(すなわち、オフ状態)とに切り替えるものである。クラッチMGCは、通電によりエンジンEGと圧縮機構12とを連結し、通電が遮断されるとエンジンEGと圧縮機構12との連結状態を解除する構成になっている。 The clutch MGC is in a connected state where the driving force of the engine EG is transmitted to the compression mechanism 12 (ie, in the on state) and in a disconnected state where the driving force of the engine EG is not transmitted to the compression mechanism Switching to the state). The clutch MGC couples the engine EG and the compression mechanism 12 by energization, and releases the coupled state of the engine EG and the compression mechanism 12 when the energization is shut off.
 圧縮機10は、後述する制御装置100からの容量制御信号値Icにより冷媒の吐出容量を最小容量から最大容量までの範囲で変更可能な外部可変容量型の圧縮機で構成されている。なお、圧縮機10の詳細については後述する。 The compressor 10 is configured of an external variable displacement compressor capable of changing the discharge displacement of the refrigerant in the range from the minimum displacement to the maximum displacement by a displacement control signal value Ic from a control device 100 described later. The details of the compressor 10 will be described later.
 圧縮機10の冷媒吐出側には、凝縮器50が接続されている。凝縮器50は、図示しないエンジンルーム内でエンジンEGと図示しないフロントグリルとの間に配置されており、圧縮機10から吐出された冷媒と外気とを熱交換させて冷媒を放熱させる放熱器である。 A condenser 50 is connected to the refrigerant discharge side of the compressor 10. The condenser 50 is disposed between the engine EG and the front grille (not shown) in the engine room (not shown), and is a radiator for heat exchange between the refrigerant discharged from the compressor 10 and the outside air to dissipate the refrigerant. is there.
 凝縮器50の冷媒出口側には、気液分離器60が接続されている。気液分離器60は、凝縮器50から流出した冷媒の気液を分離し、分離した液相冷媒を導出する構成になっている。 A gas-liquid separator 60 is connected to the refrigerant outlet side of the condenser 50. The gas-liquid separator 60 is configured to separate the gas-liquid of the refrigerant flowing out of the condenser 50 and to lead out the separated liquid-phase refrigerant.
 気液分離器60の液相冷媒出口側には、膨張弁70が接続されている。膨張弁70は、気液分離器60で分離された液相冷媒を減圧膨張させる減圧機器である。膨張弁70は、温度式膨張弁で構成されており、蒸発器80の冷媒出口側と圧縮機10の冷媒吸入側との間の冷媒の温度を検知する感温部72を有している。膨張弁70は、圧縮機10に吸入される冷媒の温度および圧力に基づいて圧縮機10に吸入される冷媒の過熱度が所定値となるように弁開度を調整する構成になっている。 An expansion valve 70 is connected to the liquid-phase refrigerant outlet side of the gas-liquid separator 60. The expansion valve 70 is a decompression device that decompresses and expands the liquid-phase refrigerant separated by the gas-liquid separator 60. The expansion valve 70 is a thermal expansion valve, and includes a temperature sensing unit 72 that detects the temperature of the refrigerant between the refrigerant outlet side of the evaporator 80 and the refrigerant suction side of the compressor 10. The expansion valve 70 is configured to adjust the valve opening based on the temperature and pressure of the refrigerant drawn into the compressor 10 so that the degree of superheat of the refrigerant drawn into the compressor 10 becomes a predetermined value.
 膨張弁70の冷媒出口側には、蒸発器80が接続されている。蒸発器80は、空調ユニット90の空調ケース92内に配置されている。蒸発器80は、膨張弁70で減圧膨張された冷媒の蒸発潜熱により空調ケース92内を流れる空気、すなわち、車室内へ吹き出す空気を冷却する。 An evaporator 80 is connected to the refrigerant outlet side of the expansion valve 70. The evaporator 80 is disposed in the air conditioning case 92 of the air conditioning unit 90. The evaporator 80 cools the air flowing in the air conditioning case 92, that is, the air blown into the vehicle compartment, by the latent heat of evaporation of the refrigerant decompressed and expanded by the expansion valve 70.
 ここで、空調ケース92内には、送風機94が配置されている。送風機94によって、図示しない内外気切替箱から導入された外気または内気が蒸発器80に供給される。蒸発器80に供給された空気は、蒸発器80を通過した後、図示しないヒータユニットを通過して車室内へ吹き出される。また、空調ケース92内には、蒸発器80を通過直後の空気の吹出温度TEを検出する蒸発器温度センサ104が設けられている。 Here, a blower 94 is disposed in the air conditioning case 92. Outside air or inside air introduced from an inside / outside air switching box (not shown) is supplied to the evaporator 80 by the blower 94. The air supplied to the evaporator 80 passes through the evaporator 80 and then blows out into the vehicle compartment through a heater unit (not shown). Further, in the air conditioning case 92, an evaporator temperature sensor 104 is provided which detects the blowout temperature TE of air immediately after passing through the evaporator 80.
 蒸発器80の冷媒出口側には、圧縮機10が接続されている。蒸発器80にて蒸発した冷媒は、再び圧縮機10にて吸入される。このように、冷凍サイクル装置1では、圧縮機10から吐出された冷媒が、凝縮器50、気液分離器60、膨張弁70、蒸発器80、圧縮機10の順に循環するようになっている。 The compressor 10 is connected to the refrigerant outlet side of the evaporator 80. The refrigerant evaporated by the evaporator 80 is again sucked by the compressor 10. As described above, in the refrigeration cycle apparatus 1, the refrigerant discharged from the compressor 10 is circulated in the order of the condenser 50, the gas-liquid separator 60, the expansion valve 70, the evaporator 80, and the compressor 10. .
 次に、本実施形態の圧縮機10の詳細について図2、図3を参照して説明する。図2に示すように、圧縮機10は、冷媒を圧縮して吐出する圧縮機構12を備えている。 Next, details of the compressor 10 according to the present embodiment will be described with reference to FIGS. 2 and 3. As shown in FIG. 2, the compressor 10 includes a compression mechanism 12 that compresses and discharges the refrigerant.
 圧縮機構12は、シリンダブロック142、シリンダブロック142の一端側に固定されたフロントハウジング144、シリンダブロック142の他端側にバルブプレート16を介して固定されたリアハウジング146を有している。本実施形態では、シリンダブロック142、フロントハウジング144、リアハウジング146が圧縮機構12のハウジング14を構成している。 The compression mechanism 12 has a cylinder block 142, a front housing 144 fixed to one end of the cylinder block 142, and a rear housing 146 fixed to the other end of the cylinder block 142 via a valve plate 16. In the present embodiment, the cylinder block 142, the front housing 144, and the rear housing 146 constitute the housing 14 of the compression mechanism 12.
 ハウジング14のうちシリンダブロック142とフロントハウジング144とで囲まれた領域には、圧縮機10の吐出容量を変化させるための制御圧室18が区画形成されている。そして、ハウジング14には、制御圧室18の中央付近を貫通するように、圧縮機構12の回転軸20が配置されている。 A control pressure chamber 18 for changing the displacement of the compressor 10 is defined in a region of the housing 14 surrounded by the cylinder block 142 and the front housing 144. The rotary shaft 20 of the compression mechanism 12 is disposed in the housing 14 so as to penetrate the vicinity of the center of the control pressure chamber 18.
 回転軸20は、一端側の先端部が動力伝達装置PTに接続されている。回転軸20は、一端側の周面がフロントハウジング144に形成された第1軸穴144aに配置された第1ラジアル軸受144bによって回転可能に支持されている。また、回転軸20は、他端側の部位が、シリンダブロック142に形成された第2軸穴142aに配置された第2ラジアル軸受142bによって回転可能に支持されている。なお、図示しないが回転軸20と第1軸穴144aとの間には、制御圧室18からの冷媒漏れを防ぐための軸封機構が設けられている。 The rotating shaft 20 has a tip end on one end side connected to the power transmission device PT. The rotating shaft 20 is rotatably supported by a first radial bearing 144 b disposed in a first shaft hole 144 a formed in the front housing 144 at a circumferential surface on one end side. The rotary shaft 20 is rotatably supported at its other end by a second radial bearing 142 b disposed in a second shaft hole 142 a formed in the cylinder block 142. Although not shown, a shaft seal mechanism for preventing refrigerant leakage from the control pressure chamber 18 is provided between the rotary shaft 20 and the first shaft hole 144a.
 回転軸20は、制御圧室18においてラグプレート22に連結されている。ラグプレート22は、回転軸20と一体に回転する回転体である。ラグプレート22は、フロントハウジング144の内壁面に設けられたスラスト軸受144cによって支持されている。 The rotating shaft 20 is connected to the lug plate 22 in the control pressure chamber 18. The lug plate 22 is a rotating body that rotates integrally with the rotating shaft 20. The lug plate 22 is supported by a thrust bearing 144 c provided on the inner wall surface of the front housing 144.
 また、制御圧室18には、斜板24が収容されている。斜板24は、その中央部分に貫通穴242が設けられ、貫通穴242に回転軸20が挿通されている。斜板24とラグプレート22との間には、ヒンジ機構26が設けられている。斜板24は、ヒンジ機構26を介してラグプレート22に連結されることで、回転軸20およびラグプレート22と同期して回転する構成となっている。また、斜板24は、回転軸20の軸方向DRaxへのスライド移動にともなって回転軸20に対する傾斜角度が変化する構成になっている。 Further, the swash plate 24 is accommodated in the control pressure chamber 18. A through hole 242 is provided at a central portion of the swash plate 24, and the rotation shaft 20 is inserted through the through hole 242. A hinge mechanism 26 is provided between the swash plate 24 and the lug plate 22. The swash plate 24 is connected to the lug plate 22 via the hinge mechanism 26 so that the swash plate 24 rotates in synchronization with the rotation shaft 20 and the lug plate 22. Further, the swash plate 24 is configured such that the inclination angle with respect to the rotation shaft 20 is changed along with the sliding movement of the rotation shaft 20 in the axial direction DRax.
 回転軸20におけるラグプレート22と斜板24との間には、コイルスプリング25が巻装されている。斜板24は、コイルスプリング25の付勢力によって、その傾斜角度が減少するように押圧されている。 A coil spring 25 is wound between the lug plate 22 and the swash plate 24 in the rotation shaft 20. The swash plate 24 is pressed by the biasing force of the coil spring 25 so that its inclination angle is reduced.
 また、斜板24とシリンダブロック142との間には、シリンダブロック142の内壁面から斜板24に向かって突き出る筒状部材27が設けられている。この筒状部材27は、斜板24に当接することで斜板24の最小傾斜角度を規制するものである。 Further, a cylindrical member 27 is provided between the swash plate 24 and the cylinder block 142 so as to protrude toward the swash plate 24 from the inner wall surface of the cylinder block 142. The cylindrical member 27 restricts the minimum inclination angle of the swash plate 24 by contacting the swash plate 24.
 シリンダブロック142には、複数のシリンダボア148が回転軸20を取り囲むように貫通形成されている。このシリンダボア148には、片頭型のピストン29が回転軸20の軸方向DRaxへ往復動可能に収容されている。 A plurality of cylinder bores 148 are formed through the cylinder block 142 so as to surround the rotation shaft 20. A single-headed piston 29 is accommodated in the cylinder bore 148 so as to be capable of reciprocating in the axial direction DRax of the rotating shaft 20.
 シリンダボア148の軸方向両側の開口は、バルブプレート16およびピストン29によって閉塞されている。シリンダボア148内には、ピストン29の軸方向DRaxへの移動に応じて容積変化する圧縮室28が区画されている。ピストン29は、シュー30を介して斜板24の外周部に係留されている。そして、圧縮機構12の回転軸20の回転にともなう斜板24の回転運動が、シュー30を介してピストン29の往復直線運動に変換される。 Openings on both axial sides of the cylinder bore 148 are closed by the valve plate 16 and the piston 29. In the cylinder bore 148, a compression chamber 28 whose volume changes in accordance with the movement of the piston 29 in the axial direction DRax is defined. The piston 29 is anchored to the outer peripheral portion of the swash plate 24 via a shoe 30. Then, the rotational movement of the swash plate 24 along with the rotation of the rotational shaft 20 of the compression mechanism 12 is converted to the reciprocating linear movement of the piston 29 via the shoe 30.
 リアハウジング146には、バルブプレート16に対向する部位に吸入室32と吐出室34が区画形成されている。そして、バルブプレート16には、吸入室32とシリンダボア148とを連通させる吸入ポート162、吸入ポート162を開閉する吸入弁164が形成されている。また、バルブプレート16には、吐出室34とシリンダボア148とを連通させる吐出ポート166、吐出ポート166を開閉する吐出弁168が形成されている。 A suction chamber 32 and a discharge chamber 34 are defined in the rear housing 146 at a position facing the valve plate 16. The valve plate 16 is provided with a suction port 162 for communicating the suction chamber 32 with the cylinder bore 148, and a suction valve 164 for opening and closing the suction port 162. Further, the valve plate 16 is formed with a discharge port 166 for communicating the discharge chamber 34 with the cylinder bore 148, and a discharge valve 168 for opening and closing the discharge port 166.
 また、図示しないがリアハウジング146には、冷凍サイクル装置1における蒸発器80の冷媒流れ下流側と吸入室32とを連通させる吸入通路が形成されている。さらに、リアハウジング146には、凝縮器50の冷媒流れ上流側と吐出室34とを連通させる吐出通路が形成されている。 Although not shown, a suction passage is formed in the rear housing 146 for communicating the refrigerant flow downstream side of the evaporator 80 and the suction chamber 32 in the refrigeration cycle apparatus 1. Further, the rear housing 146 is formed with a discharge passage for communicating the refrigerant flow upstream side of the condenser 50 with the discharge chamber 34.
 図示しない吸入通路を介して吸入室32に流入した冷媒は、ピストン29の上死点位置から下死点側への移動により吸入ポート162および吸入弁164を介して圧縮室28に吸入される。また、圧縮室28に吸入された冷媒は、ピストン29の下死点位置から上死点側への移動により所定圧力まで圧縮され、吐出ポート166および吐出弁168を介して吐出室34に吐出される。そして、吐出室34に吐出された冷媒は、図示しない吐出通路を介して凝縮器50に流入する。 The refrigerant flowing into the suction chamber 32 through the suction passage (not shown) is drawn into the compression chamber 28 through the suction port 162 and the suction valve 164 by the movement from the top dead center position to the bottom dead center side of the piston 29. Further, the refrigerant drawn into the compression chamber 28 is compressed to a predetermined pressure by the movement from the bottom dead center position to the top dead center side of the piston 29, and is discharged into the discharge chamber 34 via the discharge port 166 and the discharge valve 168. Ru. Then, the refrigerant discharged into the discharge chamber 34 flows into the condenser 50 through a discharge passage (not shown).
 ここで、斜板24の傾斜角度は、斜板24の遠心力に起因する回転運動のモーメント、ピストン29の往復慣性力によるモーメント、冷媒の圧力によるモーメント等の相互バランスに基づき決定される。冷媒の圧力によるモーメントとは、圧縮室28内の圧力とピストン29の背面に作用する制御圧室18の圧力との相関に基づいて発生するモーメントであり、制御圧室18の圧力変動に応じて斜板24の傾斜角度が変化する。そして、圧縮機構12は、斜板24の傾斜角度が大きくなるともなって吐出容量が増加し、斜板24の傾斜角度が小さくなるにともなって吐出容量が減少する。 Here, the inclination angle of the swash plate 24 is determined on the basis of the mutual balance of the moment of the rotational movement due to the centrifugal force of the swash plate 24, the moment due to the reciprocal inertia force of the piston 29, the moment due to the pressure of the refrigerant, and the like. The moment due to the pressure of the refrigerant is a moment generated on the basis of the correlation between the pressure in the compression chamber 28 and the pressure in the control pressure chamber 18 acting on the back surface of the piston 29, and corresponds to the pressure fluctuation in the control pressure chamber 18. The inclination angle of the swash plate 24 changes. In the compression mechanism 12, the discharge capacity increases as the inclination angle of the swash plate 24 increases, and the discharge capacity decreases as the inclination angle of the swash plate 24 decreases.
 このように構成される圧縮機構12は、その吐出容量が容量制御機構40によって制御される。すなわち、本実施形態の圧縮機10は、容量制御機構40によって制御圧室18の圧力を制御することで、斜板24の傾斜角度を変更して吐出容量を変化させている。 The discharge capacity of the compression mechanism 12 configured as described above is controlled by the capacity control mechanism 40. That is, in the compressor 10 of the present embodiment, the displacement control mechanism 40 controls the pressure of the control pressure chamber 18 to change the inclination angle of the swash plate 24 to change the discharge capacity.
 本実施形態のハウジング14には、制御圧室18と吐出室34とを連通させる給気通路140、および吸入室32と制御圧室18とを連通させる抽気通路141が形成されている。 In the housing 14 of the present embodiment, an air supply passage 140 communicating the control pressure chamber 18 with the discharge chamber 34 and a bleed passage 141 communicating the suction chamber 32 with the control pressure chamber 18 are formed.
 容量制御機構40は、給気通路140の通路開度を調整する開度調整弁42および抽気通路141の通路開度を絞る固定絞り44を有している。容量制御機構40は、開度調整弁42によって給気通路140の通路開度を調整して制御圧室18の圧力を制御することで、圧縮機構12の吐出容量を変化させる構成になっている。本実施形態の容量制御機構40は、圧縮機構12に吸入される冷媒の圧力Psが目標圧力Psoとなるように給気通路140の通路開度が調整される構成になっている。開度調整弁42は、リアハウジング146に取り付けられている。なお、容量制御機構40の開度調整弁42の構造については後述する。 The displacement control mechanism 40 has an opening adjustment valve 42 for adjusting the passage opening of the air supply passage 140 and a fixed throttle 44 for narrowing the passage opening of the bleed passage 141. The displacement control mechanism 40 is configured to change the displacement of the compression mechanism 12 by adjusting the passage opening degree of the air supply passage 140 by the opening degree adjustment valve 42 and controlling the pressure of the control pressure chamber 18. . The displacement control mechanism 40 of the present embodiment is configured such that the opening degree of the air supply passage 140 is adjusted so that the pressure Ps of the refrigerant drawn into the compression mechanism 12 becomes the target pressure Pso. The opening adjustment valve 42 is attached to the rear housing 146. The structure of the opening adjustment valve 42 of the displacement control mechanism 40 will be described later.
 ここで、図3は、圧縮機構12の吐出容量と成績係数(すなわち、COP)との関係を説明するための説明図である。図3の横軸は、吐出容量を示しており、吐出容量が最小容量となる状態をゼロ%で示し、吐出容量が最大容量となる状態を100%で示している。図3の縦軸は、年間での使用を想定し、出現し得る熱負荷および圧縮機10の回転数の条件と当該条件の出現頻度を考慮した年間成績係数を示している。 Here, FIG. 3 is an explanatory view for explaining the relationship between the discharge capacity of the compression mechanism 12 and the coefficient of performance (that is, the COP). The horizontal axis of FIG. 3 indicates the discharge capacity, and indicates the state in which the discharge capacity is the minimum capacity at zero percent and the state in which the discharge capacity is the maximum capacity at 100%. The vertical axis of FIG. 3 indicates an annual coefficient of performance that takes into account the yearly use and considers the condition of the heat load and the rotational speed of the compressor 10 that may appear and the frequency of appearance of the condition.
 図3に示すように、年間成績係数は、吐出容量が略30%付近にピークを有しており、最小容量付近で低下する傾向がある。主要因としては、吐出容量を変化させるために吐出室34の冷媒を制御ガスとして制御圧室18に供給することにある。制御ガスは、吐出室34から給気通路140を介して制御圧室18に供給された後、抽気通路141を介して吸入室32に流れて再び圧縮室28で圧縮される。つまり、制御ガスは、圧縮機構12のハウジング14内で循環する。そして、圧縮機構12における制御ガスを圧縮した仕事分は、空気の冷却に寄与しない余分な圧縮仕事になる。 As shown in FIG. 3, the annual coefficient of performance has a peak at about 30% of the discharge capacity, and tends to decrease near the minimum capacity. The main factor is that the refrigerant in the discharge chamber 34 is supplied to the control pressure chamber 18 as a control gas in order to change the discharge capacity. The control gas is supplied from the discharge chamber 34 to the control pressure chamber 18 via the air supply passage 140, then flows to the suction chamber 32 via the bleed passage 141 and is compressed again in the compression chamber 28. That is, the control gas circulates within the housing 14 of the compression mechanism 12. And the work which compressed control gas in compression mechanism 12 turns into extra compression work which does not contribute to cooling of air.
 そして、吐出容量を低下させる際には、制御圧室18の圧力を上昇させるために制御ガス量が増加するとともに、圧縮機構12からの吐出冷媒量に対する制御ガス量の割合が増える。これにより、圧縮機構12は、吐出容量が最小容量付近においてハウジング14内で循環する制御ガスが増加することで圧縮効率が低下し、当該圧縮効率の低下にともなって年間成績係数が低下する。 Then, when decreasing the discharge capacity, the amount of control gas increases to increase the pressure of the control pressure chamber 18, and the ratio of the amount of control gas to the amount of refrigerant discharged from the compression mechanism 12 increases. As a result, in the compression mechanism 12, the compression efficiency decreases due to the increase of the control gas circulating in the housing 14 near the minimum displacement, and the annual coefficient of performance decreases with the decrease of the compression efficiency.
 これらを考慮して、本実施形態の圧縮機構12は、成績係数が低下する最小容量で稼働しないように、筒状部材27によって斜板24の最小傾斜角度を規制している。本実施形態では、筒状部材27が圧縮機構12の吐出容量の下限容量を最小容量よりも大きく最大容量よりも小さい中間容量に制限する容量制限部を構成している。 Taking these into consideration, the compression mechanism 12 of the present embodiment regulates the minimum inclination angle of the swash plate 24 by the cylindrical member 27 so that the compression mechanism 12 does not operate at the minimum volume where the coefficient of performance decreases. In the present embodiment, the cylindrical member 27 constitutes a capacity limiting portion which limits the lower limit displacement of the discharge capacity of the compression mechanism 12 to an intermediate capacity which is larger than the minimum displacement and smaller than the maximum displacement.
 本実施形態の筒状部材27は、吐出容量の下限容量が、最小容量から最大容量までの範囲で圧縮機構12を運転させた際に成績係数が最小容量に設定した場合よりも大きくなる容量となるように、斜板24の最小傾斜角度を規制する構成となっている。具体的には、吐出容量の下限容量は、年間成績係数がピークとなる略30%が含まれるように、吐出容量が10%~50%となる範囲に設定することが望ましい。 The cylindrical member 27 of the present embodiment has a capacity such that the lower limit capacity of the discharge capacity is larger than when the coefficient of performance is set to the minimum capacity when the compression mechanism 12 is operated in the range from the minimum capacity to the maximum capacity. As a result, the minimum inclination angle of the swash plate 24 is regulated. Specifically, it is desirable to set the lower limit displacement of the discharge displacement in the range of 10% to 50%, so that approximately 30% at which the annual coefficient of performance reaches a peak is included.
 続いて、本実施形態の容量制御機構40の開度調整弁42の構造について図4を参照して説明する。図4に示すように、開度調整弁42は、給気通路140の通路開度を調整する弁体421、吸入室32の圧力に応じた力F1を発生する吸入圧応動機構422、吸入圧応動機構422の力F1に対向する電磁力F2を発生する電磁機構423を有している。開度調整弁42は、吸入室32の圧力に応じた力F1と電磁力F2との釣り合いにより弁体421の位置を変化させるようになっている。 Subsequently, the structure of the opening adjustment valve 42 of the displacement control mechanism 40 of the present embodiment will be described with reference to FIG. As shown in FIG. 4, the opening adjustment valve 42 has a valve body 421 for adjusting the opening degree of the air supply passage 140, a suction pressure response mechanism 422 for generating a force F1 corresponding to the pressure of the suction chamber 32, and a suction pressure An electromagnetic mechanism 423 that generates an electromagnetic force F2 opposed to the force F1 of the response mechanism 422 is provided. The opening adjustment valve 42 changes the position of the valve body 421 by balancing the force F1 and the electromagnetic force F2 according to the pressure in the suction chamber 32.
 吸入圧応動機構422は、バルブハウジング420内に形成された感圧室420aに収容され、弁体421の移動方向に弾性的に伸縮可能なベローズ422aを有している。感圧室420aには、吸入室32の圧力が圧力導入通路420bを介して導入される。ベローズ422aは、感圧室420aの内壁面に固定される部位が固定端422bを構成し、固定端422bの反対側の部位が弾性的な伸縮により変位する可動端422cを構成する。そして、ベローズ422aの可動端422cには、プッシュロッド422dが一体に連結されている。なお、図示しないが、ベローズ422aの内部には、ベローズ422aを伸長方向に押圧するバネが設けられている。 The suction pressure response mechanism 422 is accommodated in a pressure sensing chamber 420 a formed in the valve housing 420, and has a bellows 422 a that can be elastically expanded and contracted in the moving direction of the valve body 421. The pressure of the suction chamber 32 is introduced into the pressure sensing chamber 420a via the pressure introducing passage 420b. In the bellows 422a, a portion fixed to the inner wall surface of the pressure sensing chamber 420a constitutes a fixed end 422b, and a portion opposite to the fixed end 422b constitutes a movable end 422c displaced by elastic expansion and contraction. A push rod 422d is integrally connected to the movable end 422c of the bellows 422a. Although not shown, a spring for pressing the bellows 422a in the extending direction is provided inside the bellows 422a.
 一方、電磁機構423は、電磁コイル423aを有し、電磁コイル423aの内周部にプランジャ423bが軸方向に変位可能に配置されている。プランジャ423bの端部には、可動鉄心423cが一体に構成され、可動鉄心423cに固定鉄心423dが対向配置される。そして、電磁機構423は、可動鉄心423cと固定鉄心423dとの間に電磁コイル423aに供給される容量制御信号値Ic(例えば、制御電流)に応じた電磁力F2が発生する構成となっている。 On the other hand, the electromagnetic mechanism 423 has an electromagnetic coil 423a, and a plunger 423b is disposed on an inner peripheral portion of the electromagnetic coil 423a so as to be axially displaceable. A movable core 423c is integrally formed at an end of the plunger 423b, and a fixed core 423d is disposed opposite to the movable core 423c. The electromagnetic mechanism 423 is configured to generate an electromagnetic force F2 between the movable iron core 423c and the fixed iron core 423d according to the capacitance control signal value Ic (for example, control current) supplied to the electromagnetic coil 423a. .
 また、プランジャ423bには、可動鉄心423cとは反対側の端部に弁体421が一体に形成されている。さらに、弁体421には、プッシュロッド422dが一体に連結されている。本実施形態のプランジャ423b、弁体421、およびプッシュロッド422dは、一体に構成され、プランジャ423bの軸方向に一体に変位する。 Further, a valve body 421 is integrally formed on the end of the plunger 423b opposite to the movable core 423c. Further, a push rod 422 d is integrally connected to the valve body 421. The plunger 423b, the valve body 421, and the push rod 422d of this embodiment are integrally configured, and are integrally displaced in the axial direction of the plunger 423b.
 開度調整弁42は、電磁力F2が一定となる場合、吸入室32の圧力が高くなるにともなってベローズ422aが縮小し、これにともなって弁体421が給気通路140の通路開度を小さくする方向に変位する。これにより、制御圧室18に供給される冷媒量が減少することで制御圧室18の圧力が低下する。 When the electromagnetic force F2 becomes constant, the opening adjustment valve 42 contracts the bellows 422a as the pressure in the suction chamber 32 increases, and the valve body 421 opens the passage opening of the air supply passage 140 accordingly. Displace in the direction to make smaller. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is reduced, whereby the pressure of the control pressure chamber 18 is reduced.
 一方、開度調整弁42は、電磁力F2が一定となる場合、吸入室32の圧力が低くなるにともなってベローズ422aが伸長し、これにともなって弁体421が給気通路140の通路開度を大きくする方向に変位する。これにより、制御圧室18に供給される冷媒量が増加することで制御圧室18の圧力が上昇する。 On the other hand, in the opening adjustment valve 42, when the electromagnetic force F2 becomes constant, the bellows 422a extends as the pressure in the suction chamber 32 decreases, and the valve body 421 opens the passage of the air supply passage 140 accordingly. Displace in the direction to increase the degree. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is increased, whereby the pressure of the control pressure chamber 18 is increased.
 ここで、給気通路140の通路開度は、吸入室32の圧力に応じた力F1、電磁力F2等のバランスによって決まる。すなわち、電磁コイル423aに供給される容量制御信号値が増加して電磁力F2が吸入室32の圧力に応じた力F1よりも大きくなると、弁体421は、給気通路140の通路開度を小さくする方向に変位する。これにより、制御圧室18に供給される冷媒量が減少することで制御圧室18の圧力が低下する。この結果、斜板24の傾斜角度が大きくなることで、吐出容量が大きくなる。 Here, the opening degree of the air supply passage 140 is determined by the balance of the force F1 and the electromagnetic force F2 according to the pressure of the suction chamber 32. That is, when the displacement control signal value supplied to the electromagnetic coil 423a increases and the electromagnetic force F2 becomes larger than the force F1 corresponding to the pressure in the suction chamber 32, the valve body 421 sets the passage opening degree of the air supply passage 140 Displace in the direction to make smaller. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is reduced, whereby the pressure of the control pressure chamber 18 is reduced. As a result, when the inclination angle of the swash plate 24 is increased, the discharge displacement is increased.
 一方、電磁コイル423aに供給される容量制御信号値Icが減少して電磁力F2が吸入室32の圧力に応じた力F1よりも小さくなると、弁体421は、給気通路140の通路開度を大きくする方向に変位する。これにより、制御圧室18に供給される冷媒量が増加することで制御圧室18の圧力が上昇する。この結果、斜板24の傾斜角度が小さくなることで、吐出容量が小さくなる。 On the other hand, when the displacement control signal value Ic supplied to the electromagnetic coil 423a decreases and the electromagnetic force F2 becomes smaller than the force F1 corresponding to the pressure in the suction chamber 32, the valve body 421 opens the passage of the air supply passage 140. Displace in the direction to make As a result, the amount of refrigerant supplied to the control pressure chamber 18 is increased, whereby the pressure of the control pressure chamber 18 is increased. As a result, as the inclination angle of the swash plate 24 becomes smaller, the discharge displacement becomes smaller.
 このように構成される容量制御機構40は、給気通路140の通路開度が吸入室32の圧力に応じた力F1、電磁力F2等のバランスによって決まる構成になるため、圧縮機構12の吐出容量が容量制御信号値Icによらずに変化することがある。 The displacement control mechanism 40 configured in this manner has a configuration in which the opening degree of the air supply passage 140 is determined by the balance of the force F1, the electromagnetic force F2, etc. according to the pressure of the suction chamber 32. The capacitance may change independently of the capacitance control signal value Ic.
 次に、本実施形態の制御装置100の概要を説明する。図1に示す制御装置100は、プロセッサ、メモリ等を含む周知のマイクロコンピュータおよびその周辺回路から構成される。なお、メモリは、非遷移的実体的記憶媒体で構成される。 Next, an outline of the control device 100 of the present embodiment will be described. The control device 100 shown in FIG. 1 is composed of a known microcomputer including a processor, a memory and the like and its peripheral circuit. The memory is configured of a non-transitional tangible storage medium.
 制御装置100は、空調用センサ群101~105からのセンサ検出信号、車室内前部の計器盤付近に配置される空調操作パネル110に設けられた各種空調操作スイッチから操作信号に基づいて、圧縮機10を含む各種機器の制御を行なうものである。また、制御装置100は、メモリに空調制御機器等の制御プログラム等を記憶しており、その制御プログラム等に基づいて各種演算処理を行う。 The control device 100 compresses the sensor detection signals from the air conditioning sensor groups 101 to 105 and various control signals from the various air conditioning operation switches provided on the air conditioning operation panel 110 disposed near the instrument panel in the front of the vehicle compartment. It controls various devices including the machine 10. Further, the control device 100 stores a control program and the like of an air conditioning control device and the like in a memory, and performs various arithmetic processing based on the control program and the like.
 空調用センサ群としては、外気温Tamを検出する外気センサ101、内気温Trを検出する内気センサ102、車室内に入射する日射量Tsを検出する日射センサ103、上述した蒸発器温度センサ104、圧縮機回転数センサ105等が設けられる。なお、蒸発器温度センサ104としては、例えば、蒸発器80の熱交換フィンの温度を吹出温度TEとして検出する温度センサを採用することができる。 As the air conditioning sensor group, an outside air sensor 101 for detecting the outside air temperature Tam, an inside air sensor 102 for detecting the inside air temperature Tr, a sunshine sensor 103 for detecting the amount of solar radiation Ts entering the vehicle interior, the above-mentioned evaporator temperature sensor 104, A compressor rotational speed sensor 105 and the like are provided. As evaporator temperature sensor 104, a temperature sensor which detects temperature of a heat exchange fin of evaporator 80 as blow-off temperature TE, for example can be adopted.
 圧縮機回転数センサ105は、圧縮機10の回転数Neを検出するセンサである。圧縮機回転数センサ105は、圧縮機10の回転数Neを直接検出するものに限らず、例えば、エンジン回転数から圧縮機10の回転数Neを算出する構成になっていてもよい。 The compressor rotational speed sensor 105 is a sensor that detects the rotational speed Ne of the compressor 10. The compressor rotation number sensor 105 is not limited to one that directly detects the rotation number Ne of the compressor 10, and may be configured to calculate the rotation number Ne of the compressor 10 from the engine rotation number, for example.
 空調操作パネル110に設けられた各種空調操作スイッチとして、圧縮機10の作動指令信号を出すエアコンスイッチ、車室内の設定温度Tsetを設定する温度設定手段をなす温度設定スイッチ等が設けられている。 As various air conditioning operation switches provided on the air conditioning operation panel 110, an air conditioner switch for issuing an operation command signal of the compressor 10, a temperature setting switch serving as temperature setting means for setting a set temperature Tset of a vehicle compartment, and the like are provided.
 また、制御装置100の出力側には、周辺回路である各種アクチュエータ駆動用の駆動回路(図示せず)を介して、クラッチMGC、容量制御機構40等が接続されている。そして、当該各種機器は、制御装置100の出力信号により制御される。 Further, a clutch MGC, a displacement control mechanism 40 and the like are connected to an output side of the control device 100 via drive circuits (not shown) for driving various actuators which are peripheral circuits. The various devices are controlled by the output signal of the control device 100.
 次に、本実施形態の圧縮機10の作動について説明する。本実施形態の圧縮機10は、圧縮効率が低下する最小容量での運転を回避するために、吐出容量の下限容量が最小容量でなく中間容量に設定されている。 Next, the operation of the compressor 10 of the present embodiment will be described. In the compressor 10 of the present embodiment, the lower limit displacement of the discharge displacement is set not to the minimum displacement but to the intermediate displacement in order to avoid the operation at the minimum displacement at which the compression efficiency decreases.
 ここで、単純に吐出容量の下限容量を最小容量よりも大きい中間容量に制限すると、吐出容量の可変域が小さくなることで、例えば、蒸発器80における空気の冷却能力が過剰になってしまうことが懸念される。 Here, if the lower limit capacity of the discharge capacity is simply limited to an intermediate capacity larger than the minimum capacity, the variable range of the discharge capacity becomes smaller, for example, the air cooling capacity in the evaporator 80 becomes excessive. Are concerned.
 そこで、本実施形態の圧縮機10は、制御装置100によって、圧縮機構12の運転モードを可変運転モードおよび断続運転モードに切り替える構成になっている。可変運転モードは、クラッチMGCによってエンジンEGと圧縮機構12とを連結状態に制御した状態で、容量制御機構40によって吐出容量を下限容量から最大容量までの範囲で変化させる運転モードである。また、断続運転モードは、容量制御機構40によって吐出容量を下限容量に制御した状態で、クラッチMGCによってエンジンEGと圧縮機構12とを連結状態と遮断状態とに断続的に切り替える運転モードである。 Therefore, the compressor 10 of the present embodiment is configured to switch the operation mode of the compression mechanism 12 to the variable operation mode and the intermittent operation mode by the control device 100. The variable operation mode is an operation mode in which the displacement control mechanism 40 changes the discharge displacement in the range from the lower limit displacement to the maximum displacement with the clutch MGC controlling the engine EG and the compression mechanism 12 in a connected state. The intermittent operation mode is an operation mode in which the engine EG and the compression mechanism 12 are intermittently switched between the connected state and the disconnected state by the clutch MGC while the displacement control mechanism 40 controls the discharge displacement to the lower limit displacement.
 以下、制御装置100が実行する運転モードを切り替える制御処理について、図5等を参照して説明する。なお、図5に示す制御処理の各制御ステップは、制御装置100が実行する各種機能を実現する機能実現部を構成している。 Hereinafter, control processing for switching the operation mode performed by the control device 100 will be described with reference to FIG. 5 and the like. Each control step of the control process shown in FIG. 5 constitutes a function implementing unit that implements various functions executed by the control device 100.
 制御装置100は、エンジンEGの稼働中にエアコンスイッチがオンされると、クラッチMGCをオン状態に制御し、且つ、運転モードの初期設定を可変運転モードとした後に図5に示す制御処理を実行する。なお、図5に示す制御処理は、所定の周期で制御装置100によって実行される。 When the air conditioner switch is turned on while the engine EG is in operation, control device 100 controls clutch MGC to the on state and executes the control process shown in FIG. 5 after setting the initial setting of the operation mode to the variable operation mode. Do. The control process shown in FIG. 5 is executed by the control device 100 at a predetermined cycle.
 図5に示すように、制御装置100は、ステップS10にて、入力側に接続された空調用センサ群101~105や空調操作パネル110からの各種信号を読み込む。続いて、制御装置100は、ステップS20にて、車室内へ吹き出す空気の目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内を温度設定スイッチの設定温度Tsetに維持するために必要な吹出温度であり、以下の数式F1に基づいて算出される。 As shown in FIG. 5, in step S10, the control device 100 reads various signals from the air conditioning sensor groups 101 to 105 connected to the input side and the air conditioning operation panel 110. Subsequently, in step S20, the control device 100 calculates a target blowout temperature TAO of air blown into the vehicle compartment. The target blowout temperature TAO is a blowout temperature required to maintain the passenger compartment at the set temperature Tset of the temperature setting switch, and is calculated based on the following formula F1.
 TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C…(F1)
 上述の数式F1に示す記号は、Tsetが設定温度、Trが内気温、Tamが外気温、Tsが日射量を示し、Kset、Kr、Kam、Ksが制御ゲインを示している。なお、Cは、補正用の定数である。
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C (F1)
In the symbols shown in the above-mentioned Formula F1, Tset represents a set temperature, Tr represents an internal temperature, Tam represents an external temperature, Ts represents a solar radiation amount, and Kset, Kr, Kam, and Ks represent control gains. C is a constant for correction.
 続いて、制御装置100は、ステップS30にて、蒸発器80から吹き出す空気の吹出温度TEの目標蒸発器温度TEOを算出する。具体的には、制御装置100は、目標吹出温度TAOと目標蒸発器温度TEOとの対応関係を規定した制御マップを参照して、ステップS20で算出した目標吹出温度TAOから目標蒸発器温度TEOを算出する。制御マップは、目標吹出温度TAOが大きくなるにともなって目標蒸発器温度TEOが高くなるように目標蒸発器温度TEOが目標吹出温度TAOに対応付けられている。制御マップは、予めメモリに記憶されている。 Subsequently, in step S30, the control device 100 calculates the target evaporator temperature TEO of the blowout temperature TE of the air blown out from the evaporator 80. Specifically, control device 100 refers to a control map that defines the correspondence between target air outlet temperature TAO and target evaporator temperature TEO, and determines target evaporator temperature TEO from target air outlet temperature TAO calculated in step S20. calculate. In the control map, the target evaporator temperature TEO is associated with the target outlet temperature TAO such that the target evaporator temperature TEO increases as the target outlet temperature TAO increases. The control map is stored in advance in the memory.
 続いて、制御装置100は、ステップS40にて、容量制御機構40に対して出力する容量制御信号値Icの第1候補となる可変信号値Ic_calを算出する。可変信号値Ic_calは、蒸発器80の吹出温度TEが目標蒸発器温度TEOに近づくように、PI制御やPID制御等のフィードバック制御によって算出される。 Subsequently, in step S40, the control device 100 calculates a variable signal value Ic_cal which is a first candidate of the capacitance control signal value Ic to be output to the capacitance control mechanism 40. The variable signal value Ic_cal is calculated by feedback control such as PI control or PID control so that the outlet temperature TE of the evaporator 80 approaches the target evaporator temperature TEO.
 続いて、制御装置100は、ステップS50にて、現状の圧縮機構12の運転モードが可変運転モードおよび断続運転モードのいずれかであるかを判定する。この判定処理の結果、運転モードが可変運転モードである場合、制御装置100は、ステップS60に移行して可変運転処理を実行する。また、運転モードが断続運転モードである場合、制御装置100は、ステップS70に移行して断続運転処理を実行する。 Subsequently, in step S50, the control device 100 determines whether the current operation mode of the compression mechanism 12 is the variable operation mode or the intermittent operation mode. As a result of the determination process, when the operation mode is the variable operation mode, the control device 100 proceeds to step S60 and executes the variable operation process. When the operation mode is the intermittent operation mode, the control device 100 proceeds to step S70 and executes the intermittent operation process.
 本実施形態では、可変運転処理の流れについて図6のフローチャートを参照して説明した後、断続運転処理の流れについて図13のフローチャートを参照して説明する。なお、図6および図13に示す制御処理の各制御ステップは、制御装置100が実行する各種機能を実現する機能実現部を構成している。 In the present embodiment, after the flow of the variable operation process is described with reference to the flowchart of FIG. 6, the flow of the intermittent operation process is described with reference to the flowchart of FIG. The control steps of the control process shown in FIGS. 6 and 13 constitute a function implementing unit that implements various functions executed by the control device 100.
 可変運転処理において制御装置100は、図6に示すように、ステップS100にて、蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも小さいか否かを判定する。蒸発器80の吹出温度TEが目標蒸発器温度TEO以上となる場合、圧縮機構12を可変運転モードで作動させることで、蒸発器80の冷却能力を適正に維持可能な状態または蒸発器80の冷却能力が不足した能力不足状態であると考えられる。 In the variable operation process, as shown in FIG. 6, the control device 100 determines in step S100 whether or not the blowout temperature TE of the evaporator 80 is smaller than the target evaporator temperature TEO. When the blowout temperature TE of the evaporator 80 becomes equal to or higher than the target evaporator temperature TEO, by operating the compression mechanism 12 in the variable operation mode, the state where the cooling capacity of the evaporator 80 can be properly maintained or the evaporator 80 is cooled It is considered that there is a lack of ability due to lack of ability.
 このため、蒸発器80の吹出温度TEが目標蒸発器温度TEO以上となる場合、制御装置100は、ステップS110にて、クラッチMGCをオン状態に維持する。また、制御装置100は、ステップS120にて、容量制御信号値Icを図5のステップS40で算出した可変信号値Ic_calに決定する。そして、制御装置100は、ステップS130にて、圧縮機構12を可変運転モードで運転させる。すなわち、制御装置100は、容量制御信号値Icとして可変信号値Ic_calを容量制御機構40に出力する。 Therefore, when the blowout temperature TE of the evaporator 80 becomes equal to or higher than the target evaporator temperature TEO, the control device 100 maintains the clutch MGC in the on state in step S110. Further, in step S120, the control device 100 determines the capacitance control signal value Ic as the variable signal value Ic_cal calculated in step S40 of FIG. Then, at step S130, control device 100 operates compression mechanism 12 in the variable operation mode. That is, the control device 100 outputs the variable signal value Ic_cal to the capacitance control mechanism 40 as the capacitance control signal value Ic.
 ここで、容量制御機構40は、容量制御信号値Icが大きい程、給気通路140の通路開度が小さくなるように、開度調整弁42を制御する。例えば、容量制御信号値Icが大きい場合、容量制御機構40は、図7に示すように、給気通路140が閉鎖される通路開度となるように開度調整弁42を制御する。この場合、圧縮機構12では、吐出室34から制御圧室18への冷媒の供給が停止されることで制御圧室18の圧力が低下する。この結果、圧縮機構12は、図8に示すように、斜板24の傾斜角度が最大傾斜角度となることで吐出容量が最大容量まで増加する。 Here, the displacement control mechanism 40 controls the opening adjustment valve 42 such that the passage opening degree of the air supply passage 140 decreases as the displacement control signal value Ic increases. For example, when the displacement control signal value Ic is large, the displacement control mechanism 40 controls the opening adjustment valve 42 so that the passage opening degree at which the air supply passage 140 is closed as shown in FIG. 7. In this case, in the compression mechanism 12, the pressure of the control pressure chamber 18 is reduced by stopping the supply of the refrigerant from the discharge chamber 34 to the control pressure chamber 18. As a result, as shown in FIG. 8, in the compression mechanism 12, the displacement of the swash plate 24 increases to the maximum displacement as the inclination angle of the swash plate 24 becomes the maximum inclination angle.
 これに対して、容量制御信号値Icが小さい場合、容量制御機構40は、図9に示すように、給気通路140が全開される通路開度となるように開度調整弁42を制御する。この場合、圧縮機構12では、吐出室34から制御圧室18への冷媒の供給量が増加することで制御圧室18の圧力が大きくなる。この結果、圧縮機構12は、図10に示すように、斜板24の傾斜角度が最小傾斜角度となることで吐出容量が下限容量まで減少する。なお、本実施形態の圧縮機構12では、吐出容量の下限容量が筒状部材27によって中間容量に制限されている。このため、可変運転モードでは、圧縮機構12が圧縮効率の低い最小容量で運転されることはない。 On the other hand, when the displacement control signal value Ic is small, as shown in FIG. 9, the displacement control mechanism 40 controls the opening adjustment valve 42 so that the passage opening degree at which the air supply passage 140 is fully opened. . In this case, in the compression mechanism 12, the pressure of the control pressure chamber 18 is increased by the increase of the supply amount of the refrigerant from the discharge chamber 34 to the control pressure chamber 18. As a result, as shown in FIG. 10, in the compression mechanism 12, the displacement of the swash plate 24 is reduced to the lower limit by the minimum inclination angle. In the compression mechanism 12 of the present embodiment, the lower limit displacement of the discharge displacement is limited by the cylindrical member 27 to an intermediate displacement. For this reason, in the variable operation mode, the compression mechanism 12 is not operated at the minimum capacity with low compression efficiency.
 図6に戻り、ステップS100の判定処理にて、蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも小さい場合、制御装置100は、ステップS140にて、可変信号値Ic_calが所定の下限信号値Ic_min以下であるか否かを判定する。下限信号値Ic_minは、容量制御信号値Icから圧縮機構12の吐出容量が下限容量となっているか否かを判断するための判定閾値である。 Returning to FIG. 6, when the blowout temperature TE of the evaporator 80 is smaller than the target evaporator temperature TEO in the determination process of step S100, the control device 100 determines that the variable signal value Ic_cal is a predetermined lower limit signal in step S140. It is determined whether the value is equal to or less than the value Ic_min. The lower limit signal value Ic_min is a determination threshold for determining whether or not the discharge displacement of the compression mechanism 12 is the lower limit displacement from the displacement control signal value Ic.
 ここで、本実施形態の如く、圧縮機構12に吸入される冷媒の圧力Psが目標圧力Psoとなるように制御する容量制御機構40を用いる場合、蒸発器80の吹出温度TEと容量制御信号値Icとが、図11に示すように相関関係を有する。本実施形態では、吹出温度TEと容量制御信号値Icとを予め関連付けた制御マップに基づいて目標蒸発器温度TEOに対応する容量制御信号値Icを特定し、特定した容量制御信号値Icよりも小さくなる値を下限信号値Ic_minに設定している。 Here, when using the displacement control mechanism 40 that controls the pressure Ps of the refrigerant sucked into the compression mechanism 12 to be the target pressure Pso as in the present embodiment, the blowout temperature TE of the evaporator 80 and the displacement control signal value The Ic has a correlation as shown in FIG. In the present embodiment, the displacement control signal value Ic corresponding to the target evaporator temperature TEO is identified based on a control map in which the blowout temperature TE and the displacement control signal value Ic are associated in advance, and the identified displacement control signal value Ic is greater than the identified displacement control signal value Ic. The lower value is set to the lower limit signal value Ic_min.
 前述したように、圧縮機構12の吐出容量は、容量制御信号値Icによらず蒸発器80の空気側の熱負荷に応じて変化することがある。このため、本実施形態では、下限信号値Ic_minを、蒸発器80の空気側の熱負荷に相関して変化する目標蒸発器温度TEOに応じた可変閾値としている。具体的には、下限信号値Ic_minは、図12に示すように、目標蒸発器温度TEOの上昇に伴って小さくなる可変閾値となっている。 As described above, the discharge capacity of the compression mechanism 12 may change depending on the heat load on the air side of the evaporator 80 regardless of the capacity control signal value Ic. Therefore, in the present embodiment, the lower limit signal value Ic_min is set as a variable threshold value corresponding to the target evaporator temperature TEO which changes in correlation with the heat load on the air side of the evaporator 80. Specifically, as shown in FIG. 12, the lower limit signal value Ic_min is a variable threshold that decreases with the increase of the target evaporator temperature TEO.
 図6に戻り、ステップS140にて可変信号値Ic_calが下限信号値Ic_minよりも大きくなる場合、圧縮機構12の吐出容量が下限容量になっていないと考えられる。この場合、制御装置100は、ステップS110に移行して運転モードを可変運転モードに維持する。 Returning to FIG. 6, when the variable signal value Ic_cal becomes larger than the lower limit signal value Ic_min in step S140, it is considered that the discharge displacement of the compression mechanism 12 is not the lower limit displacement. In this case, the control device 100 proceeds to step S110 and maintains the operation mode in the variable operation mode.
 一方、ステップS140にて可変信号値Ic_calが下限信号値Ic_min以下となる場合、圧縮機構12の吐出容量が下限容量になっていると考えられる。この場合、圧縮機構12の吐出容量が下限容量になったとしても、蒸発器80の冷却能力が要求される要求冷却能力を満たしていると考えられる。このため、制御装置100は、ステップS150に移行してクラッチMGCをオン状態に維持する。また、制御装置100は、ステップS160にて、容量制御信号値Icを下限信号値Ic_minに決定する。そして、制御装置100は、ステップS170にて、圧縮機構12を断続運転モードで運転させる。すなわち、制御装置100は、容量制御信号値Icとして下限信号値Ic_minを容量制御機構40に出力する。 On the other hand, when the variable signal value Ic_cal becomes equal to or less than the lower limit signal value Ic_min in step S140, it is considered that the discharge displacement of the compression mechanism 12 is the lower limit displacement. In this case, even if the discharge capacity of the compression mechanism 12 becomes the lower limit capacity, it is considered that the cooling capacity of the evaporator 80 satisfies the required cooling capacity required. Thus, the control device 100 proceeds to step S150 and maintains the clutch MGC in the on state. Further, in step S160, control device 100 determines capacitance control signal value Ic as lower limit signal value Ic_min. Then, in step S170, the control device 100 operates the compression mechanism 12 in the intermittent operation mode. That is, the control device 100 outputs the lower limit signal value Ic_min to the capacitance control mechanism 40 as the capacitance control signal value Ic.
 以上までが可変運転処理に関する説明である。以下、断続運転処理の流れについて図13のフローチャートを参照して説明する。図13に示す断続運転処理は、図5のステップS70にて実行される処理である。 The above is the description of the variable driving process. Hereinafter, the flow of the intermittent operation process will be described with reference to the flowchart of FIG. The intermittent operation process shown in FIG. 13 is a process executed in step S70 of FIG.
 図13に示すように、制御装置100は、ステップS200にて、クラッチMGCがオン状態であるか否かを判定する。この結果、クラッチMGCがオン状態であると判定された場合、制御装置100は、ステップS210にて、蒸発器80の吹出温度TEが所定のオフ側閾値Toffよりも小さいか否かを判定する。オフ側閾値Toffは、クラッチMGCをオン状態からオフ状態に切り替えるための判定閾値である。オフ側閾値Toffは、図14に示すように、クラッチMGCのオンオフが頻繁に切り替わることを避けるために目標蒸発器温度TEOよりも低い温度に設定されている。 As shown in FIG. 13, in step S200, control device 100 determines whether or not clutch MGC is in the on state. As a result, when it is determined that the clutch MGC is in the on state, the control device 100 determines in step S210 whether or not the outlet temperature TE of the evaporator 80 is smaller than a predetermined off-side threshold Toff. The off-side threshold Toff is a determination threshold for switching the clutch MGC from the on state to the off state. The off-side threshold Toff is, as shown in FIG. 14, set to a temperature lower than the target evaporator temperature TEO in order to avoid frequent switching of the clutch MGC.
 蒸発器80の吹出温度TEがオフ側閾値Toffよりも小さい場合、制御装置100は、ステップS220にてクラッチMGCをオフ状態に設定する。これにより、圧縮機構12の運転が停止される。 If the outlet temperature TE of the evaporator 80 is smaller than the off-side threshold Toff, the control device 100 sets the clutch MGC to the off state in step S220. Thereby, the operation of the compression mechanism 12 is stopped.
 また、制御装置100は、ステップS230にて、容量制御信号値を下限信号値Ic_minに決定する。そして、制御装置100は、ステップS240にて、圧縮機構12の運転モードを断続運転モードに維持するとともに、ステップS250にてタイマカウンタt_cntをリセットする。 Further, in step S230, control device 100 determines the capacitance control signal value as the lower limit signal value Ic_min. Then, in step S240, control device 100 maintains the operation mode of compression mechanism 12 in the intermittent operation mode, and resets timer counter t_cnt in step S250.
 ここで、タイマカウンタt_cntは、断続運転モードにおいて、クラッチMGCをオン状態に切り替えても、蒸発器80の冷却能力が要求される要求冷却能力に対して不足する能力不足状態となる期間を計測するためのカウンタである。 Here, in the intermittent operation mode, the timer counter t_cnt measures a period in which the cooling capacity of the evaporator 80 is insufficient for the required cooling capacity which is required even if the clutch MGC is switched to the on state. Is a counter for
 蒸発器80の吹出温度TEがオフ側閾値Toffよりも小さくなっている場合、能力不足状態ではないので、制御装置100は、ステップS250にてタイマカウンタt_cntをリセットする。 If the blowout temperature TE of the evaporator 80 is smaller than the off-side threshold Toff, the controller 100 is not in the capability shortage state, so the control device 100 resets the timer counter t_cnt in step S250.
 一方、蒸発器80の吹出温度TEがオフ側閾値Toffよりも大きい場合、制御装置100は、ステップS260にて蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも大きいか否かを判定する。 On the other hand, when the blowout temperature TE of the evaporator 80 is larger than the off-side threshold Toff, the control device 100 determines whether the blowout temperature TE of the evaporator 80 is larger than the target evaporator temperature TEO in step S260. .
 この結果、蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも大きい場合、制御装置100は、ステップS270にて、タイマカウンタt_cntが予め設定された基準時間t_set以上であるか否かを判定する。 As a result, when the blowout temperature TE of the evaporator 80 is larger than the target evaporator temperature TEO, the control device 100 determines whether or not the timer counter t_cnt is equal to or more than a preset reference time t_set in step S270. Do.
 タイマカウンタt_cntが予め設定された基準時間t_set以上である場合、断続運転モードを継続しても蒸発器80の能力不足状態が回避できないと考えられる。このため、制御装置100は、ステップS280にてクラッチMGCをオン状態に維持するとともに、ステップS290にて容量制御信号値を可変信号値Ic_calに決定する。そして、制御装置100は、ステップS300にて、圧縮機構12の運転モードを可変運転モードに切り替えるとともに、ステップS250にてタイマカウンタt_cntをリセットする。 When the timer counter t_cnt is equal to or more than a preset reference time t_set, it is considered that the capacity shortage state of the evaporator 80 can not be avoided even if the intermittent operation mode is continued. Therefore, control device 100 maintains clutch MGC in the on state in step S280, and determines the displacement control signal value as variable signal value Ic_cal in step S290. Then, in step S300, control device 100 switches the operation mode of compression mechanism 12 to the variable operation mode, and resets timer counter t_cnt in step S250.
 ここで、ステップS260にて蒸発器80の吹出温度TEが目標蒸発器温度TEO以下と判定された場合、制御装置100は、ステップS310に移行する。また、ステップS270にてタイマカウンタt_cntが基準時間t_set未満であると判定された場合も、制御装置100は、ステップS310に移行する。そして、制御装置100は、ステップS310にてクラッチMGCをオン状態に維持するとともに、ステップS320にて容量制御信号値を下限信号値Ic_minに決定する。また、制御装置100は、ステップS330にて、圧縮機構12の運転モードを断続運転モードに維持する。 Here, when the outlet temperature TE of the evaporator 80 is determined to be equal to or lower than the target evaporator temperature TEO in step S260, the control device 100 proceeds to step S310. Also, when it is determined in step S270 that the timer counter t_cnt is less than the reference time t_set, the control device 100 causes the process to proceed to step S310. Then, control device 100 maintains clutch MGC in the on state in step S310, and determines the displacement control signal value as lower limit signal value Ic_min in step S320. In step S330, control device 100 maintains the operation mode of compression mechanism 12 in the intermittent operation mode.
 これに対して、ステップS200の判定処理にてクラッチMGCがオフ状態であると判定された場合、制御装置100は、ステップS340にて、蒸発器80の吹出温度TEが所定のオン側閾値Tonよりも大きいか否かを判定する。オン側閾値Tonは、クラッチMGCをオフ状態からオン状態に切り替えるための判定閾値である。オン側閾値Tonは、図14に示すように、クラッチMGCのオンオフが頻繁に切り替わることを避けるために目標蒸発器温度TEOよりも高い温度に設定されている。 On the other hand, when it is determined in the determination process of step S200 that the clutch MGC is in the off state, the control device 100 determines that the outlet temperature TE of the evaporator 80 is higher than the predetermined on side threshold value Ton in step S340. It is determined whether or not it is large. The on-side threshold Ton is a determination threshold for switching the clutch MGC from the off state to the on state. As shown in FIG. 14, the on-side threshold Ton is set to a temperature higher than the target evaporator temperature TEO in order to avoid frequent switching of the clutch MGC.
 蒸発器80の吹出温度TEがオン側閾値Tonよりも大きい場合、制御装置100は、ステップS350にてクラッチMGCをオン状態に設定する。これにより、圧縮機構12の運転が再開される。 If the blowout temperature TE of the evaporator 80 is larger than the on-side threshold Ton, the control device 100 sets the clutch MGC to the on state in step S350. Thereby, the operation of the compression mechanism 12 is resumed.
 また、制御装置100は、ステップS360にて、容量制御信号値を下限信号値Ic_minに決定する。そして、制御装置100は、ステップS370にて、圧縮機構12の運転モードを断続運転モードに維持するとともに、ステップS380にてタイマカウンタt_cntのカウントを開始する。 Further, in step S360, control device 100 determines the capacity control signal value as the lower limit signal value Ic_min. Then, control device 100 maintains the operation mode of compression mechanism 12 in the intermittent operation mode in step S370, and starts counting of timer counter t_cnt in step S380.
 一方、蒸発器80の吹出温度TEがオン側閾値Ton以下となる場合、制御装置100は、ステップS390にてクラッチMGCをオフ状態に設定する。これにより、圧縮機構12の運転が停止状態に維持される。 On the other hand, when the blowout temperature TE of the evaporator 80 becomes equal to or less than the on-side threshold Ton, the control device 100 sets the clutch MGC to the off state in step S390. Thereby, the operation of the compression mechanism 12 is maintained in the stop state.
 また、制御装置100は、ステップS400にて、容量制御信号値を下限信号値Ic_minに決定する。そして、制御装置100は、ステップS410にて、圧縮機構12の運転モードを断続運転モードに維持する。 Further, in step S400, control device 100 determines the capacitance control signal value as the lower limit signal value Ic_min. Then, in step S410, control device 100 maintains the operation mode of compression mechanism 12 in the intermittent operation mode.
 以上の制御処理によって圧縮機10は、運転モードが可変運転モードおよび断続運転モードのいずれかに切替可能となっている。すなわち、本実施形態の制御装置100は、吐出容量を下限容量に設定したとしても蒸発器80における空気の冷却能力が蒸発器80に要求される要求冷却能力を満足する能力満足条件が成立した場合に、可変運転モードから断続運転モードに切り替える。また、制御装置100は、吐出容量を下限容量に設定したとしても蒸発器80における空気の冷却能力が蒸発器80に要求される要求冷却能力に足りない能力不足条件が成立した場合に、運転モードを断続運転モードから可変運転モードに切り替える。 By the above control process, the compressor 10 can switch the operation mode to either the variable operation mode or the intermittent operation mode. That is, even if the control device 100 according to the present embodiment sets the discharge capacity to the lower limit capacity, a case where the air cooling capacity in the evaporator 80 satisfies the required cooling capacity required for the evaporator 80 is satisfied. Switch from the variable operation mode to the intermittent operation mode. Further, even if the control device 100 sets the discharge capacity to the lower limit capacity, the operation mode is satisfied when the capacity insufficient condition for the cooling capacity of the air in the evaporator 80 is insufficient for the required cooling capacity required for the evaporator 80 is satisfied. From the intermittent operation mode to the variable operation mode.
 ここで、図15は、運転モードが可変運転モード、断続運転モード、可変運転モードの順に切り替わる際の蒸発器80の吹出温度TE、容量制御信号値Ic、クラッチMGCのオンオフ状態、吐出容量等の変化の一例を示すタイミングチャートである。 Here, FIG. 15 shows the outlet temperature TE of the evaporator 80, the capacity control signal value Ic, the on / off state of the clutch MGC, the discharge capacity, etc. when the operation mode changes in the order of variable operation mode, intermittent operation mode, variable operation mode. It is a timing chart which shows an example of change.
 図15に示すように、圧縮機構12が可変運転モードで運転している際に、蒸発器80の吹出温度TEが目標蒸発器温度TEO付近まで低下すると、容量制御信号値Icが低下するとともに吐出容量も小さくなる(図15のt0~t1)。 As shown in FIG. 15, when the blowout temperature TE of the evaporator 80 decreases to near the target evaporator temperature TEO while the compression mechanism 12 is operated in the variable operation mode, the capacity control signal value Ic decreases and the discharge is performed. The capacity also decreases (t0 to t1 in FIG. 15).
 そして、吹出温度TEが目標蒸発器温度TEOよりも低い温度に低下し、可変信号値Ic_calが下限信号値Ic_minまで低下すると、運転モードが可変運転モードから断続運転モードに切り替わる(図15のt1→t2)。これにより、容量制御信号値Icが下限信号値Ic_minに決定され、吐出容量が下限容量になる。 Then, when the blowout temperature TE falls to a temperature lower than the target evaporator temperature TEO and the variable signal value Ic_cal falls to the lower limit signal value Ic_min, the operation mode switches from the variable operation mode to the intermittent operation mode (t1 in FIG. 15 → t2). As a result, the displacement control signal value Ic is determined to be the lower limit signal value Ic_min, and the discharge displacement becomes the lower limit displacement.
 可変運転モードから断続運転モードに切り替わった後、吹出温度TEがオフ側閾値Toffよりも低い温度になると、クラッチMGCがオン状態からオフ状態に切り替わる(図15のt2→t3)。これにより、圧縮機構12の運転が停止することで、吹出温度TEが上昇する。 After switching from the variable operation mode to the intermittent operation mode, when the blow-out temperature TE becomes lower than the off-side threshold Toff, the clutch MGC switches from the on state to the off state (t2 → t3 in FIG. 15). As a result, when the operation of the compression mechanism 12 is stopped, the blowout temperature TE rises.
 そして、吹出温度TEがオン側閾値Tonよりも高い温度に上昇すると、クラッチMGCがオフ状態からオン状態に切り替わる(図15のt3→t4)。これにより、圧縮機構12の運転が再開されることで、吹出温度TEが低下する。 Then, when the blow-out temperature TE rises to a temperature higher than the on-side threshold Ton, the clutch MGC is switched from the off state to the on state (t3 → t4 in FIG. 15). As a result, when the operation of the compression mechanism 12 is resumed, the blowout temperature TE is lowered.
 圧縮機構12の運転が再開され、吹出温度TEが基準時間t_setよりも短い時間で再びオフ側閾値Toffよりも低い温度になると、クラッチMGCがオン状態からオフ状態に切り替わる(図15のt4→t5)。 When the operation of compression mechanism 12 is resumed and blowout temperature TE attains a temperature lower than off-side threshold Toff again in a time shorter than reference time t_set, clutch MGC is switched from the on state to the off state (t4 → t5 in FIG. 15). ).
 このように、断続運転モード時には、吐出容量が下限容量となるように制御された状態で、クラッチMGCのオンオフの切り替えによって、吹出温度TEが目標蒸発器温度TEO付近に維持される。 As described above, in the intermittent operation mode, the blowing temperature TE is maintained near the target evaporator temperature TEO by switching the clutch MGC on and off in a state where the discharge displacement is controlled to be the lower limit displacement.
 そして、断続運転モード時に、クラッチMGCがオン状態に維持された状態で、蒸発器80の冷却能力が不足する能力不足状態が所定時間継続された場合に、運転モードが断続運転モードから可変運転モードに切り替わる。すなわち、クラッチMGCがオン状態に切り替わってから基準時間t_setとなるまで吹出温度TEが目標蒸発器温度TEOを上回っている場合、運転モードが断続運転モードから可変運転モードに切り替わる(図15のtn→tn+1)。これにより、クラッチMGCがオン状態に維持された状態で、容量制御信号値Icが可変信号値Ic_calに決定されることで、吹出温度TEが目標蒸発器温度TEOに近づくように制御される。 Then, in the intermittent operation mode, in a state where the clutch MGC is maintained in the on state, the operation mode is changed from the intermittent operation mode to the variable operation mode when the capacity insufficient state in which the cooling capacity of the evaporator 80 is insufficient continues for a predetermined time. Switch to That is, if the blowout temperature TE exceeds the target evaporator temperature TEO until the reference time t_set after the clutch MGC is switched to the ON state, the operation mode switches from the intermittent operation mode to the variable operation mode (tn in FIG. 15 → tn + 1). As a result, the displacement control signal value Ic is determined as the variable signal value Ic_cal while the clutch MGC is maintained in the on state, whereby the blowout temperature TE is controlled to approach the target evaporator temperature TEO.
 以上説明した本実施形態の圧縮機10は、圧縮機構12の吐出容量の下限容量が容量制限部である筒状部材27によって最小容量よりも大きい中間容量に制限されているので、圧縮効率の低い最小容量での圧縮機構12の運転を回避することができる。また、本実施形態の圧縮機10は、運転モードを可変運転モードおよび断続運転モードに切替可能となっているので、運転モードの切り替えによって吐出容量の可変域が小さくなることによる生ずる不具合を回避可能となる。すなわち、本実施形態の圧縮機10によれば、蒸発器80における冷却能力を適切に発揮させつつ圧縮効率の向上を図ることが可能となる。 In the compressor 10 according to the present embodiment described above, since the lower limit of the discharge capacity of the compression mechanism 12 is limited to an intermediate capacity larger than the minimum capacity by the cylindrical member 27 which is a capacity limiting portion, the compression efficiency is low. The operation of the compression mechanism 12 at the minimum capacity can be avoided. Moreover, since the compressor 10 of this embodiment can switch the operation mode to the variable operation mode and the intermittent operation mode, it is possible to avoid the problem caused by the decrease of the variable range of the discharge capacity by the switching of the operation mode. It becomes. That is, according to the compressor 10 of the present embodiment, the compression efficiency can be improved while appropriately exhibiting the cooling capacity of the evaporator 80.
 特に、本実施形態の圧縮機構12は、下限容量が圧縮機構12を運転させた際に成績係数が最小容量に設定した場合よりも大きくなる容量に設定されている。これによれば、最小容量で運転させる場合に比べて、断続運転モード時の成績係数を大きくすることができる。 In particular, the compression mechanism 12 of the present embodiment is set to a capacity whose lower limit capacity is larger than that in the case where the coefficient of performance is set to the minimum capacity when the compression mechanism 12 is operated. According to this, it is possible to increase the coefficient of performance in the intermittent operation mode as compared with the case of operating with the minimum capacity.
 また、本実施形態の制御装置100は、吐出容量を下限容量に設定したとしても蒸発器80における空気の冷却能力が蒸発器80に要求される要求冷却能力を満足する能力満足条件が成立した場合に、可変運転モードから断続運転モードに切り替える。これによると、蒸発器80における空気の冷却能力が過剰になることを回避することができるので、蒸発器80における冷却能力を適切に発揮させつつ、圧縮効率の向上を図ることが可能となる。 Further, in the control device 100 according to the present embodiment, even when the discharge capacity is set to the lower limit capacity, a capacity satisfying condition satisfying the required cooling capacity required of the evaporator 80 for the air cooling capacity in the evaporator 80 is satisfied. Switch from the variable operation mode to the intermittent operation mode. According to this, since it is possible to prevent the cooling capacity of the air in the evaporator 80 from becoming excessive, it is possible to improve the compression efficiency while appropriately exhibiting the cooling capacity in the evaporator 80.
 ここで、能力満足条件は、蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも低く、且つ、可変信号値Ic_calが下限信号値Ic_min以下となる際に成立する条件となっている。但し、下限信号値Ic_minは、目標蒸発器温度TEOの上昇に伴って小さくなる可変閾値となっている。これによると、蒸発器80の吹出温度TEが目標蒸発器温度TEO以上となる場合、すなわち、蒸発器80の冷却能力が不足している状態で、可変運転モードから断続運転モードに切り替わることを回避することができる。 Here, the capability satisfaction condition is a condition that is satisfied when the blowout temperature TE of the evaporator 80 is lower than the target evaporator temperature TEO and the variable signal value Ic_cal is equal to or less than the lower limit signal value Ic_min. However, the lower limit signal value Ic_min is a variable threshold that becomes smaller as the target evaporator temperature TEO rises. According to this, it is avoided that the variable operation mode is switched to the intermittent operation mode when the outlet temperature TE of the evaporator 80 becomes equal to or higher than the target evaporator temperature TEO, that is, the cooling capacity of the evaporator 80 is insufficient. can do.
 さらに、本実施形態の制御装置100は、吐出容量を下限容量に設定したとしても蒸発器80における空気の冷却能力が蒸発器80に要求される要求冷却能力に足りない能力不足条件が成立した場合に、断続運転モードから可変運転モードに切り替える。これによると、蒸発器における空気の冷却能力が不足することを回避することができるので、蒸発器における冷却能力を適切に発揮させつつ、圧縮効率の向上を図ることが可能となる。 Furthermore, in the control device 100 according to the present embodiment, even when the discharge capacity is set to the lower limit capacity, a capacity shortage condition in which the cooling capacity of air in the evaporator 80 is insufficient for the required cooling capacity required for the evaporator 80 is satisfied. To the variable operation mode from the intermittent operation mode. According to this, since it is possible to avoid the shortage of the cooling capacity of air in the evaporator, it is possible to improve the compression efficiency while properly exhibiting the cooling capacity in the evaporator.
 ここで、能力不足条件は、クラッチMGCによって接続状態を連結状態に制御した状態において、蒸発器80の吹出温度TEが目標蒸発器温度TEOより高くなる状態が所定期間継続された場合に成立する条件となっている。このように、能力不足条件を蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも高くなる状態が所定期間継続された場合に成立する条件とすれば、断続運転モードから可変運転モードへの切り替わりの頻発を抑えることができる。 Here, the insufficient capability condition is a condition that is satisfied when a state in which the outlet temperature TE of the evaporator 80 is higher than the target evaporator temperature TEO continues for a predetermined period while the connected state is controlled to the connected state by the clutch MGC. It has become. As described above, if the condition of insufficient capability is a condition that is satisfied when the state where the outlet temperature TE of the evaporator 80 is higher than the target evaporator temperature TEO is maintained for a predetermined period, the intermittent operation mode to the variable operation mode Frequent switching can be suppressed.
 (第2実施形態)
 次に、第2実施形態について、図16~図20を参照して説明する。本実施形態では、容量制御機構40が、断続運転モード時に可変運転モード時に比べて、給気通路140、制御圧室18、および抽気通路141を介して循環する冷媒の循環量が少なくなるように構成されている点が第1実施形態と相違している。
Second Embodiment
Next, a second embodiment will be described with reference to FIG. 16 to FIG. In this embodiment, in the intermittent operation mode, the amount of refrigerant circulated through the air supply passage 140, the control pressure chamber 18, and the extraction passage 141 is smaller than in the variable operation mode. It is different from the first embodiment in that it is configured.
 図16~図18に示すように、本実施形態の容量制御機構40は、給気通路140の通路開度および抽気通路141の通路開度の双方を調整可能な容量制御弁45を有している。容量制御機構40は、容量制御弁45によって給気通路140の通路開度および抽気通路141の通路開度を調整して制御圧室18の圧力を制御することで、圧縮機構12の吐出容量を変化させる構成になっている。 As shown in FIGS. 16 to 18, the displacement control mechanism 40 of the present embodiment has a displacement control valve 45 capable of adjusting both the passage opening degree of the air supply passage 140 and the passage opening degree of the bleed passage 141. There is. The displacement control mechanism 40 controls the pressure of the control pressure chamber 18 by adjusting the passage opening degree of the air supply passage 140 and the passage opening degree of the bleed passage 141 by the displacement control valve 45 to control the displacement of the compression mechanism 12. It is configured to change.
 容量制御弁45は、三方弁タイプの弁構造を有している。容量制御弁45は、給気通路140の通路開度および抽気通路141の通路開度を調整する弁体451、吸入室32の圧力に応じた力を発生する吸入圧応動機構452、吸入圧応動機構452の力に対向する電磁力を発生する電磁機構453を有している。なお、吸入圧応動機構452は、第1実施形態で説明した吸入圧応動機構422と同様に構成されている。また、電磁機構453は、第1実施形態で説明した電磁機構423と同様に構成されている。 The displacement control valve 45 has a three-way valve type valve structure. The volume control valve 45 includes a valve body 451 for adjusting the passage opening degree of the air supply passage 140 and the passage opening degree of the extraction passage 141, a suction pressure response mechanism 452 for generating force corresponding to the pressure of the suction chamber 32, and suction pressure response mechanism. It has an electromagnetic mechanism 453 which generates an electromagnetic force opposite to the force of the mechanism 452. The suction pressure response mechanism 452 is configured in the same manner as the suction pressure response mechanism 422 described in the first embodiment. The electromagnetic mechanism 453 is configured in the same manner as the electromagnetic mechanism 423 described in the first embodiment.
 容量制御弁45は、給気通路140の通路開度が大きくなるにつれて抽気通路141の通路開度が小さくなり、給気通路140の通路開度が小さくなるにつれて抽気通路141の通路開度が大きくなるように構成されている。具体的には、容量制御弁45は、断続運転モード時に、給気通路140を開き、抽気通路141を閉じるように構成されている。 In the capacity control valve 45, the passage opening degree of the bleed passage 141 decreases as the passage opening degree of the air supply passage 140 increases, and as the passage opening degree of the air supply passage 140 decreases, the passage opening degree of the bleed passage 141 increases. It is configured to be Specifically, the capacity control valve 45 is configured to open the air supply passage 140 and close the bleed passage 141 in the intermittent operation mode.
 電磁機構453に供給される容量制御信号値Icが減少して電磁力が吸入室32の圧力に応じた力よりも小さくなると、例えば、図16に示すように、容量制御弁45の弁体451が、抽気通路141を閉じ、給気通路140を開く位置に変位する。これにより、制御圧室18に供給される冷媒量が増加することで制御圧室18の圧力が上昇する。この結果、斜板24の傾斜角度が小さくなることで、吐出容量が減少する。 When the displacement control signal value Ic supplied to the electromagnetic mechanism 453 decreases and the electromagnetic force becomes smaller than the force corresponding to the pressure in the suction chamber 32, for example, as shown in FIG. , The bleed passage 141 is closed and the air supply passage 140 is displaced to the open position. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is increased, whereby the pressure of the control pressure chamber 18 is increased. As a result, as the inclination angle of the swash plate 24 becomes smaller, the discharge capacity is reduced.
 また、図16に示す状態から電磁機構453に供給される容量制御信号値Icが増加すると、例えば、図17に示すように、容量制御弁45の弁体451が、給気通路140および抽気通路141の双方を開く位置に変位する。 Also, when the displacement control signal value Ic supplied to the electromagnetic mechanism 453 increases from the state shown in FIG. 16, for example, as shown in FIG. 17, the valve body 451 of the displacement control valve 45 Move both 141 to the open position.
 さらに、電磁機構453に供給される容量制御信号値Icが増加して電磁力が吸入室32の圧力に応じた力よりも大きくなると、例えば、図18に示すように、容量制御弁45の弁体451が、抽気通路141を開き、給気通路140を閉じる位置に変位する。これにより、制御圧室18に供給される冷媒量が減少することで制御圧室18の圧力が低下する。この結果、斜板24の傾斜角度が大きくなることで、吐出容量が増加する。 Furthermore, when the displacement control signal value Ic supplied to the electromagnetic mechanism 453 increases and the electromagnetic force becomes larger than the force corresponding to the pressure in the suction chamber 32, for example, as shown in FIG. Body 451 opens bleed passage 141 and displaces air supply passage 140 to a closed position. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is reduced, whereby the pressure of the control pressure chamber 18 is reduced. As a result, when the inclination angle of the swash plate 24 is increased, the discharge capacity is increased.
 その他の構成および作動については第1実施形態と同様である。本実施形態の圧縮機10は、第1実施形態と共通の構成および作動から奏される作用効果を第1実施形態と同様に得ることができる。 Other configurations and operations are similar to those of the first embodiment. The compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
 特に、本実施形態では、容量制御機構40が断続運転モード時に、給気通路140を開き、抽気通路141を閉じる容量制御弁45を含んで構成されている。これによると、断続運転モード時にハウジング14内部における冷媒の循環を停止させることができるので、圧縮効率の更なる向上を図ることが可能となる。 In particular, in the present embodiment, the displacement control mechanism 40 includes the displacement control valve 45 that opens the air supply passage 140 and closes the bleed passage 141 in the intermittent operation mode. According to this, since it is possible to stop the circulation of the refrigerant inside the housing 14 in the intermittent operation mode, it is possible to further improve the compression efficiency.
 ここで、図19は、可変運転モードだけで運転される圧縮機を比較例、第1実施形態の圧縮機10を第1実施例、本実施形態の圧縮機10を第2実施例とした際の圧縮機10の動力を示す図である。また、図20は、比較例、第1実施例、第2実施例の成績係数を示す図である。なお、図19に示す動力および図20に示す成績係数は、実際の使用を想定し、出現し得る熱負荷および圧縮機10の回転数の条件と当該条件の出現頻度を考慮したものを示している。 Here, FIG. 19 shows the case where the compressor operated only in the variable operation mode is a comparative example, the compressor 10 of the first embodiment is a first example, and the compressor 10 of this embodiment is a second example. It is a figure which shows the motive power of the compressor 10. Moreover, FIG. 20 is a figure which shows the coefficient of performance of a comparative example, 1st Example, and 2nd Example. Note that the power shown in FIG. 19 and the coefficient of performance shown in FIG. 20 indicate the conditions of the heat load and the rotational speed of the compressor 10 that may appear and the frequency of appearance of the conditions, assuming the actual use. There is.
 第1実施例および第2実施例では、比較例と異なり、断続運転モード時に圧縮機10が停止することがある。このため、図19に示すように、圧縮機の動力は、比較例に比べて第1実施例および第2実施例の方が小さくなる。そして、成績係数は、図20に示すように、比較例に比べて第1実施例および第2実施例の方が高くなる。 In the first embodiment and the second embodiment, unlike the comparative example, the compressor 10 may stop in the intermittent operation mode. For this reason, as shown in FIG. 19, the power of the compressor is smaller in the first embodiment and the second embodiment than in the comparative example. The coefficient of performance is higher in the first embodiment and the second embodiment than in the comparative example, as shown in FIG.
 また、第2実施例では、第1実施例と異なり、断続運転モード時に給気通路140が開いた状態で抽気通路141が閉鎖されるので、断続運転モード時にハウジング14内部における冷媒の循環に伴う損失が抑制される。このため、図19に示すように、圧縮機の動力は、第1実施例に比べて第2実施例の方が小さくなる。そして、成績係数は、図20に示すように、第1実施例に比べて第2実施例の方が高くなる。 In the second embodiment, unlike the first embodiment, the bleed passage 141 is closed in the open state of the air supply passage 140 in the intermittent operation mode, so that it is accompanied by the circulation of the refrigerant in the housing 14 in the intermittent operation mode. Loss is suppressed. For this reason, as shown in FIG. 19, the power of the compressor is smaller in the second embodiment than in the first embodiment. As shown in FIG. 20, the coefficient of performance is higher in the second embodiment than in the first embodiment.
 (第3実施形態)
 次に、第3実施形態について、図21を参照して説明する。本実施形態では、容量制御機構40が抽気通路141の通路開度を調整して制御圧室18の圧力を制御する構成になっている点が第1実施形態と相違している。
Third Embodiment
Next, a third embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that the displacement control mechanism 40 is configured to adjust the passage opening degree of the bleed passage 141 to control the pressure of the control pressure chamber 18.
 図21に示すように、容量制御機構40は、給気通路140の通路開度を絞る固定絞り46および抽気通路141の通路開度を調整する開度調整弁47を有している。容量制御機構40は、開度調整弁47によって抽気通路141の通路開度を調整して制御圧室18の圧力を制御することで、圧縮機構12の吐出容量を変化させる構成になっている。本実施形態の容量制御機構40は、圧縮機構12に吸入される冷媒の圧力が目標圧力となるように開度調整弁47の通路開度が調整される構成になっている。 As shown in FIG. 21, the displacement control mechanism 40 has a fixed throttle 46 for reducing the passage opening degree of the air supply passage 140 and an opening adjustment valve 47 for adjusting the passage opening degree of the bleed passage 141. The displacement control mechanism 40 is configured to change the discharge displacement of the compression mechanism 12 by adjusting the opening degree of the bleed passage 141 by the opening adjustment valve 47 and controlling the pressure of the control pressure chamber 18. The displacement control mechanism 40 of this embodiment is configured such that the passage opening degree of the opening degree adjustment valve 47 is adjusted so that the pressure of the refrigerant drawn into the compression mechanism 12 becomes the target pressure.
 図示しないが開度調整弁47は、抽気通路141の通路開度を調整する弁体、吸入室32の圧力に応じた力を発生する吸入圧応動機構、当該吸入圧応動機構の力に対向する電磁力を発生する電磁機構を有している。開度調整弁47は抽気通路141を閉鎖可能に構成されている。なお、吸入圧応動機構および電磁機構は、第1実施形態で説明した吸入圧応動機構422および電磁機構423と同様に構成されている。 Although not shown, the opening adjustment valve 47 is a valve element for adjusting the opening of the bleed passage 141, a suction pressure response mechanism for generating a force corresponding to the pressure of the suction chamber 32, and a force corresponding to the force of the suction pressure response mechanism. It has an electromagnetic mechanism that generates an electromagnetic force. The opening control valve 47 is configured to be able to close the bleed passage 141. The suction pressure response mechanism and the electromagnetic mechanism are configured in the same manner as the suction pressure response mechanism 422 and the electromagnetic mechanism 423 described in the first embodiment.
 開度調整弁47は、電磁機構に供給される容量制御信号値Icが減少して電磁力が吸入室32の圧力に応じた力よりも小さくなると、例えば、弁体が抽気通路141を閉じる位置に変位する。これにより、制御圧室18から吸入室32に流れる冷媒量が減少することで制御圧室18の圧力が上昇する。この結果、斜板24の傾斜角度が小さくなることで、吐出容量が減少する。 When the displacement control signal value Ic supplied to the electromagnetic mechanism decreases and the electromagnetic force becomes smaller than the force corresponding to the pressure in the suction chamber 32, the opening adjustment valve 47, for example, a position where the valve body closes the bleed passage 141 Displace. As a result, the amount of refrigerant flowing from the control pressure chamber 18 to the suction chamber 32 is reduced, whereby the pressure in the control pressure chamber 18 is increased. As a result, as the inclination angle of the swash plate 24 becomes smaller, the discharge capacity is reduced.
 また、開度調整弁47は、電磁機構453に供給される容量制御信号値Icが増加して電磁力が吸入室32の圧力に応じた力よりも大きくなると、弁体が抽気通路141を開く位置に変位する。これにより、制御圧室18から吸入室32に流れる冷媒量が増加することで制御圧室18の圧力が低下する。この結果、斜板24の傾斜角度が大きくなることで、吐出容量が増加する。 Further, the opening adjustment valve 47 opens the bleed passage 141 when the displacement control signal value Ic supplied to the electromagnetic mechanism 453 increases and the electromagnetic force becomes larger than the force corresponding to the pressure of the suction chamber 32. Displace to position. As a result, the amount of refrigerant flowing from the control pressure chamber 18 to the suction chamber 32 increases, and the pressure in the control pressure chamber 18 decreases. As a result, when the inclination angle of the swash plate 24 is increased, the discharge capacity is increased.
 その他の構成および作動については第1実施形態と同様である。本実施形態の圧縮機10は、第1実施形態と共通の構成および作動から奏される作用効果を第1実施形態と同様に得ることができる。 Other configurations and operations are similar to those of the first embodiment. The compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
 特に、本実施形態では、容量制御機構40が抽気通路141を閉鎖可能な開度調整弁47を含んで構成されている。これによると、断続運転モード時にハウジング14内部における冷媒の循環を停止させることができるので、圧縮効率の更なる向上を図ることが可能となる。 In particular, in the present embodiment, the displacement control mechanism 40 is configured to include the opening adjustment valve 47 capable of closing the bleed passage 141. According to this, since it is possible to stop the circulation of the refrigerant inside the housing 14 in the intermittent operation mode, it is possible to further improve the compression efficiency.
 (第4実施形態)
 次に、第4実施形態について、図22を参照して説明する。本実施形態では、抽気通路141に対して固定絞り44の代わりに圧力応動弁48が配置されている点が第1実施形態と相違している。
Fourth Embodiment
Next, a fourth embodiment will be described with reference to FIG. The present embodiment is different from the first embodiment in that a pressure responsive valve 48 is disposed in place of the fixed throttle 44 with respect to the bleed passage 141.
 図22に示すように、容量制御機構40は、開度調整弁42および圧力応動弁48といった2つの弁を備える構成になっている。圧力応動弁48は、吐出室34と制御圧室18との圧力差が小さくなるにつれて抽気通路141の通路開度を小さくするように構成されている。吐出室34と制御圧室18との圧力差は、給気通路140の通路開度が大きくなるにつれて小さくなり、給気通路140の通路開度が小さくなるにつれて大きくなる。このため、圧力応動弁48は、給気通路140の通路開度が大きくなるにつれて、抽気通路141の通路開度を小さくするように構成される。圧力応動弁48は抽気通路141を閉鎖可能に構成されている。 As shown in FIG. 22, the displacement control mechanism 40 is configured to include two valves such as an opening degree adjusting valve 42 and a pressure responsive valve 48. The pressure responsive valve 48 is configured to reduce the opening degree of the bleed passage 141 as the pressure difference between the discharge chamber 34 and the control pressure chamber 18 decreases. The pressure difference between the discharge chamber 34 and the control pressure chamber 18 decreases as the passage opening degree of the air supply passage 140 increases, and increases as the passage opening degree of the air supply passage 140 decreases. For this reason, the pressure responsive valve 48 is configured to reduce the passage opening degree of the bleed passage 141 as the passage opening degree of the air supply passage 140 increases. The pressure responsive valve 48 is configured to be able to close the bleed passage 141.
 その他の構成および作動については第1実施形態と同様である。本実施形態の圧縮機10は、第1実施形態と共通の構成および作動から奏される作用効果を第1実施形態と同様に得ることができる。 Other configurations and operations are similar to those of the first embodiment. The compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
 特に、本実施形態では、容量制御機構40が抽気通路141を閉鎖可能な圧力応動弁48を含んで構成されている。これによると、断続運転モード時にハウジング14内部における冷媒の循環を停止させることができるので、圧縮効率の更なる向上を図ることが可能となる。 In particular, in the present embodiment, the displacement control mechanism 40 is configured to include the pressure responsive valve 48 capable of closing the bleed passage 141. According to this, since it is possible to stop the circulation of the refrigerant inside the housing 14 in the intermittent operation mode, it is possible to further improve the compression efficiency.
 (第5実施形態)
 次に、第5実施形態について、図23、図24を参照して説明する。本実施形態では、容量制御機構40が、圧縮機構12から吐出される冷媒の流量Grが目標流量Groとなるように給気通路140の通路開度が調整される構成になっている点が第1実施形態と相違している。
Fifth Embodiment
Next, a fifth embodiment will be described with reference to FIGS. 23 and 24. FIG. In the present embodiment, the capacity control mechanism 40 is configured such that the opening degree of the air supply passage 140 is adjusted so that the flow rate Gr of the refrigerant discharged from the compression mechanism 12 becomes the target flow rate Gro. It is different from the one embodiment.
 図23に示すように、容量制御機構40は、給気通路140の通路開度を調整する開度調整弁49および抽気通路141の通路開度を絞る固定絞り44を有している。開度調整弁49は、弁体491、吐出室34の出口側を絞る絞り部492、絞り部492の前後に生ずる差圧ΔPに応じた力を発生する差圧応動機構493、差圧応動機構493の力に対向する電磁力を発生する電磁機構494を有している。電磁機構494は、第1実施形態の電磁機構423と同様に構成される。 As shown in FIG. 23, the displacement control mechanism 40 has an opening adjustment valve 49 for adjusting the passage opening of the air supply passage 140 and a fixed throttle 44 for narrowing the passage opening of the bleed passage 141. The opening adjustment valve 49 includes a valve 491, a throttling portion 492 for throttling the outlet side of the discharge chamber 34, a differential pressure response mechanism 493 that generates a force corresponding to the differential pressure ΔP generated before and after the throttle portion 492, a differential pressure response mechanism An electromagnetic mechanism 494 that generates an electromagnetic force opposing to the force of 493 is provided. The electromagnetic mechanism 494 is configured in the same manner as the electromagnetic mechanism 423 of the first embodiment.
 ここで、絞り部492の前後に生ずる差圧ΔPは、圧縮機構12から吐出される冷媒の流量と比例関係にある。このため、差圧ΔPを制御することによって圧縮機構12から吐出される冷媒の流量を制御することが可能となる。 Here, the differential pressure ΔP generated before and after the throttle portion 492 is in proportion to the flow rate of the refrigerant discharged from the compression mechanism 12. Therefore, it becomes possible to control the flow rate of the refrigerant discharged from the compression mechanism 12 by controlling the differential pressure ΔP.
 差圧応動機構493は、バルブハウジング490内に形成された差圧導入室490aに収容され、弁体491の移動方向に弾性的に伸縮可能なベローズ493aを有している。差圧導入室490aには、絞り部492の下流側の圧力が第1圧力導入通路490bを介して導入される。ベローズ493aは、差圧導入室490aの内壁面に固定される部位が固定端493bを構成し、固定端493bの反対側の部位が弾性的な伸縮により変位する可動端493cを構成する。ベローズ493aの固定端493bには、第2圧力導入通路490cを介して絞り部492の上流側の圧力が作用する。また、ベローズ493aの可動端493cには、プッシュロッド493dが一体に連結されている。なお、図示しないが、ベローズ493aの内部には、ベローズ493aを伸長方向に押圧するバネが設けられている。 The differential pressure response mechanism 493 is accommodated in a differential pressure introducing chamber 490a formed in the valve housing 490, and has a bellows 493a elastically extendable in the moving direction of the valve body 491. The pressure on the downstream side of the narrowed portion 492 is introduced into the differential pressure introduction chamber 490a via the first pressure introduction passage 490b. In the bellows 493a, a portion fixed to the inner wall surface of the differential pressure introducing chamber 490a constitutes a fixed end 493b, and a portion opposite to the fixed end 493b constitutes a movable end 493c displaced by elastic expansion and contraction. The pressure on the upstream side of the throttle portion 492 acts on the fixed end 493 b of the bellows 493 a via the second pressure introduction passage 490 c. Further, a push rod 493 d is integrally connected to a movable end 493 c of the bellows 493 a. Although not shown, a spring for pressing the bellows 493a in the extending direction is provided inside the bellows 493a.
 開度調整弁49は、電磁力が一定となる場合、差圧ΔPが大きくなるにともなってベローズ493aが縮小し、これにともなって弁体491が給気通路140の通路開度を小さくする方向に変位する。これにより、制御圧室18に供給される冷媒量が減少することで制御圧室18の圧力が低下する。 When the electromagnetic force is constant, the opening adjustment valve 49 shrinks the bellows 493a as the differential pressure ΔP increases, and the valve body 491 reduces the opening degree of the air supply passage 140 accordingly. Displace. As a result, the amount of refrigerant supplied to the control pressure chamber 18 is reduced, whereby the pressure of the control pressure chamber 18 is reduced.
 一方、開度調整弁49は、電磁力が一定となる場合、差圧ΔPが小さくなるにともなってベローズ493aが伸長し、これにともなって弁体491が給気通路140の通路開度を大きくする方向に変位する。これにより、制御圧室18に供給される冷媒量が増加することで制御圧室18の圧力が上昇する。 On the other hand, in the opening adjustment valve 49, when the electromagnetic force becomes constant, the bellows 493a expands as the differential pressure ΔP decreases, and the valve body 491 increases the opening degree of the air supply passage 140 accordingly. Displace in the direction of As a result, the amount of refrigerant supplied to the control pressure chamber 18 is increased, whereby the pressure of the control pressure chamber 18 is increased.
 ここで、給気通路140の通路開度は、差圧ΔPに応じた力F1、電磁力F2等のバランスによって決まる。すなわち、電磁機構494に供給される容量制御信号値Icが増加して電磁力F2が差圧ΔPに応じた力F1よりも大きくなると、弁体491は、給気通路140の通路開度を小さくする方向に変位する。これにより、制御圧室18に供給される冷媒量が減少することで制御圧室18の圧力が低下する。この結果、斜板24の傾斜角度が大きくなることで、吐出容量が大きくなる。 Here, the passage opening degree of the air supply passage 140 is determined by the balance of the force F1 and the electromagnetic force F2 according to the pressure difference ΔP. That is, when the displacement control signal value Ic supplied to the electromagnetic mechanism 494 increases and the electromagnetic force F2 becomes larger than the force F1 according to the differential pressure ΔP, the valve 491 reduces the opening degree of the air supply passage 140. Displace in the direction of As a result, the amount of refrigerant supplied to the control pressure chamber 18 is reduced, whereby the pressure of the control pressure chamber 18 is reduced. As a result, when the inclination angle of the swash plate 24 is increased, the discharge displacement is increased.
 一方、電磁機構494に供給される容量制御信号値Icが減少して電磁力F2が差圧ΔPに応じた力F1よりも小さくなると、弁体421は、給気通路140の通路開度を大きくする方向に変位する。これにより、制御圧室18に供給される冷媒量が増加することで制御圧室18の圧力が上昇する。この結果、斜板24の傾斜角度が小さくなることで、吐出容量が小さくなる。 On the other hand, when the displacement control signal value Ic supplied to the electromagnetic mechanism 494 decreases and the electromagnetic force F2 becomes smaller than the force F1 corresponding to the differential pressure ΔP, the valve body 421 increases the opening degree of the air supply passage 140 Displace in the direction of As a result, the amount of refrigerant supplied to the control pressure chamber 18 is increased, whereby the pressure of the control pressure chamber 18 is increased. As a result, as the inclination angle of the swash plate 24 becomes smaller, the discharge displacement becomes smaller.
 次に、本実施形態の制御装置100が実行する可変運転処理について、図24を参照して説明する。図24は第1実施形態の図6に対応している。図24では、図6と同様の処理となるステップについて第1実施形態と同様の符号を付している。 Next, the variable driving process performed by the control device 100 of the present embodiment will be described with reference to FIG. FIG. 24 corresponds to FIG. 6 of the first embodiment. In FIG. 24, the same steps as those in FIG. 6 are denoted by the same reference numerals as those in the first embodiment.
 図6に示すように、制御装置100は、ステップS102にて圧縮機構12から吐出される冷媒の流量Gr_calを算出する。冷媒の流量Grは、容量制御信号値Icに比例して変化する。このため、制御装置100は、可変信号値Ic_calと冷媒の流量Gr_calとの対応関係を規定した制御マップを参照し、図5のステップS40で算出した可変信号値Ic_calに基づいて、冷媒の流量Gr_calを算出する。 As shown in FIG. 6, the control device 100 calculates the flow rate Gr_cal of the refrigerant discharged from the compression mechanism 12 in step S102. The flow rate Gr of the refrigerant changes in proportion to the capacity control signal value Ic. Therefore, the control device 100 refers to the control map that defines the correspondence between the variable signal value Ic_cal and the flow rate Gr_cal of the refrigerant, and based on the variable signal value Ic_cal calculated in step S40 of FIG. Calculate
 続いて、制御装置100は、ステップS104にて圧縮機構12に吸入される冷媒の密度ρ_calを算出する。圧縮機構12に吸入される冷媒の密度ρ_calは、圧縮機構12に吸入される冷媒の温度および圧力により決まる。そして、圧縮機構12に吸入される冷媒の温度および圧力は、蒸発器80の吹出温度TEと相関性を有する。このため、制御装置100は、蒸発器80の吹出温度TEと圧縮機構12に吸入される冷媒の密度ρ_calとの対応関係を規定した制御マップを参照し、蒸発器80の吹出温度TEに基づいて、圧縮機構12に吸入される冷媒の密度ρ_calを算出する。 Subsequently, the control device 100 calculates the density 100_cal of the refrigerant drawn into the compression mechanism 12 in step S104. The density __cal of the refrigerant drawn into the compression mechanism 12 is determined by the temperature and pressure of the refrigerant drawn into the compression mechanism 12. The temperature and pressure of the refrigerant drawn into the compression mechanism 12 are correlated with the temperature TE of the evaporator 80. For this reason, the control device 100 refers to a control map that defines the correspondence between the blowout temperature TE of the evaporator 80 and the density __cal of the refrigerant drawn into the compression mechanism 12, and based on the blowout temperature TE of the evaporator 80. The density ρ_cal of the refrigerant drawn into the compression mechanism 12 is calculated.
 続いて、制御装置100は、ステップS106にて冷媒の流量Gr_cal、圧縮機構12に吸入される冷媒の密度ρ_cal、および圧縮機構12の回転数Neに基づいて、圧縮機構12の吐出容量の推定容量Vを算出する。 Subsequently, the control device 100 estimates the displacement of the discharge capacity of the compression mechanism 12 based on the flow rate Gr_cal of the refrigerant at step S106, the density __cal of the refrigerant sucked into the compression mechanism 12, and the rotational speed Ne of the compression mechanism 12. Calculate V.
 制御装置100は、例えば、以下の数式F2を用いて推定容量Vを推定する。 Control device 100 estimates estimated capacity V, for example, using the following formula F2.
 V=Gr_cal/(ρ_cal×Ne×η)…(F2)
 但し、数式F2に示すηは、圧縮機構12における体積効率であり、予め定められた値に設定されている。なお、体積効率ηは、圧縮機構12の回転数Neの影響が大きいので、回転数Neに基づいて決定してもよい。
V = Gr_cal / (ρ_cal × Ne × η) (F2)
However, η shown in Formula F2 is volumetric efficiency in the compression mechanism 12, and is set to a predetermined value. The volumetric efficiency η may be determined based on the rotational speed Ne because the rotational speed Ne of the compression mechanism 12 has a large influence.
 続いて、制御装置100は、ステップS108にて推定容量Vが下限容量V_min以下であるか否かを判定する。この結果、圧縮機構12の推定容量Vが下限容量V_minより大きくなる場合、制御装置100は、ステップS110にてクラッチMGCをオン状態に維持する。また、制御装置100は、ステップS120にて、容量制御信号値Icを可変信号値Ic_calに決定する。そして、制御装置100は、ステップS130にて、圧縮機構12を可変運転モードで運転させる。すなわち、制御装置100は、容量制御信号値Icとして可変信号値Ic_calを容量制御機構40に出力する。 Subsequently, in step S108, the control device 100 determines whether the estimated capacity V is equal to or less than the lower limit capacity V_min. As a result, when the estimated displacement V of the compression mechanism 12 becomes larger than the lower limit displacement V_min, the control device 100 maintains the clutch MGC in the on state in step S110. Further, in step S120, the control device 100 determines the capacitance control signal value Ic as the variable signal value Ic_cal. Then, at step S130, control device 100 operates compression mechanism 12 in the variable operation mode. That is, the control device 100 outputs the variable signal value Ic_cal to the capacitance control mechanism 40 as the capacitance control signal value Ic.
 一方、圧縮機構12の推定容量Vが下限容量V_min以下となる場合、制御装置100は、ステップS150に移行してクラッチMGCをオン状態に維持する。また、制御装置100は、ステップS160にて、容量制御信号値Icを下限信号値Ic_minに決定する。そして、制御装置100は、ステップS170にて、圧縮機構12を断続運転モードで運転させる。すなわち、制御装置100は、容量制御信号値Icとして下限信号値Ic_minを容量制御機構40に出力する。 On the other hand, when the estimated displacement V of the compression mechanism 12 becomes equal to or less than the lower limit displacement V_min, the control device 100 proceeds to step S150 and maintains the clutch MGC in the on state. Further, in step S160, control device 100 determines capacitance control signal value Ic as lower limit signal value Ic_min. Then, in step S170, the control device 100 operates the compression mechanism 12 in the intermittent operation mode. That is, the control device 100 outputs the lower limit signal value Ic_min to the capacitance control mechanism 40 as the capacitance control signal value Ic.
 以上までが可変運転処理に関する説明である。本実施形態の断続運転処理は、第1実施形態で説明した断続運転処理と同様である。このため、本実施形態の断続運転処理の説明については省略する。 The above is the description of the variable driving process. The intermittent operation process of the present embodiment is the same as the intermittent operation process described in the first embodiment. Therefore, the description of the intermittent operation process of the present embodiment is omitted.
 その他の構成および作動については第1実施形態と同様である。本実施形態の圧縮機10は、第1実施形態と共通の構成および作動から奏される作用効果を第1実施形態と同様に得ることができる。 Other configurations and operations are similar to those of the first embodiment. The compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
 本実施形態の圧縮機10は、容量制御機構40が圧縮機構12から吐出される冷媒の流量Grが目標流量Groとなるように容量制御信号値Icに応じて吐出容量を変化させる構成になっている。本実施形態の制御装置100は、吐出容量を下限容量に設定したとしても蒸発器80における空気の冷却能力が蒸発器80に要求される要求冷却能力を満足する能力満足条件が成立した場合に、可変運転モードから断続運転モードに切り替える。そして、能力満足条件は、圧縮機構12の吐出容量を推定した推定容量Vが下限容量V_min以下となる際に成立する条件となっている。これによると、蒸発器80における空気の冷却能力が過剰になることを回避することができるので、蒸発器80における冷却能力を適切に発揮させつつ、圧縮効率の向上を図ることが可能となる。 In the compressor 10 according to the present embodiment, the displacement control mechanism 40 changes the discharge displacement according to the displacement control signal value Ic such that the flow amount Gr of the refrigerant discharged from the compression mechanism 12 becomes the target flow amount Gro. There is. Even when the discharge capacity is set to the lower limit capacity, the control device 100 according to the present embodiment satisfies the condition that the cooling capacity of air in the evaporator 80 satisfies the required cooling capacity required of the evaporator 80. Switch from the variable operation mode to the intermittent operation mode. The capability satisfying condition is a condition that is satisfied when the estimated displacement V obtained by estimating the discharge displacement of the compression mechanism 12 becomes equal to or less than the lower limit displacement V_min. According to this, since it is possible to prevent the cooling capacity of the air in the evaporator 80 from becoming excessive, it is possible to improve the compression efficiency while appropriately exhibiting the cooling capacity in the evaporator 80.
 (第6実施形態)
 次に、第6実施形態について、図25~図29を参照して説明する。本実施形態では、圧縮機構12の運転モードとして遷移運転モードが設けられている点が第1実施形態と相違している。各図面のうち、図25が第1実施形態の図5に対応し、図26が第1実施形態の図6に対応している。図25、図26では、図5、図6と同様の処理となるステップについて第1実施形態と同様の符号を付している。
Sixth Embodiment
Next, a sixth embodiment will be described with reference to FIGS. 25 to 29. The present embodiment is different from the first embodiment in that a transition operation mode is provided as an operation mode of the compression mechanism 12. Of the drawings, FIG. 25 corresponds to FIG. 5 of the first embodiment, and FIG. 26 corresponds to FIG. 6 of the first embodiment. In FIG. 25 and FIG. 26, the same steps as those in FIG. 5 and FIG.
 図25に示すように、制御装置100は、ステップS50Aにて、現状の圧縮機構12の運転モードが可変運転モード、断続運転モード、遷移運転モードのいずれかであるかを判定する。この判定処理の結果、運転モードが可変運転モードである場合、制御装置100は、ステップS60に移行して可変運転処理を実行する。また、運転モードが断続運転モードである場合、制御装置100は、ステップS70に移行して断続運転処理を実行する。さらに、運転モードが遷移運転モードである場合、制御装置100は、ステップS80に移行して遷移運転処理を実行する。 As shown in FIG. 25, the control device 100 determines in step S50A whether the current operation mode of the compression mechanism 12 is the variable operation mode, the intermittent operation mode, or the transition operation mode. As a result of the determination process, when the operation mode is the variable operation mode, the control device 100 proceeds to step S60 and executes the variable operation process. When the operation mode is the intermittent operation mode, the control device 100 proceeds to step S70 and executes the intermittent operation process. Furthermore, when the operation mode is the transition operation mode, the control device 100 proceeds to step S80 and executes transition operation processing.
 まず、図26のフローチャートを参照して可変運転処理の流れについて説明する。図26に示すように、制御装置100は、ステップS100Aにて、蒸発器80の吹出温度TEが第1判定閾値Tth1よりも小さいか否かを判定する。第1判定閾値Tth1は、図27に示すように、目標蒸発器温度TEOよりも低い温度に設定されている。 First, the flow of the variable driving process will be described with reference to the flowchart of FIG. As shown in FIG. 26, the control device 100 determines in step S100A whether or not the outlet temperature TE of the evaporator 80 is smaller than the first determination threshold Tth1. The first determination threshold Tth1 is set to a temperature lower than the target evaporator temperature TEO, as shown in FIG.
 蒸発器80の吹出温度TEが第1判定閾値Tth1以上となる場合、制御装置100は、ステップS110にて、クラッチMGCをオン状態に維持し、ステップS120にて、容量制御信号値Icを可変信号値Ic_calに決定する。そして、制御装置100は、ステップS130にて、圧縮機構12を可変運転モードで運転させる。 When the blowout temperature TE of the evaporator 80 becomes equal to or higher than the first determination threshold Tth1, the control device 100 maintains the clutch MGC in the ON state in step S110, and changes the displacement control signal value Ic in step S120. Determine the value Ic_cal. Then, at step S130, control device 100 operates compression mechanism 12 in the variable operation mode.
 一方、蒸発器80の吹出温度TEが第1判定閾値Tth1よりも小さい場合、制御装置100は、ステップS150に移行してクラッチMGCをオン状態に維持し、ステップS160にて、容量制御信号値Icを下限信号値Ic_minに決定する。そして、制御装置100は、ステップS180にて、圧縮機構12を遷移運転モードで運転させる。すなわち、制御装置100は、クラッチMGCをオン状態に維持した状態で、容量制御信号値Icとして下限信号値Ic_minを容量制御機構40に出力する。 On the other hand, when the blowout temperature TE of the evaporator 80 is smaller than the first determination threshold Tth1, the control device 100 shifts to step S150 to maintain the clutch MGC in the on state, and in step S160, the displacement control signal value Ic. Is determined as the lower limit signal value Ic_min. Then, in step S180, control device 100 operates compression mechanism 12 in the transition operation mode. That is, the control device 100 outputs the lower limit signal value Ic_min to the displacement control mechanism 40 as the displacement control signal value Ic while maintaining the clutch MGC in the on state.
 次に、図28のフローチャートを参照して遷移運転処理の流れについて説明する。遷移運転モードは、クラッチMGCをオン状態に維持した状態で、容量制御信号値Icとして下限信号値Ic_minに維持する運転モードである。 Next, the flow of the transition operation process will be described with reference to the flowchart of FIG. The transition operation mode is an operation mode in which the lower limit signal value Ic_min is maintained as the displacement control signal value Ic while the clutch MGC is maintained in the on state.
 図28に示すように、制御装置100は、ステップS500にて、蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも大きいか否かを判定する。この結果、蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも大きい場合、蒸発器80の冷却能力が不足した能力不足状態であると考えられる。このため、蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも大きくなる場合、制御装置100は、ステップS510にてクラッチMGCをオン状態に維持し、ステップS520にて、容量制御信号値Icを可変信号値Ic_calに決定する。そして、制御装置100は、ステップS530にて、圧縮機構12を可変運転モードで運転させる。 As shown in FIG. 28, in step S500, the control device 100 determines whether the outlet temperature TE of the evaporator 80 is larger than the target evaporator temperature TEO. As a result, when the outlet temperature TE of the evaporator 80 is larger than the target evaporator temperature TEO, it is considered that the cooling capacity of the evaporator 80 is insufficient and the capacity is insufficient. Therefore, when the blowout temperature TE of the evaporator 80 becomes higher than the target evaporator temperature TEO, the control device 100 maintains the clutch MGC in the on state in step S510, and in step S520, the capacity control signal value Ic. Is determined as the variable signal value Ic_cal. Then, in step S530, control device 100 operates compression mechanism 12 in the variable operation mode.
 これに対して、蒸発器80の吹出温度TEが目標蒸発器温度TEO以下となる場合、制御装置100は、ステップS540にて、蒸発器80の吹出温度TEが第2判定閾値Tth2よりも低い温度であるか否かを判定する。第2判定閾値Tth2は、図27に示すように、第1判定閾値Tth1よりも低い温度に設定されている。 On the other hand, when the blowout temperature TE of the evaporator 80 becomes equal to or lower than the target evaporator temperature TEO, the control device 100 determines that the blowout temperature TE of the evaporator 80 is lower than the second determination threshold Tth2 in step S540. It is determined whether the The second determination threshold Tth2 is set to a temperature lower than the first determination threshold Tth1, as shown in FIG.
 蒸発器80の吹出温度TEが第2判定閾値Tth2よりも低い温度となる場合、蒸発器80の冷却能力が要求される要求冷却能力に対して過剰になっている状態と考えられる。このため、蒸発器80の吹出温度TEが第2判定閾値Tth2よりも低い温度となる場合、制御装置100は、ステップS550にてクラッチMGCをオフ状態に切り替え、ステップS560にて、容量制御信号値Icを下限信号値Ic_minに決定する。そして、制御装置100は、ステップS570にて、圧縮機構12を断続運転モードで運転させる。 If the temperature TE of the evaporator 80 is lower than the second determination threshold Tth2, it is considered that the cooling capacity of the evaporator 80 is in excess of the required cooling capacity required. Therefore, when the blowout temperature TE of the evaporator 80 becomes lower than the second determination threshold Tth2, the control device 100 switches the clutch MGC to the off state in step S550, and the capacity control signal value in step S560. Determine Ic as the lower limit signal value Ic_min. Then, in step S570, control device 100 operates compression mechanism 12 in the intermittent operation mode.
 一方、蒸発器80の吹出温度TEが第2判定閾値Tth2以上の温度となる場合、制御装置100は、ステップS580にてクラッチMGCをオン状態に維持し、ステップS590にて、容量制御信号値Icを下限信号値Ic_minに決定する。そして、制御装置100は、ステップS600にて、圧縮機構12を遷移運転モードで運転させる。 On the other hand, when the blowout temperature TE of the evaporator 80 becomes a temperature equal to or higher than the second determination threshold Tth2, the control device 100 maintains the clutch MGC in the on state in step S580, and in step S590, the displacement control signal value Ic. Is determined as the lower limit signal value Ic_min. Then, in step S600, control device 100 causes compression mechanism 12 to operate in the transition operation mode.
 次に、図29のフローチャートを参照して断続運転処理の流れについて説明する。図29に示すように、制御装置100は、ステップS700にて、クラッチMGCがオン状態であるか否かを判定する。この結果、クラッチMGCがオン状態であると判定された場合、制御装置100は、ステップS710にて、蒸発器80の吹出温度TEが目標蒸発器温度TEOよりも大きいか否かを判定する。 Next, the flow of the intermittent operation process will be described with reference to the flowchart of FIG. As shown in FIG. 29, the control device 100 determines in step S700 whether the clutch MGC is in the on state. As a result, when it is determined that the clutch MGC is in the on state, the control device 100 determines whether the outlet temperature TE of the evaporator 80 is higher than the target evaporator temperature TEO in step S710.
 蒸発器80の吹出温度TEが目標蒸発器温度TEO以下となる場合、制御装置100は、ステップS720にて、蒸発器80の吹出温度TEが第1判定閾値Tth1以上であるか否かを判定する。 If the blowout temperature TE of the evaporator 80 becomes equal to or less than the target evaporator temperature TEO, the control device 100 determines whether the blowout temperature TE of the evaporator 80 is the first determination threshold Tth1 or more in step S720. .
 この結果、蒸発器80の吹出温度TEが第1判定閾値Tth1よりも低い温度となる場合、制御装置100は、ステップS730にてクラッチMGCをオフ状態に設定する。一方、蒸発器80の吹出温度TEが第1判定閾値Tth1以上となる場合、制御装置100は、ステップS740にてクラッチMGCをオン状態に維持する。そして、制御装置100は、ステップS750にて、容量制御信号値Icを下限信号値Ic_minに決定し、ステップS760にて、圧縮機構12の運転モードを断続運転モードに維持する。 As a result, when the blowout temperature TE of the evaporator 80 becomes lower than the first determination threshold Tth1, the control device 100 sets the clutch MGC to the OFF state in step S730. On the other hand, when the outlet temperature TE of the evaporator 80 becomes equal to or higher than the first determination threshold Tth1, the control device 100 maintains the clutch MGC in the on state in step S740. Then, in step S750, control device 100 determines that capacity control signal value Ic is lower limit signal value Ic_min, and in step S760, maintains the operation mode of compression mechanism 12 in the intermittent operation mode.
 また、ステップS710の判定処理にて蒸発器80の吹出温度TEが目標蒸発器温度TEOより大きくなる場合、制御装置100は、制御装置100は、ステップS770にて吹出温度TEと目標蒸発器温度TEOとの温度差ΔEの積算値ΣΔEを算出する。積算値ΣΔEは、断続運転モードにおいて、蒸発器80の冷却能力が要求される要求冷却能力に対して不足する能力不足状態を把握するために用いられる。 Further, when the blowout temperature TE of the evaporator 80 becomes larger than the target evaporator temperature TEO in the determination process of step S710, the control device 100 controls the blowout temperature TE and the target evaporator temperature TEO in step S770. The integrated value ΔΔE of the temperature difference ΔE with the above is calculated. In the intermittent operation mode, the integrated value 把握 ΔE is used to grasp an insufficient capacity state where the cooling capacity of the evaporator 80 is insufficient for the required cooling capacity.
 続いて、制御装置100は、ステップS780にて、蒸発器80の吹出温度TEが第4判定閾値Tth4以上であるか否かを判定する。第4判定閾値Tth4は、図27に示すように、目標蒸発器温度TEOよりも高い温度に設定されている。 Subsequently, in step S780, the control device 100 determines whether the outlet temperature TE of the evaporator 80 is equal to or higher than a fourth determination threshold Tth4. The fourth determination threshold Tth4 is set to a temperature higher than the target evaporator temperature TEO, as shown in FIG.
 蒸発器80の吹出温度TEが第4判定閾値Tth4以上である場合、断続運転モードを継続しても蒸発器80の能力不足状態が回避できないと考えられる。このため、制御装置100は、ステップS790にてクラッチMGCをオン状態に維持するとともに、ステップS800にて容量制御信号値を可変信号値Ic_calに決定する。そして、制御装置100は、ステップS810にて、圧縮機構12の運転モードを可変運転モードに切り替える。 When the blowout temperature TE of the evaporator 80 is equal to or higher than the fourth determination threshold Tth4, it is considered that the capacity shortage state of the evaporator 80 can not be avoided even if the intermittent operation mode is continued. Therefore, control device 100 maintains clutch MGC in the on state in step S790, and determines the displacement control signal value as variable signal value Ic_cal in step S800. Then, in step S810, control device 100 switches the operation mode of compression mechanism 12 to the variable operation mode.
 また、ステップS780の判定処理にて蒸発器80の吹出温度TEが第4判定閾値Tth4よりも低い温度となる場合、制御装置100は、ステップS820にて積算値ΣΔEが予め設定された積算閾値以上であるか否かを判定する。 Further, when the blowout temperature TE of the evaporator 80 becomes lower than the fourth determination threshold Tth4 in the determination process of step S780, the control device 100 determines that the integration value ΔΔE is equal to or more than the preset integration threshold in step S820. It is determined whether the
 積算値ΣΔEが積算閾値以上となる場合、断続運転モードを継続しても蒸発器80の能力不足状態が回避できないと考えられる。このため、制御装置100は、ステップS790に移行し、運転モードを可変運転モードに切り替える。 If the integrated value ΔΔE is equal to or higher than the integration threshold, it is considered that the capacity shortage state of the evaporator 80 can not be avoided even if the intermittent operation mode is continued. Therefore, the control device 100 shifts to step S790 and switches the operation mode to the variable operation mode.
 一方、積算値ΣΔEが積算閾値より小さい場合、断続運転モードを継続において蒸発器80の能力不足状態が継続して発生していないと考えられる。このため、制御装置100は、ステップS740に移行し、クラッチMGCをオン状態にした状態で運転モードを断続運転モードに維持する。 On the other hand, when the integrated value ΔΔE is smaller than the integration threshold, it is considered that the capacity shortage state of the evaporator 80 is not continuously generated while the intermittent operation mode is continued. Therefore, the control device 100 proceeds to step S740, and maintains the operation mode in the intermittent operation mode with the clutch MGC in the on state.
 これに対して、ステップS700の判定処理にて、クラッチMGCがオフ状態であると判定された場合、制御装置100は、ステップS830にて、蒸発器80の吹出温度TEが第3判定閾値Tth3よりも大きいか否かを判定する。第3判定閾値Tth3は、図27に示すように、目標蒸発器温度TEOよりも高く、且つ、第4判定閾値Tth4よりも低い温度に設定されている。 On the other hand, when it is determined in step S700 that the clutch MGC is in the off state, the control device 100 determines that the outlet temperature TE of the evaporator 80 is higher than the third determination threshold Tth3 in step S830. It is determined whether or not it is large. The third determination threshold Tth3 is set to a temperature higher than the target evaporator temperature TEO and lower than the fourth determination threshold Tth4, as shown in FIG.
 この結果、蒸発器80の吹出温度TEが第3判定閾値Tth3よりも大きい場合、制御装置100は、ステップS840にて積算値ΣΔEをリセットし、ステップS850にてクラッチMGCをオン状態に切り替える。一方、蒸発器80の吹出温度TEが第3判定閾値Tth3以下となる場合、制御装置100は、ステップS860にてクラッチMGCをオフ状態に維持する。そして、制御装置100は、ステップS870にて容量制御信号値Icを下限信号値Ic_minに決定し、ステップS880にて圧縮機構12の運転モードを断続運転モードに維持する。 As a result, when the outlet temperature TE of the evaporator 80 is higher than the third determination threshold Tth3, the control device 100 resets the integrated value ΔΔE in step S840, and switches the clutch MGC to the on state in step S850. On the other hand, when the outlet temperature TE of the evaporator 80 becomes equal to or lower than the third determination threshold Tth3, the control device 100 maintains the clutch MGC in the OFF state in step S860. Then, the control device 100 determines the capacity control signal value Ic to be the lower limit signal value Ic_min in step S870, and maintains the operation mode of the compression mechanism 12 in the intermittent operation mode in step S880.
 その他の構成および作動は、第1実施形態と同様である。本実施形態の圧縮機10は、第1実施形態と共通の構成および作動から奏される作用効果を第1実施形態と同様に得ることができる。 Other configurations and operations are similar to those of the first embodiment. The compressor 10 of the present embodiment can obtain the same effects and advantages as those of the first embodiment from the same configuration and operation as those of the first embodiment.
 本実施形態の圧縮機10は、吐出容量を下限容量に設定したとしても蒸発器80における空気の冷却能力が要求冷却能力を満足する能力満足条件が成立した場合に、可変運転モード→遷移運転モード→断続運転モードの順序で運転モードが切り替わる。このように、可変運転モードから断続運転モードに切り替わる前に遷移運転モードを介在させることで、可変運転モードから断続運転モードへの切り替わりの頻発を抑えることができる。 In the compressor 10 of the present embodiment, the variable operation mode → the transition operation mode when the capacity satisfying condition that the cooling capacity of the air in the evaporator 80 satisfies the required cooling capacity is satisfied even if the discharge capacity is set to the lower limit capacity. → The operation mode switches in the order of the intermittent operation mode. As described above, by interposing the transition operation mode before switching from the variable operation mode to the intermittent operation mode, it is possible to suppress the frequent occurrence of switching from the variable operation mode to the intermittent operation mode.
 また、本実施形態の圧縮機10では、吐出容量を下限容量に設定したとしても蒸発器80における空気の冷却能力が要求冷却能力に足りない能力不足条件が成立した場合に、断続運転モードから可変運転モードに切り替える。そして、能力不足条件は、クラッチMGCがオン状態となっている期間で積算値ΣΔEが所定の積算閾値を上回った際に成立する条件となっている。これによれば、断続運転モードから可変運転モードへの切り替わりの頻発を抑えることができる。 Further, in the compressor 10 according to the present embodiment, even if the discharge capacity is set to the lower limit capacity, variable operation is possible from the intermittent operation mode when the capacity insufficient condition in which the cooling capacity of air in the evaporator 80 is insufficient for the required cooling capacity is satisfied. Switch to operation mode. The capacity shortage condition is a condition that is satisfied when the integrated value ΔΔE exceeds a predetermined integration threshold in a period in which the clutch MGC is in the on state. According to this, it is possible to suppress frequent switching from the intermittent operation mode to the variable operation mode.
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
(Other embodiments)
Having described exemplary embodiments of the present disclosure, the present disclosure is not limited to the above embodiments, for example, can be variously modified as follows.
 上述の各実施形態では、ハウジング14内における斜板24が収容された空間が制御圧室18となっている例について説明したが、これに限定されない。圧縮機構12は、特開2016-98679号公報に記載されているように、斜板24の傾斜角度を変更する移動体、回転軸20、ラグプレート22等により区画形成される空間を制御圧室18として機能させる構成になっていてもよい。 Although the above-mentioned each embodiment demonstrated the example which the space in which the swash plate 24 in the housing 14 was accommodated becomes the control pressure chamber 18, it is not limited to this. As described in JP-A-2016-98679, the compression mechanism 12 controls a space defined by a moving body for changing the inclination angle of the swash plate 24, the rotation shaft 20, the lug plate 22 and the like. It may be configured to function as 18.
 上述の各実施形態では、圧縮機構12として片頭型のピストン29を有するものを例示したが、これに限定されない。圧縮機構12は、例えば、両頭型のピストンを有するもので構成されていてもよい。 In each of the embodiments described above, the compression mechanism 12 is illustrated as having the single-headed piston 29, but is not limited thereto. The compression mechanism 12 may be configured to have, for example, a double-ended piston.
 上述の各実施形態では、車室内を空調するための冷凍サイクル装置1に対して本開示の圧縮機10を適用する例について説明したが、これに限定されない。本開示の圧縮機10は、例えば、トレーラの庫内を冷却するための冷凍サイクル装置等にも広く適用可能である。 Although the above-mentioned each embodiment demonstrated the example which applies the compressor 10 of this indication with respect to the refrigerating-cycle apparatus 1 for air-conditioning a vehicle interior, it is not limited to this. The compressor 10 of the present disclosure can be widely applied to, for example, a refrigeration cycle apparatus for cooling the inside of a trailer of a trailer.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above embodiment, the elements constituting the embodiments, except such case where they are considered principally apparent that essential that clearly to be particularly essential, it is needless to say not necessarily indispensable.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above embodiment, when numerical values such as the number, numerical value, amount, range and the like of the constituent elements of the embodiment are mentioned, it is clearly indicated that they are particularly essential and clearly limited to a specific number in principle. It is not limited to that particular number except in cases such as, etc.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above embodiment, when referring to the shape, positional relationship, etc. of the component etc., unless otherwise specified or in principle when limited to a specific shape, positional relationship, etc., the shape, positional relationship, etc. but it is not limited to equal.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、可変容量型圧縮機は、圧縮機構に対して、吐出容量の下限容量を最小容量よりも大きく最大容量よりも小さい中間容量に制限する容量制限部が設けられている。そして、制御装置は、運転モードを可変運転モードおよび断続運転モードに切替可能に構成されている。但し、可変運転モードは、クラッチを連結状態に制御した状態で容量制御機構によって吐出容量を下限容量から最大容量までの範囲で変化させる運転モードである。断続運転モードは、容量制御機構によって吐出容量を下限容量に制御した状態で、クラッチによって連結状態と遮断状態とに断続的に切り替える運転モードである。
(Summary)
According to the first aspect of the present invention described in part or all of the above-described embodiments, the variable displacement compressor has a lower limit displacement of the discharge displacement greater than the minimum displacement and less than the maximum displacement relative to the compression mechanism. There is provided a capacity limiting unit for limiting to an intermediate capacity. The control device is configured to be able to switch the operation mode to the variable operation mode and the intermittent operation mode. However, the variable operation mode is an operation mode in which the displacement control mechanism changes the discharge displacement in the range from the lower limit displacement to the maximum displacement by controlling the clutch in the connected state. The intermittent operation mode is an operation mode in which the clutch is used to intermittently switch between the connected state and the disconnected state while the displacement control mechanism controls the discharge displacement to the lower limit displacement.
 第2の観点によれば、可変容量型圧縮機は、下限容量が最小容量から最大容量までの範囲で圧縮機構を運転させた際の成績係数が最小容量に設定した場合よりも大きくなる容量に設定されている。これによれば、最小容量で運転させる場合に比べて、断続運転モード時の成績係数を大きくすることができる。 According to the second aspect, the variable displacement compressor has a capacity that is larger than that obtained when the compression mechanism is operated in the range from the minimum capacity to the maximum capacity and the lower limit capacity is set to the minimum capacity. It is set. According to this, it is possible to increase the coefficient of performance in the intermittent operation mode as compared with the case of operating with the minimum capacity.
 第3の観点によれば、可変容量型圧縮機の圧縮機構は、冷媒を圧縮するための圧縮室に冷媒を導入するための吸入室、圧縮室で圧縮された冷媒を導出するための吐出室、吐出容量を変化させるための制御圧室が設けられたハウジングを有する。圧縮機構は、制御圧室の圧力が小さくなるにつれて吐出容量が大きくなる構成となっている。ハウジングには、吐出室の冷媒を制御圧室に導く給気通路、制御圧室の冷媒を吸入室に導く抽気通路が形成されている。そして、容量制御機構は、断続運転モード時に、可変運転モード時に比べて、給気通路、制御圧室、および抽気通路を介して循環する冷媒の循環量が少なくなるように構成されている。これによれば、断続運転モード時にハウジング内部における冷媒の循環に伴う損失が抑制されるので、圧縮効率の更なる向上を図ることが可能となる。 According to the third aspect, the compression mechanism of the variable displacement compressor includes a suction chamber for introducing the refrigerant into a compression chamber for compressing the refrigerant, and a discharge chamber for extracting the refrigerant compressed in the compression chamber. And a housing provided with a control pressure chamber for changing the displacement. The compression mechanism is configured such that the discharge capacity increases as the pressure in the control pressure chamber decreases. The housing is formed with an air supply passage for introducing the refrigerant in the discharge chamber to the control pressure chamber, and a bleed passage for introducing the refrigerant in the control pressure chamber to the suction chamber. The capacity control mechanism is configured to reduce the circulation amount of the refrigerant circulating through the air supply passage, the control pressure chamber, and the bleed passage in the intermittent operation mode as compared with the variable operation mode. According to this, since the loss accompanying the circulation of the refrigerant inside the housing is suppressed in the intermittent operation mode, the compression efficiency can be further improved.
 第4の観点によれば、可変容量型圧縮機の容量制御機構は、断続運転モード時に、給気通路を開き、抽気通路を閉じるように構成されている。これによれば、断続運転モード時にハウジング内部における冷媒の循環を停止させることができるので、圧縮効率の更なる向上を図ることが可能となる。 According to the fourth aspect, the capacity control mechanism of the variable displacement compressor is configured to open the air supply passage and close the bleed passage during the intermittent operation mode. According to this, since it is possible to stop the circulation of the refrigerant inside the housing at the time of the intermittent operation mode, it is possible to further improve the compression efficiency.
 第5の観点によれば、可変容量型圧縮機の容量制御機構は、給気通路の通路開度が大きくなるにつれて抽気通路の通路開度が小さくなり、給気通路の通路開度が小さくなるにつれて抽気通路の通路開度が大きくなるように構成された容量制御弁を含んでいる。これによると、制御圧室の圧力が大きくなるように給気通路の通路開度を大きくすると、抽気通路の通路開度が小さくなるので、早急に吐出容量を小さくすることができる。また、本開示の可変容量型圧縮機は、制御圧室の圧力が小さくなるように給気通路の通路開度を小さくすると、抽気通路の通路開度が大きくなるので、早急に吐出容量を大きくすることができる。 According to the fifth aspect, in the capacity control mechanism of the variable displacement compressor, the passage opening degree of the bleed passage decreases as the passage opening degree of the air supply passage increases, and the passage opening degree of the air supply passage decreases. The displacement control valve is configured such that the passage opening degree of the bleed passage increases. According to this, when the passage opening degree of the air supply passage is increased so that the pressure of the control pressure chamber is increased, the passage opening degree of the bleed passage is decreased, so that the discharge capacity can be reduced rapidly. Further, in the variable displacement compressor of the present disclosure, when the passage opening degree of the air supply passage is reduced so that the pressure in the control pressure chamber is decreased, the passage opening degree of the extraction passage is increased. can do.
 加えて、本開示の可変容量型圧縮機は、吐出容量が小さくなる際に抽気通路の通過開度が小さくなり、ハウジング内部における冷媒の循環量が少なくなるので、圧縮効率の向上を図ることができる。 In addition, in the variable displacement compressor according to the present disclosure, when the discharge capacity decreases, the passage opening degree of the bleed passage decreases, and the circulation amount of the refrigerant in the housing decreases, so compression efficiency can be improved. it can.
 第6の観点によれば、可変容量型圧縮機の容量制御機構は、給気通路の通路開度を調整する開度調整弁、および吐出室と制御圧室との圧力差が小さくなるにつれて抽気通路の通路開度を小さくする圧力応動弁を含んでいる。このように、容量制御機構は、二つの弁を備える構成になっていてもよい。本構成によっても、吐出容量が小さくなる際に抽気通路の通過開度が小さくなり、ハウジング内部における冷媒の循環量が少なくなるので、圧縮効率の向上を図ることができる。 According to the sixth aspect, the displacement control mechanism of the variable displacement compressor controls the opening degree adjusting valve for adjusting the passage opening degree of the air supply passage, and extracts the bleed air as the pressure difference between the discharge chamber and the control pressure chamber decreases. It includes a pressure responsive valve that reduces the passage opening degree of the passage. Thus, the displacement control mechanism may be configured to include two valves. Also according to this configuration, when the discharge capacity decreases, the passage opening degree of the bleed passage decreases, and the circulation amount of the refrigerant in the housing decreases, so that the compression efficiency can be improved.
 第7の観点によれば、可変容量型圧縮機の制御装置は、吐出容量を下限容量に設定したとしても蒸発器における空気の冷却能力が蒸発器に要求される要求冷却能力を満足する能力満足条件が成立した場合に、可変運転モードから断続運転モードに切り替える。これによると、蒸発器における空気の冷却能力が過剰になることを回避することができるので、蒸発器における冷却能力を適切に発揮させつつ、圧縮効率の向上を図ることが可能となる。 According to the seventh aspect, the controller of the variable displacement compressor is satisfied with the ability to cool air in the evaporator to satisfy the required cooling ability required of the evaporator even if the discharge capacity is set to the lower limit capacity. When the condition is satisfied, the variable operation mode is switched to the intermittent operation mode. According to this, since it is possible to prevent the cooling capacity of air in the evaporator from becoming excessive, it is possible to improve the compression efficiency while appropriately exhibiting the cooling capacity in the evaporator.
 第8の観点によれば、可変容量型圧縮機の制御装置は、吹出温度と目標蒸発器温度との差が小さくなるように容量制御機構に対して出力する容量制御信号値を算出する。容量制御機構は、圧縮機構に吸入される冷媒の圧力が目標圧力となるように容量制御信号値に応じて吐出容量を変化させる構成になっている。そして、能力満足条件は、吹出温度が目標蒸発器温度よりも低く、且つ、容量制御信号値が所定の判定閾値以下となる際に成立する条件になっている。これによると、吹出温度が目標蒸発器温度以上となる場合、すなわち、蒸発器の冷却能力が不足している状態で、可変運転モードから断続運転モードに切り替わることを回避することができる。 According to the eighth aspect, the control device of the variable displacement compressor calculates the displacement control signal value to be output to the displacement control mechanism so that the difference between the blowout temperature and the target evaporator temperature becomes smaller. The displacement control mechanism is configured to change the discharge displacement in accordance with the displacement control signal value so that the pressure of the refrigerant drawn into the compression mechanism becomes the target pressure. The capability satisfaction condition is a condition that is satisfied when the blowout temperature is lower than the target evaporator temperature and the displacement control signal value is less than or equal to a predetermined determination threshold. According to this, it is possible to avoid switching from the variable operation mode to the intermittent operation mode when the blowout temperature becomes equal to or higher than the target evaporator temperature, that is, in a state where the cooling capacity of the evaporator is insufficient.
 第9の観点によれば、可変容量型圧縮機は、判定閾値が、目標蒸発器温度の上昇に伴って小さくなる可変閾値となっている。圧縮機の吐出容量は、容量制御信号値によらず蒸発器の空気側の熱負荷に応じて変化することがある。このため、容量制御信号値と比較する判定閾値は、蒸発器の空気側の熱負荷に相関して変化する目標蒸発器温度に応じた可変閾値とすることが望ましい。 According to the ninth aspect, in the variable displacement compressor, the determination threshold is a variable threshold that decreases as the target evaporator temperature increases. The displacement of the compressor may change depending on the heat load on the air side of the evaporator regardless of the value of the displacement control signal. For this reason, it is desirable that the determination threshold value to be compared with the capacity control signal value be a variable threshold value corresponding to the target evaporator temperature that changes in correlation with the heat load on the air side of the evaporator.
 第10の観点によれば、可変容量型圧縮機の制御装置は、吹出温度と目標蒸発器温度との差が小さくなるように容量制御機構に対して出力する容量制御信号値を算出する。容量制御機構は、圧縮機構から吐出される冷媒の流量が目標流量となるように容量制御信号値に応じて吐出容量を変化させる構成になっている。そして、能力満足条件は、圧縮機構から吐出される冷媒の流量、圧縮機構の回転数、および吹出温度に基づいて推定された吐出容量の推定容量が、下限容量よりも小さくなる場合に成立する条件になっている。これによると、蒸発器における空気の冷却能力が過剰になることを回避することができるので、蒸発器における冷却能力を適切に発揮させつつ、圧縮効率の向上を図ることが可能となる。 According to the tenth aspect, the control device of the variable displacement compressor calculates a displacement control signal value to be output to the displacement control mechanism so that the difference between the blowout temperature and the target evaporator temperature is reduced. The displacement control mechanism is configured to change the displacement according to the displacement control signal value so that the flow rate of the refrigerant discharged from the compression mechanism becomes the target flow rate. Then, the capability satisfaction condition is satisfied when the estimated displacement of the discharge displacement estimated based on the flow rate of the refrigerant discharged from the compression mechanism, the number of rotations of the compression mechanism, and the blowout temperature becomes smaller than the lower limit displacement. It has become. According to this, since it is possible to prevent the cooling capacity of air in the evaporator from becoming excessive, it is possible to improve the compression efficiency while appropriately exhibiting the cooling capacity in the evaporator.
 第11の観点によれば、可変容量型圧縮機の制御装置は、吐出容量を下限容量に設定したとしても蒸発器における空気の冷却能力が蒸発器に要求される要求冷却能力に足りない能力不足条件が成立した場合に、断続運転モードから可変運転モードに切り替える。これによると、蒸発器における空気の冷却能力が不足することを回避することができるので、蒸発器における冷却能力を適切に発揮させつつ、圧縮効率の向上を図ることが可能となる。 According to the eleventh aspect, the controller of the variable displacement compressor is insufficient in the cooling capacity required for the air in the evaporator and the required cooling capacity required for the evaporator even if the discharge capacity is set to the lower limit capacity. When the condition is satisfied, the intermittent operation mode is switched to the variable operation mode. According to this, since it is possible to avoid the shortage of the cooling capacity of air in the evaporator, it is possible to improve the compression efficiency while properly exhibiting the cooling capacity in the evaporator.
 第12の観点によれば、可変容量型圧縮機は、能力不足条件が、クラッチによって接続状態を連結状態に制御した状態において、吹出温度が目標蒸発器温度より高くなる状態が所定期間継続された場合に成立する条件になっている。 According to the twelfth aspect, in the variable displacement compressor, the condition where the blowout temperature becomes higher than the target evaporator temperature is continued for a predetermined period while the insufficient capacity condition controls the connection state to the connection state by the clutch. It is a condition that holds in the case.
 ここで、能力不足条件として、圧縮機構がエンジンに連結された状態において、吹出温度が目標蒸発器温度よりも高くなる場合に成立する条件とすることが考えられる。ところが、この場合は、吹出温度が目標蒸発器温度付近となる際に、断続運転モードから可変運転モードへの切り替わりの頻発が懸念される。 Here, it may be considered as a condition that is satisfied when the blowout temperature becomes higher than the target evaporator temperature in the state where the compression mechanism is connected to the engine as the insufficient capacity condition. However, in this case, frequent occurrence of switching from the intermittent operation mode to the variable operation mode is concerned when the blow-out temperature becomes near the target evaporator temperature.
 これに対して、能力不足条件を吹出温度が目標蒸発器温度よりも高くなる状態が所定期間継続された場合に成立する条件とすれば、断続運転モードから可変運転モードへの切り替わりの頻発を抑えることができる。 On the other hand, if the condition of insufficient capacity is a condition that is satisfied when the condition where the outlet temperature is higher than the target evaporator temperature is maintained for a predetermined period, frequent switching from the intermittent operation mode to the variable operation mode is suppressed. be able to.
 第13の観点によれば、可変容量型圧縮機は、能力不足条件が、断続運転モードにおいてクラッチが連結状態となっている期間に積算した吹出温度と目標蒸発器温度との差の積算値が、所定の積算閾値を上回った場合に成立する条件になっている。このように、能力不足条件を断続運転モード時における吹出温度と目標蒸発器温度との差の積算値が所定の積算閾値を上回った場合に成立する条件とすれば、断続運転モードから可変運転モードへの切り替わりの頻発を抑えることができる。 According to the thirteenth aspect, in the variable displacement compressor, the integrated capacity value of the difference between the outlet temperature and the target evaporator temperature integrated during the period in which the clutch is in the engaged state in the underperformance condition is The condition is satisfied when the predetermined integration threshold value is exceeded. As described above, if the insufficient capacity condition is a condition that is satisfied when the integrated value of the difference between the outlet temperature and the target evaporator temperature in the intermittent operation mode exceeds a predetermined integration threshold, the intermittent operation mode to the variable operation mode The frequency of switching to can be suppressed.
 第14の観点によれば、可変容量型圧縮機の制御装置は、クラッチによって接続状態を連結状態に制御した状態で、容量制御機構によって吐出容量を下限容量に制御する遷移運転モードに切替可能に構成されている。そして、制御装置は、吐出容量を下限容量に設定したとしても蒸発器における空気の冷却能力が蒸発器に要求される要求冷却能力を満足する能力満足条件が成立した場合に、可変運転モード→遷移運転モード→断続運転モードの順序で運転モードを切り替える。このように、可変運転モードから断続運転モードに切り替わる前に遷移運転モードを介在させることで、可変運転モードから断続運転モードへの切り替わりの頻発を抑えることができる。 According to the fourteenth aspect, the control device of the variable displacement compressor is switchable to the transition operation mode in which the displacement control mechanism controls the discharge displacement to the lower limit displacement by the displacement control mechanism in a state in which the connection state is controlled to the connection state by the clutch. It is configured. And, even if the control device sets the discharge capacity to the lower limit capacity, the variable operation mode → transition when the capacity satisfying condition satisfying the required cooling capacity required of the evaporator for the air cooling capacity in the evaporator is satisfied. Switch the operation mode in the order of operation mode → intermittent operation mode. As described above, by interposing the transition operation mode before switching from the variable operation mode to the intermittent operation mode, it is possible to suppress the frequent occurrence of switching from the variable operation mode to the intermittent operation mode.

Claims (14)

  1.  冷媒の蒸発潜熱によって空調対象空間に吹き出す空気を冷却する蒸発器(80)を備える冷凍サイクル装置(1)に適用され、冷媒の吐出容量を最小容量から最大容量までの範囲で変更可能な可変容量型圧縮機であって、
     エンジン(EG)により駆動され、冷媒を圧縮して吐出する圧縮機構(12)と、
     前記圧縮機構から吐出される冷媒の前記吐出容量を制御する容量制御機構(40)と、
     前記圧縮機構と前記エンジンとの接続状態を、前記エンジンの駆動力が前記圧縮機構に伝達される連結状態と前記圧縮機構に伝達されない遮断状態とに切り替えるクラッチ(MGC)と、
     前記容量制御機構および前記クラッチを制御して運転モードを切り替える制御装置(100)と、を備え、
     前記圧縮機構には、前記吐出容量の下限容量を前記最小容量よりも大きく前記最大容量よりも小さい中間容量に制限する容量制限部(27)が設けられており、
     前記制御装置は、
     前記クラッチによって前記接続状態を前記連結状態に制御した状態で、前記容量制御機構によって前記吐出容量を前記下限容量から前記最大容量までの範囲で変化させることで、前記蒸発器から吹き出す空気の吹出温度を目標蒸発器温度に近づける可変運転モードと、
     前記容量制御機構によって前記吐出容量を前記下限容量に制御した状態で、前記クラッチによって前記接続状態を前記連結状態と前記遮断状態とに断続的に切り替えることで、前記吹出温度を前記目標蒸発器温度に近づける断続運転モードと、
     に切替可能な可変容量型圧縮機。
    A variable capacity applicable to a refrigeration cycle apparatus (1) including an evaporator (80) including an evaporator (80) for cooling air blown into a space to be air conditioned by latent heat of evaporation of the refrigerant, and capable of changing the discharge capacity of the refrigerant in the range from the minimum capacity to the maximum capacity Type compressor, and
    A compression mechanism (12) driven by the engine (EG) to compress and discharge the refrigerant;
    A volume control mechanism (40) for controlling the discharge volume of the refrigerant discharged from the compression mechanism;
    A clutch (MGC) that switches a connection state between the compression mechanism and the engine between a connection state in which the driving force of the engine is transmitted to the compression mechanism and a disconnection state in which the driving force of the engine is not transmitted to the compression mechanism;
    And a control device (100) for switching the operation mode by controlling the displacement control mechanism and the clutch.
    The compression mechanism is provided with a capacity limiting section (27) for limiting the lower limit capacity of the discharge capacity to an intermediate capacity which is larger than the minimum capacity and smaller than the maximum capacity.
    The controller is
    The discharge temperature of the air blown out from the evaporator by changing the discharge displacement in the range from the lower limit displacement to the maximum displacement by the displacement control mechanism while the connection state is controlled to the connection state by the clutch. Variable operation mode, which brings the temperature close to the target evaporator temperature,
    The outlet temperature is switched to the target evaporator temperature by switching the connection state between the connection state and the disconnection state intermittently by the clutch in a state where the discharge capacity is controlled to the lower limit capacity by the capacity control mechanism. With intermittent operation mode,
    Switchable variable displacement compressor.
  2.  前記下限容量は、前記最小容量から前記最大容量までの範囲で前記圧縮機構を運転させた際の成績係数が前記最小容量に設定した場合よりも大きくなる容量に設定される請求項1に記載の可変容量型圧縮機。 The lower limit capacity is set to a capacity at which the coefficient of performance when the compression mechanism is operated in the range from the minimum capacity to the maximum capacity is larger than that when the minimum capacity is set. Variable displacement compressor.
  3.  前記圧縮機構は、冷媒を圧縮するための圧縮室(28)に冷媒を導入するための吸入室(32)、前記圧縮室で圧縮された冷媒を導出するための吐出室(34)、前記吐出容量を変化させるための制御圧室(18)が設けられたハウジング(14)を有し、前記制御圧室の圧力が小さくなるにつれて前記吐出容量が大きくなる構成となっており、
     前記ハウジングには、前記吐出室の冷媒を前記制御圧室に導く給気通路(140)、前記制御圧室の冷媒を前記吸入室に導く抽気通路(141)が形成されており、
     前記容量制御機構は、前記断続運転モード時に、前記可変運転モード時に比べて、前記給気通路、前記制御圧室、および前記抽気通路を介して循環する冷媒の循環量が少なくなるように構成されている請求項1または2に記載の可変容量型圧縮機。
    The compression mechanism includes a suction chamber (32) for introducing a refrigerant into a compression chamber (28) for compressing a refrigerant, a discharge chamber (34) for discharging a refrigerant compressed in the compression chamber, the discharge It has a housing (14) provided with a control pressure chamber (18) for changing the capacity, and the discharge displacement becomes larger as the pressure in the control pressure chamber becomes smaller,
    The housing is formed with an air supply passage (140) for introducing the refrigerant in the discharge chamber to the control pressure chamber, and a bleed passage (141) for introducing the refrigerant in the control pressure chamber to the suction chamber.
    The capacity control mechanism is configured such that a circulation amount of the refrigerant circulating through the air supply passage, the control pressure chamber, and the bleed passage is smaller in the intermittent operation mode than in the variable operation mode. The variable displacement compressor according to claim 1 or 2.
  4.  前記容量制御機構は、前記断続運転モード時に、前記給気通路を開き、前記抽気通路を閉じるように構成されている請求項3に記載の可変容量型圧縮機。 The variable displacement compressor according to claim 3, wherein the capacity control mechanism is configured to open the air supply passage and close the bleed passage during the intermittent operation mode.
  5.  前記容量制御機構は、前記給気通路の通路開度が大きくなるにつれて前記抽気通路の通路開度が小さくなり、前記給気通路の通路開度が小さくなるにつれて前記抽気通路の通路開度が大きくなるように構成された容量制御弁(45)を含んで構成されている請求項3または4に記載の可変容量型圧縮機。 In the capacity control mechanism, the passage opening degree of the bleed passage decreases as the passage opening degree of the air supply passage increases, and the passage opening degree of the bleed passage increases as the passage opening degree of the air supply passage decreases. A variable displacement compressor according to claim 3 or 4, comprising a displacement control valve (45) configured to:
  6.  前記容量制御機構は、前記給気通路の通路開度を調整する開度調整弁(42)、および前記吐出室と前記制御圧室との圧力差が小さくなるにつれて前記抽気通路の通路開度を小さくする圧力応動弁(48)を含んで構成されている請求項3または4に記載の可変容量型圧縮機。 The displacement control mechanism adjusts the opening degree of the air supply passage, and the opening degree of the bleed passage as the pressure difference between the discharge chamber and the control pressure chamber decreases. The variable displacement compressor according to claim 3 or 4, comprising a pressure responsive valve (48) to be reduced.
  7.  前記制御装置は、前記吐出容量を前記下限容量に設定したとしても前記蒸発器における空気の冷却能力が前記蒸発器に要求される要求冷却能力を満足する能力満足条件が成立した場合に、前記可変運転モードから前記断続運転モードに切り替える請求項1ないし6のいずれか1つに記載の可変容量型圧縮機。 Even if the control device sets the discharge capacity to the lower limit capacity, the variable condition is satisfied if a capacity satisfying condition for satisfying the required cooling capacity required for the evaporator is satisfied. The variable displacement compressor according to any one of claims 1 to 6, wherein the operation mode is switched to the intermittent operation mode.
  8.  前記制御装置は、前記吹出温度と前記目標蒸発器温度との差が小さくなるように前記容量制御機構に対して出力する容量制御信号値を算出し、
     前記容量制御機構は、前記圧縮機構に吸入される冷媒の圧力が所定の目標圧力となるように前記容量制御信号値に応じて前記吐出容量を変化させる構成になっており、
     前記能力満足条件は、前記吹出温度が前記目標蒸発器温度よりも低く、且つ、前記容量制御信号値が所定の判定閾値以下となる際に成立する条件である請求項7に記載の可変容量型圧縮機。
    The control device calculates a capacity control signal value to be output to the capacity control mechanism such that a difference between the blowout temperature and the target evaporator temperature is reduced.
    The displacement control mechanism is configured to change the discharge displacement in accordance with the displacement control signal value so that the pressure of the refrigerant drawn into the compression mechanism becomes a predetermined target pressure.
    The variable capacity type according to claim 7, wherein the capability satisfaction condition is a condition that is satisfied when the blowout temperature is lower than the target evaporator temperature and the capacity control signal value becomes equal to or less than a predetermined determination threshold. Compressor.
  9.  前記判定閾値は、前記目標蒸発器温度の上昇に伴って小さくなる可変閾値となっている請求項8に記載の可変容量型圧縮機。 The variable displacement compressor according to claim 8, wherein the determination threshold is a variable threshold that decreases with an increase in the target evaporator temperature.
  10.  前記制御装置は、前記吹出温度と前記目標蒸発器温度との差が小さくなるように前記容量制御機構に対して出力する容量制御信号値を算出し、
     前記容量制御機構は、前記圧縮機構から吐出される冷媒の流量が所定の目標流量となるように前記容量制御信号値に応じて前記吐出容量を変化させる構成になっており、
     前記能力満足条件は、前記圧縮機構から吐出される冷媒の流量、前記圧縮機構の回転数、および前記吹出温度に基づいて推定された前記吐出容量の推定容量が、前記下限容量よりも小さくなる場合に成立する条件である請求項7に記載の可変容量型圧縮機。
    The control device calculates a capacity control signal value to be output to the capacity control mechanism such that a difference between the blowout temperature and the target evaporator temperature is reduced.
    The capacity control mechanism is configured to change the discharge capacity in accordance with the capacity control signal value such that the flow rate of the refrigerant discharged from the compression mechanism becomes a predetermined target flow rate.
    The capacity satisfying condition is that the estimated displacement of the discharge capacity estimated based on the flow rate of the refrigerant discharged from the compression mechanism, the number of rotations of the compression mechanism, and the blowout temperature is smaller than the lower limit capacity. The variable displacement compressor according to claim 7, which is a condition that holds true.
  11.  前記制御装置は、前記吐出容量を前記下限容量に設定したとしても前記蒸発器における空気の冷却能力が前記蒸発器に要求される要求冷却能力に足りない能力不足条件が成立した場合に、前記断続運転モードから前記可変運転モードに切り替える請求項1ないし10のいずれか1つに記載の可変容量型圧縮機。 Even when the control device sets the discharge capacity to the lower limit capacity, the intermittent operation is performed when a capacity shortage condition in which the cooling capacity of air in the evaporator is insufficient for the required cooling capacity required for the evaporator is established. The variable displacement compressor according to any one of claims 1 to 10, wherein the operation mode is switched to the variable operation mode.
  12.  前記能力不足条件は、前記クラッチによって前記接続状態を前記連結状態に制御した状態において、前記吹出温度が前記目標蒸発器温度より高くなる状態が所定期間継続された場合に成立する条件である請求項11に記載の可変容量型圧縮機。 The insufficient capacity condition is a condition that is satisfied when a state in which the blowout temperature is higher than the target evaporator temperature is continued for a predetermined period while the connection state is controlled to the connection state by the clutch. The variable displacement compressor according to 11.
  13.  前記能力不足条件は、前記断続運転モードにおいて前記クラッチが前記連結状態となっている期間に積算した前記吹出温度と前記目標蒸発器温度との差の積算値が、所定の積算閾値を上回った場合に成立する条件である請求項11に記載の可変容量型圧縮機。 The insufficient capacity condition is that the integrated value of the difference between the blowout temperature and the target evaporator temperature integrated in the period in which the clutch is in the connected state in the intermittent operation mode exceeds a predetermined integration threshold. The variable displacement compressor according to claim 11, which is a condition that holds true.
  14.  前記制御装置は、
     前記クラッチによって前記接続状態を前記連結状態に制御した状態で、前記容量制御機構によって前記吐出容量を前記下限容量に制御する遷移運転モードに切替可能に構成され、
     前記吐出容量を前記下限容量に設定したとしても前記蒸発器における空気の冷却能力が前記蒸発器に要求される要求冷却能力を満足する能力満足条件が成立した場合に、前記可変運転モード→前記遷移運転モード→前記断続運転モードの順序で前記運転モードを切り替える請求項1ないし6のいずれか1つに記載の可変容量型圧縮機。
    The controller is
    In a state where the connection state is controlled to the connection state by the clutch, the displacement control mode is configured to be switchable to a transition operation mode in which the discharge displacement is controlled to the lower limit displacement.
    Even if the discharge capacity is set to the lower limit capacity, the variable operation mode → the transition when the capacity satisfying condition satisfying the required cooling capacity required for the evaporator is satisfied. The variable displacement compressor according to any one of claims 1 to 6, wherein the operation mode is switched in the order of an operation mode → the intermittent operation mode.
PCT/JP2018/029094 2017-09-07 2018-08-02 Variable displacement compressor WO2019049569A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018004928.0T DE112018004928T5 (en) 2017-09-07 2018-08-02 Variable flow compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017172047A JP6711336B2 (en) 2017-09-07 2017-09-07 Variable capacity compressor
JP2017-172047 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019049569A1 true WO2019049569A1 (en) 2019-03-14

Family

ID=65634001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029094 WO2019049569A1 (en) 2017-09-07 2018-08-02 Variable displacement compressor

Country Status (3)

Country Link
JP (1) JP6711336B2 (en)
DE (1) DE112018004928T5 (en)
WO (1) WO2019049569A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115183413A (en) * 2022-06-27 2022-10-14 青岛海尔空调电子有限公司 Starting control method and device for refrigeration equipment, refrigeration equipment and medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03986A (en) * 1989-01-26 1991-01-07 Zexel Corp Variable delivery compressor
JPH08165987A (en) * 1994-12-12 1996-06-25 Toyota Autom Loom Works Ltd Operation control system for variable displacement type compressor
JP2004324543A (en) * 2003-04-25 2004-11-18 Denso Corp Variable displacement pump control device
JP2008202480A (en) * 2007-02-19 2008-09-04 Sanden Corp Capacity control valve for variable displacement compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5475501B2 (en) 2010-02-24 2014-04-16 サンデン株式会社 Air conditioner for vehicles
JP2016098679A (en) 2014-11-19 2016-05-30 株式会社豊田自動織機 Variable displacement swash plate type compressor
JP6592029B2 (en) 2017-05-08 2019-10-16 Jx金属株式会社 Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03986A (en) * 1989-01-26 1991-01-07 Zexel Corp Variable delivery compressor
JPH08165987A (en) * 1994-12-12 1996-06-25 Toyota Autom Loom Works Ltd Operation control system for variable displacement type compressor
JP2004324543A (en) * 2003-04-25 2004-11-18 Denso Corp Variable displacement pump control device
JP2008202480A (en) * 2007-02-19 2008-09-04 Sanden Corp Capacity control valve for variable displacement compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115183413A (en) * 2022-06-27 2022-10-14 青岛海尔空调电子有限公司 Starting control method and device for refrigeration equipment, refrigeration equipment and medium

Also Published As

Publication number Publication date
DE112018004928T5 (en) 2020-06-10
JP6711336B2 (en) 2020-06-17
JP2019043506A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
US10520231B2 (en) Integrated valve
JP5934181B2 (en) Air conditioner for vehicles
JP4799252B2 (en) Air conditioner
US7096680B2 (en) Vehicle air conditioner with discharge capacity control of compressor
US6484523B2 (en) Vehicle air conditioner with refrigerant flow-amount control of compressor
US11225125B2 (en) Integrated valve device
JP2005104306A (en) Air-conditioner for vehicle
US8449266B2 (en) Control valve for variable displacement compressor
US7210911B2 (en) Controller for variable displacement compressor and control method for the same
JP6572695B2 (en) Integrated valve
WO2019049569A1 (en) Variable displacement compressor
JP2006145087A (en) Supercritical refrigeration cycle
US6626000B1 (en) Method and system for electronically controlled high side pressure regulation in a vapor compression cycle
JP6593526B2 (en) Refrigeration cycle equipment
JP2006249969A (en) Controller for variable displacement compressor
JP2010126138A (en) Refrigeration cycle device for vehicle
JP6572829B2 (en) Integrated valve
JPH04344073A (en) Controlling method for drive of cooling circuit
JP2006327386A (en) Air-conditioner for vehicle
JP6714864B2 (en) Refrigeration cycle equipment
US20040184925A1 (en) Control valve system
JP4804797B2 (en) Control method for variable capacity compressor for air conditioner and torque calculation device for variable capacity compressor
JP2019065754A (en) Variable displacement compressor
JP4091452B2 (en) Pressure control device and pressure control method for refrigeration cycle using supercritical refrigerant
JP2019074042A (en) Variable displacement compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852809

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18852809

Country of ref document: EP

Kind code of ref document: A1