JP2006145087A - Supercritical refrigeration cycle - Google Patents

Supercritical refrigeration cycle Download PDF

Info

Publication number
JP2006145087A
JP2006145087A JP2004333361A JP2004333361A JP2006145087A JP 2006145087 A JP2006145087 A JP 2006145087A JP 2004333361 A JP2004333361 A JP 2004333361A JP 2004333361 A JP2004333361 A JP 2004333361A JP 2006145087 A JP2006145087 A JP 2006145087A
Authority
JP
Japan
Prior art keywords
pressure
compressor
refrigerant
radiator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004333361A
Other languages
Japanese (ja)
Inventor
Hiromi Ota
宏已 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004333361A priority Critical patent/JP2006145087A/en
Publication of JP2006145087A publication Critical patent/JP2006145087A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Abstract

<P>PROBLEM TO BE SOLVED: To accurately implement protection control of abnormal high pressure and high-pressure control for maximizing COP only by using one refrigerant pressure sensor in a supercritical refrigeration cycle. <P>SOLUTION: A refrigerant flow rate is calculated on the basis of a control electric current value of a flow rate control-type variable displacement compressor (S110), pressure loss of a radiator is calculated on the basis of a calculated value of the refrigerant flow rate or the like, an outlet-side refrigerant pressure of the radiator is calculated on the basis of the pressure loss of the radiator and the compressor discharge pressure detected by a pressure sensor (S160), an opening of an expansion valve is controlled to allow the calculated value of refrigerant pressure to be agreed with a target high pressure (S170), and the compressor is stopped when the compressor discharge pressure becomes higher than a high-pressure upper limit value (S30). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、CO2冷媒等のように高圧圧力が臨界圧力以上(超臨界状態)となる冷媒を用いた超臨界冷凍サイクルに関するもので、車両空調用冷凍サイクルに用いて好適なものである。   The present invention relates to a supercritical refrigeration cycle using a refrigerant having a high pressure equal to or higher than a critical pressure (supercritical state) such as a CO2 refrigerant, and is suitable for use in a refrigeration cycle for vehicle air conditioning.

超臨界冷凍サイクルでは、高圧側冷媒を冷却する放熱器出口の冷媒温度に対してサイクルのCOP(成績係数)が最大となる高圧圧力が存在する。そこで、COPが最大となるように膨張弁(減圧手段)の開度を調整して高圧圧力を制御する方式が種々提案されている。   In the supercritical refrigeration cycle, there is a high pressure at which the COP (coefficient of performance) of the cycle is maximum with respect to the refrigerant temperature at the outlet of the radiator that cools the high-pressure side refrigerant. Therefore, various methods have been proposed for controlling the high pressure by adjusting the opening of the expansion valve (decompression unit) so that the COP is maximized.

例えば、特許文献1には、放熱器出口の冷媒温度および冷媒圧力を温度センサおよび圧力センサにより検出し、この放熱器出口側の冷媒温度および冷媒圧力に基づいてCOPが最大となるように膨張弁(減圧手段)の開度を調整して高圧圧力を制御することが提案されている。   For example, in Patent Document 1, the refrigerant temperature and the refrigerant pressure at the radiator outlet are detected by a temperature sensor and a pressure sensor, and the expansion valve is set so that the COP becomes maximum based on the refrigerant temperature and the refrigerant pressure on the radiator outlet side. It has been proposed to control the high pressure by adjusting the opening of the (pressure reducing means).

また、特許文献2には、圧縮機吐出側に圧縮機吐出圧を検出する圧力センサを設けるとともに、放熱器出口側に冷媒温度を検出する温度センサを設け、この圧縮機吐出圧および放熱器出口冷媒温度に基づいてCOPが最大となるように膨張弁(減圧手段)の開度を調整して高圧圧力を制御することが提案されている。
特開2003−74996号公報 特許第3479747号公報
Further, in Patent Document 2, a pressure sensor for detecting the compressor discharge pressure is provided on the compressor discharge side, and a temperature sensor for detecting the refrigerant temperature is provided on the radiator outlet side, and the compressor discharge pressure and the radiator outlet are provided. It has been proposed to control the high pressure by adjusting the opening of the expansion valve (decompression unit) so that the COP becomes maximum based on the refrigerant temperature.
JP 2003-74996 A Japanese Patent No. 3479747

ところで、冷凍サイクルではサイクルの高圧圧力が異常に上昇することを防止して、サイクル機器の保護を図ることが行われている。この異常高圧を確実に防止するためには、圧力が最も高くなる圧縮機吐出圧を検出する必要がある。   By the way, in the refrigeration cycle, the high pressure of the cycle is prevented from rising abnormally to protect the cycle equipment. In order to reliably prevent this abnormal high pressure, it is necessary to detect the compressor discharge pressure at which the pressure becomes highest.

しかるに、特許文献1のものでは、放熱器出口側の冷媒圧力を検出しているだけであるので、異常高圧の保護制御を正確に行うためには、圧縮機吐出圧を検出する圧力センサを追加する必要があり、圧力センサ数の増加に伴うコストアップを招く。   However, in Patent Document 1, only the refrigerant pressure at the outlet side of the radiator is detected, so a pressure sensor for detecting the compressor discharge pressure is added in order to accurately control the abnormally high pressure. It is necessary to increase the number of pressure sensors.

一方、特許文献2では、圧縮機吐出圧を検出する圧力センサを有するので、異常高圧の保護制御は正確に行うことができるが、その反面、圧縮機吐出側圧力と放熱器出口側圧力との圧力差、すなわち、放熱器の圧損はサイクル運転状態に応じて変動するため、COPを最大化するための高圧圧力制御が不正確となる。   On the other hand, Patent Document 2 has a pressure sensor that detects the compressor discharge pressure, so that the protection control of abnormally high pressure can be performed accurately, but on the other hand, the compressor discharge side pressure and the radiator outlet side pressure Since the pressure difference, that is, the pressure loss of the radiator varies depending on the cycle operation state, the high pressure control for maximizing the COP becomes inaccurate.

例えば、車両用空調装置における夏期の冷房始動時のように、冷房熱負荷が非常に大きいサイクル運転条件では、圧縮機能力が最大となり、サイクル循環冷媒流量が最大となるので、放熱器の圧損(上記圧力差)も最大となる。   For example, under the cycle operation conditions where the cooling heat load is very large, such as at the start of cooling in the summer of a vehicle air conditioner, the compression function force is maximized and the cycle circulation refrigerant flow is maximized. The pressure difference is also maximized.

しかるに、放熱器出口側冷媒圧力の代わりに圧縮機吐出側圧力を用いて、COP最大化のための高圧圧力制御を行うと、冷房始動時のような高負荷時には放熱器の圧損増大によって膨張弁開度が必要以上に開き気味で制御されてしまう。その結果、低圧圧力の低下が遅れて、蒸発器吹出空気温度の低下に時間がかかるので、冷房効果の立ち上げが遅れる。   However, if high pressure control is performed to maximize the COP using the compressor discharge side pressure instead of the radiator outlet side refrigerant pressure, the expansion valve will increase due to an increase in the pressure loss of the radiator at high loads such as during cooling start. The opening degree is controlled more than necessary. As a result, the lowering of the low-pressure pressure is delayed, and it takes time to lower the evaporator blowing air temperature, so that the start-up of the cooling effect is delayed.

従って、特許文献2においても、COPを最大化するための高圧圧力制御を正確に行うためには、放熱器出口側冷媒圧力を検出する圧力センサを追加する必要があり、やはり、圧力センサ数の増加に伴うコストアップを招く。   Therefore, in Patent Document 2, it is necessary to add a pressure sensor for detecting the refrigerant pressure at the outlet side of the radiator in order to accurately perform the high pressure control for maximizing the COP. Incurs an increase in costs.

本発明は、上記点に鑑み、冷媒圧力センサを1個用いるだけで、異常高圧の保護制御とCOP最大化のための高圧圧力制御をともに正確に行うことができる超臨界冷凍サイクルを提供することを目的とする。   In view of the above, the present invention provides a supercritical refrigeration cycle that can accurately perform both high-pressure protection control and COP maximization control by using only one refrigerant pressure sensor. With the goal.

上記目的を達成するため、請求項1に記載の発明では、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルにおいて、
圧縮機(1)の吐出圧力を検出する圧力検出手段(12)と、
圧縮機(1)の吐出冷媒を冷却する放熱器(2)の出口側冷媒温度を検出する温度検出手段(13)と、
圧力検出手段(12)の圧力検出値とサイクル運転状態とから放熱器(2)の出口側冷媒圧力を算出する圧力算出手段(S160)と、
圧力算出手段(S160)の圧力算出値が、温度検出手段(13)の温度検出値に基づいて決定される目標値と一致するように減圧手段(3)の開度を制御する開度制御手段(S170)と、
圧力検出手段(12)の圧力検出値が予め設定された異常高圧設定値に達すると、圧縮機(1)の停止または圧縮機(1)の能力低下の制御を行う圧縮機制御手段(S30)とを備えることを特徴としている。
In order to achieve the above object, in the invention according to claim 1, in the supercritical refrigeration cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant,
Pressure detection means (12) for detecting the discharge pressure of the compressor (1);
Temperature detecting means (13) for detecting the outlet side refrigerant temperature of the radiator (2) for cooling the refrigerant discharged from the compressor (1);
Pressure calculation means (S160) for calculating the outlet side refrigerant pressure of the radiator (2) from the pressure detection value of the pressure detection means (12) and the cycle operation state;
Opening control means for controlling the opening of the decompression means (3) so that the pressure calculation value of the pressure calculation means (S160) matches the target value determined based on the temperature detection value of the temperature detection means (13). (S170),
When the pressure detection value of the pressure detection means (12) reaches a preset abnormal high pressure set value, the compressor control means (S30) controls the stop of the compressor (1) or the deterioration of the capacity of the compressor (1). It is characterized by comprising.

これによると、圧力検出手段(12)により圧縮機(1)の吐出圧力を検出し、その圧力検出値に基づいて異常高圧の保護制御を行うから、算出値を用いずに圧縮機吐出圧そのものに基づいて異常高圧の保護制御を的確に行うことができる。   According to this, since the discharge pressure of the compressor (1) is detected by the pressure detection means (12) and protection control for abnormally high pressure is performed based on the detected pressure value, the discharge pressure of the compressor itself without using the calculated value. Based on the above, it is possible to accurately perform protection control of abnormally high pressure.

しかも、圧力算出手段(S160)はサイクル運転状態の変動を常に把握して、このサイクル運転状態と圧力検出手段(12)の圧力検出値とから放熱器(2)の出口側冷媒圧力を算出するから、冷房始動時のように冷房熱負荷が大きく変動する過渡時においても、圧力算出手段(S160)の算出値に基づいて減圧手段(3)の開度制御、ひいてはCOP最大化のための高圧圧力制御を的確に行うことができる。   Moreover, the pressure calculating means (S160) always grasps the fluctuation of the cycle operation state, and calculates the refrigerant pressure on the outlet side of the radiator (2) from this cycle operation state and the pressure detection value of the pressure detection means (12). Thus, even during a transient time when the cooling heat load greatly fluctuates, such as at the start of cooling, the opening degree of the decompression means (3) is controlled based on the calculated value of the pressure calculation means (S160), and thus the high pressure for maximizing the COP. Pressure control can be performed accurately.

これにより、圧縮機(1)の吐出圧力を検出する圧力検出手段(12)を1個用いるだけですむから、圧力センサ数の減少によりコスト低減を図ることができる。   Thereby, since only one pressure detection means (12) for detecting the discharge pressure of the compressor (1) is used, the cost can be reduced by reducing the number of pressure sensors.

請求項2に記載の発明では、請求項1に記載の超臨界冷凍サイクルにおいて、圧縮機は、容量の変更を制御する容量制御手段(1b)を有し、この容量制御手段(1b)により冷媒吐出流量が目標流量となるように容量を可変制御する流量制御タイプの可変容量型圧縮機(1)であり、
容量制御手段(1b)の制御電流値(Ic)により目標流量を決定するようになっており、
サイクル運転状態に関連する情報値として、少なくとも容量制御手段(1b)の制御電流値(Ic)を用い、
制御電流値(Ic)に基づいて放熱器(2)の圧損を算出し、圧力検出手段(12)の圧力検出値と放熱器(2)の圧損とに基づいて放熱器(2)の出口側冷媒圧力を算出することを特徴とする。
According to a second aspect of the present invention, in the supercritical refrigeration cycle according to the first aspect, the compressor has a capacity control means (1b) for controlling a change in capacity, and the capacity control means (1b) provides a refrigerant. A variable capacity compressor (1) of a flow rate control type that variably controls the capacity so that the discharge flow rate becomes a target flow rate,
The target flow rate is determined by the control current value (Ic) of the capacity control means (1b),
As the information value related to the cycle operation state, at least the control current value (Ic) of the capacity control means (1b) is used,
The pressure loss of the radiator (2) is calculated based on the control current value (Ic), and the outlet side of the radiator (2) is calculated based on the pressure detection value of the pressure detection means (12) and the pressure loss of the radiator (2). The refrigerant pressure is calculated.

ところで、流量制御タイプの可変容量型圧縮機(1)を用いる冷凍サイクルでは、容量制御手段(1b)の制御電流値(Ic)がサイクル循環冷媒の流量との相関性が高い。そこで、このことに着目して請求項2では、制御電流値(Ic)に基づいて放熱器(2)の圧損を算出し、圧力検出手段(12)の圧力検出値と放熱器(2)の圧損とに基づいて放熱器(2)の出口側冷媒圧力を算出する。   By the way, in the refrigeration cycle using the flow rate control type variable capacity compressor (1), the control current value (Ic) of the capacity control means (1b) is highly correlated with the flow rate of the cycle circulation refrigerant. In view of this, in claim 2, the pressure loss of the radiator (2) is calculated based on the control current value (Ic), and the pressure detection value of the pressure detecting means (12) and the radiator (2) Based on the pressure loss, the outlet side refrigerant pressure of the radiator (2) is calculated.

これにより、流量制御タイプの可変容量型圧縮機(1)における制御電流値(Ic)を利用して放熱器出口側冷媒圧力を精度よく算出できる。   As a result, the radiator outlet side refrigerant pressure can be accurately calculated using the control current value (Ic) in the flow rate control type variable capacity compressor (1).

請求項3に記載の発明では、請求項2に記載の超臨界冷凍サイクルにおいて、放熱器(2)の圧損を、制御電流値(Ic)と温度検出手段(13)の温度検出値と圧力検出手段(12)の圧力検出値とに基づいて算出することを特徴とする。   According to a third aspect of the present invention, in the supercritical refrigeration cycle according to the second aspect, the pressure loss of the radiator (2) is determined based on the control current value (Ic), the temperature detection value of the temperature detection means (13), and the pressure detection. Calculation is based on the pressure detection value of the means (12).

これによると、温度検出手段(13)の温度検出値と圧力検出手段(12)の圧力検出値とに基づいて高圧側の冷媒の密度を算出できるので、放熱器(2)の圧損を精度よく算出できる。よって、放熱器出口側冷媒圧力の算出精度を一層向上できる。   According to this, since the density of the refrigerant on the high pressure side can be calculated based on the temperature detection value of the temperature detection means (13) and the pressure detection value of the pressure detection means (12), the pressure loss of the radiator (2) can be accurately detected. It can be calculated. Therefore, the calculation accuracy of the radiator outlet side refrigerant pressure can be further improved.

請求項4に記載の発明では、請求項1に記載の超臨界冷凍サイクルにおいて、放熱器(2)の出口側冷媒と圧縮機(1)の吸入側冷媒との間で熱交換を行う内部熱交換器(20)を備え、
サイクル運転状態に関連する情報値として、内部熱交換器(20)の高圧側入口冷媒温度(Tgc)、内部熱交換器(20)の低圧側入口冷媒温度(Tac)、および内部熱交換器(20)の高圧側出口冷媒温度(Tex)または低圧側出口冷媒温度(Tsx)を用い、
これらの温度に基づいて内部熱交換器温度比(A)を算出し、この内部熱交換器温度比(A)に基づいて放熱器(2)の圧損を算出し、
圧力検出手段(12)の圧力検出値と放熱器(2)の圧損とに基づいて放熱器(2)の出口側冷媒圧力を算出することを特徴とする。
According to a fourth aspect of the present invention, in the supercritical refrigeration cycle according to the first aspect, internal heat is exchanged between the outlet side refrigerant of the radiator (2) and the suction side refrigerant of the compressor (1). Comprising an exchanger (20),
As information values related to the cycle operation state, the high-pressure inlet refrigerant temperature (Tgc) of the internal heat exchanger (20), the low-pressure inlet refrigerant temperature (Tac) of the internal heat exchanger (20), and the internal heat exchanger ( 20) of the high-pressure side outlet refrigerant temperature (Tex) or the low-pressure side outlet refrigerant temperature (Tsx),
Calculate the internal heat exchanger temperature ratio (A) based on these temperatures, calculate the pressure loss of the radiator (2) based on the internal heat exchanger temperature ratio (A),
The outlet side refrigerant pressure of the radiator (2) is calculated based on the pressure detection value of the pressure detection means (12) and the pressure loss of the radiator (2).

ところで、内部熱交換器(20)を備える冷凍サイクルでは、後述するように内部熱交換器温度比(A)によりサイクル循環冷媒の流量を算出できる。そこで、請求項4では、内部熱交換器温度比(A)に基づいて放熱器(2)の圧損を算出し、更に、放熱器(2)の出口側冷媒圧力を算出するようにしている。   By the way, in the refrigeration cycle including the internal heat exchanger (20), the flow rate of the cycle circulation refrigerant can be calculated from the internal heat exchanger temperature ratio (A) as described later. Accordingly, in claim 4, the pressure loss of the radiator (2) is calculated based on the internal heat exchanger temperature ratio (A), and the outlet side refrigerant pressure of the radiator (2) is further calculated.

従って、高価な圧力センサを追加することなく、内部熱交換器(20)の入口、出口冷媒温度を検出するだけで、内部熱交換器温度比(A)に基づいて放熱器(2)の圧損を算出し、更に、放熱器(2)の出口側冷媒圧力を算出できる。   Therefore, the pressure loss of the radiator (2) can be determined based on the internal heat exchanger temperature ratio (A) only by detecting the refrigerant temperature at the inlet and outlet of the internal heat exchanger (20) without adding an expensive pressure sensor. And the outlet side refrigerant pressure of the radiator (2) can be calculated.

請求項5に記載の発明では、請求項1に記載の超臨界冷凍サイクルにおいて、圧縮機は常に一定の容量で作動する固定容量型圧縮機(1)であり、この固定容量型圧縮機(1)の作動の断続制御によって圧縮機能力を制御するようになっており、
固定容量型圧縮機(1)の作動時に、サイクル運転状態に関連する情報値として少なくとも圧縮機回転数を用い、この圧縮機回転数に基づいて放熱器(2)の圧損を算出し、
圧力検出手段(12)の圧力検出値と放熱器(2)の圧損とに基づいて放熱器(2)の出口側冷媒圧力を算出することを特徴とする。
According to a fifth aspect of the present invention, in the supercritical refrigeration cycle according to the first aspect, the compressor is a fixed capacity type compressor (1) that always operates at a constant capacity, and the fixed capacity type compressor (1) ), The compression function force is controlled by intermittent control of operation,
When operating the fixed capacity compressor (1), at least the compressor rotational speed is used as the information value related to the cycle operation state, and the pressure loss of the radiator (2) is calculated based on the compressor rotational speed,
The outlet side refrigerant pressure of the radiator (2) is calculated based on the pressure detection value of the pressure detection means (12) and the pressure loss of the radiator (2).

ところで、固定容量型圧縮機(1)の作動を断続制御する冷凍サイクルにおいて、固定容量型圧縮機(1)の作動時には圧縮機回転数に基づいてサイクル循環冷媒の流量を算出できる。そこで、請求項5では、圧縮機回転数に基づいて放熱器(2)の圧損を算出し、放熱器出口側冷媒圧力を算出できる。   By the way, in the refrigeration cycle in which the operation of the fixed capacity compressor (1) is intermittently controlled, the flow rate of the cycle circulation refrigerant can be calculated based on the compressor rotational speed when the fixed capacity compressor (1) is operated. Therefore, in claim 5, the pressure loss of the radiator (2) can be calculated based on the compressor rotation speed, and the radiator outlet side refrigerant pressure can be calculated.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は本発明の第1実施形態を示す車両空調用冷凍サイクルの構成図であって、この冷
凍サイクルは、冷媒として高圧圧力が臨界圧力以上(超臨界状態)となるCO2を用いて
いる。従って、この冷凍サイクルは超臨界冷凍サイクルを構成する。
(First embodiment)
FIG. 1 is a configuration diagram of a refrigeration cycle for vehicle air-conditioning showing a first embodiment of the present invention, and this refrigeration cycle uses CO 2 whose high pressure is not less than a critical pressure (supercritical state) as a refrigerant. Therefore, this refrigeration cycle constitutes a supercritical refrigeration cycle.

圧縮機1は図示しない車両走行用エンジンから駆動力を得て冷媒を吸入圧縮するもので
ある。この圧縮機1は、駆動力を断続するクラッチ手段をなす電磁クラッチ1aを介して
駆動力を得ている。
The compressor 1 obtains driving force from a vehicle travel engine (not shown) and sucks and compresses refrigerant. The compressor 1 obtains a driving force through an electromagnetic clutch 1a serving as a clutch means for intermittently driving the driving force.

本実施形態の圧縮機1は外部からの制御信号により容量を変化できる可変容量型圧縮機
であり、電磁式の容量制御弁1bを備えている。
The compressor 1 of the present embodiment is a variable capacity compressor that can change its capacity by an external control signal, and includes an electromagnetic capacity control valve 1b.

圧縮機1の吐出側には放熱器2が設けられている。この放熱器2は、圧縮機1から吐出された高温高圧の超臨界状態にある吐出冷媒と外気(室外空気)との間で熱交換して冷媒を冷却する。放熱器2には電動式の冷却ファン2aによって外気が送風される。   A radiator 2 is provided on the discharge side of the compressor 1. The radiator 2 cools the refrigerant by exchanging heat between the refrigerant discharged from the compressor 1 in a high-temperature and high-pressure supercritical state and the outside air (outdoor air). Outside air is blown to the radiator 2 by an electric cooling fan 2a.

放熱器2の出口側には減圧手段をなす電気式膨張弁3が設けられている。この電気式膨張弁3は、サイクルの高圧圧力が目標高圧となるように電気的に開度が制御される圧力制御弁としての役割を果たす。   On the outlet side of the radiator 2, an electric expansion valve 3 serving as a decompression unit is provided. The electric expansion valve 3 serves as a pressure control valve whose opening degree is electrically controlled so that the high pressure of the cycle becomes the target high pressure.

電気式膨張弁3の出口側には蒸発器4が設けられている。この蒸発器4は車両用空調装置の室内空調ユニット部の空気通路をなすケース5内に配置され、このケース5内の空気を冷却する冷却手段を構成する。   An evaporator 4 is provided on the outlet side of the electric expansion valve 3. The evaporator 4 is arranged in a case 5 that forms an air passage of an indoor air conditioning unit of the vehicle air conditioner, and constitutes a cooling means for cooling the air in the case 5.

蒸発器4の空気流れ上流側には電動式の送風機6が配置され、図示しない内外気切替箱を通して導入される内気または外気がケース5内に送風されるようになっている。なお、ケース5内には、蒸発器4の空気流れ下流側に空気を加熱する加熱手段をなすヒータコア(図示せず)等が配置され、このヒータコアの加熱度合いにより温度調整された空調風がケース5の空気流れ下流側端部の吹出口(図示せず)から車室内へ吹き出すようになっている。   An electric blower 6 is disposed on the upstream side of the air flow of the evaporator 4 so that the inside air or outside air introduced through an inside / outside air switching box (not shown) is blown into the case 5. In addition, a heater core (not shown) or the like that forms heating means for heating air is disposed in the case 5 on the downstream side of the air flow of the evaporator 4, and the conditioned air whose temperature is adjusted by the degree of heating of the heater core is provided in the case 5. 5 is blown out into the passenger compartment from an outlet (not shown) at the downstream end of the air flow.

蒸発器4の出口側にはアキュムレータ7が設けられている。このアキュムレータ7は、蒸発器4の出口冷媒の液冷媒とガス冷媒とを分離してサイクル内の余剰冷媒を蓄える気液分離手段であって、分離したガス冷媒を圧縮機1の吸入側に向けて導出する。   An accumulator 7 is provided on the outlet side of the evaporator 4. The accumulator 7 is a gas-liquid separation unit that separates the liquid refrigerant and gas refrigerant of the outlet refrigerant of the evaporator 4 and stores excess refrigerant in the cycle, and directs the separated gas refrigerant toward the suction side of the compressor 1. To derive.

次に、本実施形態における電気制御部の概要を説明する。空調用制御装置10は、マイクロコンピュータおよびその周辺回路等から構成され、予め設定されたプログラムに従って所定の演算処理を行って、空調機器の作動を制御する。   Next, an outline of the electric control unit in the present embodiment will be described. The air-conditioning control device 10 is composed of a microcomputer and its peripheral circuits, etc., and performs predetermined arithmetic processing according to a preset program to control the operation of the air-conditioning equipment.

具体的には、空調用制御装置10の出力側に、圧縮機1の電磁クラッチ1a、容量制御弁1b、放熱器2の冷却ファン2a、電気式膨張弁3、電動送風機6等の空調機器が接続され、これらの空調機器の作動を制御する。   Specifically, air-conditioning equipment such as an electromagnetic clutch 1 a of the compressor 1, a capacity control valve 1 b, a cooling fan 2 a of the radiator 2, an electric expansion valve 3, and an electric blower 6 are provided on the output side of the air-conditioning control device 10. Connected and controls the operation of these air conditioners.

空調用制御装置10の入力側には圧縮機1の吐出冷媒温度センサ11、圧縮機1の吐出冷媒圧力センサ12、放熱器2の出口側の冷媒温度センサ13、蒸発器4の吹出空気温度センサ14等が接続される。なお、空調用制御装置10には周知のごとくエンジン回転センサ、外気温度センサ、内気温度センサ、日射センサ、エンジン水温センサ等を包含するセンサ群15からも検出信号が入力される。   On the input side of the air-conditioning control device 10, the discharge refrigerant temperature sensor 11 of the compressor 1, the discharge refrigerant pressure sensor 12 of the compressor 1, the refrigerant temperature sensor 13 on the outlet side of the radiator 2, and the blown air temperature sensor of the evaporator 4 14 etc. are connected. As is well known, the air conditioning controller 10 also receives detection signals from a sensor group 15 including an engine rotation sensor, an outside air temperature sensor, an inside air temperature sensor, a solar radiation sensor, an engine water temperature sensor, and the like.

また、空調用制御装置10には車室内の計器盤(インパネ)付近に配置される空調操作パネル16から種々な空調操作信号が入力される。   Various air conditioning operation signals are input to the air conditioning control device 10 from an air conditioning operation panel 16 disposed in the vicinity of an instrument panel in the vehicle interior.

具体的には、車室内の設定温度を設定する温度設定スイッチ、空調自動制御の指令を出すオートスイッチ、圧縮機1の作動指令信号を出すエアコンスイッチ、電動送風機6の風量切替スイッチ、室内空調ユニット部の吹出モード切替スイッチ、内外気切替箱の内外気導入モード切替スイッチ等の操作部材が空調操作パネル16に設けられる。   Specifically, a temperature setting switch for setting a set temperature in the passenger compartment, an auto switch for issuing an air conditioning automatic control command, an air conditioner switch for issuing an operation command signal for the compressor 1, an air volume switching switch for the electric blower 6, an indoor air conditioning unit The air-conditioning operation panel 16 is provided with operation members such as a blow-out mode changeover switch of the unit and an inside / outside air introduction mode changeover switch of the inside / outside air switching box.

次に、可変容量型圧縮機1について具体的に述べる。本実施形態の可変容量型圧縮機1は、斜板式圧縮機として公知のものであり、電磁式容量制御弁1bに加える制御電流値を変化させることにより、斜板室の制御圧力Pcを変化させ、これにより、斜板の傾斜角度の変化→ピストンストロークの変化→容量の変化を行うようになっている。ここで、容量は冷媒の吸入圧縮を行う作動空間の幾何学的な容積である。   Next, the variable capacity compressor 1 will be specifically described. The variable capacity compressor 1 of the present embodiment is known as a swash plate compressor, and by changing the control current value applied to the electromagnetic capacity control valve 1b, the control pressure Pc of the swash plate chamber is changed, Thereby, the change of the inclination angle of the swash plate → the change of the piston stroke → the change of the capacity is performed. Here, the capacity is the geometric volume of the working space where the refrigerant is sucked and compressed.

また、斜板式可変容量型圧縮機1においては制御圧Pcの調整により吐出容量を100%の最大容量から略0%付近の最小容量まで連続的に変化させることができる。   Further, in the swash plate type variable displacement compressor 1, the discharge capacity can be continuously changed from the maximum capacity of 100% to the minimum capacity of about 0% by adjusting the control pressure Pc.

そして、電磁式容量制御弁1bの制御電流値により目標吐出冷媒流量を設定し、実際の吐出冷媒流量がこの目標吐出冷媒流量となるように斜板室の制御圧Pcを変化させ、それにより、容量を変化させる、いわゆる流量制御タイプの可変容量型圧縮機となっている。このような流量制御タイプの可変容量型圧縮機は、特開2001−107854号公報、特開2001−173556号公報等により公知である。   Then, the target discharge refrigerant flow rate is set according to the control current value of the electromagnetic capacity control valve 1b, and the control pressure Pc of the swash plate chamber is changed so that the actual discharge refrigerant flow rate becomes the target discharge refrigerant flow rate. This is a variable capacity compressor of the so-called flow rate control type that changes the pressure. Such flow rate control type variable displacement compressors are known from Japanese Patent Application Laid-Open Nos. 2001-107854, 2001-173556, and the like.

そこで、この流量制御タイプの可変容量型圧縮機1の概要を図2により説明すると、図2は、斜板式可変容量型圧縮機1の吐出側流路部分と、斜板室103の制御圧Pcを制御する電磁式容量制御弁1b部分を示す概略図であり、圧縮機1の吐出室100は図示しない複数のピストン作動室(シリンダ)から吐出される冷媒を集合する部分である。   The outline of the flow control type variable capacity compressor 1 will be described with reference to FIG. 2. FIG. 2 shows the discharge side flow path portion of the swash plate type variable capacity compressor 1 and the control pressure Pc of the swash plate chamber 103. It is the schematic which shows the electromagnetic capacity | capacitance control valve 1b part to control, and the discharge chamber 100 of the compressor 1 is a part which collects the refrigerant | coolant discharged from the some piston working chamber (cylinder) which is not shown in figure.

この吐出室100の出口側流路101に絞り部102を設けて、圧縮機1の吐出冷媒がこの絞り部102を通過することにより、この絞り部102の前後間に所定の差圧ΔPが発生するようにしてある。ここで、差圧ΔP=PdH−PdLである。PdHは絞り部102の上流部の冷媒圧力であり、PdLは絞り部102の下流部の冷媒圧力である。   A throttle part 102 is provided in the outlet-side flow path 101 of the discharge chamber 100, and when a refrigerant discharged from the compressor 1 passes through the throttle part 102, a predetermined differential pressure ΔP is generated between the front and rear of the throttle part 102. I have to do it. Here, the differential pressure ΔP = PdH−PdL. PdH is the refrigerant pressure upstream of the throttle 102 and PdL is the refrigerant pressure downstream of the throttle 102.

差圧ΔPは圧縮機1の吐出冷媒流量と比例関係にあるから、差圧ΔPを制御することにより圧縮機1の吐出冷媒流量を制御できることになる。   Since the differential pressure ΔP is proportional to the discharge refrigerant flow rate of the compressor 1, the discharge refrigerant flow rate of the compressor 1 can be controlled by controlling the differential pressure ΔP.

一方、容量制御弁1bは、上記差圧ΔPに応じた力F1を発生する差圧応動機構111と、この差圧応動機構111の力F1に対抗する電磁力F2を発生する電磁機構112とを備え、基本的には、この差圧ΔPに応じた力F1と電磁力F2と釣り合いにより弁体113の位置(図2の左右方向位置)を変化させるようになっている。   On the other hand, the displacement control valve 1b includes a differential pressure responsive mechanism 111 that generates a force F1 corresponding to the differential pressure ΔP, and an electromagnetic mechanism 112 that generates an electromagnetic force F2 that opposes the force F1 of the differential pressure responsive mechanism 111. Basically, the position of the valve body 113 (the position in the left-right direction in FIG. 2) is changed by balancing the force F1 and the electromagnetic force F2 corresponding to the differential pressure ΔP.

但し、図2の図示例では、後述の構成により絞り部102の上流部の冷媒圧力PdH(圧縮機吐出圧)にも依存して、弁体113の位置を変化させるようになっている。   However, in the illustrated example of FIG. 2, the position of the valve body 113 is changed depending on the refrigerant pressure PdH (compressor discharge pressure) in the upstream portion of the throttle portion 102 by the configuration described later.

なお、上記差圧ΔPは実際には微小値であるので、図1の吐出冷媒圧力センサ12は絞り部102の上流部および下流部のいずれに設けてもよいが、絞り部102は圧縮機1の本体内部に内蔵されるので、センサ取付上の都合から吐出冷媒圧力センサ12は通常、絞り部102の下流部に設ける。   Note that since the differential pressure ΔP is actually a minute value, the discharged refrigerant pressure sensor 12 of FIG. 1 may be provided either upstream or downstream of the throttle unit 102, but the throttle unit 102 is the compressor 1. Therefore, the discharge refrigerant pressure sensor 12 is usually provided in the downstream portion of the throttle portion 102 for the convenience of mounting the sensor.

差圧応動機構111は、ケース111a内に弁体113の移動方向(図2の左右方向)に弾性的に伸縮可能なベローズ111bを収容し、ベローズ111bの内部に絞り部102の上流部の冷媒圧力PdHを導入する。一方、ケース111a内には絞り部102の下流部の冷媒圧力PdLを導入する。   The differential pressure responsive mechanism 111 accommodates a bellows 111b that can be elastically expanded and contracted in the moving direction of the valve body 113 (the left-right direction in FIG. 2) in the case 111a, and a refrigerant upstream of the throttle portion 102 inside the bellows 111b. Introduce pressure PdH. On the other hand, the refrigerant pressure PdL in the downstream portion of the throttle portion 102 is introduced into the case 111a.

ベローズ111bの図2の右端部がケース111aに固定される固定端を構成し、ベローズ111bの図2の左端部が弾性的な伸縮作用により図2の左右方向に変位する可動端111cを構成する。また、ベローズ111bの内部にはベローズ111bを伸長方向(図2の左側方向)に押圧するばね111dが設けられている。   The right end portion of the bellows 111b in FIG. 2 constitutes a fixed end fixed to the case 111a, and the left end portion of the bellows 111b in FIG. 2 constitutes a movable end 111c that is displaced in the left-right direction in FIG. . A spring 111d is provided inside the bellows 111b to press the bellows 111b in the extending direction (left side in FIG. 2).

ベローズ111bの可動端111cにプッシュロッド111eが一体に連結されている。このプッシュロッド111eは、ケース111aの嵌合穴111fに対して摺動可能に、かつ、図示しないシール機構により気密に嵌合し、ケース111aの外部へ突出している。   A push rod 111e is integrally connected to the movable end 111c of the bellows 111b. The push rod 111e is slidable with respect to the fitting hole 111f of the case 111a and is airtightly fitted by a seal mechanism (not shown) and protrudes outside the case 111a.

一方、電磁機構112は電磁コイル112aを有し、この電磁コイル112aの内周部にプランジャ112bがその軸方向(図2の左右方向)に変位可能に配置されている。プランジャ112bの端部には可動鉄心112cが一体に構成され、この可動鉄心112cに固定鉄心112dが対向配置される。この可動鉄心112cと固定鉄心112dとの間に、電磁コイル112aに供給される制御電流Icに応じた電磁力(吸引力)F2を発生するようになっている。   On the other hand, the electromagnetic mechanism 112 has an electromagnetic coil 112a, and a plunger 112b is disposed on the inner peripheral portion of the electromagnetic coil 112a so as to be displaceable in the axial direction (left-right direction in FIG. 2). A movable iron core 112c is integrally formed at the end of the plunger 112b, and a fixed iron core 112d is disposed opposite to the movable iron core 112c. An electromagnetic force (attraction force) F2 corresponding to a control current Ic supplied to the electromagnetic coil 112a is generated between the movable iron core 112c and the fixed iron core 112d.

また、可動鉄心112cと固定鉄心112dとの間には電磁力F2と逆方向のばね力を発生するばね112eが配置されている。プランジャ112bのうち、可動鉄心112cと反対側の端部(図2の右端部)に上記した弁体113が一体に形成されている。更に、弁体113は弁体113よりも十分小径の連結軸部113aを介してプッシュロッド111eに一体に連結されている。従って、プランジャ112bと弁体113とプッシュロッド111eは一体物を構成し、プランジャ112bの軸方向(図2の左右方向)に一体に変位する。   A spring 112e that generates a spring force in the opposite direction to the electromagnetic force F2 is disposed between the movable iron core 112c and the fixed iron core 112d. Of the plunger 112b, the valve body 113 described above is integrally formed at an end portion (right end portion in FIG. 2) opposite to the movable iron core 112c. Further, the valve body 113 is integrally connected to the push rod 111e via a connecting shaft portion 113a having a sufficiently smaller diameter than the valve body 113. Accordingly, the plunger 112b, the valve body 113, and the push rod 111e constitute an integral body and are integrally displaced in the axial direction of the plunger 112b (the left-right direction in FIG. 2).

弁体113は制御圧通路114に配置され、制御圧通路114の通路面積を増減する。この制御圧通路114の一端部は連通路115を介して圧縮機1の吐出室100に連通するので、制御圧通路114の一端部には絞り部102の上流部の冷媒圧力PdHが導入される。一方、制御圧通路114の他端部は連通路116を介して圧縮機1の斜板室103に連通する。   The valve body 113 is disposed in the control pressure passage 114 and increases or decreases the passage area of the control pressure passage 114. Since one end portion of the control pressure passage 114 communicates with the discharge chamber 100 of the compressor 1 via the communication passage 115, the refrigerant pressure PdH upstream of the throttle portion 102 is introduced into one end portion of the control pressure passage 114. . On the other hand, the other end of the control pressure passage 114 communicates with the swash plate chamber 103 of the compressor 1 through the communication passage 116.

そして、斜板室103は絞り104を有する連通路105を介して圧縮機1の吸入室106に連通する。弁体113は図2の右方向に変位すると制御圧通路114の通路面積を減少し、図2の左方向に変位すると制御圧通路114の通路面積を増加させる。従って、電磁力F2は弁体113を図2の右方向に変位させる閉弁方向の力であり、逆に、差圧ΔPに応じた力F1は弁体113を図2の左方向に変位させる開弁方向の力である。   The swash plate chamber 103 communicates with the suction chamber 106 of the compressor 1 through a communication passage 105 having a throttle 104. When the valve body 113 is displaced in the right direction in FIG. 2, the passage area of the control pressure passage 114 is decreased, and when the valve body 113 is displaced in the left direction in FIG. 2, the passage area of the control pressure passage 114 is increased. Therefore, the electromagnetic force F2 is a force in the valve closing direction that displaces the valve body 113 in the right direction in FIG. 2, and conversely, the force F1 corresponding to the differential pressure ΔP displaces the valve body 113 in the left direction in FIG. This is the force in the valve opening direction.

制御圧通路114の通路面積が減少すると、圧縮機1の吐出室100から連通路115→制御圧通路114→連通路116を経て斜板室103に流入する吐出冷媒量が減少して、斜板室103の圧力、すなわち、制御圧Pcが低下し、逆に制御圧通路114の通路面積が増加すると斜板室103に流入する吐出冷媒量が増加して、斜板室103の制御圧Pcが上昇する。   When the passage area of the control pressure passage 114 decreases, the amount of refrigerant discharged from the discharge chamber 100 of the compressor 1 through the communication passage 115 → the control pressure passage 114 → the communication passage 116 into the swash plate chamber 103 decreases, and the swash plate chamber 103. When the control pressure Pc decreases, that is, the passage area of the control pressure passage 114 increases, the amount of refrigerant discharged into the swash plate chamber 103 increases and the control pressure Pc of the swash plate chamber 103 increases.

なお、斜板式可変容量型圧縮機1においては、周知のように制御圧Pcの低下→斜板の傾斜角度の増加→ピストンストロークの増加→吐出容量の増加となり、逆に、制御圧Pcの上昇→斜板の傾斜角度の減少→ピストンストロークの減少→吐出容量の減少となるように吐出容量変更機構が構成されている。   In the swash plate type variable displacement compressor 1, as is well known, the control pressure Pc decreases, the swash plate tilt angle increases, the piston stroke increases, the discharge capacity increases, and conversely the control pressure Pc increases. The discharge capacity changing mechanism is configured so that the inclination angle of the swash plate decreases, the piston stroke decreases, and the discharge capacity decreases.

ところで、電磁力F2は、差圧ΔPに応じた力F1に対抗する力であるから、電磁力F2を増減することにより目標差圧を決定することになり、現実の差圧ΔPがこの電磁力F2により決定される目標差圧となるように斜板室103の制御圧Pcが制御され、吐出容量が変化することになる。更に、差圧ΔPと吐出冷媒流量は前述のように比例関係にあるから、目標差圧を決定することは目標吐出冷媒流量を決定することになる。   By the way, since the electromagnetic force F2 is a force that opposes the force F1 corresponding to the differential pressure ΔP, the target differential pressure is determined by increasing or decreasing the electromagnetic force F2, and the actual differential pressure ΔP is the electromagnetic force. The control pressure Pc of the swash plate chamber 103 is controlled so that the target differential pressure determined by F2 is reached, and the discharge capacity changes. Further, since the differential pressure ΔP and the discharge refrigerant flow rate are in a proportional relationship as described above, determining the target differential pressure determines the target discharge refrigerant flow rate.

そして、電磁力F2は電磁コイル112aに供給される制御電流Icに応じて決定されるから、制御電流Icの増加に応じて目標差圧および目標吐出冷媒流量が増加する関係となる。   Since the electromagnetic force F2 is determined according to the control current Ic supplied to the electromagnetic coil 112a, the target differential pressure and the target discharge refrigerant flow rate are increased as the control current Ic increases.

図3はこのような流量制御特性を持つ斜板式可変容量型圧縮機1を用いた場合の制御電流Icとサイクル内循環冷媒流量との関係を示す特性図であり、図中、圧縮機吐出圧PdH1〜PdH4はPdH1<PdH2<PdH3<PdH4の関係になっており、冷媒流量が制御電流Icの他に圧縮機吐出圧PdHにも依存して変化する。   FIG. 3 is a characteristic diagram showing the relationship between the control current Ic and the circulating refrigerant flow rate in the cycle when the swash plate type variable displacement compressor 1 having such a flow rate control characteristic is used. PdH1 to PdH4 have a relationship of PdH1 <PdH2 <PdH3 <PdH4, and the refrigerant flow rate changes depending on the compressor discharge pressure PdH in addition to the control current Ic.

これは、具体的には、制御圧通路114に連通路115により圧縮機吐出圧PdHが導入されるとともに、制御圧通路114における弁体113の受圧面積S1を差圧応動機構111のプッシュロッド111eの受圧面積S2よりも大きくして、弁体113の位置制御に圧縮機吐出圧PdHが影響するようになっているためである。   Specifically, the compressor discharge pressure PdH is introduced into the control pressure passage 114 by the communication passage 115, and the pressure receiving area S1 of the valve body 113 in the control pressure passage 114 is changed to the push rod 111e of the differential pressure response mechanism 111. This is because the compressor discharge pressure PdH has an influence on the position control of the valve body 113 by making it larger than the pressure receiving area S2.

電磁式容量制御弁1bの制御電流値Icは、蒸発器4の実際の吹出空気温度(温度センサ14の検出温度)Teが空調制御のための蒸発器目標温度TEOとなるように空調用制御装置10により算出される。この蒸発器目標温度TEOは、周知のごとく車室内吹出空気の目標温度TAO、外気温Tam等に基づいて算出される。   The control current value Ic of the electromagnetic capacity control valve 1b is such that the actual blown air temperature (detected temperature of the temperature sensor 14) Te of the evaporator 4 becomes the evaporator target temperature TEO for air conditioning control. 10 is calculated. The evaporator target temperature TEO is calculated based on the target temperature TAO of the air blown into the passenger compartment, the outside air temperature Tam, and the like as is well known.

なお、制御電流Icは具体的には電流制御回路の構成上、デューティ制御により変化させる方式とするのが通常であるが、制御電流Icの値をデューティ制御によらず直接、連続的(アナログ的)に変化させてもよい。   Specifically, the control current Ic is usually changed by duty control because of the configuration of the current control circuit, but the value of the control current Ic is directly and continuously (analog-like) regardless of duty control. ) May be changed.

次に、上記構成において本実施形態の作動を説明する。最初に、冷凍サイクルの基本的作動を説明する。空調操作パネル16のオートスイッチまたはエアコンスイッチが投入されると、電磁クラッチ1aが空調用制御装置10により通電され接続状態になる。これにより、車両エンジンの駆動力が電磁クラッチ1aを介して圧縮機1に伝達され、圧縮機1が駆動される。   Next, the operation of this embodiment in the above configuration will be described. First, the basic operation of the refrigeration cycle will be described. When the auto switch or the air conditioner switch of the air conditioning operation panel 16 is turned on, the electromagnetic clutch 1a is energized by the air conditioning control device 10 to be connected. Thereby, the driving force of the vehicle engine is transmitted to the compressor 1 via the electromagnetic clutch 1a, and the compressor 1 is driven.

圧縮機1により圧縮された高温高圧の冷媒は、臨界圧力よりも圧力が高い超臨界状態に
て放熱器2内に流入する。ここで、高温高圧の超臨界状態の冷媒は冷却ファン2aによっ
て送風される外気と熱交換して外気中に放熱し、エンタルピを減少する。
The high-temperature and high-pressure refrigerant compressed by the compressor 1 flows into the radiator 2 in a supercritical state where the pressure is higher than the critical pressure. Here, the high-temperature and high-pressure supercritical refrigerant exchanges heat with the outside air blown by the cooling fan 2a to dissipate heat into the outside air, thereby reducing enthalpy.

そして、放熱器2の出口冷媒は、膨張弁3の絞り通路にて減圧され、低温低圧の気液2相状態となる。ここで、膨張弁3の開度は後述するようにサイクルCOPが最大となるように制御される。   And the refrigerant | coolant of the exit of the heat radiator 2 is pressure-reduced by the throttle path of the expansion valve 3, and becomes a low-temperature low-pressure gas-liquid two phase state. Here, the opening degree of the expansion valve 3 is controlled so as to maximize the cycle COP, as will be described later.

膨張弁3通過後の低温低圧の気液2相冷媒は蒸発器4に流入し、ここで、電動送風機6の送風空気から吸熱して蒸発する。これにより、電動送風機6の送風空気を蒸発器4で冷却することができ、冷風を車室内へ吹き出すことができる。   The low-temperature and low-pressure gas-liquid two-phase refrigerant after passing through the expansion valve 3 flows into the evaporator 4, where it absorbs heat from the blown air of the electric blower 6 and evaporates. Thereby, the air blown from the electric blower 6 can be cooled by the evaporator 4, and the cool air can be blown out into the passenger compartment.

蒸発器4を通過した低圧冷媒は次にアキュムレータ7内に流入し、この低圧冷媒の液冷
媒とガス冷媒とが密度差にて分離され、アキュムレータ7の出口からガス冷媒が圧縮機1の吸入側に向けて導出され、圧縮機1に吸入され、再度、圧縮される。
The low-pressure refrigerant that has passed through the evaporator 4 then flows into the accumulator 7, where the low-pressure refrigerant liquid refrigerant and the gas refrigerant are separated by a density difference, and the gas refrigerant is discharged from the outlet of the accumulator 7 to the suction side of the compressor 1. Is drawn into the compressor 1, sucked into the compressor 1, and compressed again.

なお、可変容量型圧縮機1においては、電磁式容量制御弁1bの制御電流値により目標吐出冷媒流量を変化させて、蒸発器4の実際の吹出空気温度Teが蒸発器目標温度TEOとなるように容量を制御する。   In the variable capacity compressor 1, the target discharge refrigerant flow rate is changed by the control current value of the electromagnetic capacity control valve 1b so that the actual blown air temperature Te of the evaporator 4 becomes the evaporator target temperature TEO. To control the capacity.

具体的には、蒸発器吹出温度Teが蒸発器目標温度TEOより高いときは、圧縮機1の容量制御弁1bに出力される制御電流値を増加して目標吐出冷媒流量を増加し、これにより、圧縮機1の容量を増加できる。その結果、蒸発器5への循環冷媒流量を増加して蒸発器4の冷却能力を増加する。   Specifically, when the evaporator outlet temperature Te is higher than the evaporator target temperature TEO, the control current value output to the capacity control valve 1b of the compressor 1 is increased to increase the target discharge refrigerant flow rate. The capacity of the compressor 1 can be increased. As a result, the cooling capacity of the evaporator 4 is increased by increasing the circulating refrigerant flow rate to the evaporator 5.

逆に、蒸発器吹出温度Teが蒸発器目標温度TEOより低いときは、圧縮機1の容量制御弁1bに出力される制御電流値を減少して目標吐出冷媒流量を減少し、これにより、圧縮機1の容量を減少できる。その結果、蒸発器4への循環冷媒流量を減少して蒸発器4の冷却能力を減少する。   On the contrary, when the evaporator outlet temperature Te is lower than the evaporator target temperature TEO, the control current value output to the capacity control valve 1b of the compressor 1 is decreased to decrease the target discharge refrigerant flow rate, thereby compressing. The capacity of the machine 1 can be reduced. As a result, the circulating refrigerant flow rate to the evaporator 4 is reduced and the cooling capacity of the evaporator 4 is reduced.

なお、蒸発器目標温度TEOの最低温度は蒸発器4のフロスト防止のために0℃より若干高めの温度(1℃程度)に決定される。   The minimum temperature of the evaporator target temperature TEO is determined to be slightly higher than 0 ° C. (about 1 ° C.) in order to prevent the evaporator 4 from being frosted.

次に、本実施形態における異常高圧の保護制御、および膨張弁3の開度制御に基づくサイクルCOP制御を図4により詳述する。図4は空調用制御装置10のマイクロコンピュータにより実行される制御ルーチンであり、この制御ルーチンは例えば、空調操作パネル16のオートスイッチの投入によりスタートする。   Next, the abnormal high pressure protection control and the cycle COP control based on the opening degree control of the expansion valve 3 in this embodiment will be described in detail with reference to FIG. FIG. 4 is a control routine executed by the microcomputer of the air-conditioning control apparatus 10, and this control routine starts, for example, when an auto switch of the air-conditioning operation panel 16 is turned on.

まず、ステップS10にて圧縮機1の吐出圧(圧力センサ12の検出圧力)を読み込み、ステップS20にてこの圧縮機吐出圧が高圧上限値以上であるか判定する。ここで、高圧上限値は予め設定された異常高圧の設定値であって、例えば、14.6MPaである。   First, in step S10, the discharge pressure of the compressor 1 (detected pressure of the pressure sensor 12) is read, and in step S20, it is determined whether the compressor discharge pressure is equal to or higher than the high pressure upper limit value. Here, the high pressure upper limit value is a preset value of an abnormal high pressure, and is, for example, 14.6 MPa.

そして、実際の圧縮機吐出圧が高圧上限値以上であるときはステップS30に進み、圧縮機1を停止する。具体的には、圧縮機1の容量制御弁1bの制御電流Icを0にするとともに、圧縮機1の電磁クラッチ1aへの通電を遮断して、圧縮機1を停止状態とする。これにより、圧縮機吐出圧が低下し始める。   And when an actual compressor discharge pressure is more than a high pressure upper limit, it progresses to Step S30 and stops compressor 1. Specifically, the control current Ic of the capacity control valve 1b of the compressor 1 is set to 0, the energization of the electromagnetic clutch 1a of the compressor 1 is interrupted, and the compressor 1 is stopped. As a result, the compressor discharge pressure starts to decrease.

次のステップS40にて圧縮機吐出圧を再度読み込み、ステップS50にて圧縮機吐出圧が復帰圧力よりも低下したか判定する。ここで、復帰圧力は高圧上限値よりも一定値だけ低い圧力であり、例えば、10MPaである。   In step S40, the compressor discharge pressure is read again. In step S50, it is determined whether the compressor discharge pressure has decreased below the return pressure. Here, the return pressure is a pressure lower than the high pressure upper limit by a certain value, for example, 10 MPa.

圧縮機吐出圧が復帰圧力以上である間は圧縮機1の停止状態が維持される。これにより、圧縮機吐出圧が高圧上限値を超えて更に上昇することを回避できるので、圧縮機1を異常高圧による過負荷状態から確実に保護できる。   While the compressor discharge pressure is equal to or higher than the return pressure, the stopped state of the compressor 1 is maintained. Thereby, since it can avoid that a compressor discharge pressure further exceeds a high pressure upper limit, the compressor 1 can be reliably protected from the overload state by abnormally high pressure.

この場合、圧縮機吐出圧を推定値ではなく、圧縮機吐出圧を直接検出する圧力センサ12の検出圧力に基づいて異常高圧の保護制御を行うから、異常高圧の保護制御を予め設定された設定値でもって確実に実行できる。   In this case, because the compressor discharge pressure is not based on the estimated value but based on the detected pressure of the pressure sensor 12 that directly detects the compressor discharge pressure, the abnormal high pressure protection control is performed. Can be executed reliably with value.

そして、圧縮機吐出圧が復帰圧力よりも低下すると、ステップS60に進み圧縮機1を作動状態に復帰させる。具体的には、電磁クラッチ1aに通電して電磁クラッチ1aを接続状態とし、圧縮機1を車両エンジンにより回転駆動する。また、容量制御弁1bには、実際の蒸発器吹出温度Teと蒸発器目標温度TEOとの偏差に基づいて算出された制御電流Icが供給され、これにより、圧縮機1の容量が制御電流Icに応じた所定容量に制御される。   Then, when the compressor discharge pressure is lower than the return pressure, the process proceeds to step S60 and the compressor 1 is returned to the operating state. Specifically, the electromagnetic clutch 1a is energized to bring the electromagnetic clutch 1a into a connected state, and the compressor 1 is rotationally driven by the vehicle engine. The capacity control valve 1b is supplied with a control current Ic calculated based on the deviation between the actual evaporator outlet temperature Te and the evaporator target temperature TEO, whereby the capacity of the compressor 1 is controlled by the control current Ic. It is controlled to a predetermined capacity according to

一方、圧縮機吐出圧が高圧上限値未満であるとき(高圧の正常時)はステップS20からステップS70に進み、放熱器2の出口冷媒温度(温度センサ13の検出温度)Tgcに基づいてサイクルのCOPが最大となる目標高圧を算出する。具体的には、放熱器2の出口冷媒温度Tgcと、これに対応するCOPが最大となる高圧との関係を定めたマップを予め設定しておくことにより、このマップに放熱器2の出口冷媒温度Tgcの検出値を適用することにより、COPが最大となる目標高圧を算出できる。   On the other hand, when the compressor discharge pressure is less than the high pressure upper limit value (when the high pressure is normal), the process proceeds from step S20 to step S70, and the cycle temperature is determined based on the outlet refrigerant temperature of the radiator 2 (detected temperature of the temperature sensor 13) Tgc. A target high pressure that maximizes the COP is calculated. Specifically, a map that defines the relationship between the outlet refrigerant temperature Tgc of the radiator 2 and the high pressure at which the COP corresponding to the temperature is maximum is set in advance, and the outlet refrigerant of the radiator 2 is set in this map. By applying the detected value of the temperature Tgc, the target high pressure that maximizes the COP can be calculated.

次のステップS80では、この算出した目標高圧が予め設定された制御上限圧以上であるか判定する。ここで、制御上限圧はステップS20の高圧上限圧よりも若干低い圧力であって、例えば、13MPaである。算出目標高圧が制御上限圧以上であるときはステップS90に進み、制御上限圧を目標高圧とする。これに対し、算出目標高圧が制御上限圧未満であるときは、ステップS100にて算出目標高圧をそのまま目標高圧として決定する。   In the next step S80, it is determined whether the calculated target high pressure is equal to or higher than a preset control upper limit pressure. Here, the control upper limit pressure is slightly lower than the high pressure upper limit pressure in step S20, and is, for example, 13 MPa. When the calculated target high pressure is equal to or higher than the control upper limit pressure, the process proceeds to step S90, and the control upper limit pressure is set as the target high pressure. On the other hand, when the calculated target high pressure is less than the control upper limit pressure, the calculated target high pressure is determined as it is as the target high pressure in step S100.

次に、ステップS110にて圧縮機1の容量制御弁1bの制御電流値Icおよび圧縮機1の吐出圧(圧力センサ12の検出圧力)に基づいて容量可変時の冷媒流量を算出する。ここで、容量制御弁1bの制御電流値Icは、前述のごとく圧縮機1吐出側の絞り部に発生する圧損に対応する目標圧損を設定して、最終的には目標吐出冷媒流量を設定するものである。従って、容量制御弁1bの制御電流値Icは、基本的には、サイクル冷媒流量を代表する情報値である。   Next, in step S110, based on the control current value Ic of the capacity control valve 1b of the compressor 1 and the discharge pressure of the compressor 1 (detected pressure of the pressure sensor 12), the refrigerant flow rate when the capacity is variable is calculated. Here, the control current value Ic of the capacity control valve 1b sets the target pressure loss corresponding to the pressure loss generated in the throttle portion on the discharge side of the compressor 1 as described above, and finally sets the target discharge refrigerant flow rate. Is. Therefore, the control current value Ic of the capacity control valve 1b is basically an information value representative of the cycle refrigerant flow rate.

そして、本実施形態の容量制御弁1bにおいては、前述したように制御電流値Iの他に圧縮機吐出圧の影響も受けて圧縮機容量を変化させ、ひいては冷媒流量を変化させるようになっているから、制御電流値Icと圧縮機1の吐出圧とに基づいて容量可変時の冷媒流量を算出する。   In the capacity control valve 1b of the present embodiment, as described above, the compressor capacity is changed under the influence of the compressor discharge pressure in addition to the control current value I, and as a result, the refrigerant flow rate is changed. Therefore, the refrigerant flow rate when the capacity is variable is calculated based on the control current value Ic and the discharge pressure of the compressor 1.

より具体的には、図3に対応する制御マップを予め設定しておき、この制御マップに制御電流値Icと圧縮機吐出圧の検出値とを適用することにより、容量可変時の冷媒流量を簡単に算出できる。   More specifically, a control map corresponding to FIG. 3 is set in advance, and by applying the control current value Ic and the detected value of the compressor discharge pressure to this control map, the refrigerant flow rate at the time of variable capacity is set. Easy to calculate.

次に、ステップS120にて容量100%時(最大容量時)の冷媒流量を算出する。この容量100%になっているときの圧縮機吐出冷媒流量は次式(1)により算出できる。   Next, in step S120, the refrigerant flow rate when the capacity is 100% (at the maximum capacity) is calculated. The compressor discharge refrigerant flow rate when the capacity is 100% can be calculated by the following equation (1).

冷媒流量=圧縮機吸入冷媒密度×圧縮機容量×回転数×圧縮機体積効率 (1)
ここで、圧縮機容量は固定値であり、また、圧縮機体積効率は回転数の影響が大きいので、回転数に基づいて決めることができる。
Refrigerant flow rate = compressor suction refrigerant density x compressor capacity x rotation speed x compressor volumetric efficiency (1)
Here, the compressor capacity is a fixed value, and the compressor volumetric efficiency can be determined based on the number of revolutions because the influence of the number of revolutions is large.

また、圧縮機吸入冷媒密度は、吸入冷媒の温度、圧力により決まるが、圧縮機吸入部への新たなセンサの追加を避けるために、本実施形態では、蒸発器吹出空気温度Te(温度センサ14の検出温度)に基づいて圧縮機吸入冷媒密度を推定している。   The compressor suction refrigerant density is determined by the temperature and pressure of the suction refrigerant. In this embodiment, in order to avoid the addition of a new sensor to the compressor suction portion, the evaporator blown air temperature Te (temperature sensor 14) is used. The refrigerant suction refrigerant density is estimated on the basis of the detected temperature).

すなわち、図1に示すようにアキュムレータ7を蒸発器4の出口側に配置するアキュムレータサイクルにおいては、アキュムレータ7内部に飽和冷媒の気液界面が形成されるので、蒸発器4の出口冷媒は常に飽和状態に維持される。このため、蒸発器吹出空気温度Teにより蒸発器4内の飽和状態の冷媒の温度および圧力を精度よく推定でき、ひいては、吸入冷媒の密度を精度よく推定できる。   That is, in the accumulator cycle in which the accumulator 7 is arranged on the outlet side of the evaporator 4 as shown in FIG. 1, the gas-liquid interface of the saturated refrigerant is formed inside the accumulator 7, so that the outlet refrigerant of the evaporator 4 is always saturated. Maintained in a state. For this reason, the temperature and pressure of the saturated refrigerant in the evaporator 4 can be accurately estimated from the evaporator blowing air temperature Te, and consequently the density of the intake refrigerant can be accurately estimated.

以上の結果、蒸発器吹出空気温度Teおよび圧縮機回転数を変数として用いるだけで、上記(1)式に基づいて容量100%時の冷媒流量を算出できる。なお、圧縮機回転数は、図1のセンサ群15に備えられるエンジン回転センサの検出値に基づいて求めることができるので、専用のセンサは不要である。   As a result, the refrigerant flow rate at a capacity of 100% can be calculated based on the above equation (1) only by using the evaporator blown air temperature Te and the compressor rotational speed as variables. The compressor speed can be obtained based on the detection value of the engine rotation sensor provided in the sensor group 15 of FIG. 1, so that a dedicated sensor is unnecessary.

なお、容量100%時の冷媒流量は、精度が低下するものの、圧縮機回転数と圧縮機吐出圧から算出(推定)することもできる。すなわち、圧縮機吐出圧は放熱器出口冷媒温度により決まるため外気温度と相関があり、そして、外気温度と蒸発器4の冷房熱負荷とが相関があるため、圧縮機吐出圧に基づいて蒸発器吹出空気温度Teをある程度推定できるるからである。   Note that the refrigerant flow rate at a capacity of 100% can be calculated (estimated) from the compressor rotation speed and the compressor discharge pressure, although the accuracy is lowered. That is, since the compressor discharge pressure is determined by the radiator outlet refrigerant temperature, there is a correlation with the outside air temperature, and since the outside temperature and the cooling heat load of the evaporator 4 are correlated, the evaporator discharge pressure is based on the compressor discharge pressure. This is because the blown air temperature Te can be estimated to some extent.

次のステップS130では、容量可変時の冷媒流量と容量100%時の冷媒流量の大小を比較する。容量可変時の冷媒流量が容量100%時の冷媒流量より大きいときはステップS140に進み、容量100%時の冷媒流量を最終冷媒流量とする。   In the next step S130, the refrigerant flow rate at the time of variable capacity and the refrigerant flow rate at the capacity of 100% are compared. When the refrigerant flow rate at the time of variable capacity is larger than the refrigerant flow rate at the capacity of 100%, the process proceeds to step S140, and the refrigerant flow rate at the capacity of 100% is set as the final refrigerant flow rate.

これに対し、容量可変時の冷媒流量が容量100%時の冷媒流量より小さいときはステップS150に進み、容量可変時の冷媒流量を最終冷媒流量とする。このようなS110〜S150の制御処理を行うことにより、最終冷媒流量が容量100%時の冷媒流量より大きくなってしまうという不合理を確実に回避できる。   In contrast, when the refrigerant flow rate at the time of variable capacity is smaller than the refrigerant flow rate at the capacity of 100%, the process proceeds to step S150, and the refrigerant flow rate at the time of variable capacity is set as the final refrigerant flow rate. By performing such control processing of S110 to S150, it is possible to reliably avoid the unreasonable situation that the final refrigerant flow rate becomes larger than the refrigerant flow rate when the capacity is 100%.

次のステップS160では、上記最終冷媒流量に基づいて放熱器2の圧損(圧力損失)を算出し、この放熱器2の圧損に基づいて放熱器2の出口圧力を算出する。   In the next step S160, the pressure loss (pressure loss) of the radiator 2 is calculated based on the final refrigerant flow rate, and the outlet pressure of the radiator 2 is calculated based on the pressure loss of the radiator 2.

ここで、放熱器2の圧損は、冷媒流量と高圧側冷媒の密度とに相関があるため、高圧側冷媒の密度を放熱器出口冷媒温度(温度センサ13の検出値Tgc)および圧縮機吐出圧に基づいて求め、この高圧側冷媒の密度と上記最終冷媒流量とに基づいて放熱器2の圧損を算出できる。   Here, since the pressure loss of the radiator 2 has a correlation with the refrigerant flow rate and the density of the high-pressure side refrigerant, the density of the high-pressure side refrigerant is expressed as the refrigerant outlet refrigerant temperature (detected value Tgc of the temperature sensor 13) and the compressor discharge pressure. The pressure loss of the radiator 2 can be calculated based on the density of the high-pressure side refrigerant and the final refrigerant flow rate.

次に、圧縮機吐出圧からこの放熱器圧損の算出値を減算することにより、放熱器2の出口圧力を算出できる。   Next, the outlet pressure of the radiator 2 can be calculated by subtracting the calculated value of the radiator pressure loss from the compressor discharge pressure.

なお、上記のように放熱器2の圧損の算出と、放熱器2の出口圧力の算出とを2段階に分けて演算処理せずに、上記最終冷媒流量と放熱器出口冷媒温度と圧縮機吐出圧との三者から放熱器出口圧力を求める制御マップを予め作成しておくことにより、この制御マップに上記最終冷媒流量と放熱器出口冷媒温度と圧縮機吐出圧とを適用することにより、放熱器出口圧力を一挙に算出するようにしてもよい。   As described above, the calculation of the pressure loss of the radiator 2 and the calculation of the outlet pressure of the radiator 2 are not performed in two stages, and the final refrigerant flow rate, the radiator outlet refrigerant temperature, and the compressor discharge are not processed. By preparing in advance a control map for determining the radiator outlet pressure from the three parties, the final refrigerant flow rate, the radiator outlet refrigerant temperature, and the compressor discharge pressure to this control map, heat dissipation The vessel outlet pressure may be calculated all at once.

また、サイクル運転条件が特定範囲に限られているような場合には高圧側冷媒の密度変化が小さいため、最終冷媒流量のみから放熱器圧損を算出して、放熱器出口圧力を算出することも可能である。   In addition, when the cycle operating conditions are limited to a specific range, the change in the density of the high-pressure side refrigerant is small, so it is possible to calculate the radiator outlet pressure by calculating the radiator pressure loss only from the final refrigerant flow rate. Is possible.

次のステップS170では、COP最大化のための膨張弁3の開度制御を行う。すなわち、放熱器2の出口圧力算出値と、ステップS90またはステップS100の目標高圧とが一致するように膨張弁3の開度を制御する。すなわち、放熱器2の出口圧力算出値が目標高圧より高いときは膨張弁3の開度を増加し、逆に、放熱器2の出口圧力算出値が目標高圧より低いときは膨張弁3の開度を減少させる。このような膨張弁3の開度制御により放熱器2の出口圧力算出値が目標高圧と一致するように高圧制御が行われる。   In the next step S170, the opening degree control of the expansion valve 3 for maximizing the COP is performed. That is, the opening degree of the expansion valve 3 is controlled so that the calculated outlet pressure value of the radiator 2 matches the target high pressure in step S90 or step S100. That is, when the calculated value of the outlet pressure of the radiator 2 is higher than the target high pressure, the opening degree of the expansion valve 3 is increased. Conversely, when the calculated value of the outlet pressure of the radiator 2 is lower than the target high pressure, the expansion valve 3 is opened. Decrease the degree. By controlling the opening of the expansion valve 3 as described above, high pressure control is performed so that the calculated outlet pressure of the radiator 2 matches the target high pressure.

ところで、本実施形態では、圧力センサとして圧縮機吐出圧を検出する圧力センサ12を1個のみ設けているだけであるが、放熱器2の圧損を前述のごとく少なくともサイクル冷媒流量に基づいて算出し、この放熱器2の圧損に基づいて放熱器2の出口圧力を算出しているから、放熱器2の出口圧力を精度よく算出できる。   By the way, in this embodiment, only one pressure sensor 12 for detecting the compressor discharge pressure is provided as the pressure sensor, but the pressure loss of the radiator 2 is calculated based on at least the cycle refrigerant flow rate as described above. Since the outlet pressure of the radiator 2 is calculated based on the pressure loss of the radiator 2, the outlet pressure of the radiator 2 can be calculated with high accuracy.

つまり、夏期の冷房始動時のごとく、サイクル冷媒流量が最大になって、放熱器2の圧損が最大となるような運転条件下でも、放熱器2の圧損を算出することにより放熱器2の出口圧力を精度よく算出できる。   That is, the outlet of the radiator 2 can be calculated by calculating the pressure loss of the radiator 2 even under the operating conditions in which the cycle refrigerant flow rate is maximized and the pressure loss of the radiator 2 is maximized as in the cooling start in summer. The pressure can be calculated accurately.

このため、圧縮機吐出圧を検出する圧力センサ12を1個のみ設けるだけであっても、膨張弁3の開度制御によるCOP最大化制御を精度よく正確に実行できる。従って、圧力センサ12の個数減少によるコスト低減と、COP最大化制御の正確さとを巧く両立できる。   For this reason, even if only one pressure sensor 12 for detecting the compressor discharge pressure is provided, the COP maximization control based on the opening degree control of the expansion valve 3 can be executed accurately and accurately. Therefore, it is possible to skillfully achieve both cost reduction by reducing the number of pressure sensors 12 and accuracy of COP maximization control.

なお、図1に示す吐出冷媒温度センサ11の検出信号は、圧縮機1の吐出冷媒温度の制御のために用いられる。すなわち、圧縮機1の吐出冷媒温度(センサ11の検出値)が吐出温度目標値より高いときは、圧縮機1の容量を、吹出空気温度センサ14の検出値によらず、強制的に所定量減少させて吐出圧力を低下させ、これにより、吐出冷媒温度を吐出温度目標値(耐熱性からの限界温度)に抑制する制御を行う。   The detection signal of the discharge refrigerant temperature sensor 11 shown in FIG. 1 is used for controlling the discharge refrigerant temperature of the compressor 1. That is, when the discharge refrigerant temperature of the compressor 1 (detected value of the sensor 11) is higher than the discharge temperature target value, the capacity of the compressor 1 is forcibly set to a predetermined amount regardless of the detected value of the blown air temperature sensor 14. The discharge pressure is decreased to reduce the discharge refrigerant temperature, thereby controlling the discharge refrigerant temperature to the discharge temperature target value (limit temperature from heat resistance).

図4の各ステップは機能実現手段を構成するものであって、図4の各ステップと本発明の手段との対応関係を述べると、ステップS30は異常高圧時に圧縮機1を停止させる圧縮機制御手段を構成する。また、ステップS160は放熱器2の出口側冷媒圧力を算出する圧力算出手段を構成する。   Each step in FIG. 4 constitutes a function realization means, and the correspondence between each step in FIG. 4 and the means of the present invention will be described. Step S30 is a compressor control for stopping the compressor 1 at an abnormally high pressure. Configure the means. Step S160 constitutes pressure calculation means for calculating the outlet side refrigerant pressure of the radiator 2.

また、ステップS170はステップS160の圧力算出値が目標高圧となるように膨張弁(減圧手段)3の開度を制御する開度制御手段を構成する。   Step S170 constitutes an opening degree control means for controlling the opening degree of the expansion valve (decompression means) 3 so that the pressure calculated value in step S160 becomes the target high pressure.

(第2実施形態)
第2実施形態では図5に示すように内部熱交換器20を備える超臨界冷凍サイクルに関する。この内部熱交換器20は、放熱器2の出口側に設けられた高圧側流路20aと、アキュムレータ7の出口側に設けられた低圧側流路20bとを有している。この低圧側流路20bは圧縮機1の吸入側に接続される。
(Second Embodiment)
The second embodiment relates to a supercritical refrigeration cycle including an internal heat exchanger 20 as shown in FIG. The internal heat exchanger 20 has a high-pressure channel 20 a provided on the outlet side of the radiator 2 and a low-pressure channel 20 b provided on the outlet side of the accumulator 7. The low pressure side flow path 20 b is connected to the suction side of the compressor 1.

内部熱交換器20はアキュムレータ7から流出する低温冷媒(圧縮機吸入冷媒)と放熱器2出口側の高温冷媒とを熱交換し、蒸発器4に流入する冷媒のエンタルピを減少させて、蒸発器4の冷媒入口・出口間における冷媒のエンタルピ差(冷凍能力)を増大させるとともに、圧縮機1に液冷媒が吸入されることを防止する。   The internal heat exchanger 20 exchanges heat between the low-temperature refrigerant (compressor suction refrigerant) flowing out from the accumulator 7 and the high-temperature refrigerant at the outlet side of the radiator 2 to reduce the enthalpy of the refrigerant flowing into the evaporator 4. 4 increases the refrigerant enthalpy difference (refrigeration capacity) between the refrigerant inlet and outlet, and prevents the liquid refrigerant from being sucked into the compressor 1.

このように内部熱交換器20を設置すると、蒸発器4の冷媒入口・出口間の冷媒のエンタルピ差(冷凍能力)を増大でき、サイクルCOPを向上できる。   When the internal heat exchanger 20 is installed in this way, the refrigerant enthalpy difference (refrigeration capacity) between the refrigerant inlet and outlet of the evaporator 4 can be increased, and the cycle COP can be improved.

第2実施形態では、内部熱交換器20の設置に伴って、高圧側流路3aの出口冷媒温度Texを検出する温度センサ21および低圧側流路20bの入口冷媒温度Tacを検出する温度センサ22を追加している。   In the second embodiment, as the internal heat exchanger 20 is installed, a temperature sensor 21 that detects the outlet refrigerant temperature Tex of the high-pressure side passage 3a and a temperature sensor 22 that detects the inlet refrigerant temperature Tac of the low-pressure side passage 20b. Has been added.

内部熱交換器20での熱交換量Qihは、概略、高圧側冷媒と低圧側冷媒との温度差に比例する。そして、内部熱交換器20の高圧側流路3aの入口・出口間の冷媒エンタルピ差(Δi)と低圧側流路20bの入口・出口間の冷媒エンタルピ差(Δi)は同じ値であり、この冷媒エンタルピ差(Δi)と冷媒流量Gと熱交換量Qihは次の(2)式の関係にある。   The amount of heat exchange Qih in the internal heat exchanger 20 is roughly proportional to the temperature difference between the high-pressure side refrigerant and the low-pressure side refrigerant. The refrigerant enthalpy difference (Δi) between the inlet and outlet of the high-pressure side passage 3a of the internal heat exchanger 20 and the refrigerant enthalpy difference (Δi) between the inlet and outlet of the low-pressure side passage 20b are the same value. The refrigerant enthalpy difference (Δi), the refrigerant flow rate G, and the heat exchange amount Qih are in the relationship of the following equation (2).

Qih=G×Δi (2)
この(2)式から冷媒流量Gが多いほど冷媒エンタルピ差(Δi)が小さくなるので、高圧側流路3aおよび低圧側流路20bの入口・出口間の冷媒温度差が小さくなる。
Qih = G × Δi (2)
Since the refrigerant enthalpy difference (Δi) decreases as the refrigerant flow rate G increases from the equation (2), the refrigerant temperature difference between the inlet and outlet of the high-pressure side channel 3a and the low-pressure side channel 20b decreases.

換言すると、(2)式から、冷媒流量Gは、G=Qih/Δiにより求めることができる。そして、Qihは上記のように高圧側冷媒と低圧側冷媒との温度差(Tgc−Tac)から求めることができ、Δiは高圧側流路3aの入口・出口間の冷媒温度差(Tgc−Tex)から求めることができる。   In other words, from equation (2), the refrigerant flow rate G can be obtained by G = Qih / Δi. Qih can be obtained from the temperature difference (Tgc-Tac) between the high-pressure side refrigerant and the low-pressure side refrigerant as described above, and Δi is the refrigerant temperature difference (Tgc-Tex) between the inlet and outlet of the high-pressure side flow path 3a. ).

従って、温度比A=(Tgc−Tac)/(Tgc−Tex)を算出すれば、この温度比Aに基づいて冷媒流量Gを算出できる。   Therefore, if the temperature ratio A = (Tgc−Tac) / (Tgc−Tex) is calculated, the refrigerant flow rate G can be calculated based on the temperature ratio A.

なお、第2実施形態における冷媒流量Gの算出は、第1実施形態のステップS110〜ステップS150の冷媒流量算出に置き換わるものであって、第1実施形態のその他の制御、すなわち、ステップS10〜ステップS100の制御およびステップS160〜ステップS170の制御は第2実施形態においても同様に行う。   In addition, calculation of the refrigerant | coolant flow volume G in 2nd Embodiment replaces the refrigerant | coolant flow volume calculation of step S110-step S150 of 1st Embodiment, Comprising: The other control of 1st Embodiment, ie, step S10-step. The control in S100 and the control in steps S160 to S170 are performed in the same manner in the second embodiment.

第2実施形態では、温度比A=(Tgc−Tac)/(Tgc−Tex)を算出し、この温度比Aに基づいて冷媒流量Gを算出する例について説明したが、高圧側流路3aの出口冷媒温度Texを検出する温度センサ21の代わりに、内部熱交換器20の低圧側流路20bの出口冷媒温度Tsxを検出する温度センサ23を設けて、温度比A=(Tgc−Tac)/(Tsx−Tac)を算出し、この温度比Aに基づいて冷媒流量Gを算出してもよい。   In the second embodiment, the example in which the temperature ratio A = (Tgc−Tac) / (Tgc−Tex) is calculated and the refrigerant flow rate G is calculated based on the temperature ratio A has been described. Instead of the temperature sensor 21 for detecting the outlet refrigerant temperature Tex, a temperature sensor 23 for detecting the outlet refrigerant temperature Tsx of the low-pressure channel 20b of the internal heat exchanger 20 is provided, and the temperature ratio A = (Tgc−Tac) / (Tsx−Tac) may be calculated, and the refrigerant flow rate G may be calculated based on the temperature ratio A.

また、内部熱交換器20の低圧側流路20bの入口冷媒温度Tacは、蒸発器吹出空気温度Teと相関が強いから、温度センサ22を廃止して、低圧側流路20bの入口冷媒温度Tacの代わりに、温度センサ14により検出される蒸発器吹出空気温度Teを用いて上記温度比Aを求めてもよい。   Further, since the inlet refrigerant temperature Tac of the low-pressure side passage 20b of the internal heat exchanger 20 has a strong correlation with the evaporator blown air temperature Te, the temperature sensor 22 is eliminated and the inlet refrigerant temperature Tac of the low-pressure side passage 20b. Instead of the above, the temperature ratio A may be obtained using the evaporator blown air temperature Te detected by the temperature sensor 14.

(第3実施形態)
上述の第1、第2実施形態では、可変容量型の圧縮機1を用いて、圧縮機1の容量制御により圧縮機1の能力制御を行う冷凍サイクルについて説明したが、第3実施形態は、圧縮機1として容量が常に一定のままに維持される固定容量型圧縮機を用い、この固定容量型圧縮機1の作動を電磁クラッチ1aにより断続して圧縮機1の能力制御を行う冷凍サイクルに関する。
(Third embodiment)
In the above-described first and second embodiments, the refrigeration cycle in which the capacity control of the compressor 1 is controlled by the capacity control of the compressor 1 using the variable capacity compressor 1 has been described. In the third embodiment, The present invention relates to a refrigeration cycle in which a fixed capacity compressor whose capacity is always maintained constant is used as the compressor 1 and the operation of the fixed capacity compressor 1 is intermittently controlled by an electromagnetic clutch 1a to control the capacity of the compressor 1. .

図6はこの固定容量型圧縮機1を用いた第3実施形態の超臨界冷凍サイクルであり、固定容量型圧縮機1は電磁クラッチ1aのみを備え、容量制御弁1bは備えていない。この固定容量型圧縮機1を有する冷凍サイクル構成では、周知のごとく蒸発器吹出空気温度Teと目標蒸発器温度TEOとを比較して、蒸発器吹出空気温度Teが目標蒸発器温度TEOを超えると電磁クラッチ1aに通電して圧縮機1を作動させる。   FIG. 6 shows a supercritical refrigeration cycle of the third embodiment using this fixed capacity compressor 1, and the fixed capacity compressor 1 includes only the electromagnetic clutch 1a and does not include the capacity control valve 1b. In the refrigeration cycle configuration having the fixed capacity compressor 1, the evaporator blown air temperature Te and the target evaporator temperature TEO are compared as is well known, and when the evaporator blown air temperature Te exceeds the target evaporator temperature TEO. The compressor 1 is operated by energizing the electromagnetic clutch 1a.

そして、圧縮機1の作動によって蒸発器吹出空気温度Teが目標蒸発器温度TEOよりも一定温度低いオフ側温度TEO’以下に低下すると、電磁クラッチ1aへの通電を遮断して圧縮機1を停止させる。このような圧縮機1の断続作動制御により蒸発器吹出空気温度Teを目標蒸発器温度TEOに制御する。   When the evaporator blown air temperature Te falls below the off-side temperature TEO ′ lower than the target evaporator temperature TEO by the operation of the compressor 1, the electromagnetic clutch 1a is cut off and the compressor 1 is stopped. Let By such intermittent operation control of the compressor 1, the evaporator blown air temperature Te is controlled to the target evaporator temperature TEO.

ところで、第3実施形態では固定容量型圧縮機1の作動時における冷媒流量を第1実施形態のステップS120における容量100%時の冷媒流量算出と同じ方法で算出する。すなわち、蒸発器吹出空気温度Teおよび圧縮機回転数に基づいて圧縮機作動時における冷媒流量を算出する。   By the way, in 3rd Embodiment, the refrigerant | coolant flow rate at the time of the action | operation of the fixed capacity type compressor 1 is computed by the same method as the refrigerant | coolant flow rate calculation at the time of 100% of capacity | capacitance in step S120 of 1st Embodiment. That is, the refrigerant flow rate during the operation of the compressor is calculated based on the evaporator blown air temperature Te and the compressor rotational speed.

そして、この算出冷媒流量に基づいて第1実施形態のステップS160と同様に放熱器2の圧損(圧力損失)を算出し、更にこの放熱器2の圧損に基づいて放熱器2の出口圧力を算出する。   Then, the pressure loss (pressure loss) of the radiator 2 is calculated based on the calculated refrigerant flow rate as in step S160 of the first embodiment, and the outlet pressure of the radiator 2 is calculated based on the pressure loss of the radiator 2. To do.

次に、第1実施形態のステップS170と同様に、放熱器2の出口圧力の算出値がステップS90、S100の目標高圧と一致するように、膨張弁3の開度制御を行う。   Next, similarly to step S170 of the first embodiment, the opening degree control of the expansion valve 3 is performed so that the calculated value of the outlet pressure of the radiator 2 matches the target high pressure of steps S90 and S100.

なお、固定容量型圧縮機1の断続制御による停止時には、圧縮機1の吐出圧が急速に低下するので、膨張弁3の開度は閉弁方向に制御される。   Note that when the fixed capacity compressor 1 is stopped by intermittent control, the discharge pressure of the compressor 1 rapidly decreases, so that the opening degree of the expansion valve 3 is controlled in the valve closing direction.

第3実施形態においても、第1実施形態のステップS10〜ステップS100の制御およびステップS160〜ステップS170の制御は同様に行う。   Also in the third embodiment, the control in steps S10 to S100 and the control in steps S160 to S170 of the first embodiment are performed in the same manner.

(他の実施形態)
なお、第1実施形態では、可変容量型圧縮機1に電磁クラッチ1aを備え、異常高圧の保護制御時には電磁クラッチ1aを開離状態にして可変容量型圧縮機1を停止する例について説明したが、可変容量型圧縮機1として、100%容量(最大容量)から0%付近の最小容量まで容量を減少できるタイプのものを用いる場合に、電磁クラッチ1aを廃止して、エンジン回転が常時、圧縮機1の回転軸に伝達されるようにした、いわゆるクラッチレスタイプを採用する場合がある。
(Other embodiments)
In the first embodiment, the variable displacement compressor 1 is provided with the electromagnetic clutch 1a, and the example in which the electromagnetic clutch 1a is disengaged and the variable displacement compressor 1 is stopped at the time of abnormally high pressure protection control has been described. When using a variable capacity compressor 1 whose capacity can be reduced from 100% capacity (maximum capacity) to a minimum capacity of near 0%, the electromagnetic clutch 1a is eliminated and the engine rotation is always compressed. A so-called clutchless type that is transmitted to the rotating shaft of the machine 1 may be employed.

このようなクラッチレスタイプの可変容量型圧縮機1を用いる冷凍サイクルでは、異常高圧時に容量を0%付近の最小容量に強制的に減少させて、異常高圧の保護制御を行うようにすればよい。   In such a refrigeration cycle using the clutchless type variable displacement compressor 1, the abnormally high pressure protection control may be performed by forcibly reducing the capacity to a minimum capacity of around 0% at the abnormally high pressure. .

また、第1実施形態では、図3に示すように、容量制御弁1bの制御電流Icの他に圧縮機吐出圧(高圧側圧力)にも依存して冷媒流量が決定されるようにしているが、圧縮機吐出圧(高圧側圧力)に依存せず、容量制御弁1bの制御電流Icのみで冷媒流量が決定されるようにしてもよい。   In the first embodiment, as shown in FIG. 3, the refrigerant flow rate is determined depending on the compressor discharge pressure (high-pressure side pressure) in addition to the control current Ic of the capacity control valve 1b. However, the refrigerant flow rate may be determined only by the control current Ic of the capacity control valve 1b without depending on the compressor discharge pressure (high pressure side pressure).

また、上述の第1〜第3実施形態では、本発明による冷凍サイクルを冷房運転専用のサイクルに適用する場合について説明したが、本発明はこれに限定されるものではなく、暖房運転又は除湿運転が可能なヒートポンプサイクルに適用してもよいことはもちろんである。   In the first to third embodiments described above, the case where the refrigeration cycle according to the present invention is applied to a cycle dedicated to cooling operation has been described. However, the present invention is not limited to this, and heating operation or dehumidification operation is performed. Of course, the heat pump cycle may be applicable.

また、上述の第1、第2実施形態では、可変容量型の圧縮機1を用いて、圧縮機1の容量制御により圧縮機1の吐出冷媒流量を変化させる冷凍サイクルについて説明したが、圧縮機1として回転数を連続的に制御可能な電動圧縮機を用い、この電動圧縮機の回転数制御により吐出冷媒流量を変化させる冷凍サイクルに本発明を適用してもよい。この電動圧縮機を用いる冷凍サイクルでは、圧縮機回転数により冷媒流量を算出できる。   In the first and second embodiments described above, the refrigeration cycle has been described in which the variable capacity compressor 1 is used to change the discharge refrigerant flow rate of the compressor 1 by the capacity control of the compressor 1. The present invention may be applied to a refrigeration cycle in which an electric compressor capable of continuously controlling the rotational speed as 1 is used and the discharge refrigerant flow rate is changed by controlling the rotational speed of the electric compressor. In the refrigeration cycle using this electric compressor, the refrigerant flow rate can be calculated from the compressor rotation speed.

また、超臨界サイクルの冷媒として、CO2以外に、例えばエチレン、エタン、酸化窒素等の冷媒を用いてもよい。   In addition to CO2, a refrigerant such as ethylene, ethane, or nitrogen oxide may be used as the supercritical cycle refrigerant.

本発明の第1実施形態による車両用超臨界冷凍サイクルを示す構成図である。It is a block diagram which shows the supercritical refrigerating cycle for vehicles by 1st Embodiment of this invention. 図1の可変容量型圧縮機の容量制御弁の具体例を示す模式的断面図である。It is typical sectional drawing which shows the specific example of the capacity | capacitance control valve of the variable displacement compressor of FIG. 図2の容量制御弁の冷媒流量制御の特性図である。It is a characteristic view of the refrigerant | coolant flow control of the capacity | capacitance control valve of FIG. 本発明の第1実施形態による作動制御を示すフローチャートである。It is a flowchart which shows the operation control by 1st Embodiment of this invention. 本発明の第2実施形態による車両用超臨界冷凍サイクルを示す構成図である。It is a block diagram which shows the supercritical refrigerating cycle for vehicles by 2nd Embodiment of this invention. 本発明の第3実施形態による車両用超臨界冷凍サイクルを示す構成図である。It is a block diagram which shows the supercritical refrigerating cycle for vehicles by 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…可変容量型圧縮機、2…放熱器、3…膨張弁(減圧手段)、4…蒸発器、
10…制御装置、12…冷媒圧力センサ(圧力検出手段)、
13…冷媒温度センサ(温度検出手段)、20…内部熱交換器。
DESCRIPTION OF SYMBOLS 1 ... Variable capacity type compressor, 2 ... Radiator, 3 ... Expansion valve (pressure reduction means), 4 ... Evaporator,
DESCRIPTION OF SYMBOLS 10 ... Control apparatus, 12 ... Refrigerant pressure sensor (pressure detection means),
13 ... Refrigerant temperature sensor (temperature detection means), 20 ... Internal heat exchanger.

Claims (5)

冷媒を吸入圧縮する圧縮機(1)と、
前記圧縮機(1)の吐出冷媒を冷却する放熱器(2)と、
前記放熱器(2)の出口側冷媒を減圧する減圧手段(3)と、
前記減圧手段(3)により減圧された低圧冷媒を蒸発させる蒸発器(4)とを備え、
前記蒸発器(4)を通過した冷媒が前記圧縮機(1)に吸入されるようになっており、
更に、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルにおいて、
前記圧縮機(1)の吐出圧力を検出する圧力検出手段(12)と、
前記放熱器(2)の出口側冷媒温度を検出する温度検出手段(13)と、
前記圧力検出手段(12)の圧力検出値とサイクル運転状態とから前記放熱器(2)の出口側冷媒圧力を算出する圧力算出手段(S160)と、
前記圧力算出手段(S160)の圧力算出値が、前記温度検出手段(13)の温度検出値に基づいて決定される目標値と一致するように前記減圧手段(3)の開度を制御する開度制御手段(S170)と、
前記圧力検出手段(12)の圧力検出値が予め設定された異常高圧設定値に達すると、前記圧縮機(1)の停止または前記圧縮機(1)の能力低下の制御を行う圧縮機制御手段(S30)とを備えることを特徴とする超臨界冷凍サイクル。
A compressor (1) for sucking and compressing refrigerant;
A radiator (2) for cooling the refrigerant discharged from the compressor (1);
Decompression means (3) for decompressing the outlet side refrigerant of the radiator (2);
An evaporator (4) for evaporating the low-pressure refrigerant decompressed by the decompression means (3),
The refrigerant that has passed through the evaporator (4) is sucked into the compressor (1),
Furthermore, in the supercritical refrigeration cycle where the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant,
Pressure detection means (12) for detecting the discharge pressure of the compressor (1);
Temperature detecting means (13) for detecting the outlet side refrigerant temperature of the radiator (2);
Pressure calculating means (S160) for calculating the outlet side refrigerant pressure of the radiator (2) from the pressure detection value of the pressure detecting means (12) and the cycle operation state;
An opening for controlling the opening of the pressure reducing means (3) so that the pressure calculated value of the pressure calculating means (S160) matches a target value determined based on the temperature detected value of the temperature detecting means (13). Degree control means (S170),
When the pressure detection value of the pressure detection means (12) reaches a preset abnormal high pressure set value, the compressor control means performs control of stopping the compressor (1) or reducing the capacity of the compressor (1). (S30). A supercritical refrigeration cycle comprising:
前記圧縮機は、容量の変更を制御する容量制御手段(1b)を有し、前記容量制御手段(1b)により冷媒吐出流量が目標流量となるように容量を可変制御する流量制御タイプの可変容量型圧縮機(1)であり、
前記容量制御手段(1b)の制御電流値(Ic)により前記目標流量を決定するようになっており、
前記サイクル運転状態に関連する情報値として、少なくとも前記容量制御手段(1b)の制御電流値(Ic)を用い、
前記制御電流値(Ic)に基づいて前記放熱器(2)の圧損を算出し、前記圧力検出手段(12)の圧力検出値と前記放熱器(2)の圧損とに基づいて前記放熱器(2)の出口側冷媒圧力を算出することを特徴とする請求項1に記載の超臨界冷凍サイクル。
The compressor has a capacity control means (1b) for controlling a change in capacity, and the capacity control means (1b) variably controls the capacity so that the refrigerant discharge flow rate becomes a target flow rate. Type compressor (1),
The target flow rate is determined by the control current value (Ic) of the capacity control means (1b),
As the information value related to the cycle operation state, at least the control current value (Ic) of the capacity control means (1b) is used.
The pressure loss of the radiator (2) is calculated based on the control current value (Ic), and the radiator (2) is calculated based on the pressure detection value of the pressure detection means (12) and the pressure loss of the radiator (2). The supercritical refrigeration cycle according to claim 1, wherein the outlet side refrigerant pressure of 2) is calculated.
前記放熱器(2)の圧損を、前記制御電流値(Ic)と前記温度検出手段(13)の温度検出値と前記圧力検出手段(12)の圧力検出値とに基づいて算出することを特徴とする請求項2に記載の超臨界冷凍サイクル。 The pressure loss of the radiator (2) is calculated based on the control current value (Ic), the temperature detection value of the temperature detection means (13), and the pressure detection value of the pressure detection means (12). The supercritical refrigeration cycle according to claim 2. 前記放熱器(2)の出口側冷媒と前記圧縮機(1)の吸入側冷媒との間で熱交換を行う内部熱交換器(20)を備え、
前記サイクル運転状態に関連する情報値として、前記内部熱交換器(20)の高圧側入口冷媒温度(Tgc)、前記内部熱交換器(20)の低圧側入口冷媒温度(Tac)、および前記内部熱交換器(20)の高圧側出口冷媒温度(Tex)または低圧側出口冷媒温度(Tsx)を用い、
これらの温度に基づいて内部熱交換器温度比(A)を算出し、この内部熱交換器温度比(A)に基づいて前記放熱器(2)の圧損を算出し、
前記圧力検出手段(12)の圧力検出値と前記放熱器(2)の圧損とに基づいて前記放熱器(2)の出口側冷媒圧力を算出することを特徴とする請求項1に記載の超臨界冷凍サイクル。
An internal heat exchanger (20) for exchanging heat between the outlet side refrigerant of the radiator (2) and the suction side refrigerant of the compressor (1);
As information values related to the cycle operation state, the high-pressure inlet refrigerant temperature (Tgc) of the internal heat exchanger (20), the low-pressure inlet refrigerant temperature (Tac) of the internal heat exchanger (20), and the internal Using the high-pressure side outlet refrigerant temperature (Tex) or the low-pressure side outlet refrigerant temperature (Tsx) of the heat exchanger (20),
Calculate the internal heat exchanger temperature ratio (A) based on these temperatures, calculate the pressure loss of the radiator (2) based on the internal heat exchanger temperature ratio (A),
The superfluid pressure sensor according to claim 1, wherein an outlet side refrigerant pressure of the radiator (2) is calculated based on a pressure detection value of the pressure detection means (12) and a pressure loss of the radiator (2). Critical refrigeration cycle.
前記圧縮機は常に一定の容量で作動する固定容量型圧縮機(1)であり、前記固定容量型圧縮機(1)の作動の断続制御によって圧縮機能力を制御するようになっており、
前記固定容量型圧縮機(1)の作動時に、前記サイクル運転状態に関連する情報値として少なくとも圧縮機回転数を用い、この圧縮機回転数に基づいて前記放熱器(2)の圧損を算出し、
前記圧力検出手段(12)の圧力検出値と前記放熱器(2)の圧損とに基づいて前記放熱器(2)の出口側冷媒圧力を算出することを特徴とする請求項1に記載の超臨界冷凍サイクル。
The compressor is a fixed capacity compressor (1) that always operates at a constant capacity, and the compression function force is controlled by intermittent control of the operation of the fixed capacity compressor (1).
At the time of operation of the fixed capacity compressor (1), at least the compressor rotational speed is used as the information value related to the cycle operation state, and the pressure loss of the radiator (2) is calculated based on the compressor rotational speed. ,
The superfluid pressure sensor according to claim 1, wherein an outlet side refrigerant pressure of the radiator (2) is calculated based on a pressure detection value of the pressure detection means (12) and a pressure loss of the radiator (2). Critical refrigeration cycle.
JP2004333361A 2004-11-17 2004-11-17 Supercritical refrigeration cycle Withdrawn JP2006145087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333361A JP2006145087A (en) 2004-11-17 2004-11-17 Supercritical refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333361A JP2006145087A (en) 2004-11-17 2004-11-17 Supercritical refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2006145087A true JP2006145087A (en) 2006-06-08

Family

ID=36624983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333361A Withdrawn JP2006145087A (en) 2004-11-17 2004-11-17 Supercritical refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2006145087A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002795A (en) * 2006-06-26 2008-01-10 Denso Corp Refrigeration cycle system
JP2008151386A (en) * 2006-12-15 2008-07-03 Toshiba Kyaria Kk Air conditioner
JP2008232613A (en) * 2007-03-21 2008-10-02 Grasso Gmbh Refrigeration Technology Control method of co2 refrigeration device performing two-stage compression
JP2009138998A (en) * 2007-12-05 2009-06-25 Kobe Steel Ltd Refrigerating apparatus
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device
JP2010048498A (en) * 2008-08-22 2010-03-04 Tgk Co Ltd Refrigerating cycle
JP2010048459A (en) * 2008-08-21 2010-03-04 Denso Corp Refrigerating cycle device
CN105241143A (en) * 2015-10-26 2016-01-13 广东美的暖通设备有限公司 Water cooling and heating machine of air cooled heat pump and method for protecting water cooling and heating machine of air cooled heat pump against high-pressure protection
CN105299988A (en) * 2015-10-26 2016-02-03 广东美的暖通设备有限公司 Air-cooled heat pump water cooling and heating machine and high voltage protection preventing method for air-cooled heat pump water cooling and heating machine
JP2016200314A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device
CN112665246A (en) * 2020-12-17 2021-04-16 珠海格力电器股份有限公司 Method and device for regulating and controlling electronic expansion valve and heat pump equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715650B2 (en) * 2006-06-26 2011-07-06 株式会社デンソー Refrigeration cycle equipment
JP2008002795A (en) * 2006-06-26 2008-01-10 Denso Corp Refrigeration cycle system
JP2008151386A (en) * 2006-12-15 2008-07-03 Toshiba Kyaria Kk Air conditioner
JP2008232613A (en) * 2007-03-21 2008-10-02 Grasso Gmbh Refrigeration Technology Control method of co2 refrigeration device performing two-stage compression
JP4608537B2 (en) * 2007-12-05 2011-01-12 株式会社神戸製鋼所 Refrigeration equipment
JP2009138998A (en) * 2007-12-05 2009-06-25 Kobe Steel Ltd Refrigerating apparatus
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device
JP2010048459A (en) * 2008-08-21 2010-03-04 Denso Corp Refrigerating cycle device
JP2010048498A (en) * 2008-08-22 2010-03-04 Tgk Co Ltd Refrigerating cycle
JP2016200314A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device
CN105241143A (en) * 2015-10-26 2016-01-13 广东美的暖通设备有限公司 Water cooling and heating machine of air cooled heat pump and method for protecting water cooling and heating machine of air cooled heat pump against high-pressure protection
CN105299988A (en) * 2015-10-26 2016-02-03 广东美的暖通设备有限公司 Air-cooled heat pump water cooling and heating machine and high voltage protection preventing method for air-cooled heat pump water cooling and heating machine
CN112665246A (en) * 2020-12-17 2021-04-16 珠海格力电器股份有限公司 Method and device for regulating and controlling electronic expansion valve and heat pump equipment

Similar Documents

Publication Publication Date Title
CN100580250C (en) Compressor volume control system and refrigeration cycle system
US6484523B2 (en) Vehicle air conditioner with refrigerant flow-amount control of compressor
US7836716B2 (en) Refrigerant cycle device and control system for vehicle
US20060016203A1 (en) Refrigerating cycle device capable of ensuring oil return
EP1717531A1 (en) Air conditioner and control system thereof
JP2009192090A (en) Refrigerating cycle device
US20070084596A1 (en) Vehicle air conditioner with variable displacement compressor
JP4882978B2 (en) Refrigeration cycle equipment
JP2010048459A (en) Refrigerating cycle device
JP2006145087A (en) Supercritical refrigeration cycle
WO2005078362A1 (en) Air conditioner
JP6572695B2 (en) Integrated valve
JP2020075623A (en) Vehicular air conditioner
US11446983B2 (en) Electronic control unit for air conditioner
JP2009097772A (en) Refrigerating cycle device
JP4338539B2 (en) Air conditioner for vehicles
JP3991536B2 (en) Air conditioner for vehicles
JP4661696B2 (en) Supercritical refrigeration cycle
JP2010126138A (en) Refrigeration cycle device for vehicle
JP6565737B2 (en) Refrigeration cycle equipment
JP2009137504A (en) Refrigeration cycle device for vehicle
JP2015116934A (en) Heat pump cycle device
JP2006145170A (en) Refrigerating cycle
JP4285228B2 (en) Air conditioner for vehicles
JP4525515B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070129

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090305