JP2008232613A - Control method of co2 refrigeration device performing two-stage compression - Google Patents

Control method of co2 refrigeration device performing two-stage compression Download PDF

Info

Publication number
JP2008232613A
JP2008232613A JP2008073533A JP2008073533A JP2008232613A JP 2008232613 A JP2008232613 A JP 2008232613A JP 2008073533 A JP2008073533 A JP 2008073533A JP 2008073533 A JP2008073533 A JP 2008073533A JP 2008232613 A JP2008232613 A JP 2008232613A
Authority
JP
Japan
Prior art keywords
pressure
connection
stage
subcooler
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008073533A
Other languages
Japanese (ja)
Inventor
Dieter Mosemann
モーゼマン ディーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Refrigeration Germany GmbH
Original Assignee
Grasso GmbH Refrigeration Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grasso GmbH Refrigeration Technology filed Critical Grasso GmbH Refrigeration Technology
Publication of JP2008232613A publication Critical patent/JP2008232613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient and inexpensive control method of a CO<SB>2</SB>refrigeration device. <P>SOLUTION: The following four functions (a)-(d) are provided in combination or independently, namely: (a) degree of supercooling of main flows in supercoolers; (b) degree of desired overheating in feelers that are portions of controllable throttle valves (34, 35, 36) disposed at supercooler outlets of split flows; (c) change in intermediate pressure in a secondary flowing route by regulated release or closure of pressure control valves (42, 43, 44) disposed downstream of each of the supercoolers in pipelines for guiding the split flows; and (d) change in compression final pressure on an upper stage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、油注入式のねじ圧縮機(oelueberfluteter Schraubenverdichter)が2段に配置された2段式のねじ圧縮機ユニットを備えた2段式のCO冷凍装置(CO2-Kaelteanlage)の制御法であって、ねじ圧縮機が流動方向で相前後して配置されており、上下の圧力段の両ねじ圧縮機がそれぞれ1つの中間圧力開口、いわゆるエコノマイザ接続部を有しており、該エコノマイザ接続部が流動に関してケーシング内のロータの歯溝に、該歯溝と連通している限り吸込側への流動接続も吐出側への流動接続も生じないように隣接しており、両圧力段のねじ圧縮機間の接続線路内に中間圧力接続部が設けられており、COガスクーラ出口と蒸発器システムへのCO入口との間に、ガスクーラ出口と絞り装置を備えた蒸発器システムとの間の冷媒主流のための一次的な流動経路が存在しており、該一次的な流動経路内に少なくとも3つの熱交換器が、この一次的な流動経路に関してシリアルに配置されており、これらの熱交換器が「上側」の補助過冷却器、「中間」の過冷却器および「下側」の補助過冷却器として形成されており、過冷却器の熱交換器面の一方の側に、前記一次的な流動経路の部分が隣接しており、熱交換器面の他方の側に、二次的な流動経路の部分が隣接しており、該二次的な流動経路の部分が、一次的な流動経路から絞り弁、過冷却器および管路を介した上側の段のねじ圧縮機のエコノマイザ接続部、上下の段のねじ圧縮機間の中間圧力接続部および下側の段のねじ圧縮機のエコノマイザ接続部への流動接続の部分であり、かつ管路および制御可能な弁を有している、油注入式のねじ圧縮機が2段に配置された2段式のねじ圧縮機ユニットを備えた2段式のCO冷凍装置の制御法に関する。 The present invention relates to a control method for a two-stage CO 2 refrigeration apparatus (CO 2 -Kaelteanlage) having a two-stage screw compressor unit in which oil-injected screw compressors (oelueberfluteter Schraubenverdichter) are arranged in two stages. The screw compressors are arranged one after the other in the flow direction, and both screw compressors in the upper and lower pressure stages each have one intermediate pressure opening, so-called economizer connection, the economizer connection As long as the part communicates with the tooth groove of the rotor in the casing so as to communicate with the tooth groove, the flow connection to the suction side and the flow connection to the discharge side do not occur. An intermediate pressure connection is provided in the connecting line between the compressors, between the CO 2 gas cooler outlet and the CO 2 inlet to the evaporator system, between the gas cooler outlet and the evaporator system with the throttle device. For refrigerant mainstream There is a secondary flow path, and at least three heat exchangers in the primary flow path are arranged serially with respect to the primary flow path, and these heat exchangers are "upper" Auxiliary subcooler, “intermediate” subcooler and “lower” auxiliary subcooler, on one side of the heat exchanger surface of the subcooler, the primary flow path A portion of the secondary flow path is adjacent to the other side of the heat exchanger surface, and the portion of the secondary flow path extends from the primary flow path to the throttle valve The economizer connection of the upper stage screw compressor, the intermediate pressure connection between the upper and lower stage screw compressors, and the economizer connection of the lower stage screw compressor via the supercooler and conduit Oil-filled, part of a fluid connection and having lines and controllable valves Screw compressor relating to the control method of the two-stage CO 2 refrigeration system including a two-stage screw compressor units arranged in two stages.

本発明は、2段式の圧縮のための、直接流動方向で相前後して配置された油注入式のねじ圧縮機を備えた2段式のCO冷凍装置を制御する方法に関する。両圧力段のねじ圧縮機は有利にはそれぞれ1つの中間圧力開口、いわゆるエコノマイザ接続部を有しており、エコノマイザ接続部は流動に関してケーシング内のロータの歯溝に、エコノマイザ接続部が歯溝と連通している限り吸込側への流動接続も吐出側への流動接続も生じないように隣接している。上側の圧力段の圧縮機は、背景技術により、例えばドイツ連邦共和国特許出願公開第10334947号明細書に記載されているように構成されている。 The present invention relates to a method for controlling a two-stage CO 2 refrigeration apparatus with an oil-injected screw compressor arranged one after the other in the direct flow direction for two-stage compression. The screw compressors of both pressure stages preferably each have one intermediate pressure opening, the so-called economizer connection, the economizer connection being connected to the tooth groove of the rotor in the casing and the economizer connection being the tooth groove. As long as they are in communication, they are adjacent so that neither a fluid connection to the suction side nor a fluid connection to the discharge side occurs. The compressor of the upper pressure stage is configured according to the background art, for example as described in DE 103 34 947 A1.

両圧力段の圧縮機間の接続線路内に中間圧力接続部が配置されていることと、圧縮機にエコノマイザ接続部が存在していることは、背景技術により、例えば特許出願番号102005018602.5に記載されているように、ガスクーラと蒸発器との間の冷媒の4段階の膨張を可能にする。   The fact that the intermediate pressure connection is arranged in the connection line between the compressors of both pressure stages and the presence of the economizer connection in the compressor is explained by background art, for example in patent application No. 102005018602.5. As described, it allows four-stage expansion of the refrigerant between the gas cooler and the evaporator.

背景技術によれば、両ねじ圧縮機は、運転パラメータ、有利には直接冷媒COの蒸発温度に関係する蒸発器内の圧力を制御する目的で、圧送体積を変更するための手段、例えばそれぞれ1つの制御スライダを装備している。制御スライダは部分的に、ロータを有するケーシング内に配置されており、アクティブ化のための別の液圧コンポーネントおよび制御エレメントを必要とする。またはねじ圧縮機は駆動回転数の変更により制御される。運転パラメータのこの制御は、出力制御(Leistungsregelung)とも呼ばれる。それゆえ、この概念は以下に本文でも使用される。 According to the background art, both screw compressors are provided with means for changing the pumping volume, for example respectively, in order to control the operating parameters, preferably the pressure in the evaporator directly related to the evaporation temperature of the refrigerant CO 2. Equipped with one control slider. The control slider is partly arranged in a casing with a rotor and requires a separate hydraulic component and control element for activation. Alternatively, the screw compressor is controlled by changing the driving speed. This control of operating parameters is also called power control (Leistungsregelung). Therefore, this concept is also used in the text below.

上記形式の出力制御にとって欠点であるのは、この解決策の所要コストである。   A drawback to the above type of output control is the required cost of this solution.

したがって、この欠点を取り除き、効率的で安価な出力制御を提供することは大きな課題である。   It is therefore a major challenge to eliminate this drawback and provide efficient and inexpensive output control.

公知の多段式のCO冷凍装置が記載されている特許出願番号102007003983.3のフラッシュ蒸気は、中間圧力接続部および圧縮機のエコノマイザ接続開口に、有利には制御可能な弁装置を介して供給される一方、液体は「下側」の絞り箇所を介して下側の補助液体分離器内で膨張される。補助液体分離器内でフラッシュ蒸気と液体とは互いに分離される。 Patent application number 102007003983.3, in which a known multi-stage CO 2 refrigeration system is described, is supplied to the intermediate pressure connection and the compressor economizer connection opening, preferably via a controllable valve device Meanwhile, the liquid is expanded in the lower auxiliary liquid separator through the “lower” throttling point. The flash vapor and liquid are separated from each other in the auxiliary liquid separator.

そこから、液体は「最も下側」の絞り箇所を介して蒸発器液体分離器システムに到達する。この蒸発器液体分離器システムから、フラッシュ蒸気は下側の圧力段の圧縮機の吸込側に、熱供給により蒸発器内に生じる冷媒蒸気と共に供給される。   From there, the liquid reaches the evaporator liquid separator system via the “bottom” throttling point. From this evaporator liquid separator system, the flash vapor is supplied to the suction side of the lower pressure stage compressor along with the refrigerant vapor generated in the evaporator by heat supply.

別の公知の多段式のCO冷凍装置が記載されている特許出願番号102007003989.3の第2の解決策では、蒸発器システムに供給される冷媒流は、複数の過冷却区分を通流した後、1段で膨張される。冷媒主流のための流動経路内に配置されている「上側」の補助液体過冷却器、「中間」の液体過冷却器および「下側」の補助液体過冷却器内での冷媒流の冷却のために、それぞれの液体過冷却器区分の前に設けられた液体分岐により、冷媒液体の分流が分岐され、それぞれの液体過冷却器内で蒸発される。この冷媒蒸気は上側の段の圧縮機のそれぞれのエコ接続部、上下の圧力段の圧縮機間の中間圧力接続部、下側の圧力段の圧縮機のエコノマイザ接続部に供給される。 In the second solution of patent application No. 102007003989.3, in which another known multi-stage CO 2 refrigeration system is described, the refrigerant stream supplied to the evaporator system is routed through a plurality of subcooling sections. After that, it is expanded in one stage. For cooling of the refrigerant flow in the “upper” auxiliary liquid subcooler, “middle” liquid subcooler and “lower” auxiliary liquid subcooler arranged in the flow path for the main refrigerant flow. For this purpose, the liquid branch provided in front of each liquid subcooler section branches off the diverted refrigerant liquid and evaporates in each liquid subcooler. The refrigerant vapor is supplied to each eco connection of the upper stage compressor, an intermediate pressure connection between the upper and lower pressure stage compressors, and an economizer connection of the lower pressure stage compressor.

2段式の圧縮機装置の下側の圧力段の圧縮機の圧送体積は、公知の手段、例えばロータに対するその相対的な位置に応じて有効な圧送行程を短縮する制御スライダまたは回転数を制御するための装置により制御される。下側の圧力段の圧送流変化により、下側の圧力段下流の圧力は変化する。   The pumping volume of the compressor in the lower pressure stage of the two-stage compressor unit is controlled by a known means, for example a control slider or speed that reduces the effective pumping stroke depending on its relative position with respect to the rotor. Controlled by a device for The pressure downstream of the lower pressure stage changes due to the change in the pumping flow of the lower pressure stage.

それゆえ、上側の圧力段の圧縮機も、制御スライダまたは圧縮機回転数を変更するための装置を、圧送体積の変更のために装備しなければならない。この圧縮機は、約120バールまでの大きな圧力のために適していなければならないので、圧縮機に制御スライダを備える構成はさらなるコストを招くこととなる。
ドイツ連邦共和国特許出願公開第10334947号明細書 特許出願番号102005018602.5 特許出願番号102007003983.3 特許出願番号102007003989.3
Therefore, the compressor in the upper pressure stage must also be equipped with a device for changing the control slider or compressor speed for changing the pumping volume. Since this compressor must be suitable for large pressures up to about 120 bar, the construction of the compressor with a control slider will incur additional costs.
German Patent Application Publication No. 10334947 Patent Application No. 102005018602.5 Patent application number 102007003983.3 Patent application number 102007003989.3

本発明の課題は、公知の装置の欠点を取り除き、効率的で安価な出力制御を提供すること、具体的には上側の圧力段の圧縮機を制御スライダなしに構成し、かつ駆動回転数を変更するための装置なしに運転することである。さらに本発明の課題は、上側の圧力段の圧縮機前の圧力を別の適当な手段および方法により適合することである。   The object of the present invention is to eliminate the disadvantages of known devices, to provide efficient and inexpensive output control, specifically to configure the upper pressure stage compressor without a control slider, and to reduce the drive rotational speed. It is to operate without a device to change. It is a further object of the present invention to adapt the pressure before the compressor in the upper pressure stage by another suitable means and method.

上記課題を解決するために本発明の構成では、以下に挙げる4つのファンクションa)〜d)、すなわち:
a)過冷却器内での主流の過冷却の程度;
このために、過冷却器を通る冷媒分流が絞り弁の調節された開放または閉鎖により増加または減少されるか、または絞り弁の完全な閉鎖後、「上側」の補助過冷却器、「中間」の過冷却器および/または「下側」の補助過冷却器が相前後して運転停止される。
b)分流の過冷却器出口に配置され、制御可能な絞り弁の部分であるフィーラにおける調節したい過熱の程度;
c)分流を案内する管路内に、それぞれの過冷却器の下流に配置されている圧力制御弁の調節された開放または閉鎖による二次的な流動経路内の中間圧力の変更;
d)上側の段の圧縮最終圧力の変更;
このために、ガスクーラの下流に配置された絞り弁で、冷凍能力を減じるためにこの圧力が下げられ、冷凍能力と駆動力との間の最適値まで冷凍能力を高めるために上げられ、かつ最適な圧力のために制御アルゴリズムが部分負荷制御とは無関係に存在している。
という4つのファンクションが組み合わされてまたはそれぞれ単独で存在するようにした。
In order to solve the above problems, the configuration of the present invention includes the following four functions a) to d):
a) degree of mainstream supercooling in the supercooler;
For this purpose, the refrigerant diversion through the subcooler is increased or decreased by controlled opening or closing of the throttle valve, or after complete closure of the throttle valve, the “upper” auxiliary subcooler, “intermediate” And / or the “lower” auxiliary subcooler are shut down one after another.
b) the degree of superheat to be adjusted in the feeler which is located at the outlet of the subcooler in the split flow and is part of the controllable throttle valve;
c) a change in the intermediate pressure in the secondary flow path by the controlled opening or closing of a pressure control valve located downstream of the respective subcooler in the conduit guiding the diversion;
d) change of the compression final pressure of the upper stage;
For this purpose, a throttle valve located downstream of the gas cooler reduces this pressure to reduce the refrigeration capacity, increases it to an optimum value between the refrigeration capacity and the driving power, and increases the optimum Because of the high pressure, control algorithms exist independently of part load control.
These four functions are combined or exist independently.

本発明の有利な構成では、圧力センサを上側の圧力段の圧縮機の下流に圧力管体に配置し、かつ温度センサをガスクーラのCO出口の下流に配置する。本発明の別の有利な構成では、最適な圧力のために制御アルゴリズムがガスクーラ出口温度の関数として部分負荷制御とは無関係に存在している。 In an advantageous configuration of the invention, the pressure sensor is arranged in the pressure tube downstream of the compressor in the upper pressure stage, and the temperature sensor is arranged downstream of the CO 2 outlet of the gas cooler. In another advantageous configuration of the invention, a control algorithm exists as a function of the gas cooler outlet temperature for optimum pressure independent of part load control.

本発明では、上側の圧力段の圧縮機前の圧力は、複数のファンクションの組み合わせにより制御される。
a)流動経路に沿って相前後して配置され、熱交換器として形成されている液体過冷却器内での主流の過冷却の程度によって;
熱交換器を通して2つの冷媒流が分割されて案内される。2つの冷媒流は、それぞれ異なる温度に基づいて、熱交換器の通過時、熱を交換する。冷媒の主流はその際に冷却される(これを「過冷却(Unterkuehlung)」と呼ぶ。)。主流から熱交換器の前で分岐され、熱交換器の前で、絞り弁内でより低い圧力に膨張された冷媒の分流は、主流からの吸熱の結果、蒸発する。分流は、液体過冷却器への冷媒供給とも呼ばれる。上側の圧力段の圧縮機前の圧力を制御するために、液体過冷却器は相前後して運転停止される。冷媒供給内のストップ弁は、出力を減少するために閉鎖され、出力を増加するために開放される。
b)中間冷却器出口において測定される、液体過冷却器後の分流の過熱の変更によって;
過熱は中間冷却器出口で、上側の圧力段の圧縮機前の圧力に依存して増加または減少される。過熱は、液体分離器後の分流の実際の出口温度と、分流の圧力により規定されている、液体分離器内の蒸発温度との温度差である。このために、中間冷却器の出口に設けられた弁は、液体過冷却器の通過後の冷媒主流の過冷却の程度を変更するために、調節されて開放または閉鎖される。
c)中間圧力の変更によって;
両圧力段のエコノマイザ接続部の前に、有利には、エコノマイザ接続部への体積流量、ひいては冷凍装置の冷凍能力を制御するために、制御弁が配置されている。本発明によるこの制御形式では、中間冷却器出口と、エコノマイザ接続部または中間圧力接続部へのそれぞれの中間圧力供給箇所との間に配置されている弁が、調節されて開放または閉鎖される。
d)上側の圧力段の圧縮最終圧力の変更によって;
冷凍能力を制御するためのこの規定は、上側の圧力段の冷凍能力が、ガスクーラ内の冷媒蒸気の冷却時に、臨界点の上側で、ガスクーラからのCO出口温度および上側の段の圧縮最終圧力と共に変化するという状況を利用する。冷凍能力は、ガスクーラの下流に配置された絞り弁での、上側の段の圧縮最終圧力の変化により変更される。冷凍能力を減じるために、この圧力はこの弁の開放により下げられ、弁は冷凍能力と駆動力との間の最適値まで冷凍能力を高めるためにさらに閉鎖され、これにより圧縮最終圧力はやはり冷凍能力と駆動力との間の最適値まで上げられる。最適値は独自の制御アルゴリズムにより部分負荷制御とは無関係に求められる。
In the present invention, the pressure before the compressor in the upper pressure stage is controlled by a combination of a plurality of functions.
a) depending on the degree of mainstream subcooling in the liquid subcooler, arranged one after the other along the flow path and formed as a heat exchanger;
Two refrigerant streams are divided and guided through the heat exchanger. The two refrigerant streams exchange heat when passing through the heat exchanger based on different temperatures. The main stream of the refrigerant is cooled at that time (this is referred to as “Unterkuehlung”). The branch stream of the refrigerant branched from the main flow in front of the heat exchanger and expanded to a lower pressure in the throttle valve in front of the heat exchanger evaporates as a result of heat absorption from the main flow. The diversion is also referred to as refrigerant supply to the liquid subcooler. In order to control the pressure before the compressor in the upper pressure stage, the liquid subcooler is shut down one after another. A stop valve in the refrigerant supply is closed to decrease the output and opened to increase the output.
b) by changing the superheat of the diversion after the liquid subcooler, measured at the outlet of the intercooler;
The superheat is increased or decreased at the intercooler outlet depending on the pressure before the compressor in the upper pressure stage. Superheat is the temperature difference between the actual outlet temperature of the split after the liquid separator and the evaporation temperature in the liquid separator as defined by the pressure of the split. For this purpose, the valve provided at the outlet of the intercooler is adjusted and opened or closed in order to change the degree of supercooling of the main refrigerant after passing through the liquid supercooler.
c) by changing the intermediate pressure;
Before the economizer connection of both pressure stages, a control valve is advantageously arranged to control the volume flow to the economizer connection and thus the refrigeration capacity of the refrigeration system. In this form of control according to the invention, the valves arranged between the intermediate cooler outlet and the respective intermediate pressure supply point to the economizer connection or to the intermediate pressure connection are adjusted open or closed.
d) by changing the compression final pressure of the upper pressure stage;
This regulation for controlling the refrigeration capacity is that the refrigeration capacity of the upper pressure stage is above the critical point when the refrigerant vapor in the gas cooler is cooled, above the CO 2 outlet temperature from the gas cooler and the final compression pressure of the upper stage. Take advantage of the situation of changing with. The refrigeration capacity is changed by a change in the final compression pressure of the upper stage at the throttle valve disposed downstream of the gas cooler. In order to reduce the refrigeration capacity, this pressure is lowered by opening this valve and the valve is further closed to increase the refrigeration capacity to an optimum value between the refrigeration capacity and the driving power, so that the compression final pressure is It is raised to the optimum value between the capacity and the driving force. The optimum value is obtained independently of partial load control by a unique control algorithm.

冷凍装置の冷凍能力の制御は広い範囲で、説明した制御法a)〜d)の組み合わせによりまたはそれぞれ単独に、固有のバイパス弁装置または回転数制御を有しない上側の圧力段内の圧縮機により可能である。   Control of the refrigeration capacity of the refrigeration system is wide-ranging, either by a combination of the control methods a) to d) described above or individually, either by a unique bypass valve device or by a compressor in the upper pressure stage without rotational speed control. Is possible.

下側の圧力段の圧縮機は、蒸発器からの蒸気体積流量への適合のために圧送流を変更する目的で、出力制御のための公知の手段、例えば制御スライダまたは可変の回転数を有する駆動装置を装備している。その際、制御スライダは、ロータを包囲するケーシングの周壁部分を形成し、圧縮機の圧送量を変更する目的でケーシング内のバイパス開口を開放する。バイパス開口を通して、吸い込まれた圧送体積の一部は圧縮機の吸込側に戻し案内される。   The lower pressure stage compressor has known means for power control, such as a control slider or a variable speed, for the purpose of changing the pump flow for adaptation to the vapor volume flow from the evaporator. Equipped with a drive unit. At that time, the control slider forms a peripheral wall portion of the casing surrounding the rotor, and opens a bypass opening in the casing for the purpose of changing the pumping amount of the compressor. Through the bypass opening, a part of the sucked pumping volume is guided back to the suction side of the compressor.

これにより、圧縮機により圧送され、冷凍能力を生じるエンタルピ差に掛けられる質量流量が変化する。   This changes the mass flow rate that is pumped by the compressor and applied to the enthalpy difference that produces the refrigeration capacity.

2段式のねじ圧縮機ユニットを備えた2段式のCO冷凍装置の個々の制御法について以下に説明する。使用される数字は例示的な図面に関する。 The individual control methods of the two-stage CO 2 refrigeration apparatus provided with the two-stage screw compressor unit will be described below. The numbers used relate to the exemplary drawings.

下側の圧力段のねじ圧縮機1と上側の圧力段のねじ圧縮機2とは流動方向で直列に配置されている。ねじ圧縮機1,2はそれぞれ1つのエコノマイザ接続部25,26を有する。ねじ圧縮機1,2間の接続線路13内には中間圧力接続部40が設けられている。ガスクーラ4のCO側の出口と、液体分離器8を備えた蒸発器システムへの入口との間には、冷媒を案内する接続管路30が配置されている。接続管路30は、ガスクーラ4の出口と、絞り装置41を備えた蒸発器システムとの間の冷媒主流のための流動経路を形成し、かつ熱交換器31,32,33の部分面を有する。3つの熱交換器31,32,33はこの流動経路に関してシリアルに配置されている。その際、熱交換器31は「上側」の補助過冷却器として、熱交換器32は「中間」の過冷却器として、熱交換器33は「下側」の補助過冷却器として形成されている。熱交換器31,32,33の熱交換する面の一方の側には、既に述べたように、流動経路の部分が存在しており、かつ流動経路から絞り弁34,35,36を介したそれぞれの熱交換器面の他方の側への液体分岐が存在している。熱交換器31,32,33のこの側の出口は、ねじ圧縮機1,2のエコノマイザ接続部25,26と、上下の段のねじ圧縮機1,2間に設けられた中間圧力接続部40とに接続されている。 The screw compressor 1 in the lower pressure stage and the screw compressor 2 in the upper pressure stage are arranged in series in the flow direction. Each of the screw compressors 1 and 2 has one economizer connection 25 and 26. An intermediate pressure connection 40 is provided in the connection line 13 between the screw compressors 1 and 2. Between the outlet on the CO 2 side of the gas cooler 4 and the inlet to the evaporator system provided with the liquid separator 8, a connecting line 30 for guiding the refrigerant is disposed. The connection line 30 forms a flow path for the refrigerant main flow between the outlet of the gas cooler 4 and the evaporator system including the expansion device 41, and has partial surfaces of the heat exchangers 31, 32, and 33. . The three heat exchangers 31, 32, and 33 are serially arranged with respect to this flow path. At that time, the heat exchanger 31 is formed as an “upper” auxiliary subcooler, the heat exchanger 32 is formed as an “intermediate” subcooler, and the heat exchanger 33 is formed as a “lower” auxiliary subcooler. Yes. As already described, a part of the flow path exists on one side of the heat exchange surfaces of the heat exchangers 31, 32, and 33, and the flow path passes through throttle valves 34, 35, and 36. There is a liquid branch to the other side of each heat exchanger face. The outlets on this side of the heat exchangers 31, 32, 33 are the economizer connection portions 25, 26 of the screw compressors 1, 2 and the intermediate pressure connection portion 40 provided between the upper and lower screw compressors 1, 2. And connected to.

組み合わされるかまたは単独で成立する上記4つのファンクションa)〜d)について、以下に説明する。
a)過冷却器内での主流の過冷却の程度が変更される。このために、液体過冷却器31,32,33を通る冷媒分流が、絞り弁34,35,36の調節された開放または閉鎖により増減される。これにより、液体分離器に進入する前の流体の冷却の程度は変化し、これにより単位体積当たりの冷凍能力は変化する。
b)絞り弁34,35および36は、例えば電気的に操作される絞り弁として形成されており、冷媒出口におけるその過熱は制御可能である。制御したいパラメータ、例えば液体分離器内の圧力に依存した、熱交換器31,32,33の分流の出口に設けられたこれらの弁のフィーラにおける調節したい過熱の程度は、冷凍能力を拡大または縮小する。
c)接続点25,26,40における中間圧力の変更のために、圧力制御弁42,43,44が、エコノマイザ接続部25,26および両圧縮機1,2間の接続点40への体積流量を変更し、ひいては冷凍装置の冷凍能力を制御するために配置されている。このために、中間冷却器31,32,33の出口と、エコノマイザ接続部または中間圧力接続部へのそれぞれの中間圧力供給箇所との間に配置されている弁42,43,44が、調節されて開放または閉鎖される。
d)ガスクーラ4の下流に配置された絞り弁45による、ねじ圧縮機2の上側の段の圧縮最終圧力の変更は、冷凍能力に影響を及ぼす。圧力は、冷凍能力を減じるために下げられ、冷凍能力と駆動力との間の最適値まで冷凍能力を高めるために上げられる。最大の圧力は、COガスクーラ出口温度の関数としての制御アルゴリズムを介して上方で制限される。圧力は最適なエネルギ供給のために最適な圧力である。
The above four functions a) to d) that are combined or established independently will be described below.
a) The degree of mainstream supercooling in the supercooler is changed. For this purpose, the refrigerant diversion through the liquid subcoolers 31, 32, 33 is increased or decreased by controlled opening or closing of the throttle valves 34, 35, 36. This changes the degree of cooling of the fluid before entering the liquid separator, thereby changing the refrigeration capacity per unit volume.
b) The throttle valves 34, 35 and 36 are formed as throttle valves which are electrically operated, for example, and the overheating at the refrigerant outlet can be controlled. Depending on the parameter to be controlled, for example the pressure in the liquid separator, the degree of superheat to be adjusted in the feelers of these valves provided at the outlets of the diverters of the heat exchangers 31, 32, 33 can increase or decrease the refrigeration capacity. To do.
c) For changing the intermediate pressure at the connection points 25, 26, 40, the pressure control valves 42, 43, 44 have a volume flow rate to the connection point 40 between the economizer connections 25, 26 and the compressors 1, 2. Is arranged to control the refrigerating capacity of the refrigerating apparatus. For this purpose, the valves 42, 43, 44 arranged between the outlets of the intermediate coolers 31, 32, 33 and the respective intermediate pressure supply points to the economizer connection or the intermediate pressure connection are adjusted. Open or closed.
d) The change in the final compression pressure of the upper stage of the screw compressor 2 by the throttle valve 45 disposed downstream of the gas cooler 4 affects the refrigeration capacity. The pressure is lowered to reduce the refrigeration capacity and raised to increase the refrigeration capacity to an optimum value between the refrigeration capacity and the driving power. Maximum pressure is limited by the upward via the control algorithm as a function of CO 2 gas cooler outlet temperature. The pressure is the optimal pressure for optimal energy supply.

2段式のCO冷凍装置を示す図である。Is a diagram showing a CO 2 refrigeration system 2 stage.

符号の説明Explanation of symbols

1 ねじ圧縮機
2 ねじ圧縮機
4 ガスクーラ
8 液体分離器
13 接続線路
25 エコノマイザ接続部
26 エコノマイザ接続部
30 接続管路
31 熱交換器
32 熱交換器
33 熱交換器
34 絞り弁
35 絞り弁
36 絞り弁
40 中間圧力接続部
42 圧力制御弁
43 圧力制御弁
44 圧力制御弁
45 絞り弁
DESCRIPTION OF SYMBOLS 1 Screw compressor 2 Screw compressor 4 Gas cooler 8 Liquid separator 13 Connection line 25 Economizer connection part 26 Economizer connection part 30 Connection pipe line 31 Heat exchanger 32 Heat exchanger 33 Heat exchanger 34 Throttle valve 35 Throttle valve 36 Throttle valve 40 Intermediate Pressure Connection 42 Pressure Control Valve 43 Pressure Control Valve 44 Pressure Control Valve 45 Throttle Valve

Claims (1)

油注入式のねじ圧縮機が2段に配置された2段式のねじ圧縮機ユニットを備えた2段式のCO冷凍装置の制御法であって、ねじ圧縮機が流動方向で相前後して配置されており、上下の圧力段の両ねじ圧縮機がそれぞれ1つの中間圧力開口、いわゆるエコノマイザ接続部を有しており、該エコノマイザ接続部が流動に関してケーシング内のロータの歯溝に、該歯溝と連通している限り吸込側への流動接続も吐出側への流動接続も生じないように隣接しており、両圧力段のねじ圧縮機間の接続線路内に中間圧力接続部が設けられており、COガスクーラ出口と蒸発器システムへのCO入口との間に、ガスクーラ出口と絞り装置を備えた蒸発器システムとの間の冷媒主流のための一次的な流動経路が存在しており、該一次的な流動経路内に少なくとも3つの熱交換器が、この一次的な流動経路に関してシリアルに配置されており、これらの熱交換器が「上側」の補助過冷却器、「中間」の過冷却器および「下側」の補助過冷却器として形成されており、過冷却器の熱交換器面の一方の側に、前記一次的な流動経路の部分が隣接しており、熱交換器面の他方の側に、二次的な流動経路の部分が隣接しており、該二次的な流動経路の部分が、一次的な流動経路から絞り弁、過冷却器および管路を介した上側の段のねじ圧縮機のエコノマイザ接続部、上下の段のねじ圧縮機間の中間圧力接続部および下側の段のねじ圧縮機のエコノマイザ接続部への流動接続の部分であり、かつ管路および制御可能な弁を有している、油注入式のねじ圧縮機が2段に配置された2段式のねじ圧縮機ユニットを備えた2段式のCO冷凍装置の制御法において、
以下に挙げる4つのファンクションa)〜d)、すなわち:
a)過冷却器内での主流の過冷却の程度;
このために、過冷却器を通る冷媒分流が絞り弁(34,35,36)の調節された開放または閉鎖により増加または減少されるか、または絞り弁(34,35,36)の完全な閉鎖後、「上側」の補助過冷却器、「中間」の過冷却器および/または「下側」の補助過冷却器が相前後して運転停止される。
b)分流の過冷却器出口に配置され、制御可能な絞り弁(34,35,36)の部分であるフィーラにおける調節したい過熱の程度;
c)分流を案内する管路内に、それぞれの過冷却器の下流に配置されている圧力制御弁(42,43,44)の調節された開放または閉鎖による二次的な流動経路内の中間圧力の変更;
d)上側の段の圧縮最終圧力の変更;
このために、ガスクーラの下流に配置された絞り弁(45)で、冷凍能力を減じるためにこの圧力が下げられ、冷凍能力と駆動力との間の最適値まで冷凍能力を高めるために上げられ、かつ最適な圧力のために制御アルゴリズムが部分負荷制御とは無関係に存在している。
という4つのファンクションが組み合わされてまたはそれぞれ単独で存在することを特徴とする、油注入式のねじ圧縮機が2段に配置された2段式のねじ圧縮機ユニットを備えた2段式のCO冷凍装置の制御法。
A control method for a two-stage CO 2 refrigeration system having a two-stage screw compressor unit in which oil-injected screw compressors are arranged in two stages, wherein the screw compressors move in the flow direction. The screw compressors of the upper and lower pressure stages each have one intermediate pressure opening, the so-called economizer connection, and the economizer connection in the tooth gap of the rotor in the casing with respect to the flow As long as it communicates with the tooth gap, it is adjacent so that there is no flow connection to the suction side and no flow connection to the discharge side, and an intermediate pressure connection is provided in the connection line between the screw compressors of both pressure stages Between the CO 2 gas cooler outlet and the CO 2 inlet to the evaporator system, there is a primary flow path for the main refrigerant flow between the gas cooler outlet and the evaporator system with the throttle device. In the primary flow path At least three heat exchangers are arranged serially with respect to this primary flow path, these heat exchangers being “upper” auxiliary subcoolers, “middle” subcoolers and “lower” A part of the primary flow path is adjacent to one side of the heat exchanger surface of the subcooler, and the other side of the heat exchanger surface is connected to the second side of the heat exchanger surface. A portion of the secondary flow path is adjacent to the secondary flow path portion of the upper stage screw compressor through the throttle valve, subcooler and line from the primary flow path. The economizer connection, the intermediate pressure connection between the upper and lower screw compressors, and the flow connection to the economizer connection of the lower screw compressor, and has a conduit and a controllable valve A two-stage screw compressor unit in which oil-injected screw compressors are arranged in two stages. In the control method of the two-stage CO 2 refrigeration system including a
The following four functions a) to d), namely:
a) degree of mainstream supercooling in the supercooler;
For this purpose, the refrigerant diversion through the subcooler is increased or decreased by controlled opening or closing of the throttle valve (34, 35, 36) or the throttle valve (34, 35, 36) is completely closed. Thereafter, the “upper” auxiliary subcooler, the “intermediate” subcooler and / or the “lower” auxiliary subcooler are shut down one after another.
b) the degree of superheat to be adjusted in the feeler which is part of the controllable throttle valve (34, 35, 36), which is arranged at the outlet of the subcooler in the diversion;
c) intermediate in the secondary flow path by the controlled opening or closing of the pressure control valves (42, 43, 44) arranged downstream of the respective subcoolers in the pipes guiding the diversion Pressure change;
d) change of the compression final pressure of the upper stage;
For this purpose, a throttle valve (45) arranged downstream of the gas cooler lowers this pressure to reduce the refrigeration capacity and raises it to an optimum value between the refrigeration capacity and the driving power. And for optimal pressure, a control algorithm exists independently of part load control.
A two-stage CO having a two-stage screw compressor unit in which oil-injected screw compressors are arranged in two stages, characterized in that the above four functions are combined or exist independently. 2 Control method of refrigeration equipment.
JP2008073533A 2007-03-21 2008-03-21 Control method of co2 refrigeration device performing two-stage compression Pending JP2008232613A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007013485.3A DE102007013485B4 (en) 2007-03-21 2007-03-21 Process for controlling a CO2 refrigeration system with two-stage compression

Publications (1)

Publication Number Publication Date
JP2008232613A true JP2008232613A (en) 2008-10-02

Family

ID=39713003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073533A Pending JP2008232613A (en) 2007-03-21 2008-03-21 Control method of co2 refrigeration device performing two-stage compression

Country Status (4)

Country Link
JP (1) JP2008232613A (en)
DE (1) DE102007013485B4 (en)
GB (1) GB2449519B (en)
IT (1) ITRM20080044A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196250A (en) * 2012-01-10 2013-07-10 日立空调·家用电器株式会社 Refrigerating apparatus and refrigerating unit
CN106403358A (en) * 2016-08-30 2017-02-15 内蒙古博大实地化学有限公司 Ammonia synthesis device refrigeration system
WO2021084744A1 (en) * 2019-11-01 2021-05-06 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101252173B1 (en) * 2010-11-23 2013-04-05 엘지전자 주식회사 Heat pump and control method of the heat pump

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197849A (en) * 1975-02-26 1976-08-28
JPS57184471U (en) * 1981-05-15 1982-11-22
JPS6035169U (en) * 1983-08-17 1985-03-11 株式会社神戸製鋼所 screw refrigeration compressor
JPS61285352A (en) * 1985-06-11 1986-12-16 株式会社神戸製鋼所 Screw type heat pump
JP2001272122A (en) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp Two-stage compression refrigerating unit
JP2002228275A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Supercritical steam compression refrigerating cycle
JP2005049087A (en) * 2003-07-18 2005-02-24 Star Refrigeration Ltd Improved transcritical refrigeration cycle
JP2005083260A (en) * 2003-09-09 2005-03-31 Daikin Ind Ltd Screw compressor and refrigerator
JP2006010136A (en) * 2004-06-23 2006-01-12 Denso Corp Supercritical heat pump cycle device
JP2006145087A (en) * 2004-11-17 2006-06-08 Denso Corp Supercritical refrigeration cycle
JP2006258343A (en) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp Air conditioning system
JP2006258397A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Refrigerator
JP2006292229A (en) * 2005-04-08 2006-10-26 Mayekawa Mfg Co Ltd Co2 refrigeration cycle device and supercritical refrigeration operation method therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062274A (en) * 1989-07-03 1991-11-05 Carrier Corporation Unloading system for two compressors
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
US5927088A (en) * 1996-02-27 1999-07-27 Shaw; David N. Boosted air source heat pump
US6694750B1 (en) * 2002-08-21 2004-02-24 Carrier Corporation Refrigeration system employing multiple economizer circuits
DE10334947B4 (en) 2003-07-31 2019-11-07 Gea Refrigeration Germany Gmbh Compressor for transcritical refrigeration systems
JP4433729B2 (en) * 2003-09-05 2010-03-17 ダイキン工業株式会社 Refrigeration equipment
DE102004002775A1 (en) * 2004-01-20 2005-08-04 Grasso Gmbh Refrigeration Technology Screw compressor refrigeration system has a controlled economy connection situated between an inner heat exchanger and the compressor
DE102005018602B4 (en) 2005-04-21 2015-08-20 Gea Grasso Gmbh Two-stage screw compressor unit
DK2008036T3 (en) * 2006-03-27 2016-01-18 Carrier Corp Cooling system with parallel incremental economizer circuits using multi-stage compression
JP4716935B2 (en) * 2006-06-27 2011-07-06 三洋電機株式会社 Refrigeration cycle apparatus and heat pump water heater
DE102007003983B4 (en) 2007-01-26 2023-02-02 Bayerische Motoren Werke Aktiengesellschaft Hollow beam for a motor vehicle
DE102007003989A1 (en) 2007-01-26 2008-07-31 Grasso Gmbh Refrigeration Technology CO2 refrigeration system with oil-immersed screw compressors in two-stage arrangement

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5197849A (en) * 1975-02-26 1976-08-28
JPS57184471U (en) * 1981-05-15 1982-11-22
JPS6035169U (en) * 1983-08-17 1985-03-11 株式会社神戸製鋼所 screw refrigeration compressor
JPS61285352A (en) * 1985-06-11 1986-12-16 株式会社神戸製鋼所 Screw type heat pump
JP2001272122A (en) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp Two-stage compression refrigerating unit
JP2002228275A (en) * 2001-01-31 2002-08-14 Mitsubishi Heavy Ind Ltd Supercritical steam compression refrigerating cycle
JP2005049087A (en) * 2003-07-18 2005-02-24 Star Refrigeration Ltd Improved transcritical refrigeration cycle
JP2005083260A (en) * 2003-09-09 2005-03-31 Daikin Ind Ltd Screw compressor and refrigerator
JP2006010136A (en) * 2004-06-23 2006-01-12 Denso Corp Supercritical heat pump cycle device
JP2006145087A (en) * 2004-11-17 2006-06-08 Denso Corp Supercritical refrigeration cycle
JP2006258343A (en) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp Air conditioning system
JP2006258397A (en) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp Refrigerator
JP2006292229A (en) * 2005-04-08 2006-10-26 Mayekawa Mfg Co Ltd Co2 refrigeration cycle device and supercritical refrigeration operation method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103196250A (en) * 2012-01-10 2013-07-10 日立空调·家用电器株式会社 Refrigerating apparatus and refrigerating unit
CN103196250B (en) * 2012-01-10 2015-06-24 日立空调·家用电器株式会社 Refrigerating apparatus and refrigerating unit
CN106403358A (en) * 2016-08-30 2017-02-15 内蒙古博大实地化学有限公司 Ammonia synthesis device refrigeration system
WO2021084744A1 (en) * 2019-11-01 2021-05-06 三菱電機株式会社 Refrigeration cycle device
JPWO2021084744A1 (en) * 2019-11-01 2021-05-06
JP7224486B2 (en) 2019-11-01 2023-02-17 三菱電機株式会社 refrigeration cycle equipment

Also Published As

Publication number Publication date
ITRM20080044A1 (en) 2008-09-22
DE102007013485B4 (en) 2020-02-20
GB2449519B (en) 2012-06-13
GB0804497D0 (en) 2008-04-16
GB2449519A (en) 2008-11-26
DE102007013485A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4375171B2 (en) Refrigeration equipment
JP2008185327A (en) Co2 refrigerating apparatus with two-stage arrangement oil overflow type screw compressor
JP6678332B2 (en) Outdoor unit and control method for air conditioner
WO2014068967A1 (en) Refrigeration device
JP4433729B2 (en) Refrigeration equipment
CN103842743B (en) Heat pump
JP5155953B2 (en) Turbo refrigerator
JP6296203B2 (en) Heat pump system
JP2008039383A (en) Unit provided on cooling device for transcritical operation
JP6160725B1 (en) Refrigeration equipment
WO2019049255A1 (en) Air conditioning device
JP2008232613A (en) Control method of co2 refrigeration device performing two-stage compression
KR100845607B1 (en) Heat pump using geothermy improved heatingcapacity
CN107726475A (en) Air conditioner
US10168060B2 (en) Air-conditioning apparatus
KR100821729B1 (en) Air conditioning system
JP6335133B2 (en) heat pump
JP6467682B2 (en) Refrigeration equipment
JP5790675B2 (en) heat pump
JP7080800B2 (en) Centrifugal chiller
JP6354209B2 (en) Refrigeration equipment
JP5398296B2 (en) Engine driven air conditioner
JP6895653B2 (en) Air conditioner
JP2015152270A (en) Refrigeration cycle device
CN111907301A (en) Combined heat exchanger, heat exchange system and optimization method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130111