JP6895653B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6895653B2
JP6895653B2 JP2018547671A JP2018547671A JP6895653B2 JP 6895653 B2 JP6895653 B2 JP 6895653B2 JP 2018547671 A JP2018547671 A JP 2018547671A JP 2018547671 A JP2018547671 A JP 2018547671A JP 6895653 B2 JP6895653 B2 JP 6895653B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
heat exchanger
circuit
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018547671A
Other languages
Japanese (ja)
Other versions
JPWO2018079517A1 (en
Inventor
雄章 水藤
雄章 水藤
増田 哲也
哲也 増田
長谷川 寛
寛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2018079517A1 publication Critical patent/JPWO2018079517A1/en
Application granted granted Critical
Publication of JP6895653B2 publication Critical patent/JP6895653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/10Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/44Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger characterised by the use of internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は空気調和装置に関するものである。 The present invention relates to an air conditioner.

従来技術として、室内ユニットと室外ユニットからなる空気調和装置において、圧縮機の動力源として用いるエンジンの排熱を有効利用できる空気調和装置が提案されている(例えば、特許文献1参照)。この空気調和装置によれば、暖房運転時に室外熱交換器が着霜しそうな場合もしくは着霜した場合には、室外熱交換器を用いて空気から吸熱する代わりに排熱熱交換器を用いてエンジンの冷却水から吸熱することにより暖房を継続している。 As a prior art, in an air conditioner including an indoor unit and an outdoor unit, an air conditioner capable of effectively utilizing the exhaust heat of an engine used as a power source of a compressor has been proposed (see, for example, Patent Document 1). According to this air conditioner, if the outdoor heat exchanger is likely to frost or frosts during heating operation, the exhaust heat exchanger is used instead of absorbing heat from the air using the outdoor heat exchanger. Heating is continued by absorbing heat from the cooling water of the engine.

特開2003−56932号公報Japanese Unexamined Patent Publication No. 2003-56932

しかしながら、特許文献1の技術では、着霜時には室外空気から吸熱できないという課題を有していた。
本発明は、前記の従来課題を解決するもので、着霜時に空気から吸熱できる空気調和装置を提供することを目的とする。
However, the technique of Patent Document 1 has a problem that heat cannot be absorbed from the outdoor air at the time of frost formation.
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an air conditioner capable of absorbing heat from air at the time of frost formation.

この明細書には、2016年10月31日に出願された日本国特許出願・特願2016−212725の全ての内容が含まれる。
前記従来の課題を解決するために、本発明の空気調和装置は、エンジンにより駆動する第1圧縮機と、前記第1圧縮機と並列に接続された第2圧縮機と、前記第1圧縮機および前記第2圧縮機から吐出された冷媒の流路を切替える切替回路と、室内熱交換器と室外熱交換器との間に設けられ、中圧冷媒が通過する中圧冷媒回路と、前記第1圧縮機および前記第2圧縮機の吸入側に設けられ、低圧冷媒が通過する低圧冷媒回路と、前記中圧冷媒回路と前記低圧冷媒回路とを接続する中間バイパス管と、前記中間バイパス管に設けられ、前記エンジンの排熱を冷媒に移動させる排熱熱交換器と、を備え、前記切替回路は、少なくとも、前記室内熱交換器と前記室外熱交換器とのいずれか一方へ前記第1圧縮機から吐出された冷媒を流すとともに、いずれか他方へ前記第2圧縮機から吐出された冷媒を流す流路に切替え、前記切替回路は、前記第1圧縮機から吐出された冷媒を前記室内熱交換器と前記室外熱交換器とのいずれか一方へ流す流路に切替える第1切替手段と、前記第2圧縮機から吐出された冷媒を前記室内熱交換器と前記室外熱交換器とのいずれか他方へ流す流路に切替える第2切替手段と、前記室内熱交換器または前記室外熱交換器において蒸発した冷媒の流路を基準として、前記第1切替手段または前記第2切替手段の下流に設けられる開閉手段と、を備え、前記低圧冷媒回路は、前記開閉手段より下流の回路であり、
前記切替回路は、前記第2切替手段と前記室内熱交換器との間であり、暖房運転時に前記第2圧縮機の吐出冷媒のみが流れる回路上に設けられる第2開閉手段と、前記第1切替手段と前記室外熱交換器との間であり、冷房運転時に前記第1圧縮機の吐出冷媒のみが流れる回路上に設けられる第3開閉手段と、をさらに備える。
これによって、室外熱交換器に着霜した際には、第1圧縮機または第2圧縮機からの吐出冷媒の一部は室内熱交換器に流し、一部は室外熱交換器に流し、室内熱交換器を通過した冷媒および室外熱交換器を通過した冷媒を合流させ、中間バイパス管を介して第1圧縮機および第2圧縮機に戻すことができる。
そのため、室内熱交換器に流れる冷媒により暖房運転を継続しつつ、室外熱交換器に流れる冷媒により除霜運転を行うことができ、着霜時にも空気から吸熱できる空気調和装置を提供することができる。
この発明によれば、第1圧縮機から吐出された冷媒を、第1切替手段により室内熱交換器と室外熱交換器とのいずれか一方へ流すことができ、第2圧縮機から吐出された冷媒を室内熱交換器と室外熱交換器とのいずれか他方へ流すことができ、室内熱交換器を通過した冷媒および室外熱交換器を通過した冷媒を合流させ、中間バイパス管を介して第1圧縮機および第2圧縮機に戻すことができる。
そのため、室内熱交換器に流れる冷媒により暖房運転を継続しつつ、室外熱交換器に流れる冷媒により除霜運転を行うことができ、着霜時にも空気から吸熱できる空気調和装置を提供することができる。
この発明によれば、第1圧縮機から吐出された冷媒を、第1切替手段により室内熱交換器または前記室外熱交換器へ流すことができ、第2圧縮機から吐出された冷媒を第1圧縮機から吐出された冷媒が流れる熱交換器とは別の熱交換器に流すことができ、室内熱交換器を通過した冷媒および室外熱交換器を通過した冷媒を合流させ、中間バイパス管を介して第1圧縮機および第2圧縮機に戻すことができる。
そのため、室内熱交換器に流れる冷媒により暖房運転を継続しつつ、室外熱交換器に流れる冷媒により除霜運転を行うことができ、着霜時にも空気から吸熱できる空気調和装置を提供することができる。
This specification includes all the contents of the Japanese patent application / Japanese Patent Application No. 2016-212725 filed on October 31, 2016.
In order to solve the conventional problems, the air conditioner of the present invention includes a first compressor driven by an engine, a second compressor connected in parallel with the first compressor, and the first compressor. A switching circuit for switching the flow path of the refrigerant discharged from the second compressor, a medium-pressure refrigerant circuit provided between the indoor heat exchanger and the outdoor heat exchanger, and a medium-pressure refrigerant circuit through which the medium-pressure refrigerant passes, and the first The low-pressure refrigerant circuit provided on the suction side of the 1 compressor and the 2nd compressor through which the low-pressure refrigerant passes, the intermediate bypass pipe connecting the medium-pressure refrigerant circuit and the low-pressure refrigerant circuit, and the intermediate bypass pipe The first exhaust heat exchanger, which is provided and transfers the exhaust heat of the engine to a refrigerant, is provided, and the switching circuit is provided to at least one of the indoor heat exchanger and the outdoor heat exchanger. The refrigerant discharged from the compressor is flowed, and the flow path is switched to a flow path for flowing the refrigerant discharged from the second compressor to one of the other. The switching circuit transfers the refrigerant discharged from the first compressor into the room. The first switching means for switching to a flow path for flowing to either the heat exchanger or the outdoor heat exchanger, and the indoor heat exchanger and the outdoor heat exchanger for the refrigerant discharged from the second compressor. With reference to the second switching means for switching to the flow path to flow to either the other and the flow path of the refrigerant evaporated in the indoor heat exchanger or the outdoor heat exchanger, the first switching means or the downstream of the second switching means. The low-pressure refrigerant circuit is a circuit downstream of the opening / closing means.
The switching circuit is between the second switching means and the indoor heat exchanger, and the second opening / closing means provided on the circuit through which only the discharged refrigerant of the second compressor flows during the heating operation, and the first opening / closing means. It is between the switching means and said outdoor heat exchanger, obtaining further Bei third switching means provided on the circuit only flow discharge refrigerant of the first compressor during the cooling operation, the.
As a result, when the outdoor heat exchanger is frosted, a part of the refrigerant discharged from the first compressor or the second compressor is flowed to the indoor heat exchanger, and a part is flowed to the outdoor heat exchanger to be indoors. The refrigerant that has passed through the heat exchanger and the refrigerant that has passed through the outdoor heat exchanger can be merged and returned to the first compressor and the second compressor via the intermediate bypass pipe.
Therefore, it is possible to provide an air conditioner capable of performing defrosting operation by the refrigerant flowing in the outdoor heat exchanger while continuing the heating operation by the refrigerant flowing in the indoor heat exchanger and absorbing heat from the air even at the time of frost formation. it can.
According to the present invention, the refrigerant discharged from the first compressor can be flowed to either the indoor heat exchanger or the outdoor heat exchanger by the first switching means, and is discharged from the second compressor. The refrigerant can flow to either the indoor heat exchanger or the outdoor heat exchanger, and the refrigerant that has passed through the indoor heat exchanger and the refrigerant that has passed through the outdoor heat exchanger are merged and passed through the intermediate bypass pipe. It can be returned to the 1st compressor and the 2nd compressor.
Therefore, it is possible to provide an air conditioner capable of performing defrosting operation by the refrigerant flowing in the outdoor heat exchanger while continuing the heating operation by the refrigerant flowing in the indoor heat exchanger and absorbing heat from the air even at the time of frost formation. it can.
According to the present invention, the refrigerant discharged from the first compressor can be flowed to the indoor heat exchanger or the outdoor heat exchanger by the first switching means, and the refrigerant discharged from the second compressor is the first. The refrigerant discharged from the compressor can flow to a heat exchanger different from the heat exchanger in which the refrigerant flows, and the refrigerant that has passed through the indoor heat exchanger and the refrigerant that has passed through the outdoor heat exchanger are combined to form an intermediate bypass pipe. It can be returned to the first compressor and the second compressor via.
Therefore, it is possible to provide an air conditioner capable of performing defrosting operation by the refrigerant flowing in the outdoor heat exchanger while continuing the heating operation by the refrigerant flowing in the indoor heat exchanger and absorbing heat from the air even at the time of frost formation. it can.

本発明の空気調和装置によれば、着霜した場合でも暖房運転中に室外空気から吸熱できるようになる。 According to the air conditioner of the present invention, heat can be absorbed from the outdoor air during the heating operation even when frost is formed.

図1は、本発明の実施の形態1における空気調和装置の構成。FIG. 1 shows the configuration of the air conditioner according to the first embodiment of the present invention. 図2は、本発明の実施の形態1における冷房運転時の冷媒流路。FIG. 2 shows a refrigerant flow path during the cooling operation according to the first embodiment of the present invention. 図3は、本発明の実施の形態1における暖房運転時の冷媒流路。FIG. 3 shows a refrigerant flow path during the heating operation according to the first embodiment of the present invention. 図4は、本発明の実施の形態1における暖房・除霜並行運転時の冷媒流路。FIG. 4 shows a refrigerant flow path during heating / defrosting parallel operation according to the first embodiment of the present invention. 図5は、エンジン圧縮機及びモーター圧縮機の圧縮機効率曲線。FIG. 5 is a compressor efficiency curve of an engine compressor and a motor compressor. 図6は、本発明の実施の形態2における空気調和装置の構成。FIG. 6 shows the configuration of the air conditioner according to the second embodiment of the present invention. 図7は、本発明の実施の形態3における空気調和装置の構成。FIG. 7 shows the configuration of the air conditioner according to the third embodiment of the present invention.

第1の発明は、エンジンにより駆動する第1圧縮機と、前記第1圧縮機と並列に接続された第2圧縮機と、前記第1圧縮機および前記第2圧縮機から吐出された冷媒の流路を切替える切替回路と、室内熱交換器と室外熱交換器との間に設けられ、中圧冷媒が通過する中圧冷媒回路と、前記第1圧縮機および前記第2圧縮機の吸入側に設けられ、低圧冷媒が通過する低圧冷媒回路と、前記中圧冷媒回路と前記低圧冷媒回路とを接続する中間バイパス管と、前記中間バイパス管に設けられ、前記エンジンの排熱を冷媒に移動させる排熱熱交換器と、を備え、前記切替回路は、少なくとも、前記室内熱交換器と前記室外熱交換器とのいずれか一方へ前記第1圧縮機から吐出された冷媒を流すとともに、いずれか他方へ前記第2圧縮機から吐出された冷媒を流す流路に切替え、前記切替回路は、前記第1圧縮機から吐出された冷媒を前記室内熱交換器と前記室外熱交換器とのいずれか一方へ流す流路に切替える第1切替手段と、前記第2圧縮機から吐出された冷媒を前記室内熱交換器と前記室外熱交換器とのいずれか他方へ流す流路に切替える第2切替手段と、前記室内熱交換器または前記室外熱交換器において蒸発した冷媒の流路を基準として、前記第1切替手段または前記第2切替手段の下流に設けられる開閉手段と、を備え、前記低圧冷媒回路は、前記開閉手段より下流の回路であり、前記切替回路は、前記第2切替手段と前記室内熱交換器との間であり、暖房運転時に前記第2圧縮機の吐出冷媒のみが流れる回路上に設けられる第2開閉手段と、前記第1切替手段と前記室外熱交換器との間であり、冷房運転時に前記第1圧縮機の吐出冷媒のみが流れる回路上に設けられる第3開閉手段と、をさらに備えることを特徴とする空気調和装置である。
この発明によれば、室外熱交換器に着霜した際には、第1圧縮機または第2圧縮機からの吐出冷媒の一部は室内熱交換器に流し、一部は室外熱交換器に流し、室内熱交換器を通過した冷媒および室外熱交換器を通過した冷媒を合流させ、中間バイパス管を介して第1圧縮機および第2圧縮機に戻すことができる。
そのため、暖房運転時に室外熱交換器に着霜した際に、室内熱交換器に流れる冷媒により暖房運転を継続しつつ、室外熱交換器に流れる冷媒により除霜が行われるため、着霜着霜した場合でも室外空気から吸熱できるようになる。
この発明によれば、第1圧縮機から吐出された冷媒を、第1切替手段により室内熱交換器と室外熱交換器とのいずれか一方へ流すことができ、第2圧縮機から吐出された冷媒を室内熱交換器と室外熱交換器とのいずれか他方へ流すことができ、室内熱交換器を通過した冷媒および室外熱交換器を通過した冷媒を合流させ、中間バイパス管を介して第1圧縮機および第2圧縮機に戻すことができる。
そのため、室内熱交換器に流れる冷媒により暖房運転を継続しつつ、室外熱交換器に流れる冷媒により除霜運転を行うことができ、着霜時にも空気から吸熱できる空気調和装置を提供することができる。
この発明によれば、第1圧縮機から吐出された冷媒を、第1切替手段により室内熱交換器または前記室外熱交換器へ流すことができ、第2圧縮機から吐出された冷媒を第1圧縮機から吐出された冷媒が流れる熱交換器とは別の熱交換器に流すことができ、室内熱交換器を通過した冷媒および室外熱交換器を通過した冷媒を合流させ、中間バイパス管を介して第1圧縮機および第2圧縮機に戻すことができる。
そのため、室内熱交換器に流れる冷媒により暖房運転を継続しつつ、室外熱交換器に流れる冷媒により除霜運転を行うことができ、着霜時にも空気から吸熱できる空気調和装置を提供することができる。
The first invention relates to a first compressor driven by an engine, a second compressor connected in parallel with the first compressor, and a refrigerant discharged from the first compressor and the second compressor. A switching circuit for switching the flow path, a medium-pressure refrigerant circuit provided between the indoor heat exchanger and the outdoor heat exchanger and through which the medium-pressure refrigerant passes, and the suction side of the first compressor and the second compressor. A low-pressure refrigerant circuit provided in the above, a low-pressure refrigerant circuit through which the low-pressure refrigerant passes, an intermediate bypass pipe connecting the medium-pressure refrigerant circuit and the low-pressure refrigerant circuit, and an intermediate bypass pipe provided in the intermediate bypass pipe to transfer the exhaust heat of the engine to the refrigerant. The switching circuit is provided with an exhaust heat exchanger for flowing the refrigerant discharged from the first compressor to at least one of the indoor heat exchanger and the outdoor heat exchanger. The switching circuit switches to a flow path through which the refrigerant discharged from the second compressor flows to the other side, and the switching circuit transfers the refrigerant discharged from the first compressor to either the indoor heat exchanger or the outdoor heat exchanger. A first switching means for switching to a flow path for flowing to one side, and a second switching for switching the refrigerant discharged from the second compressor to a flow path for flowing the refrigerant to either the indoor heat exchanger or the outdoor heat exchanger. The low pressure is provided with means and opening / closing means provided downstream of the first switching means or the second switching means with reference to the flow path of the refrigerant evaporated in the indoor heat exchanger or the outdoor heat exchanger. The refrigerant circuit is a circuit downstream of the opening / closing means, and the switching circuit is between the second switching means and the indoor heat exchanger, and only the discharged refrigerant of the second compressor flows during the heating operation. A third opening / closing means provided on the circuit between the second opening / closing means, the first switching means, and the outdoor heat exchanger, and through which only the discharged refrigerant of the first compressor flows during cooling operation. It means an air conditioner, wherein the obtaining further Bei a.
According to the present invention, when frost is formed on the outdoor heat exchanger, a part of the refrigerant discharged from the first compressor or the second compressor flows into the indoor heat exchanger, and a part is sent to the outdoor heat exchanger. The flow, the refrigerant that has passed through the indoor heat exchanger and the refrigerant that has passed through the outdoor heat exchanger can be merged and returned to the first compressor and the second compressor via the intermediate bypass pipe.
Therefore, when the outdoor heat exchanger is frosted during the heating operation, the refrigerant flowing through the indoor heat exchanger continues the heating operation, while the refrigerant flowing through the outdoor heat exchanger defrosts the frost. Even if it does, it will be able to absorb heat from the outdoor air.
According to the present invention, the refrigerant discharged from the first compressor can be flowed to either the indoor heat exchanger or the outdoor heat exchanger by the first switching means, and is discharged from the second compressor. The refrigerant can flow to either the indoor heat exchanger or the outdoor heat exchanger, and the refrigerant that has passed through the indoor heat exchanger and the refrigerant that has passed through the outdoor heat exchanger are merged and passed through the intermediate bypass pipe. It can be returned to the 1st compressor and the 2nd compressor.
Therefore, it is possible to provide an air conditioner capable of performing defrosting operation by the refrigerant flowing in the outdoor heat exchanger while continuing the heating operation by the refrigerant flowing in the indoor heat exchanger and absorbing heat from the air even at the time of frost formation. it can.
According to the present invention, the refrigerant discharged from the first compressor can be flowed to the indoor heat exchanger or the outdoor heat exchanger by the first switching means, and the refrigerant discharged from the second compressor is the first. The refrigerant discharged from the compressor can flow to a heat exchanger different from the heat exchanger in which the refrigerant flows, and the refrigerant that has passed through the indoor heat exchanger and the refrigerant that has passed through the outdoor heat exchanger are combined to form an intermediate bypass pipe. It can be returned to the first compressor and the second compressor via.
Therefore, it is possible to provide an air conditioner capable of performing defrosting operation by the refrigerant flowing in the outdoor heat exchanger while continuing the heating operation by the refrigerant flowing in the indoor heat exchanger and absorbing heat from the air even at the time of frost formation. it can.

第2の発明は、前記切替回路は、暖房・除霜並行運転時に、前記第1圧縮機からの吐出冷媒と前記第2圧縮機からの吐出冷媒とを合流させることなく、前記室内熱交換器と前記室外熱交換器とのいずれか一方へ前記第1圧縮機から吐出された冷媒を流すとともに、いずれか他方へ前記第2圧縮機から吐出された冷媒を流す流路に切替えることを特徴とする空気調和装置である。
この発明によれば、第1圧縮機からの吐出冷媒と第2圧縮機からの吐出冷媒との圧力が揃うことがないため、低負荷の圧縮機の負荷を上昇させることなく、室内熱交換器に流れる冷媒により暖房運転を継続しつつ、室外熱交換器に流れる冷媒により除霜を行うことができる。
According to the second invention, the switching circuit does not combine the refrigerant discharged from the first compressor and the refrigerant discharged from the second compressor during the parallel heating / defrosting operation, and the indoor heat exchanger It is characterized in that the refrigerant discharged from the first compressor flows to either one of the outdoor heat exchanger and the outdoor heat exchanger, and the flow path is switched to a flow path through which the refrigerant discharged from the second compressor flows to one of the other. It is an air conditioner.
According to the present invention, since the pressures of the refrigerant discharged from the first compressor and the refrigerant discharged from the second compressor are not uniform, the indoor heat exchanger does not increase the load of the low-load compressor. While continuing the heating operation with the refrigerant flowing through the outdoor heat exchanger, defrosting can be performed with the refrigerant flowing through the outdoor heat exchanger.

第3の発明は、前記切替回路は、前記第1圧縮機および前記第2圧縮機のうち能力の高い圧縮機からの吐出冷媒を前記室内熱交換器へ供給し、前記第1圧縮機および前記第2圧縮機のうち能力の低い圧縮機からの吐出冷媒を前記室外熱交換器へ供給する、ことを特徴とする空気調和装置である。
この発明によれば、第1圧縮機および前記第2圧縮機のうち能力の高い圧縮機により暖房運転をまかなうことができ、室内の空調温度を保つことが容易となる。
In a third aspect of the invention, the switching circuit supplies the refrigerant discharged from the first compressor and the second compressor, which has a higher capacity, to the indoor heat exchanger, and supplies the first compressor and the second compressor with the discharge refrigerant. It is an air conditioner characterized by supplying the refrigerant discharged from a compressor having a low capacity among the second compressors to the outdoor heat exchanger.
According to the present invention, the heating operation can be performed by the compressor having a higher capacity among the first compressor and the second compressor, and it becomes easy to maintain the air conditioning temperature in the room.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における空気調和装置の構成を示すものである。
実施の形態1における空気調和装置は、室外ユニット111と、室内ユニット202と、を備えている。
室外ユニット111は、ガスを駆動源とするエンジン100aと、エンジン100aにより駆動力を得て冷媒を圧縮する第1圧縮機101と、モーター100bを駆動源とする第2圧縮機102と、を備える。
第1圧縮機101は、第2圧縮機102よりも能力の高いものが選定されている。
なお、第2圧縮機102は、ガスエンジンにより駆動力を得て冷媒を圧縮する圧縮機としてもよい。
(Embodiment 1)
FIG. 1 shows the configuration of an air conditioner according to the first embodiment of the present invention.
The air conditioner according to the first embodiment includes an outdoor unit 111 and an indoor unit 202.
The outdoor unit 111 includes an engine 100a whose drive source is gas, a first compressor 101 which obtains a driving force by the engine 100a to compress the refrigerant, and a second compressor 102 whose drive source is a motor 100b. ..
As the first compressor 101, one having a higher capacity than that of the second compressor 102 is selected.
The second compressor 102 may be a compressor that compresses the refrigerant by obtaining a driving force from a gas engine.

第1圧縮機101の吐出口には、第1吐出配管121が接続されている。第2圧縮機102の吐出口には、第2吐出配管122が接続されている。
第1吐出配管121は、第1オイルセパレーター103aを介して、四方弁(第1切替手段)110bの箇所において第1冷媒配管123に接続される。第1冷媒配管123は、室内熱交換器200の一端に接続されている。第1オイルセパレーター103aにおいて分離されたオイルは、第1圧縮機101の吸入口に接続される第1吸入管134に、図示しないオイル戻し配管を通って戻される。第1オイルセパレーター103aの下流に設けられる四方弁110bは、後述する三方弁(第2切替手段)110aとともに、冷房と暖房で冷凍サイクルを切替えるためのものである。なお、図1において、実線に冷媒を流す場合は暖房運転、点線に冷媒を流す場合は冷房運転となる。
The first discharge pipe 121 is connected to the discharge port of the first compressor 101. A second discharge pipe 122 is connected to the discharge port of the second compressor 102.
The first discharge pipe 121 is connected to the first refrigerant pipe 123 at the location of the four-way valve (first switching means) 110b via the first oil separator 103a. The first refrigerant pipe 123 is connected to one end of the indoor heat exchanger 200. The oil separated in the first oil separator 103a is returned to the first suction pipe 134 connected to the suction port of the first compressor 101 through an oil return pipe (not shown). The four-way valve 110b provided downstream of the first oil separator 103a is for switching the refrigeration cycle between cooling and heating together with the three-way valve (second switching means) 110a described later. In FIG. 1, when the refrigerant flows along the solid line, the heating operation is performed, and when the refrigerant flows along the dotted line, the cooling operation is performed.

室内熱交換器200の他端には、第2冷媒配管124が接続される。第2冷媒配管124は、室内膨張弁201、室外膨張弁107を介して、室外熱交換器105の一端に接続されている。室外熱交換器105の風下側には、ラジエータ106が備えられており、図示しない室外ファンによりエンジン冷却水の放熱が行われる。 A second refrigerant pipe 124 is connected to the other end of the indoor heat exchanger 200. The second refrigerant pipe 124 is connected to one end of the outdoor heat exchanger 105 via the indoor expansion valve 201 and the outdoor expansion valve 107. A radiator 106 is provided on the leeward side of the outdoor heat exchanger 105, and the engine cooling water is dissipated by an outdoor fan (not shown).

ここで、中圧冷媒回路とは、中温中圧冷媒が通過する回路をいう。本実施の形態1においては、第2冷媒配管124のうち、室内膨張弁201と室外膨張弁107との間の配管が中圧冷媒回路となる。 Here, the medium-pressure refrigerant circuit refers to a circuit through which the medium-temperature and medium-pressure refrigerant passes. In the first embodiment, of the second refrigerant pipe 124, the pipe between the indoor expansion valve 201 and the outdoor expansion valve 107 is the medium pressure refrigerant circuit.

室外熱交換器105の他端には、第3冷媒配管125が接続される。第3冷媒配管125は、四方弁110bを介して第4冷媒配管126に接続される。第4冷媒配管126は、開閉弁(開閉手段)110cを介して、第1圧縮機101の吸入口に接続される第1吸入管134と接続されている。また、第4冷媒配管126は、開閉弁110cを介して、第2圧縮機102の吸入口に接続される第2吸入管135と接続されている。
第1吸入管134は、第1アキュムレーター104aを介して、第1圧縮機101の吸入口に接続される。
第2吸入管135は、第2アキュムレーター104bを介して、第2圧縮機102の吸入口に接続される。
A third refrigerant pipe 125 is connected to the other end of the outdoor heat exchanger 105. The third refrigerant pipe 125 is connected to the fourth refrigerant pipe 126 via the four-way valve 110b. The fourth refrigerant pipe 126 is connected to the first suction pipe 134 connected to the suction port of the first compressor 101 via an on-off valve (opening / closing means) 110c. Further, the fourth refrigerant pipe 126 is connected to the second suction pipe 135 connected to the suction port of the second compressor 102 via the on-off valve 110c.
The first suction pipe 134 is connected to the suction port of the first compressor 101 via the first accumulator 104a.
The second suction pipe 135 is connected to the suction port of the second compressor 102 via the second accumulator 104b.

第2吐出配管122は、第2オイルセパレーター103b、三方弁(第2切替手段)110aを介して、第1冷媒配管123に接続される。また、第2吐出配管122は、三方弁110aを介して、第3冷媒配管125に接続される。三方弁110aは、四方弁110bとともに、冷房と暖房で冷凍サイクルを切替えるためのものである。 The second discharge pipe 122 is connected to the first refrigerant pipe 123 via the second oil separator 103b and the three-way valve (second switching means) 110a. Further, the second discharge pipe 122 is connected to the third refrigerant pipe 125 via the three-way valve 110a. The three-way valve 110a, together with the four-way valve 110b, is for switching the refrigeration cycle between cooling and heating.

第1圧縮機101から吐出された冷媒を室内熱交換器200または室外熱交換器105へ流すように冷媒の流れを切替える四方弁(第1切替手段)110bと、第2圧縮機102から吐出された冷媒を室内熱交換器200または室外熱交換器105へ流すように冷媒の流れを切替える冷媒の流路を切替える三方弁(第2切替手段)110aと、室内熱交換器200または室外熱交換器105において蒸発した冷媒の流路を基準として、四方弁110bまたは三方弁110aの下流に設けられる開閉弁(開閉手段)110cと、は切替回路110を構成している。 The four-way valve (first switching means) 110b that switches the flow of the refrigerant so that the refrigerant discharged from the first compressor 101 flows to the indoor heat exchanger 200 or the outdoor heat exchanger 105, and the refrigerant discharged from the second compressor 102. A three-way valve (second switching means) 110a that switches the flow of the refrigerant so as to flow the refrigerant to the indoor heat exchanger 200 or the outdoor heat exchanger 105, and the indoor heat exchanger 200 or the outdoor heat exchanger. With reference to the flow path of the refrigerant evaporated in 105, the on-off valve (opening / closing means) 110c provided downstream of the four-way valve 110b or the three-way valve 110a constitutes the switching circuit 110.

切替回路110を備える本実施の形態1においては、開閉弁110cより下流の回路が低圧冷媒回路となる。すなわち、暖房運転時の冷媒の流れを基準とした場合において第4冷媒配管126のうち開閉弁110cよりも下流の配管、第1吸入管134、および第2吸入管135は、低圧冷媒回路となる。 In the first embodiment including the switching circuit 110, the circuit downstream of the on-off valve 110c is the low-pressure refrigerant circuit. That is, when the flow of the refrigerant during the heating operation is used as a reference, the pipe downstream of the on-off valve 110c, the first suction pipe 134, and the second suction pipe 135 of the fourth refrigerant pipe 126 are low-pressure refrigerant circuits. ..

第2冷媒配管(中圧冷媒回路)124と第4冷媒配管(低圧冷媒回路)126とは、中間バイパス管127により接続されている。
中間バイパス管127は、暖房時の中圧側である第2冷媒配管124の側から、排熱膨張弁109a、排熱熱交換器108aを介して第2冷媒配管124と第4冷媒配管126とを接続する。
この中間バイパス管127は、中圧冷媒回路と低圧冷媒回路とを接続するものであればよい。
The second refrigerant pipe (medium pressure refrigerant circuit) 124 and the fourth refrigerant pipe (low pressure refrigerant circuit) 126 are connected by an intermediate bypass pipe 127.
The intermediate bypass pipe 127 connects the second refrigerant pipe 124 and the fourth refrigerant pipe 126 from the side of the second refrigerant pipe 124, which is the medium pressure side during heating, via the exhaust heat expansion valve 109a and the exhaust heat exchanger 108a. Connecting.
The intermediate bypass pipe 127 may be any one that connects the medium-pressure refrigerant circuit and the low-pressure refrigerant circuit.

以上のように構成された空気調和装置について、以下、その動作、作用を説明する。
図2は本発明の実施の形態1における冷房運転時の冷媒流路を示すものである。冷房運転時は、冷媒が実線に示すように流れるように四方弁110bおよび三方弁110aを切替え、開閉弁110cを開とする。
これにより、第1圧縮機101及び第2圧縮機102により圧縮された高圧冷媒が存在する高圧側の回路は室外熱交換器105側に接続され、一方低圧冷媒が存在する低圧側の回路は室内熱交換器200側に接続される。
The operation and operation of the air conditioner configured as described above will be described below.
FIG. 2 shows the refrigerant flow path during the cooling operation according to the first embodiment of the present invention. During the cooling operation, the four-way valve 110b and the three-way valve 110a are switched so that the refrigerant flows as shown by the solid line, and the on-off valve 110c is opened.
As a result, the circuit on the high pressure side where the high pressure refrigerant compressed by the first compressor 101 and the second compressor 102 exists is connected to the outdoor heat exchanger 105 side, while the circuit on the low pressure side where the low pressure refrigerant exists is indoors. It is connected to the heat exchanger 200 side.

エンジン100aの動力により第1圧縮機101により圧縮され第1オイルセパレーター103aを通過した高温高圧のガス冷媒と、第2圧縮機102により圧縮され第2オイルセパレーター103bを通過した高温高圧のガス冷媒とは、四方弁110bおよび三方弁110aよりも上流において合流しない。そして、第1圧縮機101から吐出された高温高圧冷媒は四方弁110bにより室外熱交換器105側へ流され、第2圧縮機102から吐出された高温高圧冷媒は三方弁110aにより室外熱交換器105側に流され、四方弁110bおよび三方弁110aよりも下流の第3冷媒配管125において合流し、室外熱交換器105へ流入する。室外熱交換器105において空気と交換をすることにより凝縮して中温中圧になった冷媒は、室内熱交換器200へ流入し、室内熱交換器200において室内空気と熱交換をして蒸発し低温低圧状態になる。その後、室内熱交換器200を通過した冷媒は、四方弁110bにおいて実線に示すように流れ、開閉弁110cを通過し、第1アキュムレーター104a及び第2アキュムレーター104bを介して第1圧縮機101および第2圧縮機102により再び圧縮される。 A high-temperature and high-pressure gas refrigerant compressed by the first compressor 101 by the power of the engine 100a and passed through the first oil separator 103a, and a high-temperature and high-pressure gas refrigerant compressed by the second compressor 102 and passed through the second oil separator 103b. Does not merge upstream of the four-way valve 110b and the three-way valve 110a. Then, the high-temperature and high-pressure refrigerant discharged from the first compressor 101 is flowed to the outdoor heat exchanger 105 side by the four-way valve 110b, and the high-temperature and high-pressure refrigerant discharged from the second compressor 102 is flown to the outdoor heat exchanger 105 by the three-way valve 110a. It flows to the 105 side, joins in the third refrigerant pipe 125 downstream from the four-way valve 110b and the three-way valve 110a, and flows into the outdoor heat exchanger 105. The refrigerant condensed to medium temperature and medium pressure by exchanging with air in the outdoor heat exchanger 105 flows into the indoor heat exchanger 200, exchanges heat with the indoor air in the indoor heat exchanger 200, and evaporates. It becomes a low temperature and low pressure state. After that, the refrigerant that has passed through the indoor heat exchanger 200 flows through the four-way valve 110b as shown by the solid line, passes through the on-off valve 110c, and passes through the first accumulator 104a and the second accumulator 104b, and then the first compressor 101. And it is compressed again by the second compressor 102.

また、図5は第1圧縮機101及び第2圧縮機102の圧縮効率曲線を示すものである。
エンジン効率は中負荷以降で高くなり、一方、モーター効率は低負荷から中負荷の領域で効率が高いという特性を持つ。そのため、図5において低負荷領域ではモーター100bにより駆動する第2圧縮機102の効率が高くなり、中負荷以降ではエンジン100aで駆動する第1圧縮機101の効率が高くなる。負荷が小さい場合には、負荷が小さい運転での効率が高い第2圧縮機102のみを駆動させ、中負荷以上の場合には第1圧縮機101主体により空調を賄う、というように負荷に応じて駆動させる圧縮機を選択することにより効率の良い運転が可能になる。
Further, FIG. 5 shows the compression efficiency curves of the first compressor 101 and the second compressor 102.
The engine efficiency is high after medium load, while the motor efficiency is high in the low to medium load range. Therefore, in FIG. 5, the efficiency of the second compressor 102 driven by the motor 100b increases in the low load region, and the efficiency of the first compressor 101 driven by the engine 100a increases after the medium load. When the load is small, only the second compressor 102, which is highly efficient in operation with a small load, is driven, and when the load is medium or more, the first compressor 101 mainly supplies air conditioning, depending on the load. Efficient operation is possible by selecting the compressor to be driven.

図3は本発明の実施の形態1における暖房運転時の冷媒流路を示すものである。暖房運転時は、冷媒が実線に示すように流れるように四方弁110bおよび三方弁110aを切替え、開閉弁110cを開とする。
これにより、第1圧縮機101及び第2圧縮機102により圧縮された高圧冷媒が存在する高圧側の回路は室内熱交換器200側に接続され、一方、低圧冷媒が存在する低圧側の回路は室外熱交換器105側に接続される。
FIG. 3 shows the refrigerant flow path during the heating operation according to the first embodiment of the present invention. During the heating operation, the four-way valve 110b and the three-way valve 110a are switched so that the refrigerant flows as shown by the solid line, and the on-off valve 110c is opened.
As a result, the circuit on the high pressure side where the high pressure refrigerant compressed by the first compressor 101 and the second compressor 102 exists is connected to the indoor heat exchanger 200 side, while the circuit on the low pressure side where the low pressure refrigerant exists is connected. It is connected to the outdoor heat exchanger 105 side.

エンジン100aの動力により第1圧縮機101により圧縮され第1オイルセパレーター103aを通過した高温高圧のガス冷媒と、モーター100bの動力により第2圧縮機102により圧縮され第2オイルセパレーター103bを通過した高温高圧のガス冷媒とは、四方弁110bおよび三方弁110aよりも上流において合流しない。そして、第1圧縮機101から吐出された高温高圧冷媒は四方弁110bにより室内熱交換器200側へ流され、第2圧縮機102から吐出された高温高圧冷媒は三方弁110aにより室内熱交換器200側へ流され、四方弁110bおよび三方弁110aよりも下流の第1冷媒配管123において合流し、室内ユニット202へ流入する。室内ユニット202内の室内熱交換器200において室内空気と交換をすることにより凝縮して中温中圧になった冷媒は、室外ユニット111へ流入し、室外熱交換器105において室外空気と熱交換をして蒸発し低温低圧状態になる。その後、室外熱交換器105を通過した冷媒は、四方弁110bにおいて実線に示すように流れ、開閉弁110cを通過し、第1アキュムレーター104a及び第2アキュムレーター104bを介して第1圧縮機101および第2圧縮機102により再び圧縮される。 The high temperature and high pressure gas refrigerant compressed by the first compressor 101 by the power of the engine 100a and passed through the first oil separator 103a, and the high temperature compressed by the second compressor 102 by the power of the motor 100b and passed through the second oil separator 103b. The high-pressure gas refrigerant does not merge upstream of the four-way valve 110b and the three-way valve 110a. Then, the high-temperature and high-pressure refrigerant discharged from the first compressor 101 is flowed to the indoor heat exchanger 200 side by the four-way valve 110b, and the high-temperature and high-pressure refrigerant discharged from the second compressor 102 is sent to the indoor heat exchanger by the three-way valve 110a. It is flowed to the 200 side, merges in the first refrigerant pipe 123 downstream of the four-way valve 110b and the three-way valve 110a, and flows into the indoor unit 202. The refrigerant condensed to medium temperature and medium pressure by exchanging with the indoor air in the indoor heat exchanger 200 in the indoor unit 202 flows into the outdoor unit 111 and exchanges heat with the outdoor air in the outdoor heat exchanger 105. Then it evaporates and becomes a low temperature and low pressure state. After that, the refrigerant that has passed through the outdoor heat exchanger 105 flows through the four-way valve 110b as shown by the solid line, passes through the on-off valve 110c, and passes through the first accumulator 104a and the second accumulator 104b, and then the first compressor 101. And it is compressed again by the second compressor 102.

なお、外気温度が低い場合には、室内ユニット202から流入してきた中温中圧冷媒は室外熱交換器105のみならず、第1排熱熱交換器108において吸熱して蒸発させることも可能である。また、冷房運転時と同様に、負荷に応じて駆動させる圧縮機を選択することにより効率の良い運転が可能になる。 When the outside air temperature is low, the medium-temperature and medium-pressure refrigerant flowing in from the indoor unit 202 can be absorbed and evaporated not only in the outdoor heat exchanger 105 but also in the first exhaust heat exchanger 108. .. Further, as in the case of cooling operation, efficient operation is possible by selecting a compressor to be driven according to the load.

図4は本発明の実施の形態1における暖房・除霜並行運転時の冷媒流路を示すものである。暖房・除霜並行運転時は、冷媒が実線に示すように流れるように四方弁110bおよび三方弁110aを切替え、開閉弁110cを閉とする。
これにより、第1圧縮機101により圧縮された高圧冷媒が存在する高圧側の回路は室内熱交換器200側に接続され、一方、第2圧縮機102により圧縮された高圧冷媒が存在する高圧側の回路は室外熱交換器105側に接続される。
FIG. 4 shows a refrigerant flow path during heating / defrosting parallel operation according to the first embodiment of the present invention. During the heating / defrosting parallel operation, the four-way valve 110b and the three-way valve 110a are switched so that the refrigerant flows as shown by the solid line, and the on-off valve 110c is closed.
As a result, the circuit on the high pressure side where the high pressure refrigerant compressed by the first compressor 101 exists is connected to the indoor heat exchanger 200 side, while the high pressure side where the high pressure refrigerant compressed by the second compressor 102 exists. Circuit is connected to the outdoor heat exchanger 105 side.

暖房運転時に着霜を検知した場合もしくは着霜しそうな場合は、エンジン100aの動力により第1圧縮機101により圧縮され第1オイルセパレーター103aを通過した高温高圧のガス冷媒は四方弁110bを介して室内ユニット202へ流入する。そして、室内ユニット202に流入した冷媒は、室内熱交換器200において凝縮して中温中圧冷媒となり、室外ユニット111に戻る。一方、モーター100bの動力により第2圧縮機102により圧縮され第2オイルセパレーター103bを通過した高温高圧のガス冷媒は三方弁110aを介して第1圧縮機101により圧縮された冷媒と合流することなく室外熱交換器105へ流入する。そして、室外熱交換器105に流入した冷媒は、室外空気もしくは室外熱交換器105に生成した霜と熱交換をして凝縮し、中温中圧冷媒となる。そして、室外熱交換器105において中温中圧となった冷媒は、室内熱交換器200において凝縮した中温中圧冷媒と中間バイパス管127において合流する。合流した冷媒は排熱熱交換器108aにおいてエンジン100aの排熱により蒸発して低圧のガス冷媒となり、第1アキュムレーター104a及び第2アキュムレーター104bを介した後に第1圧縮機101および第2圧縮機102により再び圧縮される。 If frost is detected or is likely to frost during the heating operation, the high-temperature and high-pressure gas refrigerant compressed by the first compressor 101 by the power of the engine 100a and passed through the first oil separator 103a passes through the four-way valve 110b. It flows into the indoor unit 202. Then, the refrigerant flowing into the indoor unit 202 is condensed in the indoor heat exchanger 200 to become a medium-temperature medium-pressure refrigerant, and returns to the outdoor unit 111. On the other hand, the high-temperature and high-pressure gas refrigerant compressed by the second compressor 102 by the power of the motor 100b and passed through the second oil separator 103b does not merge with the refrigerant compressed by the first compressor 101 via the three-way valve 110a. It flows into the outdoor heat exchanger 105. Then, the refrigerant flowing into the outdoor heat exchanger 105 exchanges heat with the outdoor air or the frost generated in the outdoor heat exchanger 105 and condenses to become a medium-temperature medium-pressure refrigerant. Then, the refrigerant that has reached medium temperature and medium pressure in the outdoor heat exchanger 105 merges with the medium temperature and medium pressure refrigerant condensed in the indoor heat exchanger 200 at the intermediate bypass pipe 127. The combined refrigerant evaporates in the exhaust heat exchanger 108a due to the exhaust heat of the engine 100a to become a low-pressure gas refrigerant, and after passing through the first accumulator 104a and the second accumulator 104b, the first compressor 101 and the second compressor are compressed. It is compressed again by the machine 102.

以上のように、本発明の実施の形態1における空気調和装置は、エンジン100aにより駆動する第1圧縮機101と、第1圧縮機101と並列に接続された第2圧縮機102と、第1圧縮機101および第2圧縮機102から吐出された冷媒の流路を切替える切替回路110と、室内熱交換器200と室外熱交換器105との間に設けられ、中圧冷媒が通過する第2冷媒配管(中圧冷媒回路)124と、第1圧縮機101および第2圧縮機102の吸入側に設けられ、低圧冷媒が通過する第4冷媒配管(低圧冷媒回路)126と、第2冷媒配管124と第4冷媒配管126とを接続する中間バイパス管127と、中間バイパス管127に暖房運転時の中圧側からこの順で設けられる、排熱膨張弁109aおよび排熱熱交換器108aと、を備え、切替回路110は、少なくとも、室内熱交換器200と室外熱交換器105とのいずれか一方へ第1圧縮機101から吐出された冷媒を流すとともに、いずれか他方へ第2圧縮機102から吐出された冷媒を流す流路に切替える。
暖房運転時に室外熱交換器105に着霜した際には、第1圧縮機101または第2圧縮機102からの吐出冷媒の一部は室内熱交換器200に流し、一部は室外熱交換器105に流し、室内熱交換器200を通過した冷媒および室外熱交換器105を通過した冷媒を合流させ、中間バイパス管127を介して第1圧縮機101および第2圧縮機102に戻すことができる。
第2圧縮機102の吐出冷媒が室外熱交換器105に流入することにより除霜が行われるため、室外熱交換器105が着霜した場合でも室外空気から吸熱できるようになる。
As described above, the air exchanger according to the first embodiment of the present invention includes the first compressor 101 driven by the engine 100a, the second compressor 102 connected in parallel with the first compressor 101, and the first compressor. A second switching circuit 110 for switching the flow path of the refrigerant discharged from the compressor 101 and the second compressor 102, provided between the indoor heat exchanger 200 and the outdoor heat exchanger 105, and through which the medium pressure refrigerant passes. The refrigerant pipe (medium pressure refrigerant circuit) 124, the fourth compressor pipe (low pressure refrigerant circuit) 126 provided on the suction side of the first compressor 101 and the second compressor 102 and through which the low pressure refrigerant passes, and the second refrigerant pipe An intermediate bypass pipe 127 connecting the 124 and the fourth refrigerant pipe 126, and an exhaust heat expansion valve 109a and an exhaust heat exchanger 108a provided in the intermediate bypass pipe 127 in this order from the medium pressure side during the heating operation. The switching circuit 110 allows at least one of the indoor heat exchanger 200 and the outdoor heat exchanger 105 to flow the refrigerant discharged from the first compressor 101, and at least one of the other from the second compressor 102. Switch to the flow path through which the discharged refrigerant flows.
When frost is formed on the outdoor heat exchanger 105 during the heating operation, a part of the refrigerant discharged from the first compressor 101 or the second compressor 102 flows into the indoor heat exchanger 200, and a part of the outdoor heat exchanger The refrigerant flowing through the indoor heat exchanger 200 and the refrigerant passing through the outdoor heat exchanger 105 can be merged and returned to the first compressor 101 and the second compressor 102 via the intermediate bypass pipe 127. ..
Since the defrosting is performed by the discharged refrigerant of the second compressor 102 flowing into the outdoor heat exchanger 105, heat can be absorbed from the outdoor air even when the outdoor heat exchanger 105 is frosted.

また、本実施の形態1によれば、切替回路110は、暖房・除霜並行運転時に、第1圧縮機101からの吐出冷媒と第2圧縮機102からの吐出冷媒とを合流させることなく、室内熱交換器200と室外熱交換器105とのいずれか一方へ第1圧縮機101から吐出された冷媒を流すとともに、いずれか他方へ第2圧縮機102から吐出された冷媒を流す流路に切替える回路である。
この場合、第1圧縮機101からの吐出冷媒と第2圧縮機102からの吐出冷媒との圧力が揃うことがないため、低負荷である第2圧縮機102の負荷を上昇させることなく、室内熱交換器200に流れる冷媒により暖房運転を継続しつつ、室外熱交換器105に流れる冷媒により除霜を行うことができる。
Further, according to the first embodiment, the switching circuit 110 does not combine the refrigerant discharged from the first compressor 101 and the refrigerant discharged from the second compressor 102 during the parallel heating / defrosting operation. A flow path through which the refrigerant discharged from the first compressor 101 flows to either the indoor heat exchanger 200 or the outdoor heat exchanger 105, and the refrigerant discharged from the second compressor 102 flows to one of the other. It is a switching circuit.
In this case, since the pressures of the refrigerant discharged from the first compressor 101 and the refrigerant discharged from the second compressor 102 are not uniform, the load of the second compressor 102, which is a low load, is not increased, and the room is indoors. While continuing the heating operation with the refrigerant flowing through the heat exchanger 200, defrosting can be performed with the refrigerant flowing through the outdoor heat exchanger 105.

また、本実施の形態1によれば、切替回路110は、能力の高い第1圧縮機101からの吐出冷媒を室内熱交換器200へ供給し、第1圧縮機101よりも能力の低い第2圧縮機102からの吐出冷媒を室外熱交換器105へ供給することのできる回路である。
この場合、第2圧縮機102よりも能力の高い第1圧縮機101により暖房運転をまかなうことができ、室内の空調温度を保つことが容易となる。
また、この場合、エンジン100aを駆動することにより第1圧縮機101を動作させるため、第1圧縮機101の駆動により排熱も多くなり、排熱熱交換器108aを有効に利用できる。
Further, according to the first embodiment, the switching circuit 110 supplies the refrigerant discharged from the first compressor 101 having a high capacity to the indoor heat exchanger 200, and the second compressor 101 has a lower capacity than the first compressor 101. This is a circuit capable of supplying the refrigerant discharged from the compressor 102 to the outdoor heat exchanger 105.
In this case, the heating operation can be covered by the first compressor 101, which has a higher capacity than the second compressor 102, and it becomes easy to maintain the air conditioning temperature in the room.
Further, in this case, since the first compressor 101 is operated by driving the engine 100a, the exhaust heat is increased by driving the first compressor 101, and the exhaust heat exchanger 108a can be effectively used.

また、本実施の形態1によれば、切替回路110は、第1圧縮機101から吐出された冷媒を室内熱交換器200と室外熱交換器105とのいずれか一方へ流す流路に切替える四方弁(第1切替手段)110bと、第2圧縮機102から吐出された冷媒を室内熱交換器200と室外熱交換器105とのいずれか他方へ流す流路に切替える三方弁(第2切替手段)110aと、室内熱交換器200または室外熱交換器105において蒸発した冷媒の流路を基準として、四方弁110bまたは三方弁110aの下流に設けられる開閉弁(開閉手段)110cと、を備えており、開閉弁(開閉手段)110cより下流の回路が低圧冷媒回路とされている。
この切替回路110を備えることで、第1圧縮機101から吐出された冷媒を、四方弁110bにより室内熱交換器200へ流すことができ、第2圧縮機102から吐出された冷媒を三方弁110aにより室外熱交換器105に流すことができ、室内熱交換器200を通過した冷媒および室外熱交換器105を通過した冷媒を合流させ、中間バイパス管127を介して第1圧縮機101および第2圧縮機102に戻すことができる。
そのため、室内熱交換器200に流れる冷媒により暖房運転を継続しつつ、室外熱交換器105に流れる冷媒により除霜運転を行うことができ、着霜時にも空気から吸熱できる空気調和装置を提供することができる。
Further, according to the first embodiment, the switching circuit 110 switches the refrigerant discharged from the first compressor 101 to a flow path for flowing the refrigerant to either the indoor heat exchanger 200 or the outdoor heat exchanger 105. A three-way valve (second switching means) that switches the valve (first switching means) 110b and the flow path through which the refrigerant discharged from the second compressor 102 flows to either the indoor heat exchanger 200 or the outdoor heat exchanger 105. ) 110a and an on-off valve (opening / closing means) 110c provided downstream of the four-way valve 110b or the three-way valve 110a with reference to the flow path of the refrigerant evaporated in the indoor heat exchanger 200 or the outdoor heat exchanger 105. The circuit downstream of the on-off valve (opening / closing means) 110c is a low-pressure refrigerant circuit.
By providing the switching circuit 110, the refrigerant discharged from the first compressor 101 can be flowed to the indoor heat exchanger 200 by the four-way valve 110b, and the refrigerant discharged from the second compressor 102 can be flowed to the three-way valve 110a. The refrigerant that has passed through the indoor heat exchanger 200 and the refrigerant that has passed through the outdoor heat exchanger 105 are merged with each other, and the first compressor 101 and the second compressor 101 and the second compressor are merged through the intermediate bypass pipe 127. It can be returned to the compressor 102.
Therefore, it is possible to perform the defrosting operation by the refrigerant flowing in the outdoor heat exchanger 105 while continuing the heating operation by the refrigerant flowing in the indoor heat exchanger 200, and to provide an air conditioner capable of absorbing heat from the air even at the time of frost formation. be able to.

なお、第1圧縮機101から吐出された冷媒を、四方弁110bにより室外熱交換器105に流し、第2圧縮機102から吐出された冷媒を三方弁110aにより室内熱交換器200に流してもよい。 Even if the refrigerant discharged from the first compressor 101 is passed through the outdoor heat exchanger 105 by the four-way valve 110b and the refrigerant discharged from the second compressor 102 is flowed through the indoor heat exchanger 200 by the three-way valve 110a. Good.

また、本実施の形態1によれば、モーター100bにより駆動する第2圧縮機102に接続される第2吐出配管122に三方弁110aを備え、エンジン100aにより駆動する第1圧縮機101接続される第1吐出配管121に四方弁110bを備える。
暖房運転中に、暖房・除霜並行運転を行う場合には、三方弁(第2切替手段)110aの切替えを行う。この第2切替手段の切替えは、四方弁よりも三方弁が切替え時間が短くスムーズに行うことができる。
そのため、本実施の形態1によれば、暖房運転中に、暖房・除霜並行運転を行う場合に切替えを行う第2替手段を三方弁(第2切替手段)110aとすることで、暖房運転中に、暖房・除霜並行運転を行う場合の切替えをスムーズに行うことができる。
Further, according to the first embodiment, the second discharge pipe 122 connected to the second compressor 102 driven by the motor 100b is provided with a three-way valve 110a and is connected to the first compressor 101 driven by the engine 100a. The first discharge pipe 121 is provided with a four-way valve 110b.
When the heating / defrosting parallel operation is performed during the heating operation, the three-way valve (second switching means) 110a is switched. The switching of the second switching means can be performed smoothly with the three-way valve, which has a shorter switching time than the four-way valve.
Therefore, according to the first embodiment, the heating operation is performed by using the three-way valve (second switching means) 110a as the second replacement means for switching when the heating / defrosting parallel operation is performed during the heating operation. It is possible to smoothly switch between heating and defrosting parallel operations.

(実施の形態2)
図6は本発明の実施の形態2における空気調和装置の構成を示すものである。なお、実施の形態2において、実施の形態1と同様の構成については同一の符号を付し、その説明を省略する。
実施の形態2においては、実施の形態1における四方弁(第1切替手段)110bにかえて三方弁(第1切替手段)210bが設けられている。また、実施の形態1における三方弁(第2切替手段)110aにかえて四方弁(第2切替手段)210aが設けられている。
(Embodiment 2)
FIG. 6 shows the configuration of the air conditioner according to the second embodiment of the present invention. In the second embodiment, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
In the second embodiment, a three-way valve (first switching means) 210b is provided instead of the four-way valve (first switching means) 110b in the first embodiment. Further, a four-way valve (second switching means) 210a is provided instead of the three-way valve (second switching means) 110a in the first embodiment.

実施の形態2においては、第1圧縮機101から吐出された冷媒を室内熱交換器200または室外熱交換器105へ流すように冷媒の流れを切替える三方弁(第1切替手段)210bと、第2圧縮機102から吐出された冷媒を室内熱交換器200または室外熱交換器105へ流すように冷媒の流れを切替える冷媒の流路を切替える四方弁(第2切替手段)210aと、室内熱交換器200または室外熱交換器105において蒸発した冷媒の流路を基準として、四方弁110bまたは三方弁110aの下流に設けられる開閉弁(開閉手段)110cと、は切替回路210を構成している。 In the second embodiment, a three-way valve (first switching means) 210b that switches the flow of the refrigerant so that the refrigerant discharged from the first compressor 101 flows to the indoor heat exchanger 200 or the outdoor heat exchanger 105, and the first 2 A four-way valve (second switching means) 210a that switches the flow of the refrigerant so as to flow the refrigerant discharged from the compressor 102 to the indoor heat exchanger 200 or the outdoor heat exchanger 105, and the indoor heat exchange. The on-off valve (opening / closing means) 110c provided downstream of the four-way valve 110b or the three-way valve 110a constitutes the switching circuit 210 with reference to the flow path of the refrigerant evaporated in the device 200 or the outdoor heat exchanger 105.

切替回路210を備える本実施の形態2においても、開閉弁110cより下流の回路が低圧冷媒回路となる。すなわち、暖房運転時の冷媒の流れを基準とした場合において第4冷媒配管126のうち開閉弁110cよりも下流の配管、第1吸入管134、および第2吸入管135は、低圧冷媒回路となる。
また、第2冷媒配管124のうち室内膨張弁201と室外膨張弁107との間の配管は、中圧冷媒回路となる。
Also in the second embodiment including the switching circuit 210, the circuit downstream of the on-off valve 110c is the low-pressure refrigerant circuit. That is, when the flow of the refrigerant during the heating operation is used as a reference, the pipe downstream of the on-off valve 110c, the first suction pipe 134, and the second suction pipe 135 of the fourth refrigerant pipe 126 are low-pressure refrigerant circuits. ..
Further, of the second refrigerant pipe 124, the pipe between the indoor expansion valve 201 and the outdoor expansion valve 107 is a medium pressure refrigerant circuit.

以上のように構成された空気調和装置について、以下、その動作、作用を説明する。
冷房運転の場合、第1圧縮機101から吐出した冷媒は、点線に冷媒を流すように設定された三方弁210bを介して室外熱交換器105側へ流入する。また、第2圧縮機102から吐出した冷媒は、点線に冷媒を流すように設定された四方弁210aを介して室外熱交換器105側へ流入し、第1圧縮機101から吐出された吐出冷媒と合流する。このとき、開閉弁110cを開とする。その後の冷媒流路は実施の形態1と同様である。
The operation and operation of the air conditioner configured as described above will be described below.
In the cooling operation, the refrigerant discharged from the first compressor 101 flows into the outdoor heat exchanger 105 side through the three-way valve 210b set to allow the refrigerant to flow along the dotted line. Further, the refrigerant discharged from the second compressor 102 flows into the outdoor heat exchanger 105 side through the four-way valve 210a set so that the refrigerant flows along the dotted line, and the discharged refrigerant discharged from the first compressor 101. Meet with. At this time, the on-off valve 110c is opened. The subsequent refrigerant flow path is the same as that of the first embodiment.

暖房運転の場合、第1圧縮機101から吐出した冷媒は、実線に冷媒を流すように設定された三方弁210bを介して室内ユニット202へ流入する。また、第2圧縮機102から吐出した冷媒は、実線に冷媒を流すように設定された四方弁210aを介して室内ユニット202へ流入し、第1圧縮機101から吐出された吐出冷媒と合流する。このとき、開閉弁110cを開とする。その後の冷媒流路は実施の形態1と同様である。 In the case of the heating operation, the refrigerant discharged from the first compressor 101 flows into the indoor unit 202 via the three-way valve 210b set to allow the refrigerant to flow in the solid line. Further, the refrigerant discharged from the second compressor 102 flows into the indoor unit 202 via the four-way valve 210a set to allow the refrigerant to flow in the solid line, and merges with the discharged refrigerant discharged from the first compressor 101. .. At this time, the on-off valve 110c is opened. The subsequent refrigerant flow path is the same as that of the first embodiment.

暖房運転中に着霜を検知した場合もしくは着霜しそうな場合は、まず開閉弁110cが閉となり、第1圧縮機101から吐出した冷媒は、実線に冷媒を流すように設定された三方弁210bを介して室内ユニット202へ流入する。また、第2圧縮機102から吐出した冷媒は、点線に冷媒を流すように設定された四方弁210aを介して室外熱交換器105へ流入する。このとき、開閉弁110cを閉とする。その後の冷媒流路は実施の形態1と同様である。 If frost is detected or is likely to frost during the heating operation, the on-off valve 110c is closed first, and the refrigerant discharged from the first compressor 101 is a three-way valve 210b set so that the refrigerant flows in the solid line. It flows into the indoor unit 202 via. Further, the refrigerant discharged from the second compressor 102 flows into the outdoor heat exchanger 105 via the four-way valve 210a set so that the refrigerant flows along the dotted line. At this time, the on-off valve 110c is closed. The subsequent refrigerant flow path is the same as that of the first embodiment.

以上のように、本発明の実施の形態2においては、実施の形態1における四方弁(第1切替手段)110bにかえて三方弁(第1切替手段)210bが設けられている。また、実施の形態1における三方弁(第2切替手段)110aにかえて四方弁(第2切替手段)210aが設けられている
切替回路210により、暖房運転時に室外熱交換器105に着霜した際には、第1圧縮機101または第2圧縮機102からの吐出冷媒の一部は室内熱交換器200に流し、一部は室外熱交換器105に流し、室内熱交換器200を通過した冷媒および室外熱交換器105を通過した冷媒を合流させ、中間バイパス管127を介して第1圧縮機101および第2圧縮機102に戻すことができる。
実施の形態2においても、第2圧縮機102の吐出冷媒が室外熱交換器105に流入することにより除霜が行われるため、室外熱交換器105が着霜した場合でも室外空気から吸熱できるようになり、実施の形態1と同様の効果を奏する。
As described above, in the second embodiment of the present invention, the three-way valve (first switching means) 210b is provided instead of the four-way valve (first switching means) 110b in the first embodiment. Further, the outdoor heat exchanger 105 was frosted during the heating operation by the switching circuit 210 provided with the four-way valve (second switching means) 210a instead of the three-way valve (second switching means) 110a in the first embodiment. At that time, a part of the refrigerant discharged from the first compressor 101 or the second compressor 102 was passed through the indoor heat exchanger 200, and a part of the refrigerant was passed through the outdoor heat exchanger 105 and passed through the indoor heat exchanger 200. The refrigerant and the refrigerant that have passed through the outdoor heat exchanger 105 can be merged and returned to the first compressor 101 and the second compressor 102 via the intermediate bypass pipe 127.
Also in the second embodiment, since the defrosting is performed by the discharged refrigerant of the second compressor 102 flowing into the outdoor heat exchanger 105, heat can be absorbed from the outdoor air even when the outdoor heat exchanger 105 is frosted. Therefore, the same effect as that of the first embodiment is obtained.

(実施の形態3)
図7は本発明の実施の形態3における空気調和装置の構成を示すものである。なお、実施の形態3において、実施の形態1と同様の構成については同一の符号を付し、その説明を省略する。
実施の形態3においては、実施の形態1における三方弁(第2切替手段)110aにかえて第2四方弁(第2切替手段)110dが設けられている。
(Embodiment 3)
FIG. 7 shows the configuration of the air conditioner according to the third embodiment of the present invention. In the third embodiment, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
In the third embodiment, the second four-way valve (second switching means) 110d is provided in place of the three-way valve (second switching means) 110a in the first embodiment.

第2吐出配管122は、第2オイルセパレーター103b、第2四方弁110d、第2開閉弁(第2開閉手段)110eを介して、第1冷媒配管123に接続される。
第2開閉弁110eは、第2四方弁110dと室内熱交換器200との間であり、暖房運転時に第2圧縮機102の吐出冷媒のみが流れる回路上に設けることができる。実施の形態3において、第2開閉弁110eは、第2吐出配管122のうち、第2四方弁110dよりも下流に設けられている。
The second discharge pipe 122 is connected to the first refrigerant pipe 123 via the second oil separator 103b, the second four-way valve 110d, and the second on-off valve (second on-off means) 110e.
The second on-off valve 110e is between the second four-way valve 110d and the indoor heat exchanger 200, and can be provided on a circuit through which only the discharged refrigerant of the second compressor 102 flows during the heating operation. In the third embodiment, the second on-off valve 110e is provided downstream of the second four-way valve 110d in the second discharge pipe 122.

第3冷媒配管125は、第1の第3冷媒配管400と、第2の第3冷媒配管500とに分岐している。第1の第3冷媒配管400は、第3開閉弁(第3開閉手段)110f、四方弁110bを介して第2の第3冷媒配管500と合流する。第2の第3冷媒配管500は、第2四方弁110dを介して第1の第3冷媒配管400と合流する。第1の第3冷媒配管400と第2の第3冷媒配管500との接続箇所には、第4冷媒配管126が接続されている。
第3開閉弁110fは、四方弁110bと室外熱交換器105の間であり、冷房運転時に第1圧縮機101の吐出冷媒のみが流れる回路上に設けることができる。実施の形態3において、第3開閉弁110fは、第1の第3冷媒配管400のうち、冷房運転時の冷媒の流れを基準として四方弁110bよりも下流に設けられている。
The third refrigerant pipe 125 is branched into a first third refrigerant pipe 400 and a second third refrigerant pipe 500. The first third refrigerant pipe 400 joins the second third refrigerant pipe 500 via the third on-off valve (third on-off means) 110f and the four-way valve 110b. The second third refrigerant pipe 500 joins the first third refrigerant pipe 400 via the second four-way valve 110d. The fourth refrigerant pipe 126 is connected to the connection point between the first third refrigerant pipe 400 and the second third refrigerant pipe 500.
The third on-off valve 110f is between the four-way valve 110b and the outdoor heat exchanger 105, and can be provided on a circuit through which only the discharged refrigerant of the first compressor 101 flows during the cooling operation. In the third embodiment, the third on-off valve 110f is provided downstream of the four-way valve 110b in the first third refrigerant pipe 400 with reference to the flow of the refrigerant during the cooling operation.

第1吐出配管121から室内熱交換器200または室外熱交換器105へ冷媒を流すように冷媒の流れを切替える四方弁(第1切替手段)110bと、第2吐出配管122から室内熱交換器200または室外熱交換器105へ冷媒を流すように冷媒の流れを切替える第2四方弁(第2切替手段)110dと、室内熱交換器200または室外熱交換器105において蒸発した冷媒の流路を基準として、四方弁110bまたは三方弁110aの下流に設けられる開閉弁(開閉手段)110cと、第2四方弁110dと室内熱交換器200との間であり、暖房運転時に第2圧縮機102の吐出冷媒のみが流れる回路上に設けられる第2開閉弁(第2開閉手段)110eと、四方弁110bと室外熱交換器105との間であり、冷房運転時に第1圧縮機101の吐出冷媒のみが流れる回路上に設けられる第3開閉弁(第3開閉手段)110fと、は切替回路310を構成している。 A four-way valve (first switching means) 110b that switches the flow of the refrigerant so that the refrigerant flows from the first discharge pipe 121 to the indoor heat exchanger 200 or the outdoor heat exchanger 105, and the indoor heat exchanger 200 from the second discharge pipe 122. Alternatively, the flow path of the refrigerant evaporated in the indoor heat exchanger 200 or the outdoor heat exchanger 105 is used as a reference with the second four-way valve (second switching means) 110d that switches the flow of the refrigerant so that the refrigerant flows to the outdoor heat exchanger 105. It is between the on-off valve (opening / closing means) 110c provided downstream of the four-way valve 110b or the three-way valve 110a, the second four-way valve 110d, and the indoor heat exchanger 200, and discharges the second compressor 102 during the heating operation. It is between the second on-off valve (second on-off means) 110e provided on the circuit through which only the refrigerant flows, the four-way valve 110b and the outdoor heat exchanger 105, and only the discharged refrigerant of the first compressor 101 during the cooling operation. A third on-off valve (third on-off means) 110f provided on the flowing circuit constitutes a switching circuit 310.

切替回路310を備える本実施の形態3においても、開閉弁110cより下流の回路が低圧冷媒回路となる。すなわち、暖房運転時の冷媒の流れを基準とした場合において第4冷媒配管126のうち開閉弁110cよりも下流の配管、第1吸入管134、および第2吸入管135は、低圧冷媒回路となる。
また、第2冷媒配管124のうち室内膨張弁201と室外膨張弁107との間の配管は、中圧冷媒回路となる。
Also in the third embodiment including the switching circuit 310, the circuit downstream of the on-off valve 110c is the low-pressure refrigerant circuit. That is, when the flow of the refrigerant during the heating operation is used as a reference, the pipe downstream of the on-off valve 110c, the first suction pipe 134, and the second suction pipe 135 of the fourth refrigerant pipe 126 are low-pressure refrigerant circuits. ..
Further, of the second refrigerant pipe 124, the pipe between the indoor expansion valve 201 and the outdoor expansion valve 107 is a medium pressure refrigerant circuit.

以上のように構成された空気調和装置について、以下、その動作、作用を説明する。
冷房運転の場合、開閉弁110cおよび第3開閉弁110fを開とする。第1圧縮機101から吐出した冷媒は、点線に冷媒を流すように設定された四方弁110bを介して室外熱交換器105へ流入する。また、第2圧縮機102から吐出した冷媒は、点線に冷媒を流すように設定された第2四方弁110dを介して室外熱交換器105へ流入し、第1圧縮機101から吐出された冷媒と合流する。その後の冷媒流路は実施の形態1と同様である。
The operation and operation of the air conditioner configured as described above will be described below.
In the case of cooling operation, the on-off valve 110c and the third on-off valve 110f are opened. The refrigerant discharged from the first compressor 101 flows into the outdoor heat exchanger 105 via a four-way valve 110b set to allow the refrigerant to flow along the dotted line. Further, the refrigerant discharged from the second compressor 102 flows into the outdoor heat exchanger 105 via the second four-way valve 110d set so that the refrigerant flows along the dotted line, and the refrigerant discharged from the first compressor 101. Meet with. The subsequent refrigerant flow path is the same as that of the first embodiment.

暖房運転の場合、開閉弁110cおよび第2開閉弁110eを開とする。第1圧縮機101から吐出した冷媒は、実線に冷媒を流すように設定された四方弁110bを介して室内ユニット202へ流入する。また、第2圧縮機102から吐出した冷媒は、実線に冷媒を流すように設定された第2四方弁110dを介して室内ユニット202へ流入し、第1圧縮機101から吐出冷媒と合流する。その後の冷媒流路は実施の形態1と同様である。 In the case of heating operation, the on-off valve 110c and the second on-off valve 110e are opened. The refrigerant discharged from the first compressor 101 flows into the indoor unit 202 via a four-way valve 110b set to allow the refrigerant to flow along the solid line. Further, the refrigerant discharged from the second compressor 102 flows into the indoor unit 202 via the second four-way valve 110d set to flow the refrigerant along the solid line, and merges with the discharged refrigerant from the first compressor 101. The subsequent refrigerant flow path is the same as that of the first embodiment.

暖房運転中に着霜を検知した場合もしくは着霜しそうな場合は、まず開閉弁110c、第2開閉弁110e、第3開閉弁110fが閉となり、第1圧縮機101から吐出した冷媒は、実線に冷媒を流すように設定された四方弁110bを介して室内ユニット202へ流入する。また、第2圧縮機102から吐出した冷媒は、点線に冷媒を流すように設定された第2四方弁110dを介して室外熱交換器105へ流入する。その後の冷媒流路は実施の形態1と同様である。 If frost is detected or is likely to frost during the heating operation, the on-off valve 110c, the second on-off valve 110e, and the third on-off valve 110f are closed first, and the refrigerant discharged from the first compressor 101 is a solid line. It flows into the indoor unit 202 through a four-way valve 110b set to allow the refrigerant to flow through the room. Further, the refrigerant discharged from the second compressor 102 flows into the outdoor heat exchanger 105 via the second four-way valve 110d set so that the refrigerant flows along the dotted line. The subsequent refrigerant flow path is the same as that of the first embodiment.

以上のように、本発明の実施の形態3において、切替回路310は、第1圧縮機101から吐出された冷媒を室内熱交換器200と室外熱交換器105とのいずれか一方へ流す流路に切替える四方弁(第1切替手段)110bと、第2圧縮機102から吐出された冷媒を室内熱交換器200と室外熱交換器105とのいずれか他方へ流す流路に切替える第2四方弁(第2切替手段)110dと、室内熱交換器200または室外熱交換器105において蒸発した冷媒の流路を基準として、四方弁110bまたは三方弁110aの下流に設けられる開閉弁(開閉手段)110cと、第2四方弁110dと室内熱交換器200との間であり、暖房運転時に第2圧縮機102の吐出冷媒のみが流れる回路上に設けられる第2開閉弁(第2開閉手段)110eと、四方弁110bと室外熱交換器105との間であり、冷房運転時に第1圧縮機101の吐出冷媒のみが流れる回路上に設けられる第3開閉弁(第3開閉手段)110fと、により構成した。
これによれば、暖房運転時に室外熱交換器105に着霜した際には、切替回路310により、第1圧縮機101または第2圧縮機102からの吐出冷媒の一部は室内熱交換器200に流し、一部は室外熱交換器105に流し、室内熱交換器200を通過した冷媒および室外熱交換器105を通過した冷媒を合流させ、中間バイパス管127を介して第1圧縮機101および第2圧縮機102に戻すことができる。
第2圧縮機102の吐出冷媒が室外熱交換器105に流入することにより除霜が行われるため、室外熱交換器105が着霜した場合でも室外空気から吸熱できるようになる。
As described above, in the third embodiment of the present invention, the switching circuit 310 is a flow path for flowing the refrigerant discharged from the first compressor 101 to either the indoor heat exchanger 200 or the outdoor heat exchanger 105. A four-way valve (first switching means) 110b that switches to, and a second four-way valve that switches the refrigerant discharged from the second compressor 102 to a flow path that flows to either the indoor heat exchanger 200 or the outdoor heat exchanger 105. An on-off valve (opening / closing means) 110c provided downstream of the four-way valve 110b or the three-way valve 110a with reference to the flow path of the refrigerant evaporated in the (second switching means) 110d and the indoor heat exchanger 200 or the outdoor heat exchanger 105. And the second on-off valve (second on-off means) 110e, which is between the second four-way valve 110d and the indoor heat exchanger 200 and is provided on the circuit through which only the discharged refrigerant of the second compressor 102 flows during the heating operation. , A third on-off valve (third on-off means) 110f between the four-way valve 110b and the outdoor heat exchanger 105 and provided on a circuit through which only the discharged refrigerant of the first compressor 101 flows during cooling operation. did.
According to this, when the outdoor heat exchanger 105 is frosted during the heating operation, a part of the refrigerant discharged from the first compressor 101 or the second compressor 102 is partially discharged from the indoor heat exchanger 200 by the switching circuit 310. A part of the refrigerant flows through the outdoor heat exchanger 105, and the refrigerant that has passed through the indoor heat exchanger 200 and the refrigerant that has passed through the outdoor heat exchanger 105 are merged with each other, and the first compressor 101 and the first compressor 101 and the like are passed through the intermediate bypass pipe 127. It can be returned to the second compressor 102.
Since the defrosting is performed by the discharged refrigerant of the second compressor 102 flowing into the outdoor heat exchanger 105, heat can be absorbed from the outdoor air even when the outdoor heat exchanger 105 is frosted.

また、本実施の形態3においても、切替回路310は、暖房・除霜並行運転時に、第1圧縮機101からの吐出冷媒と第2圧縮機102からの吐出冷媒とを合流させることなく、室内熱交換器200と室外熱交換器105とのいずれか一方へ第1圧縮機101から吐出された冷媒を流すとともに、いずれか他方へ第2圧縮機102から吐出された冷媒を流す流路に切替える。そのため、低負荷である第2圧縮機102の負荷を上昇させることなく、室内熱交換器200に流れる冷媒により暖房運転を継続しつつ、室外熱交換器105に流れる冷媒により除霜を行うことができる。 Further, also in the third embodiment, the switching circuit 310 does not combine the refrigerant discharged from the first compressor 101 and the refrigerant discharged from the second compressor 102 during the parallel heating / defrosting operation, and is indoors. The refrigerant discharged from the first compressor 101 flows to either one of the heat exchanger 200 and the outdoor heat exchanger 105, and the flow path is switched to flow the refrigerant discharged from the second compressor 102 to one of the other. .. Therefore, without increasing the load of the second compressor 102, which has a low load, the heating operation can be continued by the refrigerant flowing in the indoor heat exchanger 200, and the defrosting can be performed by the refrigerant flowing in the outdoor heat exchanger 105. it can.

また、本実施の形態3においても、能力の高い第1圧縮機101の吐出冷媒を室内熱交換器200へ流入させ、能力の低い第2圧縮機102の吐出冷媒を室外熱交換器105へ流入させるため、第2圧縮機102よりも能力の高い第1圧縮機101により暖房運転をまかなうことができ、室内の空調温度を保つことが容易となる。 Further, also in the third embodiment, the discharged refrigerant of the first compressor 101 having a high capacity flows into the indoor heat exchanger 200, and the discharged refrigerant of the second compressor 102 having a low capacity flows into the outdoor heat exchanger 105. Therefore, the heating operation can be covered by the first compressor 101, which has a higher capacity than the second compressor 102, and it becomes easy to maintain the air conditioning temperature in the room.

以上、本実施の形態に基づいて本発明を説明したが、本発明はこれらの実施形態に限定されるものではない。あくまでも本発明の実施の態様を例示するものであるから、本発明の趣旨を逸脱しない範囲において任意に変更、及び応用が可能である。 Although the present invention has been described above based on the present embodiment, the present invention is not limited to these embodiments. Since this is merely an example of the embodiment of the present invention, it can be arbitrarily modified and applied without departing from the spirit of the present invention.

例えば、切替回路は、第1圧縮機101または第2圧縮機102からの吐出冷媒の一部は室内熱交換器200に流し、第1圧縮機101または第2圧縮機102からの吐出冷媒の一部は室外熱交換器105に流すことができる回路構成とすればよく、本実施の形態のものに限られるものではない。
また、低圧冷媒回路は、中間バイパス管を介して中圧冷媒回路から冷媒を流せる回路であればよい。
For example, in the switching circuit, a part of the refrigerant discharged from the first compressor 101 or the second compressor 102 is passed through the indoor heat exchanger 200, and one of the refrigerants discharged from the first compressor 101 or the second compressor 102. The unit may have a circuit configuration that allows the air to flow through the outdoor heat exchanger 105, and is not limited to that of the present embodiment.
Further, the low-pressure refrigerant circuit may be any circuit that allows the refrigerant to flow from the medium-pressure refrigerant circuit via the intermediate bypass pipe.

また、例えば、第2圧縮機102の上流側に第4開閉弁を設け、中圧冷媒が通過する中圧冷媒回路において中間バイパス管127の接続端よりも下流側に一端を接続され、第2圧縮機102と弁の間に他端を接続された第2中間バイパスを設け、第2中間バイパスには、暖房時の中圧側から、第2排熱膨張弁、エンジン100aの冷却水と冷媒により熱交換させる第2排熱熱交換器を順に設け、中間冷媒回路において、中間バイパス管127の接続端と、第2中間バイパスの接続端の間に第5開閉弁を設けてもよい。
この場合、除霜をする際に、第4開閉弁及び第5開閉弁を閉とすることにより、第2圧縮機102による除霜サイクルの低圧回路と、第1圧縮機101による暖房サイクルの低圧回路が独立する。そのため、第2圧縮機102の吸込側の圧力が第1圧縮機101の低圧によって下げられることがなくなり、第2圧縮機102の負荷が低下する。このため、除霜運転時の第2圧縮機102の効率が上がり、結果として暖房運転の効率が上がる。
Further, for example, a fourth on-off valve is provided on the upstream side of the second compressor 102, and one end is connected to the downstream side of the connection end of the intermediate bypass pipe 127 in the medium pressure refrigerant circuit through which the medium pressure refrigerant passes. A second intermediate bypass is provided between the compressor 102 and the valve with the other end connected, and the second intermediate bypass is provided by the second exhaust heat expansion valve, the cooling water of the engine 100a, and the refrigerant from the medium pressure side during heating. Second exhaust heat exchangers for heat exchange may be provided in order, and a fifth on-off valve may be provided between the connection end of the intermediate bypass pipe 127 and the connection end of the second intermediate bypass in the intermediate refrigerant circuit.
In this case, by closing the 4th on-off valve and the 5th on-off valve when defrosting, the low-voltage circuit of the defrosting cycle by the second compressor 102 and the low-voltage circuit of the heating cycle by the first compressor 101 The circuit becomes independent. Therefore, the pressure on the suction side of the second compressor 102 is not lowered by the low pressure of the first compressor 101, and the load on the second compressor 102 is reduced. Therefore, the efficiency of the second compressor 102 during the defrosting operation is increased, and as a result, the efficiency of the heating operation is increased.

以上のように、本発明にかかる空気調和装置は低外気時でも高効率な暖房運転が継続可能となり、空気から空気へ熱をくみ上げる形式のヒートポンプのみならず、空気から水へ熱をくみ上げて温水を生み出す形式のヒートポンプへの展開も可能である。 As described above, the air conditioner according to the present invention enables highly efficient heating operation to be continued even when the outside air is low, and not only a heat pump of a type that pumps heat from air to air, but also hot water that pumps heat from air to water. It is also possible to develop into a heat pump of the type that produces.

100b モーター
101 第1圧縮機
102 第2圧縮機
105 室外熱交換器
107 室外膨張弁
108a 排熱熱交換器
109a 排熱膨張弁
110、210、310 切替回路
110a 三方弁(第2切替手段)
110b 四方弁(第1切替手段)
110c 開閉弁(開閉手段)
110d 第2四方弁(第2切替手段)
110e 第2開閉弁(第2開閉手段)
110f 第3開閉弁(第3開閉手段)
111 室外ユニット
121 第1吐出配管
122 第2吐出配管
123 第1冷媒配管
124 第2冷媒配管(中圧冷媒回路)
125 第3冷媒配管
126 第4冷媒配管(低圧冷媒回路)
127 中間バイパス管
134 第1吸入管(低圧冷媒回路)
135 第2吸入管(低圧冷媒回路)
200 室内熱交換器
201 室内膨張弁
202 室内ユニット
210a 三方弁(第1切替手段)
210b 四方弁(第2切替手段)
400 第1の第3冷媒配管
500 第2の第3冷媒配管
100b Motor 101 1st compressor 102 2nd compressor 105 Outdoor heat exchanger 107 Outdoor expansion valve 108a Exhaust heat exchanger 109a Exhaust heat expansion valve 110, 210, 310 Switching circuit 110a Three-way valve (second switching means)
110b four-way valve (first switching means)
110c on-off valve (opening and closing means)
110d 2nd four-way valve (2nd switching means)
110e 2nd on-off valve (2nd on-off means)
110f 3rd on-off valve (3rd on-off means)
111 Outdoor unit 121 1st discharge pipe 122 2nd discharge pipe 123 1st refrigerant pipe 124 2nd refrigerant pipe (medium pressure refrigerant circuit)
125 3rd Refrigerant Piping 126 4th Refrigerant Piping (Low Pressure Refrigerant Circuit)
127 Intermediate bypass pipe 134 First suction pipe (low pressure refrigerant circuit)
135 Second suction pipe (low pressure refrigerant circuit)
200 Indoor heat exchanger 201 Indoor expansion valve 202 Indoor unit 210a Three-way valve (first switching means)
210b Four-way valve (second switching means)
400 1st 3rd refrigerant pipe 500 2nd 3rd refrigerant pipe

Claims (3)

エンジンにより駆動する第1圧縮機と、
前記第1圧縮機と並列に接続された第2圧縮機と、
前記第1圧縮機および前記第2圧縮機から吐出された冷媒の流路を切替える切替回路と、
室内熱交換器と室外熱交換器との間に設けられ、中圧冷媒が通過する中圧冷媒回路と、
前記第1圧縮機および前記第2圧縮機の吸入側に設けられ、低圧冷媒が通過する低圧冷媒回路と、
前記中圧冷媒回路と前記低圧冷媒回路とを接続する中間バイパス管と、
前記中間バイパス管に設けられ、前記エンジンの排熱を冷媒に移動させる排熱熱交換器と、を備え、
前記切替回路は、
少なくとも、前記室内熱交換器と前記室外熱交換器とのいずれか一方へ前記第1圧縮機から吐出された冷媒を流すとともに、いずれか他方へ前記第2圧縮機から吐出された冷媒を流す流路に切替え、
前記切替回路は、
前記第1圧縮機から吐出された冷媒を前記室内熱交換器と前記室外熱交換器とのいずれか一方へ流す流路に切替える第1切替手段と、
前記第2圧縮機から吐出された冷媒を前記室内熱交換器と前記室外熱交換器とのいずれか他方へ流す流路に切替える第2切替手段と、
前記室内熱交換器または前記室外熱交換器において蒸発した冷媒の流路を基準として、前記第1切替手段または前記第2切替手段の下流に設けられる開閉手段と、を備え、
前記低圧冷媒回路は、前記開閉手段より下流の回路であり、
前記切替回路は、
前記第2切替手段と前記室内熱交換器との間であり、暖房運転時に前記第2圧縮機の吐出冷媒のみが流れる回路上に設けられる第2開閉手段と、
前記第1切替手段と前記室外熱交換器との間であり、冷房運転時に前記第1圧縮機の吐出冷媒のみが流れる回路上に設けられる第3開閉手段と、をさらに備えることを特徴とする空気調和装置。
The first compressor driven by the engine and
A second compressor connected in parallel with the first compressor,
A switching circuit that switches the flow path of the refrigerant discharged from the first compressor and the second compressor, and
A medium-pressure refrigerant circuit that is installed between the indoor heat exchanger and the outdoor heat exchanger and through which the medium-pressure refrigerant passes,
A low-pressure refrigerant circuit provided on the suction side of the first compressor and the second compressor through which the low-pressure refrigerant passes, and
An intermediate bypass pipe connecting the medium-pressure refrigerant circuit and the low-pressure refrigerant circuit,
The intermediate bypass pipe is provided with an exhaust heat exchanger that transfers the exhaust heat of the engine to the refrigerant.
The switching circuit is
A flow in which the refrigerant discharged from the first compressor flows to at least one of the indoor heat exchanger and the outdoor heat exchanger, and the refrigerant discharged from the second compressor flows to one of the other. Switch to the road,
The switching circuit is
A first switching means for switching the refrigerant discharged from the first compressor to a flow path for flowing the refrigerant to either the indoor heat exchanger or the outdoor heat exchanger.
A second switching means for switching the refrigerant discharged from the second compressor to a flow path for flowing the refrigerant to either the indoor heat exchanger or the outdoor heat exchanger.
With reference to the flow path of the refrigerant evaporated in the indoor heat exchanger or the outdoor heat exchanger, the first switching means or the opening / closing means provided downstream of the second switching means is provided.
The low-pressure refrigerant circuit is a circuit downstream of the opening / closing means.
The switching circuit is
A second opening / closing means between the second switching means and the indoor heat exchanger, which is provided on a circuit through which only the discharged refrigerant of the second compressor flows during the heating operation.
Is between the outdoor heat exchanger and said first switching means, and wherein the obtaining further Bei third switching means provided on the circuit only flow discharge refrigerant of the first compressor during the cooling operation, the Air conditioner.
前記切替回路は、
暖房・除霜並行運転時に、
前記第1圧縮機からの吐出冷媒と前記第2圧縮機からの吐出冷媒とを合流させることなく、前記室内熱交換器と前記室外熱交換器とのいずれか一方へ前記第1圧縮機から吐出された冷媒を流すとともに、いずれか他方へ前記第2圧縮機から吐出された冷媒を流す流路に切替えることを特徴とする請求項1に記載の空気調和装置。
The switching circuit is
During parallel heating and defrosting operation
Discharge from the first compressor to either the indoor heat exchanger or the outdoor heat exchanger without merging the refrigerant discharged from the first compressor and the refrigerant discharged from the second compressor. The air conditioner according to claim 1, wherein the flow of the refrigerant is switched to a flow path for flowing the refrigerant discharged from the second compressor to one of the other.
前記切替回路は、
前記第1圧縮機および前記第2圧縮機のうち能力の高い圧縮機からの吐出冷媒を前記室内熱交換器へ供給し、
前記第1圧縮機および前記第2圧縮機のうち能力の低い圧縮機からの吐出冷媒を前記室外熱交換器へ供給する、ことを特徴とする請求項2に記載の空気調和装置。
The switching circuit is
The refrigerant discharged from the first compressor and the second compressor having a higher capacity is supplied to the indoor heat exchanger.
The air conditioner according to claim 2, wherein the refrigerant discharged from the first compressor and the second compressor having a lower capacity is supplied to the outdoor heat exchanger.
JP2018547671A 2016-10-31 2017-10-24 Air conditioner Active JP6895653B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016212725 2016-10-31
JP2016212725 2016-10-31
PCT/JP2017/038275 WO2018079517A1 (en) 2016-10-31 2017-10-24 Air conditioning apparatus

Publications (2)

Publication Number Publication Date
JPWO2018079517A1 JPWO2018079517A1 (en) 2019-09-19
JP6895653B2 true JP6895653B2 (en) 2021-06-30

Family

ID=62025010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018547671A Active JP6895653B2 (en) 2016-10-31 2017-10-24 Air conditioner

Country Status (4)

Country Link
JP (1) JP6895653B2 (en)
DE (1) DE112017005489T5 (en)
GB (1) GB2570817B (en)
WO (1) WO2018079517A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219580A (en) * 1995-02-09 1996-08-30 Mitsubishi Heavy Ind Ltd Engine driven air conditioner
JPH11230646A (en) * 1998-02-17 1999-08-27 Denso Corp Engine driven heat pump
JP4380834B2 (en) * 1999-03-31 2009-12-09 三洋電機株式会社 Gas heat pump air conditioner
JP4441965B2 (en) * 1999-06-11 2010-03-31 ダイキン工業株式会社 Air conditioner
JP4570292B2 (en) 2001-08-20 2010-10-27 社団法人エルピーガス協会 Air conditioner
JP2003056931A (en) * 2001-08-20 2003-02-26 Mitsubishi Heavy Ind Ltd Air conditioner
JP6296364B2 (en) * 2014-02-14 2018-03-20 パナソニックIpマネジメント株式会社 Air conditioner
JP2015152241A (en) * 2014-02-14 2015-08-24 パナソニックIpマネジメント株式会社 Outdoor unit of air conditioner
JP6448295B2 (en) * 2014-10-17 2019-01-09 大阪瓦斯株式会社 Air conditioning system
JP6351478B2 (en) * 2014-10-17 2018-07-04 大阪瓦斯株式会社 Air conditioning system
JP6623547B2 (en) 2015-05-12 2019-12-25 富士ゼロックス株式会社 Information processing apparatus and information processing program

Also Published As

Publication number Publication date
GB2570817B (en) 2021-03-24
GB201905448D0 (en) 2019-05-29
GB2570817A (en) 2019-08-07
JPWO2018079517A1 (en) 2019-09-19
WO2018079517A1 (en) 2018-05-03
DE112017005489T5 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP5611353B2 (en) heat pump
JP5951109B2 (en) Air conditioner with additional unit for heating capacity enhancement
JP5239824B2 (en) Refrigeration equipment
US10352593B2 (en) Gas heat-pump system
JP6678332B2 (en) Outdoor unit and control method for air conditioner
KR101146460B1 (en) A refrigerant system
KR101720495B1 (en) Air conditioner
JP5963971B2 (en) Air conditioner
JP2010156493A (en) Heating/cooling simultaneous operation type air conditioner
JP6846685B2 (en) Air conditioner
JP2011242048A (en) Refrigerating cycle device
US20170074552A1 (en) Air conditioner
JP2006023073A (en) Air conditioner
JP6550859B2 (en) Refrigeration system
JP5186398B2 (en) Air conditioner
JP6643630B2 (en) Air conditioner
JP6854455B2 (en) Air conditioner
JP2010112582A (en) Refrigerating device
JP6895653B2 (en) Air conditioner
JP6926460B2 (en) Refrigerator
JP6917583B2 (en) Air conditioner
KR20060100795A (en) Over cooling structure for heat pump type air conditioner
JP4023386B2 (en) Refrigeration equipment
JPH10176869A (en) Refrigeration cycle device
US9109845B2 (en) Outdoor heat exchanger and air conditioner including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R151 Written notification of patent or utility model registration

Ref document number: 6895653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151