JP4570292B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4570292B2
JP4570292B2 JP2001249248A JP2001249248A JP4570292B2 JP 4570292 B2 JP4570292 B2 JP 4570292B2 JP 2001249248 A JP2001249248 A JP 2001249248A JP 2001249248 A JP2001249248 A JP 2001249248A JP 4570292 B2 JP4570292 B2 JP 4570292B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressors
valve
compressor
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001249248A
Other languages
Japanese (ja)
Other versions
JP2003056932A (en
Inventor
武 横山
卓 中村
浩 鶴岡
優 相見
祐成 舘
廣秋 岸
英一 河合
立二 森島
光正 福村
秀晃 笠原
彰 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001249248A priority Critical patent/JP4570292B2/en
Publication of JP2003056932A publication Critical patent/JP2003056932A/en
Application granted granted Critical
Publication of JP4570292B2 publication Critical patent/JP4570292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空気調和装置に関し、特に圧縮機を駆動する駆動手段の排熱を利用して冷媒の加熱を行う構造を有するヒートポンプ式の空気調和装置に関する。
【0002】
【従来の技術】
圧縮機の駆動手段にガスエンジン等の内燃機関を採用し、さらにこの内燃機関の排熱を利用して冷媒の加熱を行う構造を有するヒートポンプ式の空気調和装置がある。この空気調和装置においては、圧縮機に求められる負荷が小さければ回転数を低くし、大きければ回転数を高くするといった具合に、負荷に応じてエンジンの回転数を変化させるようになっている。そのため、エンジンには広い回転数域を備えることが求められる。
【0003】
しかしながら、ガスエンジン等の内燃機関は高効率運転の可能な回転数域が限られている。そこで従来の空気調和装置においては、通常運転の際に頻繁に求められる負荷の範囲に対応する回転数域で高効率運転が可能なようにエンジンの調整がなされている。
【0004】
【発明が解決しようとする課題】
従来の空気調和装置では、上記のような調整を行うため、一般的な範囲を外れた大きさの負荷が求められた場合には、エンジンに効率の悪い運転を行わせることになる。そのため、燃費が悪化する等して運転コストが増加するといった問題点が指摘されている。
【0005】
特開平11-132594号公報には、容量の大きな圧縮機を電動モータまたはエンジンのいずれか一方で選択的に駆動させ、負荷が小さい場合は電動モータで圧縮機を駆動し、負荷が大きい場合はエンジンで圧縮機を駆動させてエンジンに効率の悪い運転をさせない技術について開示されている。
【0006】
しかしながら、上記公報に開示された技術では、例えば求められる負荷が小さい場合、容量の大きな圧縮機を低速で駆動させるので十分な圧縮効率が得られない。容量の大きな圧縮機を低速で駆動すると、中高速で駆動する場合と比較して被圧縮流体の漏洩が多くなるからである。
【0007】
また、上記公報に開示された技術では、本来非力な電動モータで内部摩擦の大きな圧縮機を駆動させることで電動モータに無理を強いることになり、結果的に見て装置全体としては高い運転効率が得られているとは言い難い。
【0008】
本発明は上記の事情に鑑みてなされたものであり、求められる負荷の大きさに関わらず高効率運転が可能な空気調和装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記の課題を解決するための手段として、次のような構成の空気調和装置を採用する。
すなわち請求項1記載の空気調和装置は、室内熱交換器、室外熱交換器、膨張弁および四方弁を冷媒管路を介して接続するとともに該冷媒管路に容量の異なる2つの圧縮機を並列に接続し、該2つの圧縮機に個々に駆動手段を設け、前記2つの圧縮機のうち少なくとも容量の大きな圧縮機を駆動する駆動手段に内燃機関を採用した空気調和装置であって、
暖房運転時に中温中圧の液冷媒を導通することとなる中圧冷媒管路に一端を接続され、前記2つの圧縮機のうち容量の小さな圧縮機の上流側に位置する一方の冷媒管路に他端を接続された第1のバイパス管路を設け、
該第1のバイパス管路には、暖房運転時に必要に応じて開閉して前記第1のバイパス管路への冷媒の導入を制限する第1の開閉弁と、前記内燃機関の排熱を利用して低温低圧の液冷媒を加熱、気化させる第1の排熱利用熱交換器とを前記中圧冷媒管路側から順に並べて設け、
前記第1のバイパス管路との接続箇所より上流側に位置する前記一方の冷媒管路には、必要に応じて開閉して前記容量の小さな圧縮機への冷媒の導入を制限する第2の開閉弁を設け、
前記第1のバイパス管路との接続箇所より暖房運転時の上流側に位置する前記中圧冷媒管路に一端を接続され、前記2つの圧縮機のうち容量の大きな圧縮機の上流側に位置する他方の冷媒管路に他端を接続された第2のバイパス管路を設け、
該第2のバイパス管路には、暖房運転時に必要に応じて開閉して前記第2のバイパス管路への冷媒の導入を制限する第3の開閉弁と、中温中圧の液冷媒を低温低圧の液冷媒に減圧する減圧弁と、前記内燃機関の排熱を利用して低温低圧の液冷媒を加熱、気化させる第2の排熱利用熱交換器とを前記中圧冷媒管路側から順に並べて設け、
前記第1のバイパス管路との接続箇所より暖房運転時の下流側に位置する前記中圧冷媒管路には、必要に応じて開閉して前記室外熱交換器への冷媒の導入を制限する第4の開閉弁を設けたことを特徴とする。
【0010】
請求項2記載の空気調和装置は、請求項1記載の空気調和装置において、前記2つの圧縮機のうち少なくとも容量の大きな圧縮機を駆動する駆動手段にガスエンジンを採用したことを特徴とする。
【0011】
請求項3記載の空気調和装置は、請求項1または2記載の空気調和装置において、前記2つ圧縮機のうち容量の小さなものを駆動する駆動手段に電動モータを採用したことを特徴とする。
【0012】
請求項4記載の空気調和装置は、請求項1記載の空気調和装置において、前記2つの圧縮機に個々に設けた駆動手段の少なくともいずれか一方を電動モータとし、該電動モータを駆動する発電装置を併設し、該発電装置の排熱を暖房運転時の冷媒加熱に利用することを特徴とする。
【0013】
請求項5記載の空気調和装置は、請求項1、2、3または4記載の空気調和装置において、前記暖房運転時に、前記第1、第3の開閉弁を閉じ前記第2、第4の開閉弁を開いて前記2つの圧縮機のうち容量の小さいもののみを駆動させるか、前記第1、第2の開閉弁を閉じ前記第3、第4の開閉弁を開いて前記2つの圧縮機のうち容量の大きなもののみを駆動させるか、または前記第1、第4の開閉弁を開き前記第2、第3の開閉弁を閉じて前記2つの圧縮機を同時に駆動させるかいずれかの運転を、求められる負荷に応じて選択的に実行することを特徴とする。
【0014】
請求項6記載の空気調和装置は、請求項1、2、3、4または5記載の空気調和装置において、前記第1、第2、第4の開閉弁を閉じ前記第3の開閉弁を開いて前記2つの圧縮機のうち容量の大きなもののみを駆動させる運転を、求められる負荷および屋外の気温に応じて実行することを特徴とする。
【0015】
請求項7記載の空気調和装置は、請求項1、2、3、4、5または6記載の空気調和装置において、冷房運転時に、前記第1、第3の開閉弁を閉じ前記第2、第4の開閉弁を開いて前記2つの圧縮機のうち容量の小さいもののみを駆動させるか、前記第1、第2、第3の開閉弁を閉じ前記第4の開閉弁を開いて前記2つの圧縮機のうち容量の大きなもののみを駆動させるか、または前記第1、第3の開閉弁を閉じ前記第2、第4の開閉弁を開いて前記2つの圧縮機を同時に駆動させるかいずれかの運転を、求められる負荷に応じて選択的に実行することを特徴とする。
【0016】
【発明の実施の形態】
本発明に係る実施形態を図1および図2に示して説明する。
図1には、容量の異なる2つの圧縮機をガスエンジンと電動モータとで個々に駆動する構造を有するヒートポンプ式の空気調和装置を示す。この空気調和装置は、室外ユニット10と室内ユニット20とから構成されており、これらは冷媒を導通する冷媒配管30や図示しない電気配線等によって接続されている。
【0017】
室外ユニット10には、屋外の空気と冷媒との間で熱交換を行う室外熱交換器11と、室外熱交換器11または後述する室内熱交換器21に冷媒を送出する2つの圧縮機12A,12Bと、冷媒配管30を流通する冷媒の流れ方向を切り替える四方弁13と、暖房運転時に使用される膨張弁14と、冷媒を気液分離するレシーバ15と、室外熱交換器11に屋外の空気を流通させる室外ファン16とが具備され、冷媒配管30を介して接続されて冷媒循環系の一部を構成している。
【0018】
2つの圧縮機12A,12Bは容量が異なり、室外ユニット10において上記各機器と冷媒配管30からなる冷媒循環系に並列に接続されている。圧縮機12A,12Bのうち、容量の大きな圧縮機12Aの駆動手段にはガスエンジン(内燃機関)EGが採用され、容量の小さな圧縮機12Bの駆動手段には電動モータMが採用されている。
【0019】
ガスエンジンEGは、中程度の負荷に対応して圧縮機12Aの能力を活かして(すなわち圧縮機12Aの容量に見合った回転数域で)駆動させたときに燃費の良い高効率運転が行えるように調整されている。電動モータMは、小さい負荷に対応して圧縮機12Bの能力を活かして(すなわち圧縮機12Bの容量に見合った回転数域で)駆動させたときに無理のない運転が行えるように適切な出力が得られるものが選択されている。
【0020】
圧縮機12A,12Bの上流側には個々にアキュムレータ17A,17Bがそれぞれ設けられ、下流側にはオイルセパレータ18A,18Bおよび各圧縮機への冷媒の逆流を阻止する逆止弁V1がそれぞれ設けられている。オイルセパレータ18A,18Bには、ガス冷媒から分離した油分を圧縮機12A,12Bの上流側に戻す油戻し管19がそれぞれ設けられている。
【0021】
膨張弁14の前後の冷媒配管30には、膨張弁14をバイパスするバイパス配管31が設けられ、バイパス管路31には暖房運転時にバイパス配管31への冷媒の流入を阻止する逆止弁V2が設けられている。
【0022】
室内ユニット20には、屋内の空気と冷媒との間で熱交換を行う室内熱交換器21と、冷房運転時に使用される電磁膨張弁22と、室内熱交換器21に室内の空気を流通させる室内ファン23とが具備され、冷媒配管30を介して接続されて室外ユニット10とともに冷媒循環系を構成している。
【0023】
電磁膨張弁22の前後の冷媒配管30には、電磁膨張弁22をバイパスするバイパス配管32が設けられ、バイパス配管32には冷房運転時にバイパス配管32への冷媒の流入を阻止する逆止弁V3が設けられている。
【0024】
また、上記室外ユニット10には、室外熱交換器11と室内熱交換器21とに連通し暖房運転時に中温中圧の液冷媒(すなわち凝縮器である室内熱交換器21を通過した後の液冷媒)を導通することとなる冷媒配管(中圧冷媒管路)30aに一端を接続され、容量の小さな圧縮機12Bの上流側に位置する分岐冷媒配管(一方の冷媒管路)30bに他端を接続されたバイパス配管(第1のバイパス管路)33が設けられている。
【0025】
バイパス配管33には、必要に応じて開閉してバイパス配管33への液冷媒の導入を制限する開閉弁(第1の開閉弁)V4、ガスエンジンEGの排熱を利用して低温低圧の液冷媒を加熱、気化させる排熱利用熱交換器(第1の排熱利用熱交換器)40が、冷媒配管30a側から順に並んで設けられている。
【0026】
また、分岐冷媒配管30bには、必要に応じて開閉して圧縮機12Bへの冷媒の導入を制限する開閉弁(第2の開閉弁)V5が設けられている。
【0027】
上記室外ユニット10には、バイパス配管33との接続箇所より暖房運転時の上流側に位置する冷媒配管30aに一端を接続され、容量の大きな圧縮機12Aの上流側に位置する分岐冷媒配管(他方の冷媒管路)30cに他端を接続されたバイパス配管(第2のバイパス管路)34が設けられている。
【0028】
バイパス配管34には、必要に応じて開閉してバイパス配管34への冷媒の導入を制限する開閉弁(第3の開閉弁)V6、中温中圧の液冷媒を低温低圧の液冷媒に減圧する膨張弁(減圧弁)35、ガスエンジンEGの排熱を利用して低温低圧の液冷媒を加熱、気化させる排熱利用熱交換器(第2の排熱利用熱交換器)41が、冷媒配管30a側から順に並んで設けられている。
【0029】
さらに、上記室外ユニット10には、バイパス配管33との接続箇所より暖房運転時の下流側に位置する冷媒配管30aに、必要に応じて開閉して室外熱交換器11への冷媒の導入を制限する開閉弁(第4の開閉弁)V7が設けられている。
【0030】
ガスエンジンEGと排熱利用熱交換器40との間には、ガスエンジンEGの排熱を伝達し排熱利用熱交換器40において冷媒と熱交換させる排熱伝達手段42が設けられている。ガスエンジンEGと排熱利用熱交換器41との間にも、同様の排熱伝達手段43が設けられている。排熱伝達手段42,43は、例えばガスエンジンEGの排気を排熱利用熱交換器40、41に直接導くもの、ガスエンジンEGで加熱された冷却水を排熱利用熱交換器40、41に導いて間接的に熱を伝達するもの等である。
【0031】
さらに、上記空気調和装置には、2つの圧縮機12A,12Bに求められる負荷に応じて各圧縮機を個別に駆動させたり2つをともに駆動させたりする制御を行う制御部50が設けられている。制御部50では、圧縮機12A,12Bの駆動を制御するとともに、冷房運転/暖房運転の切り換え時や求められる負荷の大きさに応じて四方弁13や開閉弁V4,V5,V6,V7を切り換える制御を行うようになっている。
【0032】
上記のように構成された空気調和装置の作動の仕方を冷房運転と暖房運転とに分け、さらにそれぞれの運転状態において求められる負荷の大きさごとに分けて説明する。
[冷房運転;低負荷時]
このモードでは、容量の小さな圧縮機12Bのみが電動モータMによって駆動される。開閉弁V4,V6は閉じられ、開閉弁V5,V7は開かれる。
冷媒は圧縮機12Bで圧縮されて高温高圧のガス冷媒となり、オイルセパレータ18B、四方弁13を経て室外熱交換器11に流入する。室外熱交換器11では、高温高圧のガス冷媒が室外ファン16によって取り込まれた屋外の空気に熱を与えて排熱し、自らは凝縮、液化して中温中圧の液冷媒となる。
【0033】
この中温中圧の液冷媒は、膨張弁14をバイパスし、レシーバ15にて気液分離された後、冷媒配管30を通じて室内ユニット20に送出され、電磁膨張弁22を通過する過程で減圧されて低温低圧の液冷媒となり、室内熱交換器21に流入する。室内熱交換器21では、低温低圧の液冷媒が室内ファン23によって取り込まれた室内の空気から熱を奪って冷却し、自らは蒸発、気化して低温低圧のガス冷媒となる。この低温低圧のガス冷媒は、冷媒配管30を通じて室外ユニット10に送出され、四方弁13、アキュムレータ17Bを経て圧縮機12Bに吸入、圧縮される。以降は上記過程を繰り返すこととなる。
【0034】
[冷房運転;中負荷時]
このモードでは、容量の大きな圧縮機12AのみがガスエンジンEGによって駆動される。開閉弁V4,V5,V6は閉じられ、開閉弁V7は開かれる。このモードでは圧縮機が容量の小さな12Bから容量の大きな12Aに切り換えられるだけで、作動の仕方は低負荷時と同じである。なお、圧縮機の切り換えに伴い機能するオイルセパレータおよびアキュムレータもそれぞれに対応して設けられたものに切り換わる。
【0035】
[冷房運転;高負荷時]
このモードでは、圧縮機12A,12Bがそれぞれの駆動手段によって同時に駆動される。開閉弁V4,V6は閉じられ、開閉弁V5,V7は開かれる。このモードは2つの圧縮機12A,12Bが同時に駆動するだけで、作動の仕方は低負荷時や中負荷時と同じである。
【0036】
[暖房運転;低負荷時]
このモードでは、容量の小さな圧縮機12Bのみが電動モータMによって駆動される。開閉弁V4、V6は閉じられ、V5,V7は開かれる。
冷媒は圧縮機12Bで圧縮されて高温高圧のガス冷媒となり、オイルセパレータ18B、四方弁13を経て室内ユニット20に送出され、室内熱交換器21に流入する。室内熱交換器21では、高温高圧のガス冷媒が室内ファン23によって取り込まれた室内の空気に熱を与えて加熱し、自らは凝縮、液化して中温中圧の液冷媒となる。
【0037】
この中温中圧の液冷媒は、電磁膨張弁22をバイパスし、冷媒配管30を通じて室外ユニット10に送出され、レシーバ15にて気液分離された後、膨張弁14を通過する過程で減圧されて低温低圧の液冷媒となり、室外熱交換器11に流入する。室外熱交換器11では、低温低圧の液冷媒が室外ファン16によって取り込まれた屋外の空気から熱を奪い、自らは蒸発、気化して低温低圧のガス冷媒となる。この低温低圧のガス冷媒は、四方弁13、アキュムレータ17Bを経て圧縮機12Bに吸入、圧縮される。以降は上記過程を繰り返すこととなる。
【0038】
[暖房運転;中負荷時]
このモードでは、容量の大きな圧縮機12AのみがガスエンジンEGによって駆動される。開閉弁V4,V5は閉じられ、開閉弁V6,V7は開かれる。
冷媒は圧縮機12Aで圧縮されて高温高圧のガス冷媒となり、オイルセパレータ18A、四方弁13を経て室内ユニット20に送出され、室内熱交換器21に流入する。室内熱交換器21では、高温高圧のガス冷媒が室内ファン23によって取り込まれた室内の空気に熱を与えて加熱し、自らは凝縮、液化して中温中圧の液冷媒となる(ここまでは圧縮機が12Bから12Aに切り換えられるだけで、作動の仕方は低負荷時と同じ)。
【0039】
この中温中圧の液冷媒は、電磁膨張弁22をバイパスし、冷媒配管30を通じて室外ユニット10に送出され、レシーバ15にて気液分離された後、一部がバイパス配管34に流入する。バイパス配管34に流入しなかった残りの液冷媒は、膨張弁14を通過する過程で減圧されて低温低圧の液冷媒となり、室外熱交換器11に流入して屋外の空気から熱を奪い、自らは蒸発、気化して低温低圧のガス冷媒となる。
【0040】
バイパス配管34に流入した中温中圧の液冷媒は、膨張弁35を通過する過程で減圧されて低温低圧の液冷媒となり、排熱利用熱交換器41に流入する。排熱利用熱交換器41では、低温低圧の液冷媒がガスエンジンEGから排熱伝達手段43を介して伝達された排熱を利用して加熱され、蒸発、気化して低温低圧のガス冷媒となる。
【0041】
室外熱交換器11において蒸発、気化した低温低圧のガス冷媒と、排熱利用熱交換器41において蒸発、気化した低温低圧のガス冷媒とはアキュムレータ17Aで合流し、圧縮機12Aに吸入される。以降は上記過程を繰り返すこととなる。
【0042】
[暖房運転;高負荷時]
このモードでは、圧縮機12A,12Bがそれぞれの駆動手段によって同時に駆動される。開閉弁V4,V5,V7は開かれ、開閉弁V6は閉じられる。
冷媒は圧縮機12A,12Bから高温高圧のガス状態で吐出され、オイルセパレータ18A,18Bを経て合流し、四方弁13を経て室内ユニット20に送出され、室内熱交換器21に流入する。室内熱交換器21では、高温高圧のガス冷媒が室内ファン23によって取り込まれた室内の空気に熱を与えて加熱し、自らは凝縮、液化して中温中圧の液冷媒となる。
【0043】
この中温中圧の液冷媒は、電磁膨張弁22をバイパスし、冷媒配管30を通じて室外ユニット10に送出され、レシーバ15にて気液分離された後、一部がバイパス配管33に流入する。バイパス配管33に流入しなかった残りの液冷媒は、膨張弁14を通過する過程で減圧されて低温低圧の液冷媒となり、室外熱交換器11に流入して屋外の空気から熱を奪い、自らは蒸発、気化して低温低圧のガス冷媒となる。
【0044】
バイパス配管33に流入した中温中圧の液冷媒は、排熱利用熱交換器40に流入し、ガスエンジンEGから排熱伝達手段42を介して伝達された排熱を利用して加熱され、蒸発、気化して中温中圧のガス冷媒となる。
【0045】
室外熱交換器11において蒸発、気化した低温低圧のガス冷媒は、アキュムレータ17Aを経て圧縮機12Aに吸入、圧縮される。排熱利用熱交換器40において蒸発、気化した中温中圧のガス冷媒は、アキュムレータ17Bを経て圧縮機12Bに吸入される。この場合の圧縮機12Bはガスポンプとして機能し、中温中圧のガス冷媒を高温高圧のガス冷媒として吐出する。以降は上記過程を繰り返すこととなる。
【0046】
[暖房運転;低外気温,低負荷時]
このモードでは、容量の大きな圧縮機12AのみがガスエンジンEGによって駆動される。開閉弁V4,V5,V7は閉じられ、開閉弁V6は開かれる。
冷媒は圧縮機12Aで圧縮されて高温高圧のガス冷媒となり、オイルセパレータ18A、四方弁13を経て室内ユニット20に送出され、室内熱交換器21に流入する。室内熱交換器21では、高温高圧のガス冷媒が室内ファン23によって取り込まれた室内の空気に熱を与えて加熱し、自らは凝縮、液化して中温中圧の液冷媒となる。
【0047】
この中温中圧の液冷媒は、電磁膨張弁22をバイパスし、冷媒配管30を通じて室外ユニット10に送出され、レシーバ15にて気液分離された後、バイパス配管34に流入する。バイパス配管34に流入した中温中圧の液冷媒は、膨張弁35を通過する過程で減圧されて低温低圧の液冷媒となり、排熱利用熱交換器41に流入する。排熱利用熱交換器41では、低温低圧の液冷媒がガスエンジンEGから排熱伝達手段43を介して伝達された排熱を利用して加熱され、蒸発、気化して低温低圧のガス冷媒となる。
【0048】
排熱利用熱交換器41において蒸発、気化した低温低圧のガス冷媒はアキュムレータ17Aを経て圧縮機12Aに吸入、圧縮される。以降は上記過程を繰り返すこととなる。
【0049】
[暖房運転;低外気温,中/高負荷時]
このモードでは、圧縮機12A,12Bがそれぞれの駆動手段によって同時に駆動される。開閉弁V4,V6は開かれ、開閉弁V5,V7は閉じられる。
冷媒は圧縮機12A,12Bから高温高圧のガス状態で吐出され、オイルセパレータ18A,18Bを経て合流し、四方弁13を経て室内ユニット20に送出され、室内熱交換器21に流入する。室内熱交換器21では、高温高圧のガス冷媒が室内ファン23によって取り込まれた室内の空気に熱を与えて加熱し、自らは凝縮、液化して中温中圧の液冷媒となる。
【0050】
この中温中圧の液冷媒は、電磁膨張弁22をバイパスし、冷媒配管30を通じて室外ユニット10に送出され、レシーバ15にて気液分離された後、一部がバイパス配管33に流入し、残りがバイパス配管34に流入する。バイパス配管33に流入した中温中圧の液冷媒は、排熱利用熱交換器40に流入し、ガスエンジンEGから排熱伝達手段42を介して伝達された排熱を利用して加熱され、蒸発、気化して中温中圧のガス冷媒となる。
【0051】
バイパス配管34に流入した中温中圧の液冷媒は、膨張弁35を通過する過程で減圧されて低温低圧の液冷媒となり、排熱利用熱交換器41に流入する。排熱利用熱交換器41では、低温低圧の液冷媒がガスエンジンEGから排熱伝達手段43を介して伝達された排熱を利用して加熱され、蒸発、気化して低温低圧のガス冷媒となる。
【0052】
排熱利用熱交換器40において蒸発、気化した中温中圧のガス冷媒は、アキュムレータ17Bを経て圧縮機12Bに吸入される。この場合の圧縮機12Bはガスポンプとして機能し、中温中圧のガス冷媒を高温高圧のガス冷媒として吐出する。排熱利用熱交換器41において蒸発、気化した低温低圧のガス冷媒は、アキュムレータ17Aを経て圧縮機12Aに吸入、圧縮される。以降は上記過程を繰り返すこととなる。
【0053】
上記のような作動をする空気調和装置においては、図2に示すように、圧縮機に求められる負荷が小さければ容量の小さい圧縮機12Bを電動モータMで駆動して効率を稼ぎ、求められる負荷が中程度であれば容量の大きい圧縮機12AをガスエンジンEGの好適な回転数域で駆動して高効率運転を実現し、求められる負荷が大きければ大小2つの圧縮機12A,12Bをそれぞれの駆動手段で同時に駆動してさらなる高効率運転を実現することができる。これにより、求められる負荷の大きさに関わらず高いCOP(成績係数)が得られる。
【0054】
1基の圧縮機をガスエンジン等の内燃機関1基で駆動する従来の空気調和装置と比較すると、従来の空気調和装置は、求められる頻度の高い中程度の負荷に対応して高効率運転が行えるようにエンジンが調整されるため、小さな負荷が求められる場合はエンジンの回転数を高効率運転が行える回転数域から外して(回転数を下げて)運転させなければならず、効率が著しく低下する。大きな負荷が求められる場合にはエンジンの回転数を高効率運転が行える回転数域から外して(回転数を上げて)運転させなければならず、この場合も同様に効率が著しく低下する。このため、本実施形態の空気調和装置のように負荷の大きさに関わらず高いCOPを維持することはできない。
【0055】
さらに、ガスエンジンEGと電動モータMとを、求められる負荷の大きさに応じてそれらを選択的に駆動したり同時に駆動したりするので、常時内燃機関を駆動させる従来の空気調和装置と比較してCO2やNOxの排出量を抑えることができ、環境への配慮もなされる。
【0056】
また、本実施形態の空気調和装置においては、中程度以上の負荷が求められる場合、室外熱交換器11で屋外の空気から熱を汲み上げながら、ガスエンジンEGの排熱を利用して冷媒の加熱を行うので、さらなる高効率運転が可能である。
【0057】
しかも、外気温が低く、従来の空気調和装置では頻繁にデフロスト(霜取り)運転に移行しそうな状況でも、室外熱交換器11を使わず排熱利用熱交換器40,41を使用して冷媒の加熱が可能なので、デフロスト運転に伴う一時的な運転の中断がなく、安定した空調が得られる。
【0058】
ところで、本実施形態においては容量の大きな圧縮機12Aの駆動手段としてガスエンジンEGを採用したが、当該駆動手段としての内燃機関には、ガスエンジン以外にマイクロガスタービンを採用することが可能である。また、その他の燃料を消費して回転力を取り出すことができる原動機を採用することも可能である。
【0059】
本実施形態においては容量の小さな圧縮機12Bの駆動手段として電動モータMを採用したが、圧縮機12Bの能力を活かせる回転数域で高効率運転が可能な内燃機関があればこれを圧縮機12Bの駆動手段として採用することも可能である。
【0060】
また、大小2つの圧縮機12A,12Bの駆動手段をいずれも電動モータとし、これらに電力を供給する発電装置を併設し、該発電装置の排熱を排熱利用熱交換器40に伝達して冷媒の加熱を行うようにすることも可能である。この場合の発電装置には、発電機に動力源としてガスエンジンやマイクロガスタービンを設置したものや、燃料電池等を採用することが好ましい。
【0061】
上記の各実施形態においては大小2つの圧縮機12A,12Bを具備する空気調和装置について説明したが、本発明は容量の異なる3つもしくはそれ以上の数の圧縮機を備える空気調和装置としても実施可能である。
【0062】
【発明の効果】
以上説明したように、本発明によれば、圧縮機に求められる負荷が小さければ容量の小さな圧縮機をそれに見合った出力が得られる駆動手段で駆動して効率を稼ぎ、求められる負荷が中程度であれば容量の大きな圧縮機をそれに見合った出力が得られる駆動手段で駆動して高効率運転を実現し、求められる負荷が大きければ容量の異なる複数の圧縮機をそれぞれの駆動手段で同時に駆動してさらなる高効率運転を実現することができる。つまり、求められる負荷の大きさに応じて最も効率の良い運転が行える圧縮機を選択して駆動するので、負荷の大きさに関わらず高いCOPが得られる。
【0063】
さらに、容量の大きな圧縮機の駆動手段として内燃機関を採用するとともに、容量の小さな圧縮機の駆動手段として電動モータを採用し、求められる負荷の大きさに応じてそれらを選択的に駆動したり同時に駆動したりするので、常時内燃機関を駆動させる従来の空気調和装置と比較してCO2やNOxの排出量を抑えることができ、環境にも優しい。
【0064】
また、本発明によれば、圧縮機の駆動手段として採用した内燃機関の排熱を、暖房運転時に、容量の小さい圧縮機をガスポンプとして用いる構造を介して、冷媒の加熱に利用することにより、さらなる高効率運転が可能である。
【図面の簡単な説明】
【図1】 本発明に係る空気調和装置の概略構成図である。
【図2】 本発明による空気調和装置と従来のガスエンジン駆動型空気調和装置とについて、負荷の大きさに対応する成績係数を比較した図である。
【符号の説明】
10 室外ユニット
11 室外熱交換器
12A,12B 圧縮機
14 膨張弁
20 室内ユニット
21 室内熱交換器
30a 冷媒配管(中圧冷媒管路)
30b 冷媒配管(一方の冷媒管路)
30c 分岐冷媒配管(他方の冷媒管路)
33 バイパス配管(第1のバイパス管路)
34 バイパス配管(第2のバイパス管路)
35 膨張弁
40 排熱利用熱交換器(第1の排熱利用熱交換器)
41 排熱利用熱交換器(第2の排熱利用熱交換器)
42,43 排熱伝達手段
50 制御部
EG ガスエンジン(内燃機関)
M 電動モータ
V4 開閉弁(第1の開閉弁)
V5 開閉弁(第2の開閉弁)
V6 開閉弁(第3の開閉弁)
V7 開閉弁(第4の開閉弁)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner, and more particularly, to a heat pump type air conditioner having a structure in which refrigerant is heated using exhaust heat of a drive unit that drives a compressor.
[0002]
[Prior art]
There is a heat pump type air conditioner that employs an internal combustion engine such as a gas engine as a driving means of the compressor and further has a structure for heating the refrigerant by using the exhaust heat of the internal combustion engine. In this air conditioner, the rotational speed of the engine is changed according to the load, for example, the rotational speed is lowered when the load required for the compressor is small and the rotational speed is increased when the load is large. Therefore, the engine is required to have a wide rotation speed range.
[0003]
However, an internal combustion engine such as a gas engine has a limited rotation speed range in which high-efficiency operation is possible. Therefore, in a conventional air conditioner, the engine is adjusted so that high-efficiency operation is possible in a rotation speed range corresponding to a load range frequently required during normal operation.
[0004]
[Problems to be solved by the invention]
Since the conventional air conditioning apparatus performs the adjustment as described above, when a load having a magnitude outside the general range is required, the engine is caused to perform an inefficient operation. For this reason, it has been pointed out that the operating cost increases due to the deterioration of fuel consumption.
[0005]
In Japanese Patent Laid-Open No. 11-132594, a compressor having a large capacity is selectively driven by either an electric motor or an engine. When the load is small, the compressor is driven by the electric motor, and when the load is large A technique is disclosed in which a compressor is driven by an engine so that the engine is not operated inefficiently.
[0006]
However, in the technique disclosed in the above publication, for example, when a required load is small, a compressor having a large capacity is driven at a low speed, so that sufficient compression efficiency cannot be obtained. This is because when a compressor having a large capacity is driven at a low speed, leakage of the fluid to be compressed increases as compared with a case where the compressor is driven at a medium speed.
[0007]
Moreover, in the technique disclosed in the above publication, the electric motor is forced by driving a compressor having a large internal friction with an originally non-powerful electric motor, and as a result, the operation efficiency of the entire apparatus is high. Is hard to say.
[0008]
The present invention has been made in view of the above circumstances, and an object thereof is to provide an air conditioner capable of high-efficiency operation regardless of the required load.
[0009]
[Means for Solving the Problems]
As means for solving the above problems, an air conditioner having the following configuration is employed.
That is, the air conditioner according to claim 1 connects an indoor heat exchanger, an outdoor heat exchanger, an expansion valve, and a four-way valve through a refrigerant pipe, and two compressors having different capacities are connected in parallel to the refrigerant pipe. An air conditioner using an internal combustion engine as a drive means for driving a compressor having a large capacity among the two compressors.
One end of the two compressors is connected to the medium-pressure refrigerant pipe that conducts the medium-temperature and medium-pressure liquid refrigerant during the heating operation, and one refrigerant pipe located upstream of the small-capacity compressor of the two compressors. Providing a first bypass line connected to the other end;
The first bypass pipe uses a first on-off valve that opens and closes as necessary during heating operation and restricts introduction of refrigerant into the first bypass pipe, and uses exhaust heat of the internal combustion engine Then, a first exhaust heat utilization heat exchanger that heats and vaporizes the low-temperature and low-pressure liquid refrigerant is arranged in order from the medium-pressure refrigerant pipe side,
The second refrigerant pipe located upstream from the connection point with the first bypass pipe is opened and closed as necessary to restrict the introduction of the refrigerant into the small capacity compressor. Provided an on-off valve,
One end is connected to the intermediate-pressure refrigerant pipe located upstream from the connection point with the first bypass pipe in the heating operation, and located upstream of the compressor having a large capacity among the two compressors. Providing a second bypass line having the other end connected to the other refrigerant line,
The second bypass pipe is provided with a third on-off valve that opens and closes as necessary during heating operation to restrict introduction of the refrigerant into the second bypass pipe, and a medium- and intermediate-pressure liquid refrigerant is supplied at a low temperature. A pressure reducing valve for reducing the pressure to a low-pressure liquid refrigerant and a second exhaust heat utilization heat exchanger that heats and vaporizes the low-temperature and low-pressure liquid refrigerant by using the exhaust heat of the internal combustion engine in order from the intermediate pressure refrigerant pipe side Side by side,
The intermediate pressure refrigerant pipe located on the downstream side in the heating operation from the connection point with the first bypass pipe is opened and closed as necessary to restrict the introduction of the refrigerant to the outdoor heat exchanger. A fourth on-off valve is provided.
[0010]
According to a second aspect of the present invention, in the air conditioner according to the first aspect, a gas engine is employed as a driving means for driving a compressor having a large capacity among the two compressors.
[0011]
An air conditioner according to a third aspect of the present invention is the air conditioner according to the first or second aspect, wherein an electric motor is used as a driving means for driving a small capacity of the two compressors.
[0012]
The air conditioner according to claim 4 is the air conditioner according to claim 1, wherein at least one of the drive means provided individually in the two compressors is an electric motor, and the electric generator drives the electric motor. And the exhaust heat of the power generation apparatus is used for refrigerant heating during heating operation.
[0013]
The air conditioner according to claim 5 is the air conditioner according to claim 1, 2, 3 or 4, wherein the first and third on-off valves are closed during the heating operation, and the second and fourth on-off valves are closed. Open the valve to drive only the small compressor of the two compressors, or close the first and second on-off valves and open the third and fourth on-off valves to open the two compressors. Of these, only the one having a large capacity is driven, or the first and fourth on-off valves are opened and the second and third on-off valves are closed to drive the two compressors simultaneously. , And selectively executing according to a required load.
[0014]
The air conditioner according to claim 6 is the air conditioner according to claim 1, 2, 3, 4 or 5, wherein the first, second and fourth on-off valves are closed and the third on-off valve is opened. Then, the operation of driving only the one having a large capacity among the two compressors is executed according to the required load and the outdoor temperature.
[0015]
An air conditioner according to a seventh aspect is the air conditioner according to the first, second, third, fourth, fifth, or sixth aspect, wherein the first and third on-off valves are closed during the cooling operation. 4 is opened to drive only the small compressor of the two compressors, or the first, second and third on-off valves are closed and the fourth on-off valve is opened. Either only the compressor having a large capacity is driven, or the first and third on-off valves are closed and the second and fourth on-off valves are opened to drive the two compressors simultaneously. The operation is selectively performed according to a required load.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the present invention will be described with reference to FIGS.
FIG. 1 shows a heat pump type air conditioner having a structure in which two compressors having different capacities are individually driven by a gas engine and an electric motor. This air conditioner includes an outdoor unit 10 and an indoor unit 20, which are connected by a refrigerant pipe 30 that conducts a refrigerant, an electric wiring (not shown), and the like.
[0017]
The outdoor unit 10 includes an outdoor heat exchanger 11 that exchanges heat between outdoor air and a refrigerant, and two compressors 12A that send the refrigerant to the outdoor heat exchanger 11 or an indoor heat exchanger 21 described later. 12B, a four-way valve 13 that switches the flow direction of the refrigerant flowing through the refrigerant pipe 30, an expansion valve 14 that is used during heating operation, a receiver 15 that separates the refrigerant into gas and liquid, and outdoor air to the outdoor heat exchanger 11. And an outdoor fan 16 that circulates the refrigerant, and is connected via a refrigerant pipe 30 to constitute a part of the refrigerant circulation system.
[0018]
The two compressors 12 </ b> A and 12 </ b> B have different capacities, and are connected in parallel to the refrigerant circulation system including the above-described devices and the refrigerant pipe 30 in the outdoor unit 10. Of the compressors 12A and 12B, a gas engine (internal combustion engine) EG is adopted as a driving means for the compressor 12A having a large capacity, and an electric motor M is adopted as a driving means for the compressor 12B having a small capacity.
[0019]
The gas engine EG can perform high-efficiency operation with good fuel efficiency when driven by utilizing the capacity of the compressor 12A corresponding to a medium load (that is, in a rotational speed range corresponding to the capacity of the compressor 12A). Has been adjusted. The electric motor M has an appropriate output so that it can be operated comfortably when driven by utilizing the capacity of the compressor 12B corresponding to a small load (that is, in a rotational speed range corresponding to the capacity of the compressor 12B). Is selected.
[0020]
Accumulators 17A and 17B are individually provided on the upstream side of the compressors 12A and 12B, and check valves V1 for preventing the reverse flow of the refrigerant to the compressors are provided on the downstream side, respectively. ing. Oil separators 18A and 18B are provided with oil return pipes 19 for returning the oil separated from the gas refrigerant to the upstream side of compressors 12A and 12B, respectively.
[0021]
The refrigerant pipe 30 before and after the expansion valve 14 is provided with a bypass pipe 31 that bypasses the expansion valve 14, and the bypass pipe 31 has a check valve V2 that prevents the refrigerant from flowing into the bypass pipe 31 during heating operation. Is provided.
[0022]
In the indoor unit 20, indoor air exchanger 21 that performs heat exchange between indoor air and refrigerant, an electromagnetic expansion valve 22 that is used during cooling operation, and indoor air are circulated through the indoor heat exchanger 21. An indoor fan 23 is provided, and is connected via a refrigerant pipe 30 to constitute a refrigerant circulation system together with the outdoor unit 10.
[0023]
The refrigerant pipe 30 before and after the electromagnetic expansion valve 22 is provided with a bypass pipe 32 that bypasses the electromagnetic expansion valve 22, and the bypass pipe 32 has a check valve V3 that prevents the refrigerant from flowing into the bypass pipe 32 during cooling operation. Is provided.
[0024]
Further, the outdoor unit 10 communicates with the outdoor heat exchanger 11 and the indoor heat exchanger 21, and the liquid refrigerant after passing through the indoor heat exchanger 21 that is a medium temperature and medium pressure during heating operation (that is, the indoor heat exchanger 21 that is a condenser). One end is connected to a refrigerant pipe (intermediate pressure refrigerant pipe) 30a that conducts the refrigerant), and the other end is connected to a branch refrigerant pipe (one refrigerant pipe) 30b located on the upstream side of the compressor 12B having a small capacity. Is connected to the bypass pipe (first bypass pipe line) 33.
[0025]
The bypass pipe 33 is opened and closed as necessary, and an on-off valve (first on-off valve) V4 that restricts introduction of the liquid refrigerant to the bypass pipe 33, and low-temperature and low-pressure liquid using the exhaust heat of the gas engine EG. An exhaust heat utilization heat exchanger (first exhaust heat utilization heat exchanger) 40 that heats and vaporizes the refrigerant is provided side by side from the refrigerant pipe 30a side.
[0026]
The branch refrigerant pipe 30b is provided with an on-off valve (second on-off valve) V5 that opens and closes as necessary to restrict introduction of the refrigerant into the compressor 12B.
[0027]
One end of the outdoor unit 10 is connected to the refrigerant pipe 30a located on the upstream side in the heating operation from the connection point with the bypass pipe 33, and the branched refrigerant pipe (the other side) located on the upstream side of the compressor 12A having a large capacity. The refrigerant pipe) 30c is provided with a bypass pipe (second bypass pipe) 34 having the other end connected thereto.
[0028]
In the bypass pipe 34, an on-off valve (third on-off valve) V6 that opens and closes as necessary to restrict introduction of the refrigerant into the bypass pipe 34, and depressurizes the medium-temperature and medium-pressure liquid refrigerant to a low-temperature and low-pressure liquid refrigerant. An expansion valve (pressure reduction valve) 35, a waste heat utilization heat exchanger (second waste heat utilization heat exchanger) 41 for heating and vaporizing a low-temperature and low-pressure liquid refrigerant using the exhaust heat of the gas engine EG, and refrigerant piping They are arranged in order from the 30a side.
[0029]
Furthermore, in the outdoor unit 10, the refrigerant pipe 30 a located downstream from the connection point with the bypass pipe 33 during heating operation is opened and closed as necessary to restrict introduction of the refrigerant into the outdoor heat exchanger 11. An on-off valve (fourth on-off valve) V7 is provided.
[0030]
Between the gas engine EG and the exhaust heat utilization heat exchanger 40, there is provided exhaust heat transfer means 42 for transmitting the exhaust heat of the gas engine EG and exchanging heat with the refrigerant in the exhaust heat utilization heat exchanger 40. Similar exhaust heat transfer means 43 is also provided between the gas engine EG and the exhaust heat utilization heat exchanger 41. The exhaust heat transfer means 42 and 43, for example, guide the exhaust of the gas engine EG directly to the exhaust heat utilization heat exchangers 40 and 41, and the cooling water heated by the gas engine EG to the exhaust heat utilization heat exchangers 40 and 41. It is the one that conducts heat indirectly by guiding it.
[0031]
Further, the air conditioner is provided with a control unit 50 that performs control of individually driving each of the compressors or driving both of them according to loads required for the two compressors 12A and 12B. Yes. The control unit 50 controls the driving of the compressors 12A and 12B, and switches the four-way valve 13 and the on-off valves V4, V5, V6, and V7 according to switching between cooling operation / heating operation and the required load. It comes to perform control.
[0032]
The manner of operation of the air conditioner configured as described above will be divided into a cooling operation and a heating operation, and further explained for each load size required in each operation state.
[Cooling operation at low load]
In this mode, only the compressor 12B having a small capacity is driven by the electric motor M. The on-off valves V4 and V6 are closed, and the on-off valves V5 and V7 are opened.
The refrigerant is compressed by the compressor 12B to become a high-temperature and high-pressure gas refrigerant, and flows into the outdoor heat exchanger 11 through the oil separator 18B and the four-way valve 13. In the outdoor heat exchanger 11, the high-temperature and high-pressure gas refrigerant gives heat to the outdoor air taken in by the outdoor fan 16 to exhaust heat, and condenses and liquefies itself to become a medium-temperature and medium-pressure liquid refrigerant.
[0033]
This medium-temperature / medium-pressure liquid refrigerant bypasses the expansion valve 14 and is separated into gas and liquid by the receiver 15, then sent to the indoor unit 20 through the refrigerant pipe 30, and decompressed in the process of passing through the electromagnetic expansion valve 22. It becomes a low-temperature and low-pressure liquid refrigerant and flows into the indoor heat exchanger 21. In the indoor heat exchanger 21, the low-temperature and low-pressure liquid refrigerant takes heat from the indoor air taken in by the indoor fan 23, cools it, and evaporates and vaporizes itself to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant is sent to the outdoor unit 10 through the refrigerant pipe 30, and is sucked and compressed into the compressor 12B through the four-way valve 13 and the accumulator 17B. Thereafter, the above process is repeated.
[0034]
[Cooling operation: Medium load]
In this mode, only the compressor 12A having a large capacity is driven by the gas engine EG. The on-off valves V4, V5, V6 are closed, and the on-off valve V7 is opened. In this mode, the compressor is simply switched from the small capacity 12B to the large capacity 12A, and the operation is the same as when the load is low. Note that the oil separator and the accumulator functioning in accordance with the switching of the compressor are switched to those provided corresponding to each.
[0035]
[Cooling operation at high load]
In this mode, the compressors 12A and 12B are simultaneously driven by the respective driving means. The on-off valves V4 and V6 are closed, and the on-off valves V5 and V7 are opened. In this mode, only the two compressors 12A and 12B are driven at the same time, and the manner of operation is the same as during low load or medium load.
[0036]
[Heating operation; low load]
In this mode, only the compressor 12B having a small capacity is driven by the electric motor M. The on-off valves V4 and V6 are closed and V5 and V7 are opened.
The refrigerant is compressed by the compressor 12B to become a high-temperature and high-pressure gas refrigerant, sent to the indoor unit 20 through the oil separator 18B and the four-way valve 13, and flows into the indoor heat exchanger 21. In the indoor heat exchanger 21, the high-temperature and high-pressure gas refrigerant heats the indoor air taken in by the indoor fan 23 and heats it, and condenses and liquefies itself to become a medium-temperature and medium-pressure liquid refrigerant.
[0037]
This medium-temperature / medium-pressure liquid refrigerant bypasses the electromagnetic expansion valve 22, is sent to the outdoor unit 10 through the refrigerant pipe 30, is separated into gas and liquid by the receiver 15, and then depressurized in the process of passing through the expansion valve 14. It becomes a low-temperature and low-pressure liquid refrigerant and flows into the outdoor heat exchanger 11. In the outdoor heat exchanger 11, the low-temperature and low-pressure liquid refrigerant takes heat from the outdoor air taken in by the outdoor fan 16, and evaporates and vaporizes itself to become a low-temperature and low-pressure gas refrigerant. This low-temperature and low-pressure gas refrigerant is sucked and compressed into the compressor 12B through the four-way valve 13 and the accumulator 17B. Thereafter, the above process is repeated.
[0038]
[Heating operation: Medium load]
In this mode, only the compressor 12A having a large capacity is driven by the gas engine EG. The on-off valves V4 and V5 are closed, and the on-off valves V6 and V7 are opened.
The refrigerant is compressed by the compressor 12A to become a high-temperature and high-pressure gas refrigerant, is sent to the indoor unit 20 through the oil separator 18A and the four-way valve 13, and flows into the indoor heat exchanger 21. In the indoor heat exchanger 21, the high-temperature and high-pressure gas refrigerant gives heat to the indoor air taken in by the indoor fan 23 and heats it, and condenses and liquefies itself to become a medium-temperature and medium-pressure liquid refrigerant (up to this point) Just by switching the compressor from 12B to 12A, the way of operation is the same as at low load).
[0039]
This medium-temperature / medium-pressure liquid refrigerant bypasses the electromagnetic expansion valve 22, is sent to the outdoor unit 10 through the refrigerant pipe 30, is separated into gas and liquid by the receiver 15, and then partially flows into the bypass pipe 34. The remaining liquid refrigerant that did not flow into the bypass pipe 34 is reduced in pressure in the process of passing through the expansion valve 14 to become a low-temperature and low-pressure liquid refrigerant, flows into the outdoor heat exchanger 11 and takes heat from outdoor air, Evaporates and vaporizes into a low-temperature and low-pressure gas refrigerant.
[0040]
The medium-temperature and medium-pressure liquid refrigerant that has flowed into the bypass pipe 34 is reduced in pressure in the process of passing through the expansion valve 35, becomes a low-temperature and low-pressure liquid refrigerant, and flows into the exhaust heat utilization heat exchanger 41. In the exhaust heat utilization heat exchanger 41, the low-temperature and low-pressure liquid refrigerant is heated by using the exhaust heat transmitted from the gas engine EG via the exhaust heat transfer means 43, and is evaporated and vaporized. Become.
[0041]
The low-temperature and low-pressure gas refrigerant evaporated and vaporized in the outdoor heat exchanger 11 and the low-temperature and low-pressure gas refrigerant evaporated and vaporized in the exhaust heat utilization heat exchanger 41 are combined by the accumulator 17A and sucked into the compressor 12A. Thereafter, the above process is repeated.
[0042]
[Heating operation; high load]
In this mode, the compressors 12A and 12B are simultaneously driven by the respective driving means. The on-off valves V4, V5, V7 are opened, and the on-off valve V6 is closed.
The refrigerant is discharged from the compressors 12A and 12B in a high-temperature and high-pressure gas state, merges through the oil separators 18A and 18B, is sent to the indoor unit 20 through the four-way valve 13, and flows into the indoor heat exchanger 21. In the indoor heat exchanger 21, the high-temperature and high-pressure gas refrigerant heats the indoor air taken in by the indoor fan 23 and heats it, and condenses and liquefies itself to become a medium-temperature and medium-pressure liquid refrigerant.
[0043]
This medium-temperature and medium-pressure liquid refrigerant bypasses the electromagnetic expansion valve 22, is sent to the outdoor unit 10 through the refrigerant pipe 30, and is separated into gas and liquid by the receiver 15, and then part of the liquid refrigerant flows into the bypass pipe 33. The remaining liquid refrigerant that did not flow into the bypass pipe 33 is reduced in pressure in the process of passing through the expansion valve 14 to become a low-temperature and low-pressure liquid refrigerant, flows into the outdoor heat exchanger 11, and takes heat from outdoor air. Evaporates and vaporizes into a low-temperature and low-pressure gas refrigerant.
[0044]
The medium-temperature medium-pressure liquid refrigerant that has flowed into the bypass pipe 33 flows into the exhaust heat utilization heat exchanger 40, is heated using the exhaust heat transmitted from the gas engine EG through the exhaust heat transfer means 42, and is evaporated. Vaporizes into a medium-temperature and medium-pressure gas refrigerant.
[0045]
The low-temperature and low-pressure gas refrigerant evaporated and vaporized in the outdoor heat exchanger 11 is sucked and compressed into the compressor 12A through the accumulator 17A. The medium-temperature and medium-pressure gas refrigerant evaporated and vaporized in the exhaust heat utilization heat exchanger 40 is sucked into the compressor 12B through the accumulator 17B. The compressor 12B in this case functions as a gas pump, and discharges a medium-temperature / medium-pressure gas refrigerant as a high-temperature / high-pressure gas refrigerant. Thereafter, the above process is repeated.
[0046]
[Heating operation; low outside temperature, low load]
In this mode, only the compressor 12A having a large capacity is driven by the gas engine EG. The on-off valves V4, V5, V7 are closed, and the on-off valve V6 is opened.
The refrigerant is compressed by the compressor 12A to become a high-temperature and high-pressure gas refrigerant, is sent to the indoor unit 20 through the oil separator 18A and the four-way valve 13, and flows into the indoor heat exchanger 21. In the indoor heat exchanger 21, the high-temperature and high-pressure gas refrigerant heats the indoor air taken in by the indoor fan 23 and heats it, and condenses and liquefies itself to become a medium-temperature and medium-pressure liquid refrigerant.
[0047]
This medium-temperature / medium-pressure liquid refrigerant bypasses the electromagnetic expansion valve 22, is sent to the outdoor unit 10 through the refrigerant pipe 30, is separated into gas and liquid by the receiver 15, and then flows into the bypass pipe 34. The medium-temperature and medium-pressure liquid refrigerant that has flowed into the bypass pipe 34 is reduced in pressure in the process of passing through the expansion valve 35, becomes a low-temperature and low-pressure liquid refrigerant, and flows into the exhaust heat utilization heat exchanger 41. In the exhaust heat utilization heat exchanger 41, the low-temperature and low-pressure liquid refrigerant is heated by using the exhaust heat transmitted from the gas engine EG via the exhaust heat transfer means 43, and is evaporated and vaporized. Become.
[0048]
The low-temperature and low-pressure gas refrigerant evaporated and vaporized in the exhaust heat utilization heat exchanger 41 is sucked and compressed into the compressor 12A through the accumulator 17A. Thereafter, the above process is repeated.
[0049]
[Heating operation; low outside temperature, medium / high load]
In this mode, the compressors 12A and 12B are simultaneously driven by the respective driving means. The on-off valves V4 and V6 are opened, and the on-off valves V5 and V7 are closed.
The refrigerant is discharged from the compressors 12A and 12B in a high-temperature and high-pressure gas state, merges through the oil separators 18A and 18B, is sent to the indoor unit 20 through the four-way valve 13, and flows into the indoor heat exchanger 21. In the indoor heat exchanger 21, the high-temperature and high-pressure gas refrigerant heats the indoor air taken in by the indoor fan 23 and heats it, and condenses and liquefies itself to become a medium-temperature and medium-pressure liquid refrigerant.
[0050]
This medium-temperature / medium-pressure liquid refrigerant bypasses the electromagnetic expansion valve 22, is sent to the outdoor unit 10 through the refrigerant pipe 30, and is separated into gas and liquid by the receiver 15, and then partially flows into the bypass pipe 33 and remains. Flows into the bypass pipe 34. The medium-temperature medium-pressure liquid refrigerant that has flowed into the bypass pipe 33 flows into the exhaust heat utilization heat exchanger 40, is heated using the exhaust heat transmitted from the gas engine EG through the exhaust heat transfer means 42, and is evaporated. Vaporizes into a medium-temperature and medium-pressure gas refrigerant.
[0051]
The medium-temperature and medium-pressure liquid refrigerant that has flowed into the bypass pipe 34 is reduced in pressure in the process of passing through the expansion valve 35, becomes a low-temperature and low-pressure liquid refrigerant, and flows into the exhaust heat utilization heat exchanger 41. In the exhaust heat utilization heat exchanger 41, the low-temperature and low-pressure liquid refrigerant is heated by using the exhaust heat transmitted from the gas engine EG via the exhaust heat transfer means 43, and is evaporated and vaporized. Become.
[0052]
The medium-temperature and medium-pressure gas refrigerant evaporated and vaporized in the exhaust heat utilization heat exchanger 40 is sucked into the compressor 12B through the accumulator 17B. The compressor 12B in this case functions as a gas pump, and discharges a medium-temperature / medium-pressure gas refrigerant as a high-temperature / high-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant evaporated and vaporized in the exhaust heat utilization heat exchanger 41 is sucked and compressed into the compressor 12A through the accumulator 17A. Thereafter, the above process is repeated.
[0053]
In the air conditioner that operates as described above, as shown in FIG. 2, if the load required for the compressor is small, the compressor 12B having a small capacity is driven by the electric motor M to increase the efficiency, and the required load. If the load is medium, the compressor 12A having a large capacity is driven in a suitable rotational speed range of the gas engine EG to achieve high-efficiency operation. If the required load is large, the two compressors 12A and 12B of large and small are respectively connected. Further high efficiency operation can be realized by simultaneously driving with the driving means. As a result, a high COP (coefficient of performance) can be obtained regardless of the required load.
[0054]
Compared with a conventional air conditioner that drives a single compressor with a single internal combustion engine such as a gas engine, the conventional air conditioner is capable of high-efficiency operation in response to the required medium load. Since the engine is adjusted so that it can do so, if a small load is required, the engine speed must be removed from the speed range where high-efficiency operation can be performed (lowering the speed), and the efficiency is extremely high. descend. When a large load is required, the engine speed must be removed from the engine speed range where high-efficiency operation can be performed (by increasing the engine speed), and in this case, the efficiency is also significantly reduced. For this reason, high COP cannot be maintained irrespective of the magnitude | size of load like the air conditioning apparatus of this embodiment.
[0055]
Further, the gas engine EG and the electric motor M are selectively driven or simultaneously driven according to the required load, so that the gas engine EG and the electric motor M are compared with the conventional air conditioner that always drives the internal combustion engine. CO 2 And NOx emissions can be reduced, giving consideration to the environment.
[0056]
In addition, in the air conditioner of the present embodiment, when a medium or higher load is required, the refrigerant is heated by using the exhaust heat of the gas engine EG while pumping heat from the outdoor air in the outdoor heat exchanger 11. As a result, further high-efficiency operation is possible.
[0057]
Moreover, even in a situation where the outside air temperature is low and the conventional air conditioner is likely to frequently shift to the defrosting operation, the exhaust heat utilization heat exchangers 40 and 41 are used without using the outdoor heat exchanger 11. Since heating is possible, there is no temporary interruption of operation due to defrost operation, and stable air conditioning can be obtained.
[0058]
In the present embodiment, the gas engine EG is used as the driving means of the compressor 12A having a large capacity. However, in addition to the gas engine, a micro gas turbine can be used as the internal combustion engine as the driving means. . It is also possible to employ a prime mover that can consume other fuel and extract the rotational force.
[0059]
In the present embodiment, the electric motor M is used as the driving means of the compressor 12B having a small capacity. However, if there is an internal combustion engine capable of high-efficiency operation in the rotation speed range that can utilize the ability of the compressor 12B, this is used as the compressor. It is also possible to employ as 12B driving means.
[0060]
In addition, the driving means of the two large and small compressors 12A and 12B are both electric motors, and a power generation device that supplies electric power to these motors is provided, and the exhaust heat of the power generation device is transmitted to the exhaust heat utilization heat exchanger 40. It is also possible to heat the refrigerant. In this case, it is preferable to employ a power generator in which a gas engine or a micro gas turbine is installed as a power source in the generator, or a fuel cell.
[0061]
In each of the above-described embodiments, the air conditioner including two large and small compressors 12A and 12B has been described. However, the present invention can also be implemented as an air conditioner including three or more compressors having different capacities. Is possible.
[0062]
【The invention's effect】
As described above, according to the present invention, if the load required for the compressor is small, the compressor having a small capacity is driven by a driving means that can obtain an output corresponding to the compressor, and the efficiency is obtained. If this is the case, drive a high-capacity compressor with a drive unit that can provide an output that matches it, and achieve high-efficiency operation. If the required load is large, drive multiple compressors with different capacities simultaneously with each drive unit. Thus, further efficient operation can be realized. That is, since the compressor that can perform the most efficient operation is selected and driven according to the required load, a high COP can be obtained regardless of the load.
[0063]
Furthermore, an internal combustion engine is adopted as a driving means for a compressor having a large capacity, and an electric motor is adopted as a driving means for a compressor having a small capacity, and these are selectively driven according to the required load. Compared to the conventional air conditioner that always drives the internal combustion engine. 2 And NOx emissions can be reduced, and it is environmentally friendly.
[0064]
Further, according to the present invention, the exhaust heat of the internal combustion engine adopted as the driving means of the compressor is used for heating the refrigerant through the structure using the compressor having a small capacity as the gas pump during the heating operation. Further high efficiency operation is possible.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an air conditioner according to the present invention.
FIG. 2 is a diagram comparing the coefficient of performance corresponding to the magnitude of load for an air conditioner according to the present invention and a conventional gas engine driven air conditioner.
[Explanation of symbols]
10 Outdoor unit
11 Outdoor heat exchanger
12A, 12B compressor
14 Expansion valve
20 indoor units
21 Indoor heat exchanger
30a Refrigerant piping (medium pressure refrigerant piping)
30b Refrigerant piping (one refrigerant line)
30c Branch refrigerant pipe (the other refrigerant pipe)
33 Bypass pipe (first bypass pipe)
34 Bypass piping (second bypass conduit)
35 Expansion valve
40 Waste heat utilization heat exchanger (first waste heat utilization heat exchanger)
41 Waste heat utilization heat exchanger (second waste heat utilization heat exchanger)
42, 43 Waste heat transfer means
50 Control unit
EG gas engine (internal combustion engine)
M Electric motor
V4 On-off valve (first on-off valve)
V5 On-off valve (second on-off valve)
V6 On-off valve (third on-off valve)
V7 On-off valve (fourth on-off valve)

Claims (7)

室内熱交換器、室外熱交換器、膨張弁および四方弁を冷媒管路を介して接続するとともに該冷媒管路に容量の異なる2つの圧縮機を並列に接続し、該2つの圧縮機に個々に駆動手段を設け、前記2つの圧縮機のうち少なくとも容量の大きな圧縮機を駆動する駆動手段に内燃機関を採用した空気調和装置であって、
暖房運転時に中温中圧の液冷媒を導通することとなる中圧冷媒管路に一端を接続され、前記2つの圧縮機のうち容量の小さな圧縮機の上流側に位置する一方の冷媒管路に他端を接続された第1のバイパス管路を設け、
該第1のバイパス管路には、暖房運転時に必要に応じて開閉して前記第1のバイパス管路への冷媒の導入を制限する第1の開閉弁と、前記内燃機関の排熱を利用して低温低圧の液冷媒を加熱、気化させる第1の排熱利用熱交換器とを前記中圧冷媒管路側から順に並べて設け、
前記第1のバイパス管路との接続箇所より上流側に位置する前記一方の冷媒管路には、必要に応じて開閉して前記容量の小さな圧縮機への冷媒の導入を制限する第2の開閉弁を設け、
前記第1のバイパス管路との接続箇所より暖房運転時の上流側に位置する前記中圧冷媒管路に一端を接続され、前記2つの圧縮機のうち容量の大きな圧縮機の上流側に位置する他方の冷媒管路に他端を接続された第2のバイパス管路を設け、
該第2のバイパス管路には、暖房運転時に必要に応じて開閉して前記第2のバイパス管路への冷媒の導入を制限する第3の開閉弁と、中温中圧の液冷媒を低温低圧の液冷媒に減圧する減圧弁と、前記内燃機関の排熱を利用して低温低圧の液冷媒を加熱、気化させる第2の排熱利用熱交換器とを前記中圧冷媒管路側から順に並べて設け、
前記第1のバイパス管路との接続箇所より暖房運転時の下流側に位置する前記中圧冷媒管路には、必要に応じて開閉して前記室外熱交換器への冷媒の導入を制限する第4の開閉弁を設けた
ことを特徴とする空気調和装置。
An indoor heat exchanger, an outdoor heat exchanger, an expansion valve, and a four-way valve are connected via a refrigerant pipe, and two compressors having different capacities are connected in parallel to the refrigerant pipe, and the two compressors are individually connected. Provided with a driving means, and an air conditioner adopting an internal combustion engine as a driving means for driving a compressor having a large capacity among the two compressors,
One end of the two compressors is connected to the medium-pressure refrigerant pipe that conducts the medium-temperature and medium-pressure liquid refrigerant during the heating operation, and one refrigerant pipe located upstream of the small-capacity compressor of the two compressors. Providing a first bypass line connected to the other end;
The first bypass pipe uses a first on-off valve that opens and closes as necessary during heating operation and restricts introduction of refrigerant into the first bypass pipe, and uses exhaust heat of the internal combustion engine Then, a first exhaust heat utilization heat exchanger that heats and vaporizes the low-temperature and low-pressure liquid refrigerant is arranged in order from the medium-pressure refrigerant pipe side,
The second refrigerant pipe located upstream from the connection point with the first bypass pipe is opened and closed as necessary to restrict the introduction of the refrigerant into the small capacity compressor. Provided an on-off valve,
One end is connected to the intermediate-pressure refrigerant pipe located upstream from the connection point with the first bypass pipe in the heating operation, and located upstream of the compressor having a large capacity among the two compressors. Providing a second bypass line having the other end connected to the other refrigerant line,
The second bypass pipe is provided with a third on-off valve that opens and closes as necessary during heating operation to restrict introduction of the refrigerant into the second bypass pipe, and a medium- and intermediate-pressure liquid refrigerant is supplied at a low temperature. A pressure reducing valve for reducing the pressure to a low-pressure liquid refrigerant and a second exhaust heat utilization heat exchanger that heats and vaporizes the low-temperature and low-pressure liquid refrigerant by using the exhaust heat of the internal combustion engine in order from the intermediate pressure refrigerant pipe side Side by side,
The intermediate pressure refrigerant pipe located on the downstream side in the heating operation from the connection point with the first bypass pipe is opened and closed as necessary to restrict the introduction of the refrigerant to the outdoor heat exchanger. An air conditioner provided with a fourth on-off valve.
前記2つの圧縮機のうち少なくとも容量の大きな圧縮機を駆動する駆動手段にガスエンジンを採用したことを特徴とする請求項1記載の空気調和装置。The air conditioner according to claim 1, wherein a gas engine is employed as a driving means for driving a compressor having a large capacity among the two compressors. 前記2つ圧縮機のうち容量の小さなものを駆動する駆動手段に電動モータを採用したことを特徴とする請求項1または2記載の空気調和装置。The air conditioner according to claim 1 or 2, wherein an electric motor is used as a driving means for driving a small capacity of the two compressors. 前記2つの圧縮機に個々に設けた駆動手段の少なくともいずれか一方を電動モータとし、該電動モータを駆動する発電装置を併設し、該発電装置の排熱を暖房運転時の冷媒加熱に利用することを特徴とする請求項1記載の空気調和装置。At least one of the drive means individually provided in the two compressors is an electric motor, and a power generation device that drives the electric motor is provided, and the exhaust heat of the power generation device is used for refrigerant heating during heating operation. The air conditioner according to claim 1. 前記暖房運転時に、前記第1、第3の開閉弁を閉じ前記第2、第4の開閉弁を開いて前記2つの圧縮機のうち容量の小さいもののみを駆動させるか、前記第1、第2の開閉弁を閉じ前記第3、第4の開閉弁を開いて前記2つの圧縮機のうち容量の大きなもののみを駆動させるか、または前記第1、第4の開閉弁を開き前記第2、第3の開閉弁を閉じて前記2つの圧縮機を同時に駆動させるかいずれかの運転を、求められる負荷に応じて選択的に実行することを特徴とする請求項1、2、3または4記載の空気調和装置。During the heating operation, the first and third on-off valves are closed and the second and fourth on-off valves are opened to drive only the smaller one of the two compressors. Close the two on-off valves and open the third and fourth on-off valves to drive only the large compressor of the two compressors, or open the first and fourth on-off valves and open the second 5. The operation according to claim 1, wherein the third on-off valve is closed and the two compressors are driven simultaneously according to a required load. The air conditioning apparatus described. 前記第1、第2、第4の開閉弁を閉じ前記第3の開閉弁を開いて前記2つの圧縮機のうち容量の大きなもののみを駆動させる運転を、求められる負荷および屋外の気温に応じて実行することを特徴とする請求項1、2、3、4または5記載の空気調和装置。The first, second, and fourth on-off valves are closed and the third on-off valve is opened to drive only the large capacity of the two compressors according to the required load and outdoor temperature. The air conditioning apparatus according to claim 1, 2, 3, 4 or 5. 冷房運転時に、前記第1、第3の開閉弁を閉じ前記第2、第4の開閉弁を開いて前記2つの圧縮機のうち容量の小さいもののみを駆動させるか、前記第1、第2、第3の開閉弁を閉じ前記第4の開閉弁を開いて前記2つの圧縮機のうち容量の大きなもののみを駆動させるか、または前記第1、第3の開閉弁を閉じ前記第2、第4の開閉弁を開いて前記2つの圧縮機を同時に駆動させるかいずれかの運転を、求められる負荷に応じて選択的に実行することを特徴とする請求項1、2、3、4、5または6記載の空気調和装置。During the cooling operation, the first and third on-off valves are closed and the second and fourth on-off valves are opened to drive only the small compressor of the two compressors, or the first and second The third on-off valve is closed and the fourth on-off valve is opened to drive only the large capacity of the two compressors, or the first and third on-off valves are closed and the second, The first on-off valve is opened to drive the two compressors at the same time, and the operation is selectively executed according to a required load. The air conditioning apparatus according to 5 or 6.
JP2001249248A 2001-08-20 2001-08-20 Air conditioner Expired - Fee Related JP4570292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249248A JP4570292B2 (en) 2001-08-20 2001-08-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249248A JP4570292B2 (en) 2001-08-20 2001-08-20 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003056932A JP2003056932A (en) 2003-02-26
JP4570292B2 true JP4570292B2 (en) 2010-10-27

Family

ID=19078281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249248A Expired - Fee Related JP4570292B2 (en) 2001-08-20 2001-08-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP4570292B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045814A (en) * 2006-08-16 2008-02-28 Tokyo Gas Co Ltd Gas engine heat pump and its control method
JP4930214B2 (en) * 2007-06-21 2012-05-16 株式会社デンソー Refrigeration cycle equipment
KR101667075B1 (en) * 2009-04-01 2016-10-17 리눔 시스템즈, 엘티디. Waste heat air conditioning system
JP6103181B2 (en) * 2012-09-26 2017-03-29 アイシン精機株式会社 Engine-driven air conditioner
JP6283815B2 (en) * 2014-02-14 2018-02-28 パナソニックIpマネジメント株式会社 Air conditioner
JP6292469B2 (en) * 2014-02-14 2018-03-14 パナソニックIpマネジメント株式会社 Air conditioner outdoor unit
GB2570817B (en) * 2016-10-31 2021-03-24 Panasonic Ip Man Co Ltd Air conditioning apparatus
DE112017005948T5 (en) * 2016-11-24 2019-09-05 Panasonic Intellectual Property Management Co., Ltd. Air conditioning device
JP6846685B2 (en) 2017-07-05 2021-03-24 パナソニックIpマネジメント株式会社 Air conditioner
JP6950328B2 (en) * 2017-07-27 2021-10-13 株式会社アイシン Air conditioner
JP2021021508A (en) * 2019-07-25 2021-02-18 パナソニックIpマネジメント株式会社 Air-conditioning apparatus
JP2024102700A (en) * 2023-01-19 2024-07-31 パナソニックIpマネジメント株式会社 Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129718A (en) * 1992-10-14 1994-05-13 Sanyo Electric Co Ltd Air-conditioning machine
JPH08219580A (en) * 1995-02-09 1996-08-30 Mitsubishi Heavy Ind Ltd Engine driven air conditioner
JP2001099519A (en) * 1999-09-28 2001-04-13 Osaka Gas Co Ltd Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129718A (en) * 1992-10-14 1994-05-13 Sanyo Electric Co Ltd Air-conditioning machine
JPH08219580A (en) * 1995-02-09 1996-08-30 Mitsubishi Heavy Ind Ltd Engine driven air conditioner
JP2001099519A (en) * 1999-09-28 2001-04-13 Osaka Gas Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2003056932A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP4774171B2 (en) Air conditioner
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
US20060123819A1 (en) Cogeneration system
JP4570292B2 (en) Air conditioner
JP2003056931A (en) Air conditioner
JP2006194565A (en) Air conditioner
JP4214021B2 (en) Engine heat pump
WO2009098899A1 (en) Refrigeration system
JP4544602B2 (en) air conditioner
JP4288577B2 (en) Waste heat recovery air conditioner
WO2018097124A1 (en) Air conditioning device
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP2002168539A (en) Multiple air conditioner
JP4380834B2 (en) Gas heat pump air conditioner
JP6917583B2 (en) Air conditioner
KR102042238B1 (en) Gas heat-pump system
JP2004116931A (en) Gas heat pump type refrigeration device and its control method
JP4773637B2 (en) Multi-type gas heat pump type air conditioner
JP4463659B2 (en) Refrigeration equipment with waste heat utilization device
JP2021021508A (en) Air-conditioning apparatus
JP4658395B2 (en) Multi-type gas heat pump type air conditioner
KR102048737B1 (en) Gas heat-pump system
JP2004085091A (en) Gas heat pump apparatus, and control method of gas engine in gas heat pump apparatus
JP3626927B2 (en) Gas heat pump type air conditioner
JP4658394B2 (en) Multi-type gas heat pump type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4570292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees