JP6592029B2 - Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board - Google Patents

Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board Download PDF

Info

Publication number
JP6592029B2
JP6592029B2 JP2017092705A JP2017092705A JP6592029B2 JP 6592029 B2 JP6592029 B2 JP 6592029B2 JP 2017092705 A JP2017092705 A JP 2017092705A JP 2017092705 A JP2017092705 A JP 2017092705A JP 6592029 B2 JP6592029 B2 JP 6592029B2
Authority
JP
Japan
Prior art keywords
layer
carrier
copper foil
weight
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017092705A
Other languages
Japanese (ja)
Other versions
JP2017172047A (en
Inventor
倫也 古曳
倫也 古曳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017092705A priority Critical patent/JP6592029B2/en
Publication of JP2017172047A publication Critical patent/JP2017172047A/en
Application granted granted Critical
Publication of JP6592029B2 publication Critical patent/JP6592029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、キャリア付銅箔及びその製造方法、極薄銅層、並びにプリント配線板に関する。より詳細には、本発明はファインパターン用途のプリント配線板の材料として使用されるキャリア付銅箔及びその製造方法、極薄銅層、並びにプリント配線板に関する。   The present invention relates to a carrier-attached copper foil and a method for producing the same, an ultrathin copper layer, and a printed wiring board. In more detail, this invention relates to the copper foil with a carrier used as a material of the printed wiring board of a fine pattern use, its manufacturing method, an ultra-thin copper layer, and a printed wiring board.

近年、半導体回路の高集積化に伴い、プリント配線板にも微細回路が要求されている。一般的な微細回路形成方法は、配線回路を極薄銅層上に形成した後に、極薄銅層を硫酸−過酸化水素系のエッチャントでエッチング除去する手法(MSAP:Modified−Semi−Additive−Process)である。そのため、極薄銅層の厚みは均一なものが好ましい。   In recent years, with the high integration of semiconductor circuits, fine circuits are also required for printed wiring boards. A general method for forming a fine circuit is to form a wiring circuit on an ultrathin copper layer and then remove the ultrathin copper layer by etching with a sulfuric acid-hydrogen peroxide etchant (MSAP: Modified-Semi-Additive-Process). ). Therefore, it is preferable that the ultrathin copper layer has a uniform thickness.

ここで、電解メッキの箔厚精度はアノード−カソード間の極間距離に大きく影響を受ける。一般的な極薄銅層形成方法は、銅箔キャリア(12〜70μm)上に剥離層を形成し、さらにその表面に極薄銅層(0.5〜10.0μm)並びに粗化粒子を形成する。銅箔キャリア形成以降の工程に関しては、従来は図1のような銅箔キャリアへのドラムによる支持がない九十九折による運箔方式を用いて行っていた(特許文献1)。   Here, the foil thickness accuracy of electrolytic plating is greatly influenced by the distance between the anode and the cathode. A general method for forming an ultrathin copper layer is to form a release layer on a copper foil carrier (12 to 70 μm), and further form an ultrathin copper layer (0.5 to 10.0 μm) and roughened particles on the surface. To do. Regarding the processes after the formation of the copper foil carrier, conventionally, it has been carried out using a ninety-fold folding method that does not support the copper foil carrier with a drum as shown in FIG. 1 (Patent Document 1).

特開2000−309898号公報JP 2000-309898 A

しかしながら、電解メッキで形成した極薄銅層の厚み精度はアノード−カソード間の極間距離に大きく影響を受けるため、このような銅箔キャリアへのドラムによる支持がない九十九折による運箔方式を用いた場合、電解液並びに運箔テンション等の影響により、極間距離を一定にするのが難しく、厚みのバラツキが大きくなる問題が発生していた。
そこで、本発明は、銅箔キャリア上の極薄銅層の厚み精度を向上させたキャリア付銅箔を提供する課題とする。
However, the thickness accuracy of the ultra-thin copper layer formed by electrolytic plating is greatly affected by the distance between the anode and the cathode. When the method is used, it is difficult to make the distance between the electrodes constant due to the influence of the electrolytic solution, the foil carrying tension, and the like, and there is a problem that the variation in thickness is increased.
Then, this invention makes it the subject to provide the copper foil with a carrier which improved the thickness precision of the ultra-thin copper layer on a copper foil carrier.

上記目的を達成するため、本発明者は鋭意研究を重ねたところ、銅箔キャリア以降の工程の運箔方式に着目し、九十九折ではなくドラムを支持媒体とした運箔方式により、一定の極間距離を確保し、極薄銅層の厚み精度を向上させることができることを見出した。   In order to achieve the above object, the present inventor conducted extensive research and paid attention to the foil handling method of the process after the copper foil carrier. It was found that the distance between the electrodes can be ensured and the thickness accuracy of the ultrathin copper layer can be improved.

本発明は上記知見を基礎として完成したものであり、一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記極薄銅層を15mm(MD方向)×150mm(TD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が6.15%以下であるキャリア付銅箔である。
The present invention has been completed on the basis of the above knowledge. In one aspect, the present invention includes a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer. A copper foil with a carrier,
Using the ultrathin copper layer as a 15 mm (MD direction) × 150 mm (TD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy obtained by the average value of weight thickness measurement values is 6.15% or less copper foil with carrier.

本発明は別の一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記極薄銅層を15mm(TD方向)×150mm(MD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が9.30%以下であるキャリア付銅箔である。
In another aspect, the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer,
Using the ultrathin copper layer as a 15 mm (TD direction) × 150 mm (MD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by the average value of weight thickness measurement values is 9.30% or less copper foil with carrier.

本発明は更に別の一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記極薄銅層を5cm角シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2.90%以下であるキャリア付銅箔である。
In yet another aspect, the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer,
Using the ultrathin copper layer as a 5 cm square sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by an average value of weight thickness measurement values is 2.90% or less copper foil with carrier.

本発明は更に別の一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記極薄銅層を15mm(MD方向)×150mm(TD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が6.15%以下であり、
前記極薄銅層を15mm(TD方向)×150mm(MD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が9.30%以下であるキャリア付銅箔である。
In yet another aspect, the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer,
Using the ultrathin copper layer as a 15 mm (MD direction) × 150 mm (TD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight thickness accuracy determined by the average value of weight thickness measurement values is 6.15% or less,
Using the ultrathin copper layer as a 15 mm (TD direction) × 150 mm (MD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by the average value of weight thickness measurement values is 9.30% or less copper foil with carrier.

本発明は更に別の一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記極薄銅層を15mm(MD方向)×150mm(TD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が6.15%以下であり、
前記極薄銅層を15mm(TD方向)×150mm(MD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が9.30%以下であり、
前記極薄銅層を5cm角シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2.90%以下であるキャリア付銅箔である。
In yet another aspect, the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer,
Using the ultrathin copper layer as a 15 mm (MD direction) × 150 mm (TD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight thickness accuracy determined by the average value of weight thickness measurement values is 6.15% or less,
Using the ultrathin copper layer as a 15 mm (TD direction) × 150 mm (MD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by an average value of measured thickness values is 9.30% or less,
Using the ultrathin copper layer as a 5 cm square sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by an average value of weight thickness measurement values is 2.90% or less copper foil with carrier.

本発明は更に別の一側面において、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された極薄銅層とを備えたキャリア付銅箔であって、
前記極薄銅層を15mm(TD方向)×150mm(MD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が9.30%以下であり、
前記極薄銅層を5cm角シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2.90%以下であるキャリア付銅箔である。
In yet another aspect, the present invention is a copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer,
Using the ultrathin copper layer as a 15 mm (TD direction) × 150 mm (MD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by an average value of measured thickness values is 9.30% or less,
Using the ultrathin copper layer as a 5 cm square sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by an average value of weight thickness measurement values is 2.90% or less copper foil with carrier.

本発明は更に別の一側面において、ロール・ツウ・ロール搬送方式により長さ方向に搬送される長尺状の銅箔キャリアの表面を処理することで、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された極薄銅層とを備えたキャリア付銅箔を製造する方法であり、搬送ロールで搬送される銅箔キャリアの表面に剥離層を形成する工程と、搬送ロールで搬送される前記剥離層が形成された銅箔キャリアをドラムで支持しながら、電解めっきにより前記剥離層表面に極薄銅層を形成する工程とを含む本発明のキャリア付銅箔の製造方法である。   In another aspect of the present invention, a copper foil carrier and a copper foil carrier are treated by treating the surface of a long copper foil carrier conveyed in the length direction by a roll-to-roll conveyance system. This is a method for producing a copper foil with a carrier comprising a laminated release layer and an ultrathin copper layer laminated on the release layer, and the release layer is formed on the surface of the copper foil carrier conveyed by a conveyance roll. With the carrier of the present invention, including a step and a step of forming an ultrathin copper layer on the surface of the release layer by electrolytic plating while supporting the copper foil carrier on which the release layer transported by a transport roll is formed with a drum It is a manufacturing method of copper foil.

本発明は更に別の一側面において、銅箔キャリア上に積層された剥離層上に積層されて、前記銅箔キャリア及び前記剥離層と共にキャリア付銅箔を構成するための、電解銅箔による極薄銅層であって、
前記極薄銅層を15mm(MD方向)×150mm(TD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が6.15%以下である極薄銅層である。
In another aspect of the present invention, an electrode made of electrolytic copper foil is laminated on a release layer laminated on a copper foil carrier, and constitutes a copper foil with a carrier together with the copper foil carrier and the release layer. A thin copper layer,
Using the ultrathin copper layer as a 15 mm (MD direction) × 150 mm (TD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight This is an ultra-thin copper layer having a weight-thickness accuracy of 6.15% or less determined by an average value of measured thickness values.

本発明は更に別の一側面において、銅箔キャリア上に積層された剥離層上に積層されて、前記銅箔キャリア及び前記剥離層と共にキャリア付銅箔を構成するための、電解銅箔による極薄銅層であって、
前記極薄銅層を15mm(TD方向)×150mm(MD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が9.30%以下である極薄銅層である。
In another aspect of the present invention, an electrode made of electrolytic copper foil is laminated on a release layer laminated on a copper foil carrier, and constitutes a copper foil with a carrier together with the copper foil carrier and the release layer. A thin copper layer,
Using the ultrathin copper layer as a 15 mm (TD direction) × 150 mm (MD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight This is an ultra-thin copper layer having a weight-thickness accuracy of 9.30% or less determined by an average value of measured thickness values.

本発明は更に別の一側面において、銅箔キャリア上に積層された剥離層上に積層されて、前記銅箔キャリア及び前記剥離層と共にキャリア付銅箔を構成するための、電解銅箔による極薄銅層であって、
前記極薄銅層を5cm角シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2.90%以下である極薄銅層である。
In another aspect of the present invention, an electrode made of electrolytic copper foil is laminated on a release layer laminated on a copper foil carrier, and constitutes a copper foil with a carrier together with the copper foil carrier and the release layer. A thin copper layer,
Using the ultrathin copper layer as a 5 cm square sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight Ultrathin copper layer having a weight-thickness accuracy of 2.90% or less determined by an average value of measured thickness values.

本発明は更に別の一側面において、銅箔キャリア上に積層された剥離層上に積層されて、前記銅箔キャリア及び前記剥離層と共にキャリア付銅箔を構成するための、電解銅箔による極薄銅層であって、
前記極薄銅層を15mm(MD方向)×150mm(TD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が6.15%以下であり、
前記極薄銅層を15mm(TD方向)×150mm(MD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が9.30%以下である極薄銅層である。
In another aspect of the present invention, an electrode made of electrolytic copper foil is laminated on a release layer laminated on a copper foil carrier, and constitutes a copper foil with a carrier together with the copper foil carrier and the release layer. A thin copper layer,
Using the ultrathin copper layer as a 15 mm (MD direction) × 150 mm (TD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight thickness accuracy determined by the average value of weight thickness measurement values is 6.15% or less,
Using the ultrathin copper layer as a 15 mm (TD direction) × 150 mm (MD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight This is an ultra-thin copper layer having a weight-thickness accuracy of 9.30% or less determined by an average value of measured thickness values.

本発明は更に別の一側面において、銅箔キャリア上に積層された剥離層上に積層されて、前記銅箔キャリア及び前記剥離層と共にキャリア付銅箔を構成するための、電解銅箔による極薄銅層であって、
前記極薄銅層を15mm(MD方向)×150mm(TD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が6.15%以下であり、
前記極薄銅層を15mm(TD方向)×150mm(MD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が9.30%以下であり、
前記極薄銅層を5cm角シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2.90%以下である極薄銅層である。
In another aspect of the present invention, an electrode made of electrolytic copper foil is laminated on a release layer laminated on a copper foil carrier, and constitutes a copper foil with a carrier together with the copper foil carrier and the release layer. A thin copper layer,
Using the ultrathin copper layer as a 15 mm (MD direction) × 150 mm (TD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight thickness accuracy determined by the average value of weight thickness measurement values is 6.15% or less,
Using the ultrathin copper layer as a 15 mm (TD direction) × 150 mm (MD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by an average value of measured thickness values is 9.30% or less,
Using the ultrathin copper layer as a 5 cm square sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight Ultrathin copper layer having a weight-thickness accuracy of 2.90% or less determined by an average value of measured thickness values.

本発明は更に別の一側面において、銅箔キャリア上に積層された剥離層上に積層されて、前記銅箔キャリア及び前記剥離層と共にキャリア付銅箔を構成するための、電解銅箔による極薄銅層であって、
前記極薄銅層を15mm(TD方向)×150mm(MD方向)シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が9.30%以下であり、
前記極薄銅層を5cm角シートとして、重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2.90%以下である極薄銅層である。
In another aspect of the present invention, an electrode made of electrolytic copper foil is laminated on a release layer laminated on a copper foil carrier, and constitutes a copper foil with a carrier together with the copper foil carrier and the release layer. A thin copper layer,
Using the ultrathin copper layer as a 15 mm (TD direction) × 150 mm (MD direction) sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by an average value of measured thickness values is 9.30% or less,
Using the ultrathin copper layer as a 5 cm square sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by a weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight Ultrathin copper layer having a weight-thickness accuracy of 2.90% or less determined by an average value of measured thickness values.

本発明は更に別の一側面において、本発明のキャリア付銅箔を用いて製造されたプリント配線板である。   In yet another aspect, the present invention is a printed wiring board manufactured using the carrier-attached copper foil of the present invention.

本発明は更に別の一側面において、本発明の極薄銅層を用いたプリント配線板である。   In still another aspect, the present invention is a printed wiring board using the ultrathin copper layer of the present invention.

本発明によれば、銅箔キャリア上の極薄銅層の厚み精度を向上させたキャリア付銅箔を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil with a carrier which improved the thickness precision of the ultra-thin copper layer on a copper foil carrier can be provided.

従来の九十九折の運箔方式を示す模式図である。It is a schematic diagram which shows the conventional ninety-fold folding method. 本発明の実施形態1に係るキャリア付銅箔の製造方法に係る運箔方式を示す模式図である。It is a schematic diagram which shows the carrying method based on the manufacturing method of the copper foil with a carrier which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係るキャリア付銅箔の製造方法に係る運箔方式を示す模式図である。It is a schematic diagram which shows the carrying method based on the manufacturing method of the copper foil with a carrier which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るキャリア付銅箔の製造方法に係る運箔方式を示す模式図である。It is a schematic diagram which shows the conveyance method based on the manufacturing method of the copper foil with a carrier which concerns on Embodiment 3 of this invention. 実施例における回路パターンの幅方向の横断面の模式図、及び、該模式図を用いたエッチングファクター(EF)の計算方法の概略である。It is the schematic of the cross section of the width direction of the circuit pattern in an Example, and the outline of the calculation method of the etching factor (EF) using this schematic diagram.

<1.銅箔キャリア>
本発明に用いることのできる銅箔キャリアは、典型的には圧延銅箔や電解銅箔の形態で提供される。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。銅箔の材料としてはタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。
<1. Copper foil carrier>
The copper foil carrier that can be used in the present invention is typically provided in the form of a rolled copper foil or an electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. In addition to high-purity copper such as tough pitch copper and oxygen-free copper, the copper foil material is, for example, Sn-containing copper, Ag-containing copper, copper alloy added with Cr, Zr, Mg, etc., and Corson-based added with Ni, Si, etc. Copper alloys such as copper alloys can also be used. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included.

本発明に用いることのできる銅箔キャリアの厚さについても特に制限はないが、銅箔キャリアとしての役目を果たす上で適した厚さに適宜調節すればよく、例えば12μm以上とすることができる。但し、厚すぎると生産コストが高くなるので一般には35μm以下とするのが好ましい。従って、銅箔キャリアの厚みは典型的には12〜70μmであり、より典型的には18〜35μmである。   Although there is no restriction | limiting in particular also about the thickness of the copper foil carrier which can be used for this invention, What is necessary is just to adjust suitably to the thickness suitable for fulfill | performing the role as a copper foil carrier, for example, it can be 12 micrometers or more. . However, if it is too thick, the production cost becomes high, so generally it is preferably 35 μm or less. Accordingly, the thickness of the copper foil carrier is typically 12-70 μm, more typically 18-35 μm.

<2.剥離層>
銅箔キャリア上には剥離層を設ける。剥離層は、ニッケル、ニッケル−リン合金、ニッケル−コバルト合金、クロム等を用いて形成することができる。剥離層は、極薄銅層から銅箔キャリアを剥がすときに剥離する部分であるが、銅箔キャリアから銅成分が極薄銅層へと拡散していくのを防ぐバリア効果を持たせることもできる。
銅箔キャリアとして電解銅箔を使用する場合には、ピンホールを減少させる観点から低粗度面に剥離層を設けることが好ましい。剥離層はめっき、スパッタリング、CVD、物理蒸着等の方法を用いて設けることができる。
また、剥離層としては、キャリア付銅箔において当業者に知られた任意の剥離層とすることができる。例えば、剥離層はCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znまたはこれらの合金、またはこれらの水和物、またはこれらの酸化物、あるいは有機物の何れか一種以上を含む層で形成することが好ましい。剥離層は複数の層で構成されても良い。なお、剥離層は拡散防止機能を有することができる。ここで拡散防止層とは母材からの元素を極薄銅層側への拡散を防止する働きを有する層である。
<2. Release layer>
A release layer is provided on the copper foil carrier. The release layer can be formed using nickel, a nickel-phosphorus alloy, a nickel-cobalt alloy, chromium, or the like. The peeling layer is the part that peels when the copper foil carrier is peeled off from the ultrathin copper layer, but it can also have a barrier effect that prevents the copper component from diffusing from the copper foil carrier into the ultrathin copper layer. it can.
When using an electrolytic copper foil as the copper foil carrier, it is preferable to provide a release layer on the low roughness surface from the viewpoint of reducing pinholes. The release layer can be provided using a method such as plating, sputtering, CVD, or physical vapor deposition.
Moreover, as a peeling layer, it can be set as the arbitrary peeling layers known to those skilled in the art in copper foil with a carrier. For example, the release layer is any one of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn, or an alloy thereof, a hydrate thereof, an oxide thereof, or an organic material. It is preferable to form a layer including the above. The release layer may be composed of a plurality of layers. Note that the release layer can have a diffusion preventing function. Here, the diffusion preventing layer is a layer having a function of preventing the element from the base material from diffusing to the ultrathin copper layer side.

本発明の一実施形態において、剥離層はキャリア側からCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znの元素群から選択された一種の元素からなる単一金属層、又は、Cr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znの元素群から選択された一種以上の元素からなる合金層(これらは拡散防止機能をもつ)と、その上に積層されたCr、Ni、Co、Fe、Mo、Ti、W、P、Cu、Al、Znの元素群から選択された一種以上の元素の水和物または酸化物からなる層とから構成される。なお、各元素の合計付着量は例えば1〜6000μg/dm2とすることができる。 In one embodiment of the present invention, the release layer is a single metal composed of one element selected from the element group of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, and Zn from the carrier side. A layer, or an alloy layer made of one or more elements selected from the element group of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, and Zn (these have a diffusion preventing function); A layer made of a hydrate or oxide of one or more elements selected from the group of elements of Cr, Ni, Co, Fe, Mo, Ti, W, P, Cu, Al, Zn laminated thereon Consists of In addition, the total adhesion amount of each element can be 1-6000 microgram / dm < 2 >, for example.

剥離層はNi及びCrの2層で構成されることが好ましい。この場合、Ni層は銅箔キャリアとの界面に、Cr層は極薄銅層との界面にそれぞれ接するようにして積層することが好ましい。また、Ni及びCrの2層にZnが含まれてもよい。   The release layer is preferably composed of two layers of Ni and Cr. In this case, the Ni layer is preferably laminated so as to be in contact with the interface with the copper foil carrier, and the Cr layer is in contact with the interface with the ultrathin copper layer. Moreover, Zn may be contained in two layers of Ni and Cr.

剥離層は、例えば電気めっき、無電解めっき及び浸漬めっきのような湿式めっき、或いはスパッタリング、CVD及びPDVのような乾式めっきにより得ることができる。コストの観点から電気めっきが好ましい。   The release layer can be obtained by wet plating such as electroplating, electroless plating and immersion plating, or dry plating such as sputtering, CVD and PDV. Electroplating is preferable from the viewpoint of cost.

<3.極薄銅層>
剥離層の上には極薄銅層を設ける。極薄銅層は、硫酸銅、ピロリン酸銅、スルファミン酸銅、シアン化銅等の電解浴を利用した電気めっきにより形成することができ、一般的な電解銅箔で使用され、高電流密度での銅箔形成が可能であることから硫酸銅浴が好ましい。極薄銅層の厚みは特に制限はないが、一般的には銅箔キャリアよりも薄く、例えば12μm以下である。典型的には0.5〜10μmであり、より典型的には1〜5μmである。
<3. Ultrathin copper layer>
An ultrathin copper layer is provided on the release layer. The ultra-thin copper layer can be formed by electroplating using an electrolytic bath such as copper sulfate, copper pyrophosphate, copper sulfamate, copper cyanide, etc., and is used in general electrolytic copper foil with high current density. Since a copper foil can be formed, a copper sulfate bath is preferable. The thickness of the ultrathin copper layer is not particularly limited, but is generally thinner than the copper foil carrier, for example, 12 μm or less. Typically, it is 0.5 to 10 μm, and more typically 1 to 5 μm.

<4.粗化処理>
極薄銅層の表面には、例えば絶縁基板との密着性を良好にすること等のために粗化処理を施すことで粗化処理層を設けてもよい。粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであっても良い。粗化処理層は、銅、ニッケル、りん、タングステン、ヒ素、モリブデン、クロム、コバルト及び亜鉛からなる群から選択されたいずれかの単体又はいずれか一種以上を含む合金からなる層等であってもよい。また、銅又は銅合金で粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体または合金等で二次粒子や三次粒子を設ける粗化処理を行うこともできる。その後に、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層または防錆層を形成しても良く、更にその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。または粗化処理を行わずに、ニッケル、コバルト、銅、亜鉛の単体または合金等で耐熱層又は防錆層を形成し、さらにその表面にクロメート処理、シランカップリング処理などの処理を施してもよい。すなわち、粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよく、極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を形成してもよい。なお、上述の耐熱層、防錆層、クロメート処理層、シランカップリング処理層はそれぞれ複数の層(例えば2層以上、3層以上など)で形成されてもよい。
<4. Roughening>
A roughening treatment layer may be provided on the surface of the ultrathin copper layer by performing a roughening treatment, for example, in order to improve the adhesion to the insulating substrate. The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. The roughening treatment layer may be any single element selected from the group consisting of copper, nickel, phosphorus, tungsten, arsenic, molybdenum, chromium, cobalt, and zinc, or a layer made of an alloy containing at least one of them. Good. Moreover, after forming the roughened particles with copper or a copper alloy, a roughening treatment can be performed in which secondary particles or tertiary particles are further formed of nickel, cobalt, copper, zinc alone or an alloy. Thereafter, a heat-resistant layer or a rust-preventing layer may be formed of nickel, cobalt, copper, zinc alone or an alloy, and the surface thereof may be further subjected to a treatment such as a chromate treatment or a silane coupling treatment. Alternatively, a heat-resistant layer or a rust-preventing layer may be formed from nickel, cobalt, copper, zinc alone or an alloy without roughening, and the surface may be subjected to a treatment such as chromate treatment or silane coupling treatment. Good. That is, one or more layers selected from the group consisting of a heat-resistant layer, a rust-preventing layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface of the roughening treatment layer. One or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be formed on the surface. In addition, the above-mentioned heat-resistant layer, rust prevention layer, chromate treatment layer, and silane coupling treatment layer may each be formed of a plurality of layers (for example, two or more layers, three or more layers, etc.).

<5.キャリア付銅箔>
キャリア付銅箔は、銅箔キャリアと、銅箔キャリア上に形成された剥離層と、剥離層の上に積層された極薄銅層とを備える。キャリア付銅箔自体の使用方法は当業者に周知であるが、例えば極薄銅層の表面を紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミドフィルム等の絶縁基板に貼り合わせて熱圧着後にキャリアを剥がし、絶縁基板に接着した極薄銅層を目的とする導体パターンにエッチングし、最終的にプリント配線板を製造することができる。本発明に係るキャリア付銅箔の場合、剥離箇所は主として剥離層と極薄銅層の界面である。
<5. Copper foil with carrier>
The copper foil with a carrier includes a copper foil carrier, a release layer formed on the copper foil carrier, and an ultrathin copper layer laminated on the release layer. The method of using the copper foil with carrier itself is well known to those skilled in the art. For example, the surface of the ultra-thin copper layer is made of paper base phenol resin, paper base epoxy resin, synthetic fiber cloth base epoxy resin, glass cloth / paper composite. Ultra-thin bonded to an insulating substrate, bonded to an insulating substrate such as a base epoxy resin, glass cloth / glass nonwoven fabric composite epoxy resin and glass cloth base epoxy resin, polyester film, polyimide film, etc. The copper layer can be etched into the intended conductor pattern to finally produce a printed wiring board. In the case of the copper foil with a carrier according to the present invention, the peeling site is mainly the interface between the peeling layer and the ultrathin copper layer.

また、キャリアと、キャリア上に中間層が積層され、中間層の上に積層された極薄銅層とを備えたキャリア付銅箔は、前記極薄銅層上に粗化処理層を備えても良く、前記粗化処理層上に、耐熱層、防錆層、クロメート処理層およびシランカップリング処理層からなる群から選択された層を一つ以上備えても良い。
また、前記極薄銅層上に粗化処理層を備えても良く、前記粗化処理層上に、耐熱層、防錆層を備えてもよく、前記耐熱層、防錆層上にクロメート処理層を備えてもよく、前記クロメート処理層上にシランカップリング処理層を備えても良い。
また、前記キャリア付銅箔は前記極薄銅層上、あるいは前記粗化処理層上、あるいは前記耐熱層、防錆層、あるいはクロメート処理層、あるいはシランカップリング処理層の上に樹脂層を備えても良い。前記樹脂層は絶縁樹脂層であってもよい。
Further, the carrier-attached copper foil comprising a carrier and an ultra-thin copper layer laminated on the intermediate layer on the carrier comprises a roughening treatment layer on the ultra-thin copper layer. Alternatively, one or more layers selected from the group consisting of a heat-resistant layer, a rust prevention layer, a chromate treatment layer, and a silane coupling treatment layer may be provided on the roughening treatment layer.
Further, a roughening treatment layer may be provided on the ultrathin copper layer, a heat resistant layer and a rust prevention layer may be provided on the roughening treatment layer, and a chromate treatment is performed on the heat resistance layer and the rust prevention layer. A layer may be provided, and a silane coupling treatment layer may be provided on the chromate treatment layer.
The carrier-attached copper foil includes a resin layer on the ultrathin copper layer, the roughened layer, the heat-resistant layer, the rust-proof layer, the chromate-treated layer, or the silane coupling-treated layer. May be. The resin layer may be an insulating resin layer.

前記樹脂層は接着剤であってもよく、接着用の半硬化状態(Bステージ)の絶縁樹脂層であってもよい。半硬化状態(Bステージ状態)とは、その表面に指で触れても粘着感はなく、該絶縁樹脂層を重ね合わせて保管することができ、更に加熱処理を受けると硬化反応が起こる状態のことを含む。   The resin layer may be an adhesive or may be a semi-cured (B stage) insulating resin layer for bonding. The semi-cured state (B stage state) is a state in which there is no sticky feeling even if the surface is touched with a finger, the insulating resin layer can be stacked and stored, and a curing reaction occurs when subjected to heat treatment. Including that.

また前記樹脂層は熱硬化性樹脂を含んでもよく、熱可塑性樹脂であってもよい。また、前記樹脂層は熱可塑性樹脂を含んでもよい。その種類は格別限定されるものではないが、例えば、エポキシ樹脂,ポリイミド樹脂,多官能性シアン酸エステル化合物、マレイミド化合物、ポリビニルアセタール樹脂、ウレタン樹脂などを含む樹脂を好適なものとしてあげることができる。   The resin layer may contain a thermosetting resin or may be a thermoplastic resin. The resin layer may include a thermoplastic resin. Although the type is not particularly limited, for example, a resin including an epoxy resin, a polyimide resin, a polyfunctional cyanate ester compound, a maleimide compound, a polyvinyl acetal resin, a urethane resin, and the like can be preferably used. .

これらの樹脂を例えばメチルエチルケトン(MEK),トルエンなどの溶剤に溶解して樹脂液とし、これを前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート皮膜層、あるいは前記シランカップリング剤層の上に、例えばロールコータ法などによって塗布し、ついで必要に応じて加熱乾燥して溶剤を除去しBステージ状態にする。乾燥には例えば熱風乾燥炉を用いればよく、乾燥温度は100〜250℃、好ましくは130〜200℃であればよい。   These resins are dissolved in a solvent such as methyl ethyl ketone (MEK) or toluene to obtain a resin solution, which is used on the ultrathin copper layer, the heat-resistant layer, the rust-proof layer, the chromate film layer, or the silane cup. On the ring agent layer, for example, it is applied by a roll coater method or the like, and then heat-dried as necessary to remove the solvent to obtain a B-stage state. For example, a hot air drying furnace may be used for drying, and the drying temperature may be 100 to 250 ° C, preferably 130 to 200 ° C.

前記樹脂層を備えたキャリア付銅箔(樹脂付きキャリア付銅箔)は、その樹脂層を基材に重ね合わせたのち全体を熱圧着して該樹脂層を熱硬化せしめ、ついでキャリヤを剥離して極薄銅層を表出せしめ(当然に表出するのは該極薄銅層の中間層側の表面である)、そこに所定の配線パターンを形成するという態様で使用される。   The copper foil with a carrier provided with the resin layer (copper foil with a carrier with resin) is superposed on the base material, and the whole is thermocompressed to thermally cure the resin layer, and then the carrier is peeled off. Thus, the ultrathin copper layer is exposed (which is naturally the surface on the intermediate layer side of the ultrathin copper layer), and a predetermined wiring pattern is formed thereon.

この樹脂付きキャリア付銅箔を使用すると、多層プリント配線基板の製造時におけるプリプレグ材の使用枚数を減らすことができる。しかも、樹脂層の厚みを層間絶縁が確保できるような厚みにしたり、プリプレグ材を全く使用していなくても銅張り積層板を製造することができる。またこのとき、基材の表面に絶縁樹脂をアンダーコートして表面の平滑性を更に改善することもできる。   If this resin-attached copper foil with a carrier is used, the number of prepreg materials used when manufacturing a multilayer printed wiring board can be reduced. In addition, the copper-clad laminate can be manufactured even if the resin layer is made thick enough to ensure interlayer insulation or no prepreg material is used. At this time, the surface smoothness can be further improved by undercoating the surface of the substrate with an insulating resin.

なお、プリプレグ材を使用しない場合には、プリプレグ材の材料コストが節約され、また積層工程も簡略になるので経済的に有利となり、しかも、プリプレグ材の厚み分だけ製造される多層プリント配線基板の厚みは薄くなり、1層の厚みが100μm以下である極薄の多層プリント配線基板を製造することができるという利点がある。   In addition, when the prepreg material is not used, the material cost of the prepreg material is saved and the laminating process is simplified, which is economically advantageous. Moreover, the multilayer printed wiring board manufactured by the thickness of the prepreg material is used. The thickness is reduced, and there is an advantage that an extremely thin multilayer printed wiring board in which the thickness of one layer is 100 μm or less can be manufactured.

この樹脂層の厚みは0.1〜80μmであることが好ましい。   The thickness of this resin layer is preferably 0.1 to 80 μm.

樹脂層の厚みが0.1μmより薄くなると、接着力が低下し、プリプレグ材を介在させることなくこの樹脂付きキャリア付銅箔を内層材を備えた基材に積層したときに、内層材の回路との間の層間絶縁を確保することが困難になる場合がある。   When the thickness of the resin layer is less than 0.1 μm, the adhesive strength is reduced, and when this copper foil with a carrier with a resin is laminated on a base material provided with an inner layer material without interposing a prepreg material, the circuit of the inner layer material It may be difficult to ensure interlayer insulation between the two.

一方、樹脂層の厚みを80μmより厚くすると、1回の塗布工程で目的厚みの樹脂層を形成することが困難となり、余分な材料費と工数がかかるため経済的に不利となる。更には、形成された樹脂層はその可撓性が劣るので、ハンドリング時にクラックなどが発生しやすくなり、また内層材との熱圧着時に過剰な樹脂流れが起こって円滑な積層が困難になる場合がある。   On the other hand, if the thickness of the resin layer is greater than 80 μm, it is difficult to form a resin layer having a target thickness in a single coating process, which is economically disadvantageous because of extra material costs and man-hours. Furthermore, since the formed resin layer is inferior in flexibility, cracks are likely to occur during handling, and excessive resin flow occurs during thermocompression bonding with the inner layer material, making smooth lamination difficult. There is.

更に、この樹脂付きキャリア付銅箔のもう一つの製品形態としては、前記極薄銅層上、あるいは前記耐熱層、防錆層、あるいは前記クロメート処理層、あるいは前記シランカップリング処理層の上に樹脂層で被覆し、半硬化状態とした後、ついでキャリアを剥離して、キャリアが存在しない樹脂付き銅箔の形で製造することも可能である。   Furthermore, as another product form of this copper foil with a carrier with a resin, on the ultra-thin copper layer, or on the heat-resistant layer, rust-preventing layer, chromate-treated layer, or silane coupling-treated layer After coating with a resin layer and making it into a semi-cured state, the carrier can then be peeled off and manufactured in the form of a copper foil with resin without the carrier.

更に、プリント配線板に電子部品類を搭載することで、プリント回路板が完成する。以下に、本発明に係るキャリア付銅箔を用いたプリント配線板の製造工程の例を幾つか示す。   Furthermore, a printed circuit board is completed by mounting electronic components on the printed wiring board. Below, some examples of the manufacturing process of the printed wiring board using the copper foil with a carrier which concerns on this invention are shown.

本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、前記キャリア付銅箔と絶縁基板を積層する工程、前記キャリア付銅箔と絶縁基板を極薄銅層側が絶縁基板と対向するように積層した後に、前記キャリア付銅箔のキャリアを剥がす工程を経て銅張積層板を形成し、その後、セミアディティブ法、モディファイドセミアディティブ法、パートリーアディティブ法及びサブトラクティブ法の何れかの方法によって、回路を形成する工程を含む。絶縁基板は内層回路入りのものとすることも可能である。   In one embodiment of a method for producing a printed wiring board according to the present invention, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention, a step of laminating the copper foil with a carrier and an insulating substrate, and with the carrier After laminating the copper foil and the insulating substrate so that the ultrathin copper layer side faces the insulating substrate, a copper-clad laminate is formed through a step of peeling the carrier of the copper foil with carrier, and then a semi-additive method, a modified semi-conductor A step of forming a circuit by any one of an additive method, a partial additive method, and a subtractive method. It is also possible for the insulating substrate to contain an inner layer circuit.

本発明において、セミアディティブ法とは、絶縁基板又は銅箔シード層上に薄い無電解めっきを行い、パターンを形成後、電気めっき及びエッチングを用いて導体パターンを形成する方法を指す。   In the present invention, the semi-additive method refers to a method in which a thin electroless plating is performed on an insulating substrate or a copper foil seed layer, a pattern is formed, and then a conductive pattern is formed using electroplating and etching.

従って、セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
Therefore, in one embodiment of a method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing a through hole or / and a blind via in the resin exposed by removing the ultrathin copper layer by etching;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the resin and the through hole or / and the blind via;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と、前記絶縁樹脂基板とにスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチング等により除去することにより露出した前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate;
Performing a desmear process on the region including the through hole or / and the blind via,
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と、前記絶縁樹脂基板とにスルーホールまたは/およびブラインドビアを設ける工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記極薄銅層をエッチング等により除去することにより露出した前記樹脂および前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via in the ultrathin copper layer exposed by peeling the carrier and the insulating resin substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the resin and the region including the through hole or / and the blind via exposed by removing the ultrathin copper layer by etching or the like;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

セミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法によりすべて除去する工程、
前記極薄銅層をエッチングにより除去することにより露出した前記樹脂の表面について無電解めっき層を設ける工程、
前記無電解めっき層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a semi-additive method, a step of preparing a copper foil with a carrier and an insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Removing all of the ultrathin copper layer exposed by peeling the carrier by a method such as etching or plasma using a corrosive solution such as acid,
Providing an electroless plating layer on the surface of the resin exposed by removing the ultrathin copper layer by etching;
Providing a plating resist on the electroless plating layer;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

本発明において、モディファイドセミアディティブ法とは、絶縁層上に金属箔を積層し、めっきレジストにより非回路形成部を保護し、電解めっきにより回路形成部の銅厚付けを行った後、レジストを除去し、前記回路形成部以外の金属箔を(フラッシュ)エッチングで除去することにより、絶縁層上に回路を形成する方法を指す。   In the present invention, the modified semi-additive method is a method in which a metal foil is laminated on an insulating layer, a non-circuit forming portion is protected by a plating resist, and the copper is thickened in the circuit forming portion by electrolytic plating, and then the resist is removed. Then, a method of forming a circuit on the insulating layer by removing the metal foil other than the circuit forming portion by (flash) etching is indicated.

従って、モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記キャリアを剥がして露出した極薄銅層表面にめっきレジストを設ける工程、
前記めっきレジストを設けた後に、電解めっきにより回路を形成する工程、
前記めっきレジストを除去する工程、
前記めっきレジストを除去することにより露出した極薄銅層をフラッシュエッチングにより除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing a plating resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Forming a circuit by electrolytic plating after providing the plating resist;
Removing the plating resist;
Removing the ultra-thin copper layer exposed by removing the plating resist by flash etching;
including.

モディファイドセミアディティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層の上にめっきレジストを設ける工程、
前記めっきレジストに対して露光し、その後、回路が形成される領域のめっきレジストを除去する工程、
前記めっきレジストが除去された前記回路が形成される領域に、電解めっき層を設ける工程、
前記めっきレジストを除去する工程、
前記回路が形成される領域以外の領域にある無電解めっき層及び極薄銅層をフラッシュエッチングなどにより除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using the modified semi-additive method, the step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a plating resist on the exposed ultrathin copper layer by peeling off the carrier;
Exposing the plating resist, and then removing the plating resist in a region where a circuit is formed;
Providing an electrolytic plating layer in a region where the circuit from which the plating resist has been removed is formed;
Removing the plating resist;
Removing the electroless plating layer and the ultrathin copper layer in a region other than the region where the circuit is formed by flash etching or the like;
including.

本発明において、パートリーアディティブ法とは、導体層を設けてなる基板、必要に応じてスルーホールやバイアホール用の孔を穿けてなる基板上に触媒核を付与し、エッチングして導体回路を形成し、必要に応じてソルダレジストまたはメッキレジストを設けた後に、前記導体回路上、スルーホールやバイアホールなどに無電解めっき処理によって厚付けを行うことにより、プリント配線板を製造する方法を指す。   In the present invention, the partial additive method means that a catalyst circuit is formed on a substrate provided with a conductor layer, and if necessary, a substrate provided with holes for through holes or via holes, and etched to form a conductor circuit. Then, after providing a solder resist or a plating resist as necessary, it refers to a method of manufacturing a printed wiring board by thickening through holes, via holes, etc. on the conductor circuit by electroless plating.

従って、パートリーアディティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について触媒核を付与する工程、
前記キャリアを剥がして露出した極薄銅層表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
前記極薄銅層および前記触媒核を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して露出した前記絶縁基板表面に、ソルダレジストまたはメッキレジストを設ける工程、
前記ソルダレジストまたはメッキレジストが設けられていない領域に無電解めっき層を設ける工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a partly additive method, a step of preparing the copper foil with carrier and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Applying catalyst nuclei to the region containing the through-holes and / or blind vias;
Providing an etching resist on the surface of the ultrathin copper layer exposed by peeling the carrier,
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the catalyst nucleus by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
A step of providing a solder resist or a plating resist on the surface of the insulating substrate exposed by removing the ultrathin copper layer and the catalyst core by a method such as etching or plasma using a corrosive solution such as an acid;
Providing an electroless plating layer in a region where the solder resist or plating resist is not provided,
including.

本発明において、サブトラクティブ法とは、銅張積層板上の銅箔の不要部分を、エッチングなどによって、選択的に除去して、導体パターンを形成する方法を指す。   In the present invention, the subtractive method refers to a method of forming a conductor pattern by selectively removing unnecessary portions of a copper foil on a copper clad laminate by etching or the like.

従って、サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面に、電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層および前記電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
Therefore, in one embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Providing an electroplating layer on the surface of the electroless plating layer;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultrathin copper layer and the electroless plating layer and the electrolytic plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.

サブトラクティブ法を用いた本発明に係るプリント配線板の製造方法の別の一実施形態においては、本発明に係るキャリア付銅箔と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板を積層する工程、
前記キャリア付銅箔と絶縁基板を積層した後に、前記キャリア付銅箔のキャリアを剥がす工程、
前記キャリアを剥がして露出した極薄銅層と絶縁基板にスルーホールまたは/およびブラインドビアを設ける工程、
前記スルーホールまたは/およびブラインドビアを含む領域についてデスミア処理を行う工程、
前記スルーホールまたは/およびブラインドビアを含む領域について無電解めっき層を設ける工程、
前記無電解めっき層の表面にマスクを形成する工程、
マスクが形成されいない前記無電解めっき層の表面に電解めっき層を設ける工程、
前記電解めっき層または/および前記極薄銅層の表面にエッチングレジストを設ける工程、
前記エッチングレジストに対して露光し、回路パターンを形成する工程、
前記極薄銅層および前記無電解めっき層を酸などの腐食溶液を用いたエッチングやプラズマなどの方法により除去して、回路を形成する工程、
前記エッチングレジストを除去する工程、
を含む。
In another embodiment of the method for producing a printed wiring board according to the present invention using a subtractive method, a step of preparing the carrier-attached copper foil and the insulating substrate according to the present invention,
Laminating the copper foil with carrier and an insulating substrate;
A step of peeling the carrier of the copper foil with carrier after laminating the copper foil with carrier and the insulating substrate;
Providing a through hole or / and a blind via on the insulating substrate and the ultrathin copper layer exposed by peeling the carrier;
Performing a desmear process on the region including the through hole or / and the blind via,
Providing an electroless plating layer for the region including the through hole or / and the blind via;
Forming a mask on the surface of the electroless plating layer;
Providing an electroplating layer on the surface of the electroless plating layer on which no mask is formed;
A step of providing an etching resist on the surface of the electrolytic plating layer or / and the ultrathin copper layer;
Exposing the etching resist to form a circuit pattern;
Removing the ultra-thin copper layer and the electroless plating layer by a method such as etching or plasma using a corrosive solution such as an acid to form a circuit;
Removing the etching resist;
including.

スルーホールまたは/およびブラインドビアを設ける工程、及びその後のデスミア工程は行わなくてもよい。   The process of providing a through hole or / and a blind via and the subsequent desmear process may not be performed.

<6.キャリア付銅箔の製造方法>
次に、本発明に係るキャリア付銅箔の製造方法を説明する。図2は、本発明の実施形態1に係るキャリア付銅箔の製造方法に係る運箔方式を示す模式図である。本発明の実施形態1に係るキャリア付銅箔の製造方法は、ロール・ツウ・ロール搬送方式により長さ方向に搬送される長尺状の銅箔キャリアの表面を処理することで、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された極薄銅層とを備えたキャリア付銅箔を製造する方法である。本発明の実施形態1に係るキャリア付銅箔の製造方法は、搬送ロールで搬送される銅箔キャリアをドラムで支持しながら、電解めっきにより銅箔キャリア表面に極薄銅層を形成する工程と、剥離層が形成された銅箔キャリアをドラムで支持しながら、電解めっきにより剥離層表面に極薄銅層を形成する工程と、銅箔キャリアをドラムで支持しながら、電解めっきにより極薄銅層表面に粗化処理層を形成する工程とを含む。各工程ではドラムにて支持されている銅箔キャリアの処理面がカソードを兼ねており、このドラムと、ドラムに対向するように設けられたアノードとの間のめっき液中で各電解めっきが行われる。
<6. Manufacturing method of copper foil with carrier>
Next, the manufacturing method of the copper foil with a carrier which concerns on this invention is demonstrated. FIG. 2 is a schematic diagram illustrating a foil handling method according to the method of manufacturing the copper foil with a carrier according to the first embodiment of the present invention. The manufacturing method of the copper foil with a carrier which concerns on Embodiment 1 of this invention is a copper foil carrier by processing the surface of the elongate copper foil carrier conveyed in a length direction by a roll-to-roll conveyance system. And a copper foil with a carrier comprising a release layer laminated on a copper foil carrier and an ultrathin copper layer laminated on the release layer. The manufacturing method of the copper foil with a carrier which concerns on Embodiment 1 of this invention is the process of forming an ultra-thin copper layer on the copper foil carrier surface by electrolytic plating, supporting the copper foil carrier conveyed with a conveyance roll with a drum, The process of forming an ultrathin copper layer on the surface of the release layer by electrolytic plating while supporting the copper foil carrier on which the release layer is formed with a drum, and the ultrathin copper by electrolytic plating while supporting the copper foil carrier with a drum Forming a roughened layer on the surface of the layer. In each process, the treated surface of the copper foil carrier supported by the drum also serves as the cathode, and each electrolytic plating is performed in a plating solution between this drum and the anode provided to face the drum. Is called.

本発明では、長尺状の銅箔キャリアをロール・ツウ・ロール搬送方式で搬送するために、銅箔キャリアの長さ方向に張力をかけながら搬送している。張力は、各搬送ロールを駆動モーターと接続する等によりトルクをかけることで調整することができる。銅箔キャリアの搬送張力は0.01〜0.2kg/mmが好ましい。搬送張力が0.01kg/mm未満ではドラムとの密着力が弱く、所望の厚みに各層を形成することが困難となる。また、装置の構造にもよるがスリップ等の問題が生じやすく、さらに銅箔キャリアの巻きが緩くなり、巻きずれ等の問題が生じやすい。一方、搬送張力が0.2kg/mm超では、わずかな銅箔キャリアの位置ズレでもオレシワが発生しやすく、装置管理の観点からも好ましくない。また、巻きが硬く、巻き締まりシワ等が生じやすい。銅箔キャリアの搬送張力は、より好ましくは0.02〜0.1kg/mmである。   In the present invention, in order to convey a long copper foil carrier by a roll-to-roll conveyance system, the copper foil carrier is conveyed while applying tension in the length direction of the copper foil carrier. The tension can be adjusted by applying torque by connecting each transport roll to a drive motor or the like. The conveyance tension of the copper foil carrier is preferably 0.01 to 0.2 kg / mm. When the conveyance tension is less than 0.01 kg / mm, the adhesion with the drum is weak, and it is difficult to form each layer in a desired thickness. Moreover, although it depends on the structure of the apparatus, problems such as slip are likely to occur, and the winding of the copper foil carrier becomes loose, and problems such as winding deviation are likely to occur. On the other hand, if the transport tension is more than 0.2 kg / mm, wrinkles are likely to occur even with a slight displacement of the copper foil carrier, which is not preferable from the viewpoint of device management. In addition, the winding is hard, and winding wrinkles are likely to occur. The conveyance tension of the copper foil carrier is more preferably 0.02 to 0.1 kg / mm.

実施形態1では、剥離層と粗化処理層とを、いずれも、ドラムで銅箔キャリアを支持しながら、電解めっきにより形成しているが、これに限定されない。例えば、実施形態2として、図3に示すように、粗化処理層の形成を従来の銅箔キャリアへのドラムによる支持がない九十九折による運箔方式を用いた電解めっきにより形成してもよい。また、実施形態3として、図4に示すように、剥離層及び粗化処理層の形成を、いずれも従来の銅箔キャリアへのドラムによる支持がない九十九折による運箔方式を用いた電解めっきにより形成してもよい。ただし、実施形態2および3は、実施形態1にように全ての工程をドラムを用いた運箔方式で行っていないため、実施形態1に比べて、電解めっきの際の極間距離を一定にするのが難しく、剥離層及び/又は粗化処理層の厚み精度は劣る。なお、九十九折による運箔方式を用いた電解めっきの場合には、搬送ロール間の距離を短くすること、ガイドロール等を用いて箔の振れを防止すること、搬送張力を通常の3〜5倍とすることにより、電解めっきにおけるアノード−カソード間の極間距離を安定させることにより、板厚精度を良好なものとすることができる。   In Embodiment 1, the release layer and the roughening layer are both formed by electrolytic plating while supporting the copper foil carrier with a drum, but the present invention is not limited to this. For example, as Embodiment 2, as shown in FIG. 3, the roughened layer is formed by electrolytic plating using a ninety-fold folding method without a drum support to a conventional copper foil carrier. Also good. In addition, as Embodiment 3, as shown in FIG. 4, the formation of the release layer and the roughening treatment layer was performed using a ninety-nine-fold folding method that does not support a conventional copper foil carrier by a drum. You may form by electroplating. However, since Embodiments 2 and 3 do not perform all the steps by a foil carrying method using a drum as in Embodiment 1, compared with Embodiment 1, the distance between electrodes at the time of electrolytic plating is made constant. It is difficult to do, and the thickness accuracy of a peeling layer and / or a roughening process layer is inferior. In addition, in the case of electrolytic plating using a 99-fold folding method, the distance between the conveying rolls is shortened, the guide rolls are used to prevent the foil from shaking, and the conveying tension is set to the usual 3 By making it 5 times, the plate-thickness accuracy can be improved by stabilizing the distance between the anode and the cathode in electrolytic plating.

本発明は、上述のように、銅箔キャリアをドラムで支持することで電解めっきにおけるアノード−カソード間の極間距離が安定する。このため、形成する層の厚みのバラツキが良好に抑制され、厚み精度の高い極薄銅層を有するキャリア付銅箔の作製が可能となる。また、剥離層、極薄銅層、粗化処理層を形成する際のめっき処理における線流速(m/秒)の調整を行うことで、厚み精度のより良好な極薄銅層を有するキャリア付銅箔の作製が可能となる。   In the present invention, as described above, the distance between the anode and the cathode in electrolytic plating is stabilized by supporting the copper foil carrier with a drum. For this reason, the variation in the thickness of the layer to form is suppressed favorably, and it becomes possible to produce a copper foil with a carrier having an extremely thin copper layer with high thickness accuracy. In addition, by adjusting the linear flow rate (m / sec) in the plating process when forming the release layer, the ultrathin copper layer, and the roughening layer, the carrier with an ultrathin copper layer with better thickness accuracy is provided. Copper foil can be produced.

本発明で用いる重量厚み法の一形態を説明する(評価D)。まず、キャリア付銅箔の重量(銅箔キャリアと剥離層と極薄銅層と極薄銅層の上の表面処理層(粗化処理層など)の合計重量)を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義する。測定対象となるキャリア付銅箔片はプレシジョンカッターで切り出した15mm(MD方向)×150mm(TD方向)シートとする。重量厚み精度を調査するため、幅方向で等間隔に3点、長さ方向で5点(40mm間隔)、計15点の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求める。なお、重量厚み精度の算出式は次式とする。
厚み精度(%)=3σ×100/重量厚み測定値の平均値
この測定方法の繰り返し精度は0.2%である。
MD方向は、キャリア付銅箔の製箔方向(キャリア付銅箔の製造装置における通箔方向)に平行な方向を示し、TD方向は、MD方向に垂直な方向、すなわち、キャリア付銅箔の製箔方向に垂直な方向(キャリア付銅箔の幅方向)を示す。
本発明に係るキャリア付銅箔又は極薄銅層は、一側面において、試料とする極薄銅層を上述の領域(15mm(MD方向)×150mm(TD方向))で測定した厚み精度(%)が、6.15%以下であり、4%以下であることが好ましく、3%以下であることが更により好ましく、2.5%以下であることが更により好ましく、2.0%以下であることが更により好ましい。下限は特に限定する必要は無いが、例えば0.01%以上、あるいは0.05%以上、あるいは0.1%以上、あるいは0.2%以上である。
An embodiment of the weight-thickness method used in the present invention will be described (Evaluation D). First, after measuring the weight of the copper foil with carrier (total weight of the copper foil carrier, release layer, ultrathin copper layer, and surface treatment layer (roughening layer, etc.) on the ultrathin copper layer), ultrathin copper The layer is peeled off, the weight of the copper foil carrier is measured again, and the difference between the former and the latter is defined as the weight of the ultrathin copper layer. The carrier-attached copper foil piece to be measured is a 15 mm (MD direction) × 150 mm (TD direction) sheet cut out by a precision cutter. In order to investigate the weight-thickness accuracy, the average value and the standard deviation (σ of the weight-thickness measurement value of the ultra-thin copper layer pieces of 3 points at equal intervals in the width direction, 5 points in the length direction (40 mm interval), and 15 points in total. ) In addition, the calculation formula of weight thickness accuracy shall be the following formula.
Thickness accuracy (%) = average of 3σ × 100 / weight thickness measurement value The repeatability of this measurement method is 0.2%.
The MD direction indicates a direction parallel to the foil-making direction of the copper foil with carrier (the foil passing direction in the manufacturing apparatus of the copper foil with carrier), and the TD direction is a direction perpendicular to the MD direction, that is, the copper foil with carrier. The direction perpendicular to the foil making direction (width direction of the copper foil with carrier) is shown.
The copper foil with a carrier or the ultrathin copper layer according to the present invention has, on one side surface, a thickness accuracy (%) measured by measuring the ultrathin copper layer as a sample in the above-described region (15 mm (MD direction) × 150 mm (TD direction)) ) Is 6.15% or less, preferably 4% or less, more preferably 3% or less, still more preferably 2.5% or less, and further preferably 2.0% or less. Even more preferably. The lower limit is not particularly limited, but is, for example, 0.01% or more, 0.05% or more, 0.1% or more, or 0.2% or more.

また、本発明で用いる重量厚み法の別の一形態を説明する(評価E)。まず、キャリア付銅箔の重量(銅箔キャリアと剥離層と極薄銅層と極薄銅層の上の表面処理層(粗化処理層など)の合計重量)を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義する。測定対象となるキャリア付銅箔片はプレシジョンカッターで切り出した15mm(TD方向)×150mm(MD方向)シートとする。重量厚み精度を調査するため、幅方向で等間隔に10点、長さ方向で2点(10mm間隔)、計20点の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求める。なお、重量厚み精度の算出式は次式とする。
厚み精度(%)=3σ×100/重量厚み測定値の平均値
この測定方法の繰り返し精度は0.2%である。
本発明に係るキャリア付銅箔又は極薄銅層は別の一側面において、試料とする極薄銅層を上述の領域(15mm(TD方向)×150mm(MD方向))で測定した厚み精度(%)は、9.30%以下であり、7%以下であることが好ましく、5%以下であることが更により好ましく、4%以下であることが更により好ましく、3.5%以下であることが更により好ましく、3%以下であることが更により好ましい。下限は特に限定する必要は無いが、例えば0.01%以上、あるいは0.05%以上、あるいは0.1%以上、あるいは0.2%以上である。
Another embodiment of the weight-thickness method used in the present invention will be described (Evaluation E). First, after measuring the weight of the copper foil with carrier (total weight of the copper foil carrier, release layer, ultrathin copper layer, and surface treatment layer (roughening layer, etc.) on the ultrathin copper layer), ultrathin copper The layer is peeled off, the weight of the copper foil carrier is measured again, and the difference between the former and the latter is defined as the weight of the ultrathin copper layer. The carrier-attached copper foil piece to be measured is a 15 mm (TD direction) × 150 mm (MD direction) sheet cut out by a precision cutter. In order to investigate the weight-thickness accuracy, the average value and standard deviation (σ of the weight-thickness measurement values of the ultrathin copper layer pieces of 10 points at equal intervals in the width direction, 2 points in the length direction (10 mm intervals), and 20 points in total. ) In addition, the calculation formula of weight thickness accuracy shall be the following formula.
Thickness accuracy (%) = average of 3σ × 100 / weight thickness measurement value The repeatability of this measurement method is 0.2%.
In another aspect, the copper foil with carrier or the ultrathin copper layer according to the present invention is a thickness accuracy (15 mm (TD direction) × 150 mm (MD direction)) measured for the ultrathin copper layer used as a sample. %) Is 9.30% or less, preferably 7% or less, more preferably 5% or less, still more preferably 4% or less, and further preferably 3.5% or less. Is still more preferable, and it is still more preferable that it is 3% or less. The lower limit is not particularly limited, but is, for example, 0.01% or more, 0.05% or more, 0.1% or more, or 0.2% or more.

また、本発明で用いる重量厚み法の更に別の一形態を説明する(評価C)。まず、キャリア付銅箔の重量(銅箔キャリアと剥離層と極薄銅層と極薄銅層の上の表面処理層(粗化処理層など)の合計重量)を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義する。測定対象となるキャリア付銅箔片はプレス機で打ち抜いた5cm角シートとする。重量厚み精度を調査するため、幅方向で等間隔に5点、長さ方向で3点(40mm間隔)、計15点の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求める。なお、重量厚み精度の算出式は次式とする。
厚み精度(%)=3σ×100/重量厚み測定値の平均値
この測定方法の繰り返し精度は0.2%である。
本発明に係るキャリア付銅箔又は極薄銅層は別の一側面において、試料とする極薄銅層を上述の領域(5cm角)で測定した厚み精度(%)は、2.90%以下であり、2%以下であることが好ましく、1.5%以下であることが更により好ましく、1.3%以下であることが更により好ましく、1.1%以下であることが更により好ましい。下限は特に限定する必要は無いが、例えば0.01%以上、あるいは0.05%以上、あるいは0.1%以上、あるいは0.2%以上である。
Further, another embodiment of the weight-thickness method used in the present invention will be described (Evaluation C). First, after measuring the weight of the copper foil with carrier (total weight of the copper foil carrier, release layer, ultrathin copper layer, and surface treatment layer (roughening layer, etc.) on the ultrathin copper layer), ultrathin copper The layer is peeled off, the weight of the copper foil carrier is measured again, and the difference between the former and the latter is defined as the weight of the ultrathin copper layer. The copper foil piece with a carrier to be measured is a 5 cm square sheet punched out by a press. In order to investigate the weight-thickness accuracy, the average value and the standard deviation (σ of the weight-thickness measurement values of ultra-thin copper layer pieces of 5 points at equal intervals in the width direction, 3 points in the length direction (40 mm intervals), and a total of 15 points. ) In addition, the calculation formula of weight thickness accuracy shall be the following formula.
Thickness accuracy (%) = average of 3σ × 100 / weight thickness measurement value The repeatability of this measurement method is 0.2%.
In another aspect of the carrier-attached copper foil or ultrathin copper layer according to the present invention, the thickness accuracy (%) measured for the ultrathin copper layer as a sample in the above-described region (5 cm square) is 2.90% or less. It is preferably 2% or less, more preferably 1.5% or less, still more preferably 1.3% or less, and even more preferably 1.1% or less. . The lower limit is not particularly limited, but is, for example, 0.01% or more, 0.05% or more, 0.1% or more, or 0.2% or more.

以下に、本発明の実施例によって本発明をさらに詳しく説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention is not limited to these examples.

1.キャリア付銅箔の製造
まず、表1に記載の厚さの長尺の銅箔キャリアを準備した。実施例1、3、5〜7、10、13、15、16、比較例1、2の銅箔は、電解銅箔(JX日鉱日石金属社製JTC)を用い、実施例2、4、8、9、11、12、14、17〜21、比較例3、4の銅箔は、圧延銅箔(JX日鉱日石金属社製タフピッチ銅箔(JIS−H3100−C1100))を用いた。この銅箔のシャイニー面に対して、以下の条件でロール・トウ・ロール型の連続ラインで以下の条件で表1に記載の剥離層、極薄銅層及び粗化処理層の各形成処理を行った。ここで、実施例1〜3、17は上述の図4で示した実施形態3に係る方式で作製したものであり、実施例4〜9は上述の図3で示した実施形態2に係る方式で作製したものであり、実施例10〜16、19〜21は上述の図2で示した実施形態1に係る方式で作製したものである。また、比較例1〜4は、上述の図1で示した従来方式で作製したものである。また、実施例18は、図1に示す方式で作製した。ここで、中間層形成工程、極薄銅層形成工程、粗化処理層形成工程の全てにおいて、比較例1〜4が、図1に示すめっき浴の上方の搬送ロールと、めっき浴中の搬送ロール(ディップロール)との距離(すなわち、ディップロールを基準とした上方の搬送ロールの高さ)が2500mmであったのに対し、実施例18は当該距離が1700mmと短い距離とした。さらに、中間層形成工程、極薄銅層形成工程、粗化処理層形成工程の全てにおいて、実施例18では、搬送張力を比較例1〜4に対して3倍高くして作製した。
1. Manufacture of copper foil with carrier First, a long copper foil carrier having a thickness shown in Table 1 was prepared. The copper foils of Examples 1, 3, 5 to 7, 10, 13, 15, 16 and Comparative Examples 1 and 2 were electrolytic copper foils (JTC manufactured by JX Nippon Mining & Metals), and Examples 2, 4, As the copper foils of 8, 9, 11, 12, 14, 17 to 21, and Comparative Examples 3 and 4, rolled copper foil (Tough pitch copper foil (JIS-H3100-C1100) manufactured by JIS Nippon Mining & Metals) was used. With respect to the shiny surface of this copper foil, each forming treatment of the peeling layer, the ultrathin copper layer and the roughening treatment layer described in Table 1 under the following conditions in a roll-to-roll type continuous line under the following conditions: went. Here, Examples 1 to 3 and 17 are manufactured by the method according to the third embodiment shown in FIG. 4 described above, and Examples 4 to 9 are methods according to the second embodiment shown in FIG. 3 described above. Examples 10 to 16 and 19 to 21 are manufactured by the method according to Embodiment 1 shown in FIG. Further, Comparative Examples 1 to 4 are manufactured by the conventional method shown in FIG. Moreover, Example 18 was produced by the method shown in FIG. Here, in all of an intermediate | middle layer formation process, an ultra-thin copper layer formation process, and a roughening process layer formation process, Comparative Examples 1-4 are the conveyance roll above the plating bath shown in FIG. 1, and conveyance in a plating bath. Whereas the distance from the roll (dip roll) (that is, the height of the upper transport roll with respect to the dip roll) was 2500 mm, in Example 18, the distance was as short as 1700 mm. Furthermore, in all of the intermediate layer forming step, the ultrathin copper layer forming step, and the roughening treatment layer forming step, in Example 18, the conveyance tension was made three times higher than those of Comparative Examples 1 to 4.

(剥離層形成)
(A)九十九折による運箔方式
・アノード:不溶解性電極
・カソード:銅箔キャリア処理面
・極間距離(表1に示す)
・電解めっき液組成(NiSO4:100g/L)
・電解めっき液pH:6.7
・電解めっきの浴温:40℃
・電解めっきの電流密度:5A/dm2
・電解めっき時間:10秒
・銅箔キャリア搬送張力:0.05kg/mm(実施例18は0.15kg/mm)
(B)ドラムによる運箔方式
・アノード:不溶解性電極
・カソード:直径100cmドラムに支持された銅箔キャリア表面
・極間距離(表1に示す)
・電解めっき液組成(NiSO4:100g/L)
・電解めっき液pH:6.7
・電解めっきの浴温:40℃
・電解めっきの電流密度:5A/dm2
・電解めっき時間:10秒
・銅箔キャリア搬送張力:0.05kg/mm
(Peeling layer formation)
(A) Carrying foil method by 99-fold ・ Anode: Insoluble electrode ・ Cathode: Copper foil carrier treated surface ・ Distance between electrodes (shown in Table 1)
-Electrolytic plating solution composition (NiSO 4 : 100 g / L)
Electrolytic plating solution pH: 6.7
-Electroplating bath temperature: 40 ° C
-Current density of electroplating: 5 A / dm 2
Electrolytic plating time: 10 seconds Copper foil carrier transport tension: 0.05 kg / mm (Example 18 is 0.15 kg / mm)
(B) Foil handling system using drums ・ Anode: Insoluble electrode ・ Cathode: Copper foil carrier surface supported by drum of 100 cm in diameter ・ Distance between electrodes (shown in Table 1)
-Electrolytic plating solution composition (NiSO 4 : 100 g / L)
Electrolytic plating solution pH: 6.7
-Electroplating bath temperature: 40 ° C
-Current density of electroplating: 5 A / dm 2
Electrolytic plating time: 10 seconds Copper foil carrier transport tension: 0.05 kg / mm

(極薄銅層形成)
(A)九十九折による運箔方式
・アノード:不溶解性電極
・カソード:銅箔キャリア処理面
・極間距離(表1に示す)
・電解めっき液組成(Cu:50g/L、H2SO4:50g/L、Cl:60ppm)
・電解めっきの浴温:45℃
・電解めっきの電流密度:30A/dm2
・銅箔キャリア搬送張力:0.05kg/mm(実施例18は0.15kg/mm)
(B)ドラムによる運箔方式
・アノード:不溶解性電極
・カソード:直径100cmドラムに支持された銅箔キャリア表面
・極間距離(表1に示す)
・線流速(表1に示す)
・電解めっき液組成(Cu:100g/L、H2SO4:80g/L、Cl:60ppm
・電解めっきの浴温:55℃
・電解めっきの電流密度:30A/dm2
・銅箔キャリア搬送張力:0.05kg/mm
(Ultra-thin copper layer formation)
(A) Carrying foil method by 99-fold ・ Anode: Insoluble electrode ・ Cathode: Copper foil carrier treated surface ・ Distance between electrodes (shown in Table 1)
Electrolytic plating solution composition (Cu: 50 g / L, H 2 SO 4 : 50 g / L, Cl: 60 ppm)
-Electroplating bath temperature: 45 ° C
-Current density of electrolytic plating: 30 A / dm 2
Copper foil carrier transport tension: 0.05 kg / mm (Example 18 is 0.15 kg / mm)
(B) Foil handling system using drums ・ Anode: Insoluble electrode ・ Cathode: Copper foil carrier surface supported by drum of 100 cm in diameter ・ Distance between electrodes (shown in Table 1)
・ Linear flow velocity (shown in Table 1)
Electrolytic plating solution composition (Cu: 100 g / L, H 2 SO 4 : 80 g / L, Cl: 60 ppm
-Electroplating bath temperature: 55 ° C
-Current density of electrolytic plating: 30 A / dm 2
-Copper foil carrier transport tension: 0.05 kg / mm

(粗化処理層形成)
(A)九十九折による運箔方式
・アノード:不溶解性電極
・カソード:銅箔キャリア処理面
・極間距離(表1に示す)
・線流速(表1に示す)
・電解めっき液組成(Cu:10g/L、H2SO4:50g/L)
・電解めっきの浴温:40℃
・電解めっきの電流密度:30A/dm2
・銅箔キャリア搬送張力:0.05kg/mm(実施例18は0.15kg/mm)
(B)ドラムによる運箔方式
・アノード:不溶解性電極
・カソード:直径100cmドラムに支持された銅箔キャリア表面
・極間距離(表1に示す)
・線流速(表1に示す)
・電解めっき液組成(Cu:20g/L、H2SO4:50g/L)
・電解めっきの浴温:40℃
・電解めっきの電流密度:30A/dm2
・銅箔キャリア搬送張力:0.05kg/mm
(Roughening treatment layer formation)
(A) Carrying foil method by 99-fold ・ Anode: Insoluble electrode ・ Cathode: Copper foil carrier treated surface ・ Distance between electrodes (shown in Table 1)
・ Linear flow velocity (shown in Table 1)
Electrolytic plating solution composition (Cu: 10 g / L, H 2 SO 4 : 50 g / L)
-Electroplating bath temperature: 40 ° C
-Current density of electrolytic plating: 30 A / dm 2
Copper foil carrier transport tension: 0.05 kg / mm (Example 18 is 0.15 kg / mm)
(B) Foil handling system using drums ・ Anode: Insoluble electrode ・ Cathode: Copper foil carrier surface supported by drum of 100 cm in diameter ・ Distance between electrodes (shown in Table 1)
・ Linear flow velocity (shown in Table 1)
Electrolytic plating solution composition (Cu: 20 g / L, H 2 SO 4 : 50 g / L)
-Electroplating bath temperature: 40 ° C
-Current density of electrolytic plating: 30 A / dm 2
-Copper foil carrier transport tension: 0.05 kg / mm

2.キャリア付銅箔の評価
上記のようにして得られたキャリア付銅箔について、以下の方法で厚み精度の評価を実施した。結果を表1に示す。
2. Evaluation of copper foil with carrier The copper foil with carrier obtained as described above was evaluated for thickness accuracy by the following method. The results are shown in Table 1.

<重量厚み法による厚み精度の評価C>
まず、キャリア付銅箔の重量(銅箔キャリアと剥離層と極薄銅層と極薄銅層の上の表面処理層(粗化処理層など)の合計重量)を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義した。測定対象となるキャリア付銅箔片はプレス機で打ち抜いた5cm角シートとした。重量厚み精度を調査するため、各実施例、比較例ともに、幅方向で等間隔に5点、長さ方向で3点(40mm間隔)、計15点の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求めた。重量厚み精度の算出式は次式とした。
厚み精度(%)=3σ×100/重量厚み測定値の平均値
この測定方法の繰り返し精度は0.2%であった。
また、重量計は、株式会社エー・アンド・デイ製HF−400を用い、プレス機は、野口プレス株式会社製HAP−12を用いた。
<Evaluation of thickness accuracy by weight thickness method C>
First, after measuring the weight of the copper foil with carrier (total weight of the copper foil carrier, release layer, ultrathin copper layer, and surface treatment layer (roughening layer, etc.) on the ultrathin copper layer), ultrathin copper The layer was peeled off, the weight of the copper foil carrier was measured again, and the difference between the former and the latter was defined as the weight of the ultrathin copper layer. The copper foil piece with a carrier to be measured was a 5 cm square sheet punched out with a press. In order to investigate the weight-thickness accuracy, the weight-thickness measurement values of the ultra-thin copper layer pieces of 15 points in total in each example and comparative example, 5 points at equal intervals in the width direction and 3 points in the length direction (40 mm intervals). The average value and standard deviation (σ) were determined. The formula for calculating the weight thickness accuracy was as follows.
Thickness accuracy (%) = average value of 3σ × 100 / weight thickness measurement value The repeatability of this measurement method was 0.2%.
Moreover, HF-400 by A & D Co., Ltd. was used for the weight scale, and HAP-12 by Noguchi Press Co., Ltd. was used for the press machine.

<重量厚み法による厚み精度の評価D>
まず、キャリア付銅箔の重量(銅箔キャリアと剥離層と極薄銅層と極薄銅層の上の表面処理層(粗化処理層など)の合計重量)を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義した。測定対象となる極薄銅箔片はTHWING−ALBERT INSTRUMENT COMPANY 製 JDC PRECISION SAMPLE CUTTER (MODEL JDC 5−10)でMD方向に15mm幅のサンプルを切り出した後に、TD方向に150mm長さにカッターで切断することで15mm(MD方向)×150mm(TD方向)シートとした。重量厚み精度を調査するため、各実施例、比較例ともに、幅方向で等間隔に3点、長さ方向で5点(40mm間隔)、計15点の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求めた。重量厚み精度の算出式は次式とした。
厚み精度(%)=3σ×100/重量厚み測定値の平均値
この測定方法の繰り返し精度は0.2%であった。
また、重量計は、株式会社エー・アンド・デイ製HF−400を用いた。
<Evaluation D of thickness accuracy by weight-thickness method>
First, after measuring the weight of the copper foil with carrier (total weight of the copper foil carrier, release layer, ultrathin copper layer, and surface treatment layer (roughening layer, etc.) on the ultrathin copper layer), ultrathin copper The layer was peeled off, the weight of the copper foil carrier was measured again, and the difference between the former and the latter was defined as the weight of the ultrathin copper layer. The ultra-thin copper foil piece to be measured was cut with a cutter to a length of 150 mm in the TD direction after cutting a 15 mm wide sample in the MD direction with JDC PRECISION SAMPLE CUTTER (MODEL JDC 5-10) manufactured by THWIN-ALBERT INSTRUMENT COMPANY. By doing so, a 15 mm (MD direction) × 150 mm (TD direction) sheet was obtained. In order to investigate the weight-thickness accuracy, the weight-thickness measurement values of the ultra-thin copper layer pieces of 3 points at equal intervals in the width direction and 5 points in the length direction (40 mm intervals), a total of 15 points in each example and comparative example. The average value and standard deviation (σ) were determined. The formula for calculating the weight thickness accuracy was as follows.
Thickness accuracy (%) = average value of 3σ × 100 / weight thickness measurement value The repeatability of this measurement method was 0.2%.
The weighing scale used was HF-400 manufactured by A & D Corporation.

<重量厚み法による厚み精度の評価E>
まず、銅箔キャリア並びにキャリア付銅箔の重量(銅箔キャリアと剥離層と極薄銅層と極薄銅層の上の表面処理層(粗化処理層など)の合計重量)を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義した。測定対象となる極薄銅箔片はTHWING−ALBERT INSTRUMENT COMPANY 製 JDC PRECISION SAMPLE CUTTER (MODEL JDC 5−10)でTD方向に15mm幅のサンプルを切り出した後に、MD方向に150mm長さにカッターで切断することで15mm(TD方向)×150mm(MD方向)シートとした。重量厚み精度を調査するため、各水準ともに、幅方向で等間隔に10点、長さ方向で2点(10mm間隔)、計20点の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求めた。重量厚み精度の算出式は次式とした。
厚み精度(%)=3σ×100/重量厚み測定値の平均値
この測定方法の繰り返し精度は0.2%であった。
また、重量計は、株式会社エー・アンド・デイ製HF−400を用いた。
<Evaluation of thickness accuracy by weight-thickness method E>
First, after measuring the weight of the copper foil carrier and the copper foil with carrier (total weight of the copper foil carrier, the release layer, the ultrathin copper layer, and the surface treatment layer (such as the roughened layer) on the ultrathin copper layer) Then, the ultrathin copper layer was peeled off, the weight of the copper foil carrier was measured again, and the difference between the former and the latter was defined as the weight of the ultrathin copper layer. A thin copper foil piece to be measured is cut with a cutter to a length of 150 mm in the MD direction after cutting a 15 mm wide sample in the TD direction with JDC PRECISION SAMPLE CUTTER (MODEL JDC 5-10) manufactured by THWIN-ALBERT INSTRUMENT COMPANY. By doing so, a 15 mm (TD direction) × 150 mm (MD direction) sheet was obtained. In order to investigate the weight-thickness accuracy, the average value of the weight-thickness measurement values of ultra-thin copper layer pieces of 20 points in total, that is, 10 points at equal intervals in the width direction, 2 points in the length direction (10 mm intervals), and Standard deviation (σ) was determined. The formula for calculating the weight thickness accuracy was as follows.
Thickness accuracy (%) = average value of 3σ × 100 / weight thickness measurement value The repeatability of this measurement method was 0.2%.
The weighing scale used was HF-400 manufactured by A & D Corporation.

<回路幅バラツキの評価>
極薄銅層について、L(ライン)/S(スペース)=20μm/20μm、長さ200μmの回路を作成し、10μm間隔で10点回路幅を測定し、前記測定した10点の回路幅の平均値並びに標準偏差(σ回路幅)を求め、以下の式によって回路幅バラツキを算出した:
回路幅バラツキ(%/μm)=3σ回路幅(μm)×100/(回路幅の平均値(μm)×極薄銅層の厚み(μm))
極薄銅層の厚みによって、エッチング時間が変わり、それによって回路幅バラツキも変わると考えられる。そのため、極薄銅層の厚みの影響を小さくするため、3σ回路幅(μm)×100/回路幅の平均値(μm)の値を、極薄銅層の厚み(μm)の値を除している。
上記回路幅バラツキの算出結果を以下の基準によりa〜gで評価した。
a:回路幅バラツキ(%/μm)が0.15%/μm未満
b:回路幅バラツキ(%/μm)が0.15%/μm以上0.20%/μm未満
c:回路幅バラツキ(%/μm)が0.20%/μm以上0.25%/μm未満
d:回路幅バラツキ(%/μm)が0.25%/μm以上0.26%/μm未満
e:回路幅バラツキ(%/μm)が0.26%/μm以上0.28%/μm未満
f:回路幅バラツキ(%/μm)が0.28%/μm以上0.30%/μm未満
g:回路幅バラツキ(%/μm)が0.30%/μm以上
<Evaluation of circuit width variation>
For an ultra-thin copper layer, a circuit with L (line) / S (space) = 20 μm / 20 μm and a length of 200 μm was created, and a 10-point circuit width was measured at intervals of 10 μm. Values and standard deviations (σ circuit width) were determined, and circuit width variation was calculated by the following formula:
Circuit width variation (% / μm) = 3σ circuit width (μm) × 100 / (average circuit width (μm) × thickness of ultrathin copper layer (μm))
It is considered that the etching time varies depending on the thickness of the ultra-thin copper layer, and thereby the circuit width variation also varies. Therefore, in order to reduce the influence of the thickness of the ultrathin copper layer, the average value of 3σ circuit width (μm) × 100 / circuit width (μm) is divided by the value of the thickness (μm) of the ultrathin copper layer. ing.
The calculation results of the circuit width variation were evaluated as a to g based on the following criteria.
a: Circuit width variation (% / μm) is less than 0.15% / μm b: Circuit width variation (% / μm) is 0.15% / μm or more and less than 0.20% / μm c: Circuit width variation (% / Μm) is 0.20% / μm or more and less than 0.25% / μm d: Circuit width variation (% / μm) is 0.25% / μm or more and less than 0.26% / μm e: Circuit width variation (% / Μm) is 0.26% / μm or more and less than 0.28% / μm f: Circuit width variation (% / μm) is 0.28% / μm or more and less than 0.30% / μm g: Circuit width variation (% / Μm) is 0.30% / μm or more

<エッチング性>
キャリア付銅箔をポリイミド基板に貼り付けて220℃で2時間加熱圧着し、その後、極薄銅層をキャリアから剥がした。続いて、ポリイミド基板上の極薄銅層表面に、感光性レジストを塗布した後、露光工程により50本のL/S=5μm/5μm幅の回路を印刷し、銅層の不要部分を除去するエッチング処理を以下のスプレーエッチング条件にて行った。
(スプレーエッチング条件)
エッチング液:塩化第二鉄水溶液(ボーメ度:40度)
液温:60℃
スプレー圧:2.0MPa
エッチングを続け、回路トップ幅が4μmになるまでの時間を測定し、さらにそのときの回路ボトム幅(底辺Xの長さ)及びエッチングファクターを評価した。エッチングファクターは、末広がりにエッチングされた場合(ダレが発生した場合)、回路が垂直にエッチングされたと仮定した場合の、銅箔上面からの垂線と樹脂基板との交点からのダレの長さの距離をaとした場合において、このaと銅箔の厚さbとの比:b/aを示すものであり、この数値が大きいほど、傾斜角は大きくなり、エッチング残渣が残らず、ダレが小さくなることを意味する。図5に、回路パターンの幅方向の横断面の模式図と、該模式図を用いたエッチングファクターの計算方法の概略とを示す。このXは回路上方からのSEM観察により測定し、エッチングファクター(EF=b/a)を算出した。なお、a=(X(μm)−4(μm))/2で計算した。エッチングファクターは回路中の12点を測定し、平均値をとったものを示す。これにより、エッチング性の良否を簡単に判定できる。また、12点のエッチングファクターの標準偏差も算出することで、エッチングにより形成した回路の直線性の良し悪しを判定することができる。なお、回路パターンは極薄銅層のMD方向及びTD方向の両方で形成し、それぞれのエッチング性を評価した。
本発明では、エッチングファクターが4以上をエッチング性:○、2.5以上4未満をエッチング性:△、2.5未満或いは算出不可または回路形成不可をエッチング性:×、剥離不可をエッチング性:−と評価した。また、エッチングファクターの標準偏差は小さいほど回路の直線性が良好であると云える。エッチングファクターの標準偏差が0.8未満を直線性:○、0.8〜1.2未満を直線性:△、1.2以上を直線性:×と判断した。
試験条件及び試験結果を表1に示す。
<Etching property>
A copper foil with a carrier was attached to a polyimide substrate and heat-pressed at 220 ° C. for 2 hours, and then the ultrathin copper layer was peeled off from the carrier. Subsequently, after applying a photosensitive resist to the surface of the ultra-thin copper layer on the polyimide substrate, 50 L / S = 5 μm / 5 μm wide circuits are printed by an exposure process to remove unnecessary portions of the copper layer. The etching process was performed under the following spray etching conditions.
(Spray etching conditions)
Etching solution: Ferric chloride aqueous solution (Baume degree: 40 degrees)
Liquid temperature: 60 ° C
Spray pressure: 2.0 MPa
Etching was continued, the time until the circuit top width reached 4 μm was measured, and the circuit bottom width (the length of the base X) and the etching factor at that time were evaluated. The etching factor is the distance of the length of sagging from the intersection of the vertical line from the upper surface of the copper foil and the resin substrate, assuming that the circuit is etched vertically when sagging at the end (when sagging occurs) Is a ratio of a to the thickness b of the copper foil: b / a, and the larger the value, the larger the inclination angle, and the etching residue does not remain and the sagging is small. It means to become. FIG. 5 shows a schematic diagram of a cross section in the width direction of a circuit pattern and an outline of a method for calculating an etching factor using the schematic diagram. This X was measured by SEM observation from above the circuit, and the etching factor (EF = b / a) was calculated. In addition, it calculated by a = (X (μm) −4 (μm)) / 2. The etching factor is obtained by measuring 12 points in the circuit and taking an average value. Thereby, the quality of etching property can be determined easily. Also, by calculating the standard deviation of the 12 etching factors, it is possible to determine whether the linearity of the circuit formed by etching is good or bad. In addition, the circuit pattern was formed in both MD direction and TD direction of the ultra-thin copper layer, and each etching property was evaluated.
In the present invention, an etching factor of 4 or more is etching property: ◯, 2.5 or more and less than 4 are etching property: Δ, less than 2.5 or calculation is impossible or circuit formation is impossible. -Evaluated. Moreover, it can be said that the smaller the standard deviation of the etching factor, the better the linearity of the circuit. When the standard deviation of the etching factor was less than 0.8, the linearity was evaluated as ◯, when 0.8 to 1.2 or less was determined as the linearity: Δ, and 1.2 or more was determined as the linearity: x.
Table 1 shows the test conditions and test results.

(評価結果)
実施例1〜21は、極薄銅層について、重量厚み法(評価C)による厚み精度が2.90%以下であり、重量厚み法(評価D)による厚み精度が6.15%以下であり、重量厚み法(評価E)による厚み精度が9.30%以下であり、回路幅バラツキが小さくエッチング性も良好であった。
比較例1〜4は、極薄銅層について、重量厚み法(評価C)による厚み精度が2.90%を超え、重量厚み法(評価D)による厚み精度が6.15%を超え、重量厚み法(評価E)による厚み精度が9.30%を超え、厚みバラツキが大きく、エッチング性が不良であった。
また、表1の結果より、回路幅バラツキa〜gについて、最も良好なaから最も不良なgへ進むにつれて、重量厚み法による評価C〜Dの厚み精度が徐々に不良となっていることが認められた。このため、極薄銅層の厚み精度と、それを用いて作製した回路の幅のバラツキとには密接な相関関係があることがわかる。
(Evaluation results)
In Examples 1 to 21, the thickness accuracy by the weight-thickness method (Evaluation C) is 2.90% or less and the thickness accuracy by the weight-thickness method (Evaluation D) is 6.15% or less for the ultrathin copper layer. The thickness accuracy by the weight thickness method (Evaluation E) was 9.30% or less, the circuit width variation was small, and the etching property was also good.
In Comparative Examples 1 to 4, the thickness accuracy by the weight thickness method (Evaluation C) exceeds 2.90%, the thickness accuracy by the weight thickness method (Evaluation D) exceeds 6.15%, The thickness accuracy by the thickness method (Evaluation E) exceeded 9.30%, the thickness variation was large, and the etching property was poor.
Further, from the results of Table 1, regarding the circuit width variations a to g, the thickness accuracy of the evaluations C to D by the weight-thickness method gradually becomes poor as the best a goes to the bad g. Admitted. Therefore, it can be seen that there is a close correlation between the thickness accuracy of the ultra-thin copper layer and the variation in the width of the circuit fabricated using the copper layer.

Claims (11)

銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された、銅箔キャリアより薄い極薄銅層とを備えたキャリア付銅箔であって、前記極薄銅層の厚みは0.5μm以上12μm以下であり、前記極薄銅層を5cm角シートとして、下記重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2.90%以下であるキャリア付銅箔。
(上記重量厚み法:
まず、キャリア付銅箔の重量を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義する。測定対象となるキャリア付銅箔片は5cm角シートとする。重量厚み精度を調査するため、幅方向で等間隔に5点、長さ方向で3点(40mm間隔)、計15点の前記キャリア付銅箔片の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求める。なお、重量厚み精度の算出式は次式とする。
厚み精度(%)=3σ×100/重量厚み測定値の平均値)
A copper foil with a carrier comprising a copper foil carrier, a release layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the release layer and thinner than the copper foil carrier, the ultrathin copper The thickness of the layer is 0.5 μm or more and 12 μm or less. Using the ultrathin copper layer as a 5 cm square sheet, the average value and standard deviation (σ) of the weight thickness measurement values are measured by the following weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by the average value of weight thickness measured values is 2.90% or less copper foil with carrier.
(The above weight thickness method:
First, after measuring the weight of the copper foil with carrier, the ultrathin copper layer is peeled off, the weight of the copper foil carrier is measured again, and the difference between the former and the latter is defined as the weight of the ultrathin copper layer. The copper foil piece with a carrier to be measured is a 5 cm square sheet. In order to investigate the weight-thickness accuracy, 5 points at equal intervals in the width direction, 3 points in the length direction (40 mm interval), a total of 15 points of the weight-thickness measurement value of the ultrathin copper layer piece of the carrier-attached copper foil piece The average value and standard deviation (σ) are obtained. In addition, the calculation formula of weight thickness accuracy shall be the following formula.
Thickness accuracy (%) = 3σ × 100 / weight thickness average value)
以下の(C)を満たす請求項1に記載のキャリア付銅箔
C)前記極薄銅層を5cm角シートとして、下記重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2%以下である。
(上記(C)における重量厚み法:
まず、キャリア付銅箔の重量を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義する。測定対象となるキャリア付銅箔片は5cm角シートとする。重量厚み精度を調査するため、幅方向で等間隔に5点、長さ方向で3点(40mm間隔)、計15点の前記キャリア付銅箔片の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求める。なお、重量厚み精度の算出式は次式とする。
厚み精度(%)=3σ×100/重量厚み測定値の平均値)
The copper foil with a carrier of Claim 1 which satisfy | fills the following (C) .
( C) Using the ultrathin copper layer as a 5 cm square sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by the following weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by the average value of measured thickness values is 2% or less.
(Weight thickness method in (C) above:
First, after measuring the weight of the copper foil with carrier, the ultrathin copper layer is peeled off, the weight of the copper foil carrier is measured again, and the difference between the former and the latter is defined as the weight of the ultrathin copper layer. The copper foil piece with a carrier to be measured is a 5 cm square sheet. In order to investigate the weight-thickness accuracy, 5 points at equal intervals in the width direction, 3 points in the length direction (40 mm interval), a total of 15 points of the weight-thickness measurement value of the ultrathin copper layer piece of the carrier-attached copper foil piece The average value and standard deviation (σ) are obtained. In addition, the calculation formula of weight thickness accuracy shall be the following formula.
Thickness accuracy (%) = 3σ × 100 / weight thickness average value)
以下の(D)〜(F)のいずれか一つを満たす請求項1または2に記載のキャリア付銅箔。
(D)前記極薄銅層表面に粗化処理層を有する、
(E)前記極薄銅層の表面に粗化処理層を有し、かつ、当該粗化処理層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する、
(F)前記極薄銅層の表面に、耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層を有する。
The copper foil with a carrier according to claim 1 or 2 satisfying any one of the following (D)-(F).
(D) having a roughened layer on the surface of the ultrathin copper layer,
(E) From the group which has a roughening process layer on the surface of the said ultra-thin copper layer, and the surface of the said roughening process layer consists of a heat-resistant layer, a rust prevention layer, a chromate process layer, and a silane coupling process layer Having one or more selected layers,
(F) One or more layers selected from the group consisting of a heat-resistant layer, a rust-proof layer, a chromate treatment layer, and a silane coupling treatment layer are provided on the surface of the ultrathin copper layer.
前記極薄銅層上または前記粗化処理層上または前記耐熱層、防錆層、クロメート処理層及びシランカップリング処理層からなる群から選択された1種以上の層の上に樹脂層を備える請求項1〜3のいずれかに記載のキャリア付銅箔。   A resin layer is provided on the ultrathin copper layer or on the roughening treatment layer or on one or more layers selected from the group consisting of the heat-resistant layer, the rust prevention layer, the chromate treatment layer, and the silane coupling treatment layer. The copper foil with a carrier in any one of Claims 1-3. ロール・ツウ・ロール搬送方式により長さ方向に搬送される長尺状の銅箔キャリアの表面を処理することで、銅箔キャリアと、銅箔キャリア上に積層された剥離層と、剥離層上に積層された極薄銅層とを備えたキャリア付銅箔を製造する方法であり、
搬送ロールで搬送される銅箔キャリアの表面に剥離層を形成する工程と、
搬送ロールで搬送される前記剥離層が形成された銅箔キャリアをドラムで支持しながら、電解めっきにより前記剥離層表面に極薄銅層を形成する工程と、
を含む請求項1〜4のいずれかに記載のキャリア付銅箔の製造方法。
By treating the surface of the long copper foil carrier conveyed in the length direction by the roll-to-roll conveyance method, the copper foil carrier, the release layer laminated on the copper foil carrier, and the release layer Is a method of manufacturing a copper foil with a carrier provided with an ultrathin copper layer laminated on
Forming a release layer on the surface of the copper foil carrier transported by the transport roll;
A step of forming an ultrathin copper layer on the surface of the release layer by electrolytic plating while supporting the copper foil carrier on which the release layer is conveyed by a transfer roll with a drum;
The manufacturing method of the copper foil with a carrier in any one of Claims 1-4 containing this.
銅箔キャリア上に積層された剥離層上に積層されて、前記銅箔キャリア及び前記剥離層と共にキャリア付銅箔を構成する、電解銅箔による、銅箔キャリアより薄い極薄銅層であって、前記極薄銅層の厚みは0.5μm以上12μm以下であり、前記極薄銅層を5cm角シートとして、下記重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2.90%以下である極薄銅層。
(上記重量厚み法:
まず、キャリア付銅箔の重量を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義する。測定対象となるキャリア付銅箔片は5cm角シートとする。重量厚み精度を調査するため、幅方向で等間隔に5点、長さ方向で3点(40mm間隔)、計15点の前記キャリア付銅箔片の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求める。なお、重量厚み精度の算出式は次式とする。
厚み精度(%)=3σ×100/重量厚み測定値の平均値)
It is an ultrathin copper layer thinner than a copper foil carrier by an electrolytic copper foil, which is laminated on a peeling layer laminated on a copper foil carrier and constitutes a copper foil with a carrier together with the copper foil carrier and the peeling layer. The thickness of the ultrathin copper layer is not less than 0.5 μm and not more than 12 μm. Using the ultrathin copper layer as a 5 cm square sheet, the average value and standard deviation (σ) of the weight thickness measurement values are measured by the following weight thickness method. And the following formula:
Thickness accuracy (%) = 3σ × 100 / ultra-thin copper layer having a weight-thickness accuracy of 2.90% or less determined by an average value of measured thickness values.
(The above weight thickness method:
First, after measuring the weight of the copper foil with carrier, the ultrathin copper layer is peeled off, the weight of the copper foil carrier is measured again, and the difference between the former and the latter is defined as the weight of the ultrathin copper layer. The copper foil piece with a carrier to be measured is a 5 cm square sheet. In order to investigate the weight-thickness accuracy, 5 points at equal intervals in the width direction, 3 points in the length direction (40 mm interval), a total of 15 points of the weight-thickness measurement value of the ultrathin copper layer piece of the carrier-attached copper foil piece The average value and standard deviation (σ) are obtained. In addition, the calculation formula of weight thickness accuracy shall be the following formula.
Thickness accuracy (%) = 3σ × 100 / weight thickness average value)
以下の(I)を満たす請求項6に記載の極薄銅層
I)前記極薄銅層を5cm角シートとして、下記重量厚み法にて重量厚み測定値の平均値及び標準偏差(σ)を測定し、下記式:
厚み精度(%)=3σ×100/重量厚み測定値の平均値
で求めた重量厚み精度が2%以下である。
(上記(I)における重量厚み法:
まず、キャリア付銅箔の重量を測定した後、極薄銅層を引き剥がし、再度銅箔キャリアの重量を測定し、前者と後者との差を極薄銅層の重量と定義する。測定対象となるキャリア付銅箔片は5cm角シートとする。重量厚み精度を調査するため、幅方向で等間隔に5点、長さ方向で3点(40mm間隔)、計15点の前記キャリア付銅箔片の極薄銅層片の重量厚み測定値の平均値並びに標準偏差(σ)を求める。なお、重量厚み精度の算出式は次式とする。
厚み精度(%)=3σ×100/重量厚み測定値の平均値)
The ultrathin copper layer according to claim 6 satisfying the following (I) .
( I) Using the ultrathin copper layer as a 5 cm square sheet, an average value and a standard deviation (σ) of weight thickness measurement values were measured by the following weight thickness method, and the following formula:
Thickness accuracy (%) = 3σ × 100 / weight-thickness accuracy determined by the average value of measured thickness values is 2% or less.
(Weight thickness method in (I) above:
First, after measuring the weight of the copper foil with carrier, the ultrathin copper layer is peeled off, the weight of the copper foil carrier is measured again, and the difference between the former and the latter is defined as the weight of the ultrathin copper layer. The copper foil piece with a carrier to be measured is a 5 cm square sheet. In order to investigate the weight-thickness accuracy, 5 points at equal intervals in the width direction, 3 points in the length direction (40 mm interval), a total of 15 points of the weight-thickness measurement value of the ultrathin copper layer piece of the carrier-attached copper foil piece The average value and standard deviation (σ) are obtained. In addition, the calculation formula of weight thickness accuracy shall be the following formula.
Thickness accuracy (%) = 3σ × 100 / weight thickness average value)
銅箔キャリア上に積層された剥離層上に積層されて、前記銅箔キャリア及び前記剥離層と共にキャリア付銅箔を構成する、電解銅箔による極薄銅層であって、
表面に粗化処理層を有する請求項6または7に記載の極薄銅層。
An ultra-thin copper layer made of electrolytic copper foil, which is laminated on a release layer laminated on a copper foil carrier and constitutes a copper foil with a carrier together with the copper foil carrier and the release layer,
The ultrathin copper layer according to claim 6 or 7 having a roughened layer on the surface.
請求項1〜4のいずれかに記載のキャリア付銅箔、または、請求項5に記載のキャリア付銅箔の製造方法により製造されたキャリア付銅箔、または、請求項6若しくは7に記載の極薄銅層を用いてプリント配線板を製造する方法。   The copper foil with a carrier according to any one of claims 1 to 4, the copper foil with a carrier produced by the method for producing a copper foil with a carrier according to claim 5, or the copper foil with a carrier according to claim 6 or 7. A method of manufacturing a printed wiring board using an ultrathin copper layer. 請求項1〜4のいずれかに記載のキャリア付銅箔、または、請求項5に記載のキャリア付銅箔の製造方法により製造されたキャリア付銅箔、または、請求項6若しくは7に記載の極薄銅層を用いて銅張積層板を製造する方法。   The copper foil with a carrier according to any one of claims 1 to 4, the copper foil with a carrier produced by the method for producing a copper foil with a carrier according to claim 5, or the copper foil with a carrier according to claim 6 or 7. A method for producing a copper clad laminate using an ultrathin copper layer. 請求項1〜4のいずれかに記載のキャリア付銅箔、または、請求項5に記載のキャリア付銅箔の製造方法により製造されたキャリア付銅箔、または、請求項6若しくは7に記載の極薄銅層と絶縁基板とを準備する工程、
前記キャリア付銅箔と絶縁基板とを積層する工程、及び、
前記キャリア付銅箔と絶縁基板とを積層した後に、前記キャリア付銅箔の銅箔キャリアを剥がす工程を経て銅張積層板を形成し、
その後、セミアディティブ法、サブトラクティブ法、パートリーアディティブ法又はモディファイドセミアディティブ法のいずれかの方法によって、回路を形成する工程を含むプリント配線板の製造方法。
The copper foil with a carrier according to any one of claims 1 to 4, the copper foil with a carrier produced by the method for producing a copper foil with a carrier according to claim 5, or the copper foil according to claim 6 or 7. Preparing an ultra-thin copper layer and an insulating substrate;
A step of laminating the copper foil with carrier and an insulating substrate; and
After laminating the copper foil with carrier and the insulating substrate, a copper clad laminate is formed through a step of peeling the copper foil carrier of the copper foil with carrier,
Then, the manufacturing method of a printed wiring board including the process of forming a circuit by any method of a semi-additive method, a subtractive method, a partly additive method, or a modified semi-additive method.
JP2017092705A 2017-05-08 2017-05-08 Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board Active JP6592029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017092705A JP6592029B2 (en) 2017-05-08 2017-05-08 Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017092705A JP6592029B2 (en) 2017-05-08 2017-05-08 Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013088813A Division JP6396641B2 (en) 2013-04-03 2013-04-03 Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board

Publications (2)

Publication Number Publication Date
JP2017172047A JP2017172047A (en) 2017-09-28
JP6592029B2 true JP6592029B2 (en) 2019-10-16

Family

ID=59970579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017092705A Active JP6592029B2 (en) 2017-05-08 2017-05-08 Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board

Country Status (1)

Country Link
JP (1) JP6592029B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592028B2 (en) * 2017-05-08 2019-10-16 Jx金属株式会社 Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board
JP6711336B2 (en) 2017-09-07 2020-06-17 株式会社デンソー Variable capacity compressor
KR20230046856A (en) * 2021-09-30 2023-04-06 롯데에너지머티리얼즈 주식회사 Ultra Thin Copper Foil Attached To Carrier Foil for Embedded PCB and Method of Manufacturing Embedded PCB using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194391A (en) * 1988-01-28 1989-08-04 Hitachi Chem Co Ltd Manufacture of wiring board
JP2506574B2 (en) * 1990-12-19 1996-06-12 日鉱グールド・フォイル株式会社 Method and apparatus for producing electrolytic copper foil
JPH04341596A (en) * 1991-05-17 1992-11-27 Toagosei Chem Ind Co Ltd Device for continuously producing extremely thin copper-clad laminate
JP3466506B2 (en) * 1999-04-23 2003-11-10 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil, method for producing the electrolytic copper foil, and copper-clad laminate using the electrolytic copper foil
JP2012107266A (en) * 2010-11-15 2012-06-07 Jx Nippon Mining & Metals Corp Method and apparatus for manufacturing electrolytic copper foil
KR20120053921A (en) * 2010-11-18 2012-05-29 삼성전기주식회사 A printed circuit board and a fabricating method thereof
JP2013001993A (en) * 2011-06-21 2013-01-07 Meltex Inc Ultrathin copper foil with carrier foil and method of manufacturing the same
JP6396641B2 (en) * 2013-04-03 2018-09-26 Jx金属株式会社 Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board
JP6592028B2 (en) * 2017-05-08 2019-10-16 Jx金属株式会社 Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board

Also Published As

Publication number Publication date
JP2017172047A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6403969B2 (en) Copper foil with carrier, printed wiring board, copper-clad laminate, electronic device, and method for manufacturing printed wiring board
JP6591893B2 (en) Copper foil with carrier, copper clad laminate, printed wiring board, electronic device, resin layer, method for producing copper foil with carrier, and method for producing printed wiring board
WO2014157728A1 (en) Copper foil with carrier, printed circuit board, copper clad laminated sheet, electronic device, and printed circuit board fabrication method
WO2017141985A1 (en) Copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate, and printed circuit board production method using copper foil for printed circuit board production, copper foil with carrier, and copper-clad laminate plate
JP6592029B2 (en) Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board
JP6247829B2 (en) Copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate and printed wiring board manufacturing method
JP6592028B2 (en) Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board
JP6396641B2 (en) Copper foil with carrier and manufacturing method thereof, ultrathin copper layer, manufacturing method of copper clad laminate, and manufacturing method of printed wiring board
JP6353193B2 (en) Copper foil with carrier, method for producing a copper-clad laminate using the copper foil with carrier, method for producing a printed wiring board using the copper foil with carrier, and method for producing a printed wiring board
JP6134569B2 (en) Copper foil with carrier, method for producing copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board
JP2014208484A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP6158573B2 (en) Copper foil with carrier, method for producing copper-clad laminate and method for producing printed wiring board
JP5449596B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5386652B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6438208B2 (en) Copper foil with carrier, copper-clad laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP6360659B2 (en) Copper foil with carrier, method of producing a printed wiring board using the copper foil with carrier, method of producing a copper clad laminate using the copper foil with carrier, and method of producing a printed wiring board
JP2014208481A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP2014208909A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board
JP6522974B2 (en) Copper foil with carrier, laminate, method of producing laminate, and method of producing printed wiring board
JP6425399B2 (en) Carrier-coated copper foil, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2014210427A (en) Copper foil with carrier, printed wiring sheet, copper clad laminated sheet, electronic device and manufacturing method of printed wiring sheet
JP5481586B1 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP6246486B2 (en) Copper foil with carrier and method for producing the same, method for producing copper-clad laminate and method for producing printed wiring board
JP2017133105A (en) Copper foil with carrier, printed wiring board, printed circuit, copper clad laminate and manufacturing method of printed wiring board
JP2014208485A (en) Copper foil with a carrier, printed wiring board, copper-clad laminate, electronic apparatus and method for producing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190919

R150 Certificate of patent or registration of utility model

Ref document number: 6592029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250