JPH04344073A - Controlling method for drive of cooling circuit - Google Patents

Controlling method for drive of cooling circuit

Info

Publication number
JPH04344073A
JPH04344073A JP11631891A JP11631891A JPH04344073A JP H04344073 A JPH04344073 A JP H04344073A JP 11631891 A JP11631891 A JP 11631891A JP 11631891 A JP11631891 A JP 11631891A JP H04344073 A JPH04344073 A JP H04344073A
Authority
JP
Japan
Prior art keywords
capacity
degree
temperature
control
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11631891A
Other languages
Japanese (ja)
Inventor
Atsushi Hasegawa
淳 長谷川
Junichi Ono
大野 順一
Yuji Kato
裕司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP11631891A priority Critical patent/JPH04344073A/en
Publication of JPH04344073A publication Critical patent/JPH04344073A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PURPOSE:To provide a method for controlling to drive, which can perform both an efficiency (room cooling) of power in a cooling circuit using a variable volume type compressor and stable room cooling. CONSTITUTION:A heat load in a condenser 4 is calculated by a control computer 17 based on detected information from an atmospheric temperature detector 20, a discharge temperature detector 21, a rotating speed detector 25 of a compressor 1 and a vehicle speed detector 26, and a heat load in an evaporator 7 is detected based on detected information from an input temperature detector 22, a blow-off temperature detector 23, a humidity detector 24 and air flow information from a blower 39. The state of a cooling circuit is decided by adding capacity and superheat degree of the variable volume type compressor 1 to the calculated load and the speed information from the detector 25, and the computer 17 so suitably selects the capacity and the superheat degree as to enhance a room cooling efficiency while obtaining stable room cooling.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、可変容量型圧縮機の吐
出側と吸入側とを接続する外部冷媒回路上に介在された
凝縮器、膨張弁及び蒸発器によって構成される冷却回路
における駆動制御方法に関するものである。
[Industrial Application Field] The present invention relates to a drive circuit in a cooling circuit composed of a condenser, an expansion valve, and an evaporator interposed on an external refrigerant circuit connecting the discharge side and suction side of a variable displacement compressor. This relates to a control method.

【0002】0002

【従来の技術】この種の冷却回路では蒸発器の上流側に
介在された膨張弁の弁開度制御によって蒸発器への液冷
媒供給流量が制御される。膨張弁としては特開昭51−
86852号公報に開示されるような温度式自動膨張弁
あるいは特開昭56−137059号公報に開示される
ような電気式自動膨張弁が用いられる。温度式自動膨張
弁では蒸発器と圧縮機との間の冷媒ガス流路上に設置さ
れた感温筒内から導入されるガス圧によって膨張弁の弁
開度制御が行われる。
2. Description of the Related Art In this type of cooling circuit, the flow rate of liquid refrigerant supplied to the evaporator is controlled by controlling the opening degree of an expansion valve provided upstream of the evaporator. As an expansion valve, JP-A-51-
A thermostatic automatic expansion valve as disclosed in Japanese Patent Application No. 86852 or an electric automatic expansion valve as disclosed in Japanese Patent Application Laid-open No. 137059/1986 is used. In a thermostatic automatic expansion valve, the opening degree of the expansion valve is controlled by gas pressure introduced from a temperature-sensitive cylinder installed on a refrigerant gas flow path between an evaporator and a compressor.

【0003】電気式自動膨張弁では蒸発器の前後の温度
情報に基づいて膨張弁の弁開度制御が行われており、迅
速な冷房の達成が図られている。
[0003] In an electric automatic expansion valve, the opening degree of the expansion valve is controlled based on temperature information before and after the evaporator, thereby achieving rapid cooling.

【0004】0004

【発明が解決しようとする課題】温度式自動膨張弁では
蒸発ガスの過熱度一定となるような流量制御が行われる
が、冷房効率が最大となる過熱度は冷媒流量、熱負荷に
応じて変動し、一定ではない。そのため、過熱度一定と
なる液冷媒流量制御では高い冷房効率を常に維持するこ
とはできず、動力損失が避けられない。
[Problem to be solved by the invention] In a thermostatic automatic expansion valve, flow rate control is performed so that the degree of superheating of evaporated gas is constant, but the degree of superheating at which cooling efficiency is maximized varies depending on the refrigerant flow rate and heat load. However, it is not constant. Therefore, high cooling efficiency cannot always be maintained with liquid refrigerant flow rate control that keeps the degree of superheat constant, and power loss is unavoidable.

【0005】一方、迅速冷房が可能な電気式自動膨張弁
を用いた従来装置においても同様の問題があり、この従
来例では圧縮機のON−OFF制御によって動力損失の
回避を図る実施例も開示されているが、冷却作用の有無
のみの切り換えを行なうON−OFF制御では安定した
冷房作用を得ることは困難である。本発明は安定した冷
房作用を得つつ冷房効率を高め得る冷却回路における駆
動制御方法を提供することを目的とする。
On the other hand, a similar problem exists in a conventional device using an electric automatic expansion valve capable of rapid cooling, and this conventional example also discloses an embodiment in which power loss is avoided by ON-OFF control of the compressor. However, it is difficult to obtain a stable cooling effect with ON-OFF control that only switches between the presence and absence of the cooling effect. An object of the present invention is to provide a drive control method in a cooling circuit that can improve cooling efficiency while obtaining a stable cooling effect.

【0006】[0006]

【課題を解決するための手段】そのために本発明では、
可変容量型圧縮機の吐出側と吸入側とを接続する外部冷
媒回路上に凝縮器、膨張弁及び蒸発器を介在し、冷却回
路外部からの指令によって可変容量型圧縮機の容量及び
膨張弁における流量を切り換え制御可能な冷却回路を対
象とし、このような冷却回路における熱負荷及び動力を
検出し、検出熱負荷及び検出動力に基づいて可変容量型
圧縮機の適正容量を選択すると共に、適正過熱度を選択
し、選択された適正容量状態で可変容量型圧縮機を駆動
すると共に、選択された適正過熱度をもたらすように膨
張弁における流量制御を行なうようにした。
[Means for Solving the Problems] To this end, in the present invention,
A condenser, an expansion valve, and an evaporator are interposed on the external refrigerant circuit that connects the discharge side and suction side of the variable displacement compressor, and the capacity of the variable displacement compressor and the expansion valve are controlled by commands from outside the cooling circuit. Targeting cooling circuits that can be controlled by switching the flow rate, detects the thermal load and power in such a cooling circuit, selects the appropriate capacity of the variable displacement compressor based on the detected thermal load and detected power, and also determines the appropriate overheating. The variable displacement compressor is driven in the selected proper capacity state, and the flow rate in the expansion valve is controlled to bring about the selected proper superheat degree.

【0007】[0007]

【作用】冷却回路の状態は冷媒流量、凝縮器における熱
負荷及び蒸発器における熱負荷によって決定される。単
位動力当たりの冷房能力(冷房効率)と過熱度との間に
は冷却回路の状態毎に特定関係がある。冷却回路の状態
と設定冷房温度との間の冷房効率を考慮した望ましい関
係をもたらす圧縮機の容量及び過熱度が前記特定関係に
基づいて規定されており、冷却回路の状態を検出すると
共に、設定冷房温度を指定すれば望ましい容量及び過熱
度が選択される。可変容量型圧縮機はこの選択された容
量をもたらす状態で運転され、膨張弁における流量制御
が選択された過熱度をもたらすように行われる。
[Operation] The state of the cooling circuit is determined by the refrigerant flow rate, the heat load on the condenser, and the heat load on the evaporator. There is a specific relationship between the cooling capacity per unit power (cooling efficiency) and the degree of superheat depending on the state of the cooling circuit. The compressor capacity and degree of superheat that provide a desirable relationship between the state of the cooling circuit and the set cooling temperature in consideration of the cooling efficiency are defined based on the specific relationship, and the state of the cooling circuit is detected and the set temperature is determined. By specifying the cooling temperature, the desired capacity and degree of superheat are selected. The variable displacement compressor is operated to provide this selected capacity and flow control at the expansion valve is effected to provide the selected degree of superheat.

【0008】[0008]

【実施例】以下、本発明を具体化した一実施例を図1〜
図15に基づいて説明する。可変容量型圧縮機1の吸入
側及び吐出側を接続する冷媒回路2上には吐出側から油
分離器3、凝縮器4、受液器5、膨張弁6及び蒸発器7
が順に介在されており、可変容量型圧縮機1にて圧縮さ
れた冷媒ガスはミスト状に混在する潤滑油を油分離器3
にて分離された後、凝縮器4で冷却作用を受けて液状に
なり、受液器5に送られる。凝縮液冷媒は膨張弁6を経
由して蒸発器7に送られ、蒸発器7で蒸発する。蒸発器
7を経由した冷媒ガスは可変容量型圧縮機1に吸入され
る。ブロワ39から蒸発器7に吹きつけられるエア流は
蒸発器7における蒸発作用によって冷却され、この冷却
されたエア流が車室内へ導入される。ブロワ39から蒸
発器7に吹きつけられるエアは車室内からの還流エアで
ある。図2は可変容量型圧縮機の全体図を表す。回転軸
28を支持するシリンダブロック29,30に接合する
前後一対のハウジング31,32内には吸入室31a,
32a及び吐出室31b,32bが形成されており、リ
ヤハウジング32側の吐出室32bには制御圧室R1 
が設けられている。制御圧室R1 には区画体33が回
転軸28方向へスライド可能に嵌入されている。制御圧
室R1 は電磁式切り換え弁34を介して吐出圧領域及
び吸入圧領域に接続されており、制御圧室R1 内の圧
力が電磁式切り換え弁34の励消磁によって吐出圧と吸
入圧とのいずれかに切り換え制御される。
[Example] Hereinafter, an example embodying the present invention is shown in Figs.
This will be explained based on FIG. 15. On the refrigerant circuit 2 that connects the suction side and the discharge side of the variable displacement compressor 1, from the discharge side there are an oil separator 3, a condenser 4, a liquid receiver 5, an expansion valve 6, and an evaporator 7.
are interposed in order, and the refrigerant gas compressed by the variable displacement compressor 1 removes the lubricating oil mixed in a mist form to the oil separator 3.
After being separated in the condenser 4, it is cooled and becomes liquid, and is sent to the liquid receiver 5. The condensed refrigerant is sent to the evaporator 7 via the expansion valve 6, where it is evaporated. The refrigerant gas that has passed through the evaporator 7 is sucked into the variable capacity compressor 1. The air flow blown from the blower 39 to the evaporator 7 is cooled by the evaporation action in the evaporator 7, and this cooled air flow is introduced into the vehicle interior. The air blown from the blower 39 to the evaporator 7 is recirculated air from inside the vehicle. FIG. 2 shows an overall diagram of a variable displacement compressor. Suction chambers 31a,
32a and discharge chambers 31b, 32b are formed, and a control pressure chamber R1 is formed in the discharge chamber 32b on the rear housing 32 side.
is provided. A partition body 33 is fitted into the control pressure chamber R1 so as to be slidable in the direction of the rotating shaft 28. The control pressure chamber R1 is connected to the discharge pressure region and the suction pressure region via the electromagnetic switching valve 34, and the pressure in the control pressure chamber R1 is changed between the discharge pressure and the suction pressure by excitation and demagnetization of the electromagnetic switching valve 34. Switching is controlled to either one.

【0009】斜板35を収容する吸入圧領域の斜板室3
5aと吐出室32bとは区画体33に取り付けられた吐
出弁形成プレート36及びリテーナ37によって連通遮
断切り換え可能であり、制御圧室R1 内が吐出圧の場
合には区画体33が押圧ばね38に抗して制御圧室R1
 から突出し、吐出弁形成プレート36が斜板室35a
と吐出室32bとの連通を遮断する。制御圧室R1 が
吸入圧の場合には区画体33が押圧ばね38によって制
御圧室R1 に没入し、吐出弁形成プレート36及びリ
テーナ37が図2に示す鎖線位置へ移行配置される。こ
の移行配置状態では斜板室35aと吐出室32bとが連
通する。 斜板室35aと吐出室32bとの連通が遮断した状態で
はシリンダボア30aにおける吸入及び吐出がシリンダ
ボア29a側と同様に実質的に行われる(100%容量
)が、斜板室35aと吐出室32bとが連通した状態で
は実質的な吸入及び吐出が行われず、容量が半減(50
%容量)する。
Swash plate chamber 3 in the suction pressure area that accommodates the swash plate 35
5a and the discharge chamber 32b can be switched to be disconnected from each other by a discharge valve forming plate 36 and a retainer 37 attached to the partition body 33, and when the discharge pressure is in the control pressure chamber R1, the partition body 33 is connected to the pressure spring 38. Control pressure chamber R1
The discharge valve forming plate 36 protrudes from the swash plate chamber 35a.
The communication between the discharge chamber 32b and the discharge chamber 32b is cut off. When the control pressure chamber R1 is at suction pressure, the partition body 33 is retracted into the control pressure chamber R1 by the pressure spring 38, and the discharge valve forming plate 36 and the retainer 37 are moved to the chain line position shown in FIG. In this transitional arrangement state, the swash plate chamber 35a and the discharge chamber 32b communicate with each other. When the communication between the swash plate chamber 35a and the discharge chamber 32b is cut off, suction and discharge in the cylinder bore 30a are substantially performed in the same way as on the cylinder bore 29a side (100% capacity), but the swash plate chamber 35a and the discharge chamber 32b are in communication with each other. In this state, there is no substantial inhalation or exhalation, and the capacity is reduced by half (50
% capacity).

【0010】膨張弁6のバルブハウジング8内のオリフ
ィス9はボール弁体10によって開閉され、ボール弁体
10は支持座11を介した押圧ばね12のばね作用によ
ってオリフィス9を閉塞する方向へ付勢されている。バ
ルブハウジング8の上部には制御圧室R2 がダイヤフ
ラム13を介して区画形成されており、ダイヤフラム1
3には作用伝達ロッド14が連結されている。作用伝達
ロッド14は制御圧室R2 内の圧力変動に応じて上下
動し、この上下動によってボール弁体10がオリフィス
9を開閉する。
The orifice 9 in the valve housing 8 of the expansion valve 6 is opened and closed by a ball valve body 10, and the ball valve body 10 is biased in the direction of closing the orifice 9 by the spring action of a pressing spring 12 via a support seat 11. has been done. A control pressure chamber R2 is defined in the upper part of the valve housing 8 via a diaphragm 13.
3 is connected to an action transmission rod 14. The action transmission rod 14 moves up and down in response to pressure fluctuations within the control pressure chamber R2, and the ball valve body 10 opens and closes the orifice 9 due to this up and down movement.

【0011】蒸発器7と圧縮機1との間の冷媒ガス管路
上には感温筒15が取り付けられており、感温筒15内
の制御ガス圧が制御圧室R2 に導入されるようになっ
ている。感温筒15上には電子冷凍素子16が取り付け
られている。電子冷凍素子16は電流制御回路18及び
極性切り換え回路19を介した制御コンピュータ17の
通電制御を受ける。極性切り換え回路19における極性
の切り換え、即ち電子冷凍素子16に対する通電方向の
切り換えによって感温筒15と電子冷凍素子16との接
合面側が加熱作用と冷却作用との切り換えを受ける。又
、電流制御回路18における直流電流値制御によって感
温筒15と電子冷凍素子16との接合面側における加熱
程度あるいは冷却程度が制御される。これにより感温筒
15内の制御ガス圧が直流極性及び直流電流値に応じて
変わり、この制御ガス圧変動が制御圧室R2 に波及す
る。
A temperature sensing tube 15 is installed on the refrigerant gas pipe between the evaporator 7 and the compressor 1, so that the control gas pressure inside the temperature sensing tube 15 is introduced into the control pressure chamber R2. It has become. An electronic refrigeration element 16 is mounted on the temperature sensing tube 15. The electronic refrigeration element 16 is energized by a control computer 17 via a current control circuit 18 and a polarity switching circuit 19. By switching the polarity in the polarity switching circuit 19, that is, switching the direction of energization to the electronic refrigeration element 16, the joining surface side of the temperature sensitive cylinder 15 and the electronic refrigeration element 16 is switched between heating action and cooling action. Furthermore, the degree of heating or cooling on the joint surface side between the temperature sensing cylinder 15 and the electronic refrigeration element 16 is controlled by controlling the DC current value in the current control circuit 18. As a result, the control gas pressure within the temperature sensing cylinder 15 changes depending on the DC polarity and the DC current value, and this control gas pressure fluctuation spreads to the control pressure chamber R2.

【0012】感温筒15の加熱によって感温筒15内の
制御ガス圧が上昇するとダイヤフラム13が下動し、オ
リフィス9におけるボール弁体10の弁開度が大きくな
る。即ち、感温筒15を加熱することは膨張弁6におけ
る液冷媒流量を増大することになり、膨張弁6の出口の
温度と蒸発器7の出口の温度との差である過熱度が減少
する。逆に、感温筒15の冷却によって感温筒15内の
制御ガス圧が低下するとダイヤフラム13が上動し、オ
リフィス9におけるボール弁体10の弁開度が小さくな
る。即ち、感温筒15を冷却することは膨張弁6におけ
る液冷媒流量を減少することになり、過熱度が増大する
When the control gas pressure inside the temperature sensing cylinder 15 increases due to heating of the temperature sensing cylinder 15, the diaphragm 13 moves downward, and the valve opening degree of the ball valve body 10 in the orifice 9 increases. That is, heating the temperature sensing cylinder 15 increases the flow rate of liquid refrigerant in the expansion valve 6, and the degree of superheat, which is the difference between the temperature at the outlet of the expansion valve 6 and the temperature at the outlet of the evaporator 7, decreases. . Conversely, when the control gas pressure inside the temperature sensing cylinder 15 decreases due to cooling of the temperature sensing cylinder 15, the diaphragm 13 moves upward, and the valve opening degree of the ball valve body 10 in the orifice 9 becomes smaller. That is, cooling the temperature sensing tube 15 reduces the flow rate of liquid refrigerant in the expansion valve 6, increasing the degree of superheating.

【0013】制御コンピュータCは、外気温度検出器2
0、吐出温度検出器21、入口温度検出器22、吹き出
し温度検出器23、湿度検出器24、圧縮機1に取り付
けた回転数検出器25及び車速検出器26からの各検出
情報、入力設定器27によって予め入力設定されたブロ
ワ39の風量S及び設定室温T0 に基づいて電子冷凍
素子16の通電制御を行なう。又、制御コンピュータC
は前記検出情報、風量S及び設定室温T0 に基づいて
電磁式切り換え弁34を切り換え制御する。
[0013] The control computer C has an outside air temperature detector 2.
0, discharge temperature detector 21, inlet temperature detector 22, outlet temperature detector 23, humidity detector 24, each detection information from the rotation speed detector 25 and vehicle speed detector 26 attached to the compressor 1, input setting device The energization of the electronic refrigeration element 16 is controlled based on the air volume S of the blower 39 and the set room temperature T0 inputted and set in advance by 27. Also, control computer C
switches and controls the electromagnetic switching valve 34 based on the detection information, the air volume S, and the set room temperature T0.

【0014】図7〜図15のフローチャートは電子冷凍
素子16に対する通電制御プログラム及び電磁式切り換
え弁34の切り換え制御プログラムを表す。冷却回路の
状態は冷媒流量(容量×回転数n)、凝縮器4における
熱負荷及び蒸発器7における熱負荷によって決定される
。冷房効率(蒸発器7における単位時間当たりの熱交換
量Qを動力Lで割った値)と過熱度との間には冷却回路
の状態毎に特定関係があり、吹き出し温度と過熱度との
間にも冷却回路の状態毎に特定関係がある。図3〜図6
は過熱度と冷房効率との間の関係及び過熱度と吹き出し
温度との間の関係を表すマップである。図3のマップM
1(N1)は可変容量型圧縮機1の回転数nが低回転領
域N1 かつ容量が100%の場合であり、図4のマッ
プM2(N1 ) は可変容量型圧縮機1の回転数nが
低回転領域N1 かつ容量が50%の場合である。図5
のマップM1(Nk ) は可変容量型圧縮機1の回転
数nが高回転領域Nk かつ容量が100%の場合であ
り、図6のマップM2(Nk ) は可変容量型圧縮機
1の回転数nが高回転領域Nk かつ容量が50%の場
合である。
The flowcharts in FIGS. 7 to 15 represent an energization control program for the electronic refrigeration element 16 and a switching control program for the electromagnetic switching valve 34. The state of the cooling circuit is determined by the refrigerant flow rate (capacity x rotation speed n), the heat load on the condenser 4, and the heat load on the evaporator 7. There is a specific relationship between the cooling efficiency (value obtained by dividing the amount of heat exchange Q per unit time in the evaporator 7 by the power L) and the degree of superheating, depending on the state of the cooling circuit, and there is a relationship between the blowout temperature and the degree of superheating. There are also specific relationships depending on the state of the cooling circuit. Figures 3 to 6
is a map showing the relationship between the degree of superheating and the cooling efficiency and the relationship between the degree of superheating and the blowout temperature. Map M in Figure 3
1 (N1) is the case when the rotation speed n of the variable displacement compressor 1 is in the low rotation range N1 and the capacity is 100%, and the map M2 (N1) in FIG. 4 is the case when the rotation speed n of the variable displacement compressor 1 is This is a case where the engine is in the low rotation region N1 and the capacity is 50%. Figure 5
The map M1 (Nk) in FIG. 6 is for the case where the rotation speed n of the variable displacement compressor 1 is in the high rotation range Nk and the capacity is 100%, and the map M2 (Nk) in FIG. 6 is the rotation speed of the variable displacement compressor 1. This is a case where n is a high rotation region Nk and the capacity is 50%.

【0015】マップM1(N1)における曲線E111
 は冷却回路における熱負荷が低負荷領域の場合の吹き
出し温度と過熱度との間の関係を表し、曲線E211 
は熱負荷が中負荷領域の場合の吹き出し温度と過熱度と
の間の関係を表す。曲線E311 は熱負荷が高負荷領
域の場合の吹き出し温度と過熱度との間の関係を表し、
曲線E411 は熱負荷が超高負荷領域の場合の吹き出
し温度と過熱度との間の関係を表す。
Curve E111 in map M1 (N1)
represents the relationship between the blowout temperature and the degree of superheat when the heat load in the cooling circuit is in a low load region, and curve E211
represents the relationship between the outlet temperature and the degree of superheat when the heat load is in the medium load range. Curve E311 represents the relationship between the blowout temperature and the degree of superheat when the heat load is in the high load region,
Curve E411 represents the relationship between the blowout temperature and the degree of superheat when the heat load is in the ultra-high load region.

【0016】同様にマップM1(N1)における曲線E
11k は冷却回路における熱負荷が低負荷領域の場合
の吹き出し温度と過熱度との間の関係を表し、曲線E2
1k ,E31k ,E41k はそれぞれ熱負荷が中
負荷領域、高負荷領域、超高負荷領域の場合の吹き出し
温度と過熱度との間の関係を表す。マップM1(N1)
における曲線F111 は冷却回路における熱負荷が低
負荷領域の場合の冷房効率と過熱度との間の関係を表し
、曲線F211 は熱負荷が中負荷領域の場合の冷房効
率と過熱度との間の関係を表す。 曲線F311 は熱負荷が高負荷領域の場合の冷房効率
と過熱度との間の関係を表し、曲線F411 は熱負荷
が超高負荷領域の場合の冷房効率と過熱度との間の関係
を表す。
Similarly, the curve E in the map M1 (N1)
11k represents the relationship between the outlet temperature and the degree of superheat when the heat load in the cooling circuit is in the low load region, and curve E2
1k, E31k, and E41k represent the relationship between the blowout temperature and the degree of superheating when the heat load is in a medium load area, a high load area, and an extremely high load area, respectively. Map M1 (N1)
Curve F111 represents the relationship between cooling efficiency and degree of superheating when the heat load in the cooling circuit is in the low load region, and curve F211 represents the relationship between cooling efficiency and degree of superheating when the heat load is in the medium load region. Represents a relationship. Curve F311 represents the relationship between cooling efficiency and degree of superheating when the heat load is in a high load area, and curve F411 represents the relationship between cooling efficiency and degree of superheating when the heat load is in an extremely high load area. .

【0017】同様にマップM1(N1)における曲線F
11k は冷却回路における熱負荷が低負荷領域の場合
の冷房効率と過熱度との間の関係を表し、曲線F21k
 ,F31k,F41k はそれぞれ熱負荷が中負荷領
域、高負荷領域、超高負荷領域の場合の冷房効率と過熱
度との間の関係を表す。可変容量型圧縮機1の回転領域
Ni (i=1〜k)は低回転領域N1 から高回転領
域Nk にわたって分割設定されており、図3〜図6の
ようなマップM1(Ni) ,M2(Ni ) におけ
る関数E11i ,E21i ,E31i ,E41i
 ,F11i ,F21i ,F31i ,F41i 
が各回転領域Ni 毎に予め得られている。
Similarly, the curve F in map M1 (N1)
11k represents the relationship between the cooling efficiency and the degree of superheat when the heat load in the cooling circuit is in the low load region, and the curve F21k
, F31k, and F41k represent the relationship between the cooling efficiency and the degree of superheating when the heat load is in a medium load area, a high load area, and an extremely high load area, respectively. The rotation range Ni (i=1 to k) of the variable capacity compressor 1 is divided and set from a low rotation range N1 to a high rotation range Nk, and maps M1 (Ni), M2 ( Ni) functions E11i, E21i, E31i, E41i
, F11i , F21i , F31i , F41i
is obtained in advance for each rotation region Ni.

【0018】制御コンピュータ17は検出される外気温
度T1 、吐出温度T2 、車室温である入口温度T3
 、蒸発器7によって冷却された吹き出し温度T4 、
車室内の湿度W、可変容量型圧縮機1の回転数n及び車
速Vを一定時間間隔毎にサンプリングする。制御コンピ
ュータ17は検出回転数nの回転数領域Ni を把握し
、把握した回転数領域Ni に対応するマップM1(N
i ) ,M2(Ni) を選択する。
The control computer 17 detects the outside air temperature T1, the discharge temperature T2, and the inlet temperature T3 which is the vehicle room temperature.
, the blowout temperature T4 cooled by the evaporator 7,
The humidity W in the vehicle interior, the rotation speed n of the variable capacity compressor 1, and the vehicle speed V are sampled at regular time intervals. The control computer 17 grasps the rotation speed range Ni of the detected rotation speed n, and creates a map M1 (N
i), M2(Ni).

【0019】次いで制御コンピュータ17は検出外気温
度T1 、検出吐出温度T2 及び検出車速Vに基づい
て凝縮器4における熱負荷Qx を算出すると共に、検
出入口温度T3 、検出吹き出し温度T4 、検出湿度
W及びブロワ39の風量Sに基づいて蒸発器7における
熱負荷Qy を算出し、冷却回路における負荷状態を把
握する。回転数nが低回転数領域N1 にあり、熱負荷
が低負荷領域の場合、制御コンピュータ17はマップM
1(N1 ) ,M2(N1 ) における関数E11
1 ,F111 ,E121 ,F121 を選択する
Next, the control computer 17 calculates the heat load Qx in the condenser 4 based on the detected outside air temperature T1, the detected discharge temperature T2, and the detected vehicle speed V, and also calculates the detected inlet temperature T3, the detected air outlet temperature T4, the detected humidity W, and the detected vehicle speed V. The heat load Qy on the evaporator 7 is calculated based on the air volume S of the blower 39, and the load state on the cooling circuit is grasped. When the rotation speed n is in the low rotation speed region N1 and the heat load is in the low load region, the control computer 17 uses the map M
Function E11 in 1(N1), M2(N1)
1, F111, E121, F121.

【0020】車室温度T3 と設定温度T0 との差(
T3 −T0 )が許容差ΔT0 よりも大きい場合に
は制御コンピュータ17は100%容量制御を選択する
と共に、設定温度T0 及び関数E111 ,F111
 から最適設定された過熱度θ111 を選択する。電
磁式切り換え弁34は選択された100%容量をもたら
す切り換え制御を受け、可変容量型圧縮機1は100%
容量で運転される。同時に極性切り換え回路19は選択
された過熱度θ111 をもたらす方向への直流の極性
切り換え制御を受けると共に、電流制御回路18は選択
された過熱度θ111 をもたらす直流電流値の増減制
御を受け、膨張弁6は過熱度θ111 をもたらす弁開
度に制御される。
Difference between cabin temperature T3 and set temperature T0 (
T3 - T0) is larger than the tolerance ΔT0, the control computer 17 selects 100% capacity control, and also sets the set temperature T0 and the functions E111 and F111.
The optimal superheat degree θ111 is selected from The electromagnetic switching valve 34 is subjected to switching control to provide a selected 100% capacity, and the variable displacement compressor 1 is switched to 100% capacity.
Operated at capacity. At the same time, the polarity switching circuit 19 receives DC polarity switching control in the direction that brings about the selected degree of superheat θ111, and the current control circuit 18 receives control to increase or decrease the DC current value that brings about the selected degree of superheat θ111. 6 is controlled to the valve opening degree that brings about the superheat degree θ111.

【0021】車室温度T3 と設定温度T0 との差(
T3 −T0 )が許容差ΔT0 以内の場合には制御
コンピュータ17は50%容量制御を選択すると共に、
設定温度T0 及び関数E121 ,F121 から最
適設定された過熱度Θ121 を選択する。電磁式切り
換え弁34は選択された50%容量をもたらす切り換え
制御を受け、可変容量型圧縮機1は50%容量で運転さ
れる。同時に極性切り換え回路19は選択された過熱度
Θ121 をもたらす方向への直流の極性切り換え制御
を受けると共に、電流制御回路18は選択された過熱度
Θ121 をもたらす直流電流値の増減制御を受け、膨
張弁6は過熱度Θ121 をもたらす弁開度に制御され
る。
[0021] The difference between the cabin temperature T3 and the set temperature T0 (
If T3 - T0 ) is within the tolerance ΔT0, the control computer 17 selects 50% capacity control, and
The optimum superheat degree Θ121 is selected from the set temperature T0 and the functions E121 and F121. The electromagnetic switching valve 34 is subjected to switching control to provide the selected 50% capacity, and the variable displacement compressor 1 is operated at 50% capacity. At the same time, the polarity switching circuit 19 receives DC polarity switching control in the direction that brings about the selected degree of superheat Θ121, and the current control circuit 18 receives control to increase or decrease the DC current value that brings about the selected degree of superheat Θ121. 6 is controlled to the valve opening degree that brings about the superheat degree Θ121.

【0022】車室温度T3 と設定温度T0 との差(
T3 −T0 )が許容差−ΔT0 よりも小さい場合
には制御コンピュータ17は50%容量制御を選択する
と共に、設定温度T0 及び関数E121 ,F121
 から最適設定された過熱度θ121 を選択する。電
磁式切り換え弁34は選択された50%容量をもたらす
切り換え制御を受け、可変容量型圧縮機1は50%容量
で運転される。同時に極性切り換え回路19は選択され
た過熱度θ121 をもたらす方向への直流の極性切り
換え制御を受けると共に、電流制御回路18は選択され
た過熱度θ121 をもたらす直流電流値の増減制御を
受け、膨張弁6は過熱度θ121 をもたらす弁開度に
制御される。
[0022] The difference between the cabin temperature T3 and the set temperature T0 (
If T3 - T0 ) is smaller than the tolerance -ΔT0, the control computer 17 selects 50% capacity control, and also sets the set temperature T0 and functions E121 and F121.
The optimal superheat degree θ121 is selected from The electromagnetic switching valve 34 is subjected to switching control to provide the selected 50% capacity, and the variable displacement compressor 1 is operated at 50% capacity. At the same time, the polarity switching circuit 19 receives DC polarity switching control in the direction that brings about the selected degree of superheat θ121, and the current control circuit 18 receives control to increase or decrease the DC current value that brings about the selected degree of superheat θ121. 6 is controlled to the valve opening degree that brings about the superheat degree θ121.

【0023】図3及び図4のマップM1(N1 ),M
2(N1 ) から明らかなように低回転領域N1 で
は吹き出し温度T4 は100%容量運転の方が50%
容量運転よりも低温となるが、冷房効率に関しては50
%容量運転の方が100%容量運転よりも優る。従って
、冷房効率のみを考慮した場合には可変容量型圧縮機1
を50%容量で運転した方が良いことになるが、車室温
度T3 が(T0 +ΔT0 )よりも高い場合には冷
房効率よりも車室内の迅速な冷房を重視することが望ま
れる。そのため、可変容量型圧縮機1は100%容量で
運転され、冷房効率Q/Lは曲線F111 で表される
程度の低効率となるが、車室内の冷房は迅速に行われる
。過熱度θ111 は設定温度T0 及び関数E111
 ,F111 から冷房効率及び迅速冷房の両者を共に
考慮して適正設定されている。
Maps M1 (N1), M in FIGS. 3 and 4
2 (N1), in the low rotation range N1, the blowout temperature T4 is 50% lower in 100% capacity operation.
Although the temperature is lower than that of capacity operation, the cooling efficiency is 50% lower than that of capacity operation.
% capacity operation is better than 100% capacity operation. Therefore, when only cooling efficiency is considered, variable capacity compressor 1
It is better to operate the vehicle at 50% capacity, but if the vehicle interior temperature T3 is higher than (T0 + ΔT0), it is desirable to place more emphasis on rapid cooling of the vehicle interior than on cooling efficiency. Therefore, the variable displacement compressor 1 is operated at 100% capacity, and the cooling efficiency Q/L is as low as represented by the curve F111, but the interior of the vehicle is quickly cooled. The degree of superheating θ111 is the set temperature T0 and the function E111
, F111, it is set appropriately considering both cooling efficiency and rapid cooling.

【0024】T0 +ΔT0 ≧T3 ≧T0 −ΔT
0 という所望の冷房状態が達成されている場合には冷
房効率を重視することが望まれる。そのため、可変容量
型圧縮機1は50%容量で運転され、冷房効率Q/Lは
曲線F121 で表される程度の高効率となる。過熱度
Θ111 は設定温度T0 及び関数E121 ,F1
21 から冷房効率及び迅速冷房の両者を共に考慮して
適正設定されている。
[0024]T0 +ΔT0 ≧T3 ≧T0 −ΔT
When the desired cooling state of 0 has been achieved, it is desirable to place emphasis on cooling efficiency. Therefore, the variable capacity compressor 1 is operated at 50% capacity, and the cooling efficiency Q/L is as high as represented by the curve F121. The superheat degree Θ111 is the set temperature T0 and the functions E121 and F1
21, it is set appropriately considering both cooling efficiency and rapid cooling.

【0025】T3 <T0 −ΔT0 という過冷房状
態では冷房効率を重視すると共に、車室温度T3 を所
望の温度領域に戻すことが望まれる。そのため、可変容
量型圧縮機1は50%容量で運転され、冷房効率Q/L
は曲線F121 で表される程度の高効率となる。過熱
度θ121 は設定温度T0 及び関数E121 ,F
121 から過冷房解除を考慮して適正設定されている
In the overcooling state where T3 < T0 - ΔT0, it is desirable to place emphasis on cooling efficiency and to return the cabin temperature T3 to a desired temperature range. Therefore, the variable displacement compressor 1 is operated at 50% capacity, and the cooling efficiency is Q/L.
The efficiency is as high as that shown by the curve F121. The superheat degree θ121 is the set temperature T0 and the function E121, F
121, it is set appropriately considering the release of supercooling.

【0026】回転数nが低回転数領域N1 にあり、熱
負荷が中負荷領域の場合、制御コンピュータ17はマッ
プM1(N1 ) ,M2(N1 ) における関数E
211 ,F211 ,E221 ,F221 を選択
する。車室温度T3 と設定温度T0 との差(T3 
−T0 )が許容差ΔT0 よりも大きい場合には制御
コンピュータ17は100%容量制御を選択すると共に
、設定温度T0 及び関数E211 ,F211 から
最適設定された過熱度θ211 を選択する。車室温度
T3 と設定温度T0 との差(T3 −T0 )が許
容差ΔT0 以内の場合には制御コンピュータ17は5
0%容量制御を選択すると共に、設定温度T0 及び関
数E221 ,F221 から最適設定された過熱度Θ
221 を選択する。車室温度T3 と設定温度T0 
との差(T3 −T0 )が許容差−ΔT0 よりも小
さい場合には制御コンピュータ17は50%容量制御を
選択すると共に、設定温度T0 及び関数E221 ,
F221 から最適設定された過熱度θ221 を選択
する。
When the rotational speed n is in the low rotational speed region N1 and the thermal load is in the medium load region, the control computer 17 uses the function E in the maps M1(N1) and M2(N1).
211, F211, E221, F221. Difference between cabin temperature T3 and set temperature T0 (T3
-T0 ) is larger than the tolerance ΔT0, the control computer 17 selects 100% capacity control, and selects the optimum superheat degree θ211 from the set temperature T0 and the functions E211 and F211. If the difference between the vehicle interior temperature T3 and the set temperature T0 (T3 - T0) is within the tolerance ΔT0, the control computer 17
In addition to selecting 0% capacity control, the superheat degree Θ is optimally set from the set temperature T0 and the functions E221 and F221.
Select 221. Vehicle interior temperature T3 and set temperature T0
If the difference (T3 - T0) is smaller than the tolerance -ΔT0, the control computer 17 selects 50% capacity control, and also sets the set temperature T0 and the function E221,
The optimum superheat degree θ221 is selected from F221.

【0027】回転数nが低回転数領域N1 にあり、熱
負荷が高負荷領域の場合、制御コンピュータ17はマッ
プM1(N1 ) ,M2(N1 ) における関数E
311 ,F311 ,E321 ,F321 を選択
する。車室温度T3 と設定温度T0 との差(T3 
−T0 )が許容差ΔT0 よりも大きい場合には制御
コンピュータ17は100%容量制御を選択すると共に
、設定温度T0 及び関数E311 ,F311 から
最適設定された過熱度θ311 を選択する。車室温度
T3 と設定温度T0 との差(T3 −T0 )が許
容差ΔT0 以内の場合には制御コンピュータ17は5
0%容量制御を選択すると共に、設定温度T0 及び関
数E321 ,F321 から最適設定された過熱度Θ
321 を選択する。車室温度T3 と設定温度T0 
との差(T3 −T0 )が許容差−ΔT0 よりも小
さい場合には制御コンピュータ17は50%容量制御を
選択すると共に、設定温度T0 及び関数E321 ,
F321 から最適設定された過熱度θ321 を選択
する。
When the rotational speed n is in the low rotational speed region N1 and the thermal load is in the high load region, the control computer 17 uses the function E in the maps M1(N1) and M2(N1).
Select 311, F311, E321, F321. Difference between cabin temperature T3 and set temperature T0 (T3
-T0 ) is larger than the tolerance ΔT0, the control computer 17 selects 100% capacity control, and selects the optimum superheat degree θ311 from the set temperature T0 and the functions E311 and F311. If the difference between the vehicle interior temperature T3 and the set temperature T0 (T3 - T0) is within the tolerance ΔT0, the control computer 17
In addition to selecting 0% capacity control, the superheat degree Θ is optimally set from the set temperature T0 and functions E321 and F321.
Select 321. Vehicle interior temperature T3 and set temperature T0
If the difference (T3 - T0) is smaller than the tolerance -ΔT0, the control computer 17 selects 50% capacity control, and also sets the set temperature T0 and the function E321,
Select the optimum superheat degree θ321 from F321.

【0028】回転数nが低回転数領域N1 にあり、熱
負荷が超高負荷領域の場合、制御コンピュータ17はマ
ップM1(N1 ) ,M2(N1 ) における関数
E411 ,F411 ,E421 ,F421 を選
択する。車室温度T3 と設定温度T0 との差(T3
 −T0 )が許容差ΔT0 よりも大きい場合には制
御コンピュータ17は100%容量制御を選択すると共
に、設定温度T0 及び関数E411 ,F411 か
ら最適設定された過熱度θ411 を選択する。車室温
度T3 と設定温度T0 との差(T3 −T0 )が
許容差ΔT0 以内の場合には制御コンピュータ17は
50%容量制御を選択すると共に、設定温度T0 及び
関数E421 ,F421 から最適設定された過熱度
Θ421 を選択する。車室温度T3 と設定温度T0
 との差(T3 −T0 )が許容差−ΔT0 よりも
小さい場合には制御コンピュータ17は50%容量制御
を選択すると共に、設定温度T0 及び関数E421 
,F421 から最適設定された過熱度θ421 を選
択する。
When the rotational speed n is in the low rotational speed region N1 and the thermal load is in the extremely high load region, the control computer 17 selects the functions E411, F411, E421, F421 in the maps M1(N1) and M2(N1). do. Difference between cabin temperature T3 and set temperature T0 (T3
-T0) is larger than the tolerance ΔT0, the control computer 17 selects 100% capacity control and selects the optimum superheat degree θ411 from the set temperature T0 and the functions E411 and F411. If the difference (T3 - T0) between the vehicle interior temperature T3 and the set temperature T0 is within the tolerance ΔT0, the control computer 17 selects 50% capacity control and optimally sets the set temperature T0 and the functions E421 and F421. Select the superheat degree Θ421. Vehicle interior temperature T3 and set temperature T0
If the difference (T3 - T0) is smaller than the tolerance -ΔT0, the control computer 17 selects 50% capacity control, and also sets the set temperature T0 and function E421.
, F421, the optimally set superheat degree θ421 is selected.

【0029】圧縮機1の回転数nが低回転数領域N1 
における吹き出し温度T4 は低負荷領域及び中負荷領
域において過熱度の影響を大きく受け、過熱度を大きく
すると吹き出し温度T4 が上昇する。従って、検出さ
れる車室温度T3 を迅速に低下させる場合には100
%容量運転状態のもとに過熱度を低減することによって
対処可能である。車室温度T3 が設定温度T0 以下
となった過冷房状態を迅速に解除するような場合には5
0%容量運転状態のもとに過熱度を大きくすることによ
って対処可能である。
[0029] The rotation speed n of the compressor 1 is in the low rotation speed region N1.
The blowout temperature T4 is greatly affected by the degree of superheating in the low load region and medium load region, and as the degree of superheating is increased, the blowout temperature T4 increases. Therefore, if you want to quickly lower the detected cabin temperature T3,
This can be addressed by reducing the degree of superheating under % capacity operating conditions. 5 if you want to quickly release the supercooling state where the cabin temperature T3 has fallen below the set temperature T0.
This can be dealt with by increasing the degree of superheating under 0% capacity operating conditions.

【0030】車室温度T3 が所望の温度領域にある場
合には50%容量運転を行なうことによって冷房効率を
高めるという対処が可能である。冷房効率Q/Lは高負
荷領域及び超高負荷領域において過熱度の影響を大きく
受け、過熱度を小さくすると冷房効率が高くなる。従っ
て、車室温度T3 が所望の温度領域にある場合には5
0%運転状態のもとに過熱度を低減することによって一
層の冷房効率の向上が達成できる。
When the cabin temperature T3 is within a desired temperature range, it is possible to increase the cooling efficiency by operating at 50% capacity. The cooling efficiency Q/L is greatly affected by the degree of superheating in the high load region and the ultra-high load region, and the cooling efficiency increases as the degree of superheating is reduced. Therefore, if the cabin temperature T3 is in the desired temperature range,
Further improvement in cooling efficiency can be achieved by reducing the degree of superheating under a 0% operating state.

【0031】回転数nが高回転数領域Nk にあり、熱
負荷が低負荷領域の場合、制御コンピュータ17はマッ
プM1(Nk ) ,M2(Nk ) における関数E
11k ,F11k ,E12k ,F12k を選択
する。(T3 −T0 )>ΔT0 の場合には制御コ
ンピュータ17は100%容量制御を選択すると共に、
設定温度T0 及び関数E11k ,F11k から最
適設定された過熱度θ11k を選択する。T0 +Δ
T0 ≧T3 ≧T0 −ΔT0 の場合には制御コン
ピュータ17は50%容量制御を選択すると共に、設定
温度T0及び関数E12k ,F12k から最適設定
された過熱度Θ12k を選択する。(T3 −T0 
)<−ΔT0 の場合には制御コンピュータ17は50
%容量制御を選択すると共に、設定温度T0 及び関数
E12k ,F12k から最適設定された過熱度θ1
2k を選択する。
When the rotational speed n is in the high rotational speed region Nk and the thermal load is in the low load region, the control computer 17 uses the function E in the maps M1(Nk) and M2(Nk).
Select 11k, F11k, E12k, F12k. In the case of (T3 - T0)>ΔT0, the control computer 17 selects 100% capacity control, and
The optimum superheat degree θ11k is selected from the set temperature T0 and the functions E11k and F11k. T0 +Δ
In the case of T0 ≧T3 ≧T0 - ΔT0, the control computer 17 selects 50% capacity control and also selects the optimum superheat degree Θ12k from the set temperature T0 and the functions E12k and F12k. (T3 −T0
)<-ΔT0, the control computer 17
% capacity control is selected, and the superheat degree θ1 is optimally set from the set temperature T0 and the functions E12k and F12k.
Select 2k.

【0032】図5及び図6のマップM1(Nk ),M
2(Nk ) から明らかなように高回転領域Nk で
は吹き出し温度T4 は100%容量運転の方が50%
容量運転よりも低温となるが、冷房効率に関しては50
%容量運転の方が100%容量運転よりも優る。従って
、冷房効率のみを考慮した場合には可変容量型圧縮機1
を50%容量で運転した方が良いことになるが、T3 
>(T0 +ΔT0 )の場合には冷房効率よりも車室
内の迅速な冷房を重視することが望まれる。そのため、
可変容量型圧縮機1は100%容量で運転され、冷房効
率Q/Lは曲線F11k で表される程度の低効率とな
るが、車室内の冷房は迅速に行われる。過熱度θ11k
 は設定温度T0 及び関数E11k ,F11k か
ら冷房効率及び迅速冷房の両者を共に考慮して適正設定
されている。
Maps M1 (Nk), M in FIGS. 5 and 6
2 (Nk), in the high rotation range Nk, the blowout temperature T4 is 50% lower in 100% capacity operation.
Although the temperature is lower than that of capacity operation, the cooling efficiency is 50% lower than that of capacity operation.
% capacity operation is better than 100% capacity operation. Therefore, when only cooling efficiency is considered, variable capacity compressor 1
It would be better to operate at 50% capacity, but T3
>(T0 +ΔT0), it is desirable to place more importance on rapid cooling of the vehicle interior than on cooling efficiency. Therefore,
The variable capacity compressor 1 is operated at 100% capacity, and the cooling efficiency Q/L is as low as represented by the curve F11k, but the interior of the vehicle is quickly cooled. Superheat degree θ11k
is appropriately set based on the set temperature T0 and the functions E11k and F11k, taking both cooling efficiency and rapid cooling into consideration.

【0033】T0 +ΔT0 ≧T3 ≧T0 −ΔT
0 という所望の冷房状態が達成されている場合には冷
房効率を重視することが望まれる。そのため、可変容量
型圧縮機1は50%容量で運転され、冷房効率Q/Lは
曲線F12k で表される程度の高効率となる。過熱度
Θ11k は設定温度T0 及び関数E12k ,F1
2k から冷房効率及び迅速冷房の両者を共に考慮して
適正設定されている。
[0033]T0 +ΔT0 ≧T3 ≧T0 −ΔT
When the desired cooling state of 0 has been achieved, it is desirable to place emphasis on cooling efficiency. Therefore, the variable displacement compressor 1 is operated at 50% capacity, and the cooling efficiency Q/L is as high as represented by the curve F12k. The superheat degree Θ11k is the set temperature T0 and the functions E12k, F1
From 2k onwards, it is set appropriately considering both cooling efficiency and rapid cooling.

【0034】T3 <T0 −ΔT0 という過冷房状
態では冷房効率を重視すると共に、車室温度T3 を所
望の温度領域に戻すことが望まれる。そのため、可変容
量型圧縮機1は50%容量で運転され、冷房効率Q/L
は曲線F12k で表される程度の高効率となる。過熱
度θ12k は設定温度T0 及び関数E12k ,F
12k から過冷房解除を考慮して適正設定されている
In the overcooling state where T3 < T0 - ΔT0, it is desirable to place emphasis on cooling efficiency and to return the cabin temperature T3 to a desired temperature range. Therefore, the variable displacement compressor 1 is operated at 50% capacity, and the cooling efficiency is Q/L.
The efficiency is as high as that shown by the curve F12k. The superheat degree θ12k is the set temperature T0 and the function E12k, F
From 12K onwards, it is set appropriately considering the cancellation of supercooling.

【0035】回転数nが高回転数領域Nk にある場合
、制御コンピュータ17はマップM1(Nk ) ,M
2(Nk ) における関数E21k ,F21k ,
E22k ,F22k を選択し、熱負荷状況、及び差
(T3 −T0 )と許容差ΔT0 との関係に応じて
低回転数領域N1 の場合と同様に容量制御選択及び過
熱度(θ11k ,θ12k ,Θ12k ,θ21k
 ,θ22k ,Θ22k ,θ31k ,θ32k 
,Θ32k ,θ41k ,θ42k ,Θ42k )
の選択を行なう。
When the rotational speed n is in the high rotational speed region Nk, the control computer 17 uses maps M1(Nk), M
2(Nk) functions E21k, F21k,
E22k and F22k are selected, and capacity control selection and superheat degree (θ11k, θ12k, Θ12k , θ21k
, θ22k , θ22k , θ31k , θ32k
, Θ32k , θ41k , θ42k , Θ42k )
Make a selection.

【0036】圧縮機1の回転数nが高回転数領域Nk 
における吹き出し温度T4 は低回転数領域N1 の場
合と同様に低負荷領域及び中負荷領域において過熱度の
影響を大きく受け、過熱度が小さくなると吹き出し温度
T4 が低下する。従って、低負荷状態及び中負荷状態
における車室温度T3 を迅速に低下させる場合には、
低回転数領域N1の場合と同様に100%容量運転状態
のもとに過熱度を低減することによって対処可能である
。車室温度T3 が設定温度T0 以下となった過冷房
状態を迅速に解除するような場合には50%容量運転状
態のもとに過熱度を大きくすることによって対処可能で
ある。
[0036] The rotation speed n of the compressor 1 is in the high rotation speed region Nk.
As in the case of the low rotational speed region N1, the blowout temperature T4 is greatly influenced by the degree of superheating in the low load region and the medium load region, and as the degree of superheating decreases, the blowout temperature T4 decreases. Therefore, in order to quickly lower the cabin temperature T3 in a low load state and a medium load state,
As in the case of the low rotational speed region N1, this can be dealt with by reducing the degree of superheating under 100% capacity operation. If the supercooling state where the vehicle interior temperature T3 is lower than the set temperature T0 needs to be quickly released, this can be done by increasing the degree of superheating under the 50% capacity operating state.

【0037】車室温度T3 が所望の温度領域にある場
合には50%容量運転を行なうことによって冷房効率を
高めるという対処が可能である。50%容量運転の場合
の冷房効率Q/Lは過熱度を大きくすることによって高
くなる。従って、車室温度T3 が所望の温度領域にあ
る場合には50%運転状態のもとに過熱度を大きくする
ことによって一層の冷房効率の向上が達成できる。
When the cabin temperature T3 is within a desired temperature range, it is possible to increase the cooling efficiency by performing 50% capacity operation. The cooling efficiency Q/L in the case of 50% capacity operation increases by increasing the degree of superheating. Therefore, when the vehicle interior temperature T3 is within a desired temperature range, the cooling efficiency can be further improved by increasing the degree of superheating under the 50% operating condition.

【0038】回転数nが高低以外の回転数領域Ni (
i≠1,k)にある場合にも、制御コンピュータ17は
回転数領域Ni に対応するマップM1(Ni ) ,
M2(Ni ) における関数E21i ,F21i 
,E22i ,F22i を選択し、熱負荷状況、及び
差(T3 −T0 )と許容差ΔT0 との関係に応じ
て高低回転数領域N1 ,Nk の場合と同様に容量制
御選択及び過熱度(θ11i ,θ12i ,Θ12i
 ,θ21i ,θ22i ,Θ22i ,θ31i 
,θ32i ,Θ32i ,θ41i ,θ42i ,
Θ42i )の選択を行なう。
[0038] The rotational speed n is in a rotational speed range Ni (
i≠1,k), the control computer 17 also creates maps M1(Ni), corresponding to the rotational speed region Ni.
Functions E21i and F21i in M2(Ni)
, E22i, F22i, and select capacity control and superheat degree (θ11i, θ12i, Θ12i
, θ21i , θ22i , θ22i , θ31i
, θ32i , θ32i , θ41i , θ42i ,
Θ42i) is selected.

【0039】安定した冷房作用及び高い冷房効率を共に
達成し得る容量制御及び過熱度制御は上記実施例に限ら
れるものではなく、例えば車室温度T3 が所望の温度
領域に達してはいないが、かなり近くなった場合には、
100%容量運転から50%容量運転に切り換えるよう
にしてもよい。検出回転数が低回転数の場合、熱負荷が
低負荷あるいは中負荷の場合には図3のマップM1(N
1)を選択し、熱負荷が高負荷あるいは超高負荷の場合
には図4のマップM2(N1)を選択するようにした制
御も可能である。
Capacity control and superheat degree control that can achieve both stable cooling action and high cooling efficiency are not limited to the above embodiments; for example, if the cabin temperature T3 has not reached the desired temperature range, If you get very close,
It is also possible to switch from 100% capacity operation to 50% capacity operation. When the detected rotational speed is low and the thermal load is low or medium load, map M1 (N
It is also possible to perform control such that map 1) is selected and map M2 (N1) in FIG. 4 is selected when the heat load is high or extremely high.

【0040】検出回転数が高回転数の場合、熱負荷が低
負荷あるいは中負荷の場合には図6のマップM2(Nk
)のみを選択するようにした制御も可能である。又、本
発明では熱負荷領域をさらに細分化したり、可変容量型
圧縮機と車両用エンジンとの間に電磁クラッチを介在し
、この電磁クラッチのOFFによって0%容量運転を行
なうようにした実施例も可能であり、このような制御方
式を採用することによって一層安定した冷房作用を得つ
つ高い冷房効率を達成することが可能となる。
When the detected rotational speed is high and the thermal load is low or medium load, map M2 (Nk
) is also possible. Further, in the present invention, the heat load area is further subdivided, and an electromagnetic clutch is interposed between the variable displacement compressor and the vehicle engine, and 0% capacity operation is performed by turning off the electromagnetic clutch. By employing such a control method, it is possible to obtain a more stable cooling effect and achieve high cooling efficiency.

【0041】さらに本発明は斜板式圧縮機以外の可変容
量型斜板式圧縮機を用いた冷却回路に適用可能である。
Furthermore, the present invention is applicable to a cooling circuit using a variable capacity swash plate compressor other than a swash plate compressor.

【0042】[0042]

【発明の効果】以上詳述したように本発明は、検出熱負
荷及び検出動力に基づいて可変容量型圧縮機の適正容量
を選択すると共に、適正過熱度を選択し、選択された適
正容量状態で可変容量型圧縮機を駆動すると共に、選択
された適正過熱度をもたらすように膨張弁における流量
制御を行なうようにしたので、実際の冷房温度と所望の
冷房温度との関係を考慮した冷房効率の選択制御ができ
、安定した冷房作用を得つつ高い冷房効率を達成し得る
という優れた効果を奏する。
As described in detail above, the present invention selects the appropriate capacity of a variable displacement compressor based on the detected heat load and the detected power, selects the appropriate degree of superheat, and maintains the selected appropriate capacity state. In addition to driving the variable displacement compressor, the expansion valve controls the flow rate to bring about the selected appropriate degree of superheat, so cooling efficiency takes into account the relationship between the actual cooling temperature and the desired cooling temperature. It has the excellent effect of being able to selectively control and achieve high cooling efficiency while providing a stable cooling effect.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を具体化した一実施例を示す冷却回路と
膨張弁の側断面図との組み合わせ図である。
FIG. 1 is a combination diagram of a cooling circuit and a side sectional view of an expansion valve showing an embodiment embodying the present invention.

【図2】可変容量型圧縮機の縦断面図である。FIG. 2 is a longitudinal sectional view of a variable displacement compressor.

【図3】低回転数領域における吹き出し温度及び冷房効
率と、過熱度との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the blowout temperature and cooling efficiency in a low rotational speed region and the degree of superheating.

【図4】中回転数領域における吹き出し温度及び冷房効
率と、過熱度との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the blowout temperature and cooling efficiency in a medium rotation speed region and the degree of superheating.

【図5】高回転数領域における吹き出し温度及び冷房効
率と、過熱度との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the blowout temperature and cooling efficiency in a high rotational speed region and the degree of superheating.

【図6】超高回転数領域における吹き出し温度及び冷房
効率と、過熱度との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the blowing temperature and cooling efficiency and the degree of superheating in an ultra-high rotational speed region.

【図7】容量制御プログラム及び過熱度制御プログラム
を表すフローチャートである。
FIG. 7 is a flowchart representing a capacity control program and a superheat degree control program.

【図8】容量制御プログラム及び過熱度制御プログラム
を表すフローチャートである。
FIG. 8 is a flowchart representing a capacity control program and a superheat degree control program.

【図9】容量制御プログラム及び過熱度制御プログラム
を表すフローチャートである。
FIG. 9 is a flowchart representing a capacity control program and a superheat degree control program.

【図10】容量制御プログラム及び過熱度制御プログラ
ムを表すフローチャートである。
FIG. 10 is a flowchart representing a capacity control program and a superheat degree control program.

【図11】容量制御プログラム及び過熱度制御プログラ
ムを表すフローチャートである。
FIG. 11 is a flowchart representing a capacity control program and a superheat degree control program.

【図12】容量制御プログラム及び過熱度制御プログラ
ムを表すフローチャートである。
FIG. 12 is a flowchart representing a capacity control program and a superheat degree control program.

【図13】容量制御プログラム及び過熱度制御プログラ
ムを表すフローチャートである。
FIG. 13 is a flowchart representing a capacity control program and a superheat degree control program.

【図14】容量制御プログラム及び過熱度制御プログラ
ムを表すフローチャートである。
FIG. 14 is a flowchart representing a capacity control program and a superheat degree control program.

【図15】容量制御プログラム及び過熱度制御プログラ
ムを表すフローチャートである。
FIG. 15 is a flowchart representing a capacity control program and a superheat degree control program.

【符号の説明】[Explanation of symbols]

1…可変容量型圧縮機、6…膨張弁、16…膨張弁にお
ける流量を制御するための電子冷凍素子、17…容量及
び過熱度を制御するための制御コンピュータ17。
DESCRIPTION OF SYMBOLS 1... Variable displacement compressor, 6... Expansion valve, 16... Electronic refrigeration element for controlling the flow rate in the expansion valve, 17... Control computer 17 for controlling capacity and degree of superheat.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可変容量型圧縮機の吐出側と吸入側とを接
続する外部冷媒回路上に凝縮器、膨張弁及び蒸発器を介
在し、冷却回路外部からの指令によって可変容量型圧縮
機の容量及び膨張弁における流量を切り換え制御可能な
冷却回路において、熱負荷及び動力を検出し、検出熱負
荷及び検出動力に基づいて可変容量型圧縮機の適正容量
を選択すると共に、適正過熱度を選択し、選択された適
正容量状態で可変容量型圧縮機を駆動すると共に、選択
された過熱度をもたらすように膨張弁における流量制御
を行なう冷却回路における駆動制御方法。
Claim 1: A condenser, an expansion valve, and an evaporator are interposed on an external refrigerant circuit that connects the discharge side and the suction side of a variable displacement compressor, and the variable displacement compressor is controlled by a command from outside the cooling circuit. In a cooling circuit that can switch and control the capacity and flow rate in the expansion valve, thermal load and power are detected, and based on the detected thermal load and detected power, the appropriate capacity of the variable displacement compressor is selected, and the appropriate degree of superheat is selected. A drive control method in a cooling circuit that drives a variable capacity compressor in a selected proper capacity state and controls the flow rate in an expansion valve to bring about a selected degree of superheat.
JP11631891A 1991-05-21 1991-05-21 Controlling method for drive of cooling circuit Pending JPH04344073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11631891A JPH04344073A (en) 1991-05-21 1991-05-21 Controlling method for drive of cooling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11631891A JPH04344073A (en) 1991-05-21 1991-05-21 Controlling method for drive of cooling circuit

Publications (1)

Publication Number Publication Date
JPH04344073A true JPH04344073A (en) 1992-11-30

Family

ID=14684020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11631891A Pending JPH04344073A (en) 1991-05-21 1991-05-21 Controlling method for drive of cooling circuit

Country Status (1)

Country Link
JP (1) JPH04344073A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048578A1 (en) * 2007-10-08 2009-04-16 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9057549B2 (en) 2007-10-08 2015-06-16 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683563B2 (en) 2007-10-05 2017-06-20 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US8849613B2 (en) 2007-10-05 2014-09-30 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US8950206B2 (en) 2007-10-05 2015-02-10 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9021823B2 (en) 2007-10-05 2015-05-05 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9476625B2 (en) 2007-10-08 2016-10-25 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
WO2009048578A1 (en) * 2007-10-08 2009-04-16 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US9494158B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US9057549B2 (en) 2007-10-08 2015-06-16 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US10962009B2 (en) 2007-10-08 2021-03-30 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element
US11706899B2 (en) 2019-07-25 2023-07-18 Emerson Climate Technologies, Inc. Electronics enclosure with heat-transfer element

Similar Documents

Publication Publication Date Title
KR100345271B1 (en) Refrigeration system for use in refrigerators
US5890370A (en) Refrigerating system with pressure control valve
EP1059495B1 (en) Supercritical vapor compression cycle
US6076366A (en) Refrigerating cycle system with hot-gas bypass passage
US20010022090A1 (en) Freezing cycle apparatus
US4485635A (en) Control device for a compressor in a refrigerating system
US6233957B1 (en) Vehicular air conditioner
US4500035A (en) Expansion valve
JPH04344073A (en) Controlling method for drive of cooling circuit
JPH09229497A (en) Refrigerating cycle
JPH1089785A (en) Vapor pressure compression type refrigerating cycle
US6694760B2 (en) Refrigerating cycle
US6626000B1 (en) Method and system for electronically controlled high side pressure regulation in a vapor compression cycle
US3498074A (en) Control system for refrigerating apparatus
JP2007032895A (en) Supercritical refrigerating cycle device and its control method
JPH07332807A (en) Suprecooling control valve and refrigeration cycle
WO2019049569A1 (en) Variable displacement compressor
JP3807955B2 (en) Expansion valve
JP2005201484A (en) Refrigerating cycle
JPH11223426A (en) Expansion valve for automotive air conditioner
JP2000028233A (en) Temperature type expansion valve
JP2007071453A (en) Refrigeration cycle
JP2004232491A (en) Engine controller
JPH04190061A (en) Flow rate control device in cooling circuit
JPS6237745B2 (en)