JP2000028233A - Temperature type expansion valve - Google Patents

Temperature type expansion valve

Info

Publication number
JP2000028233A
JP2000028233A JP10194684A JP19468498A JP2000028233A JP 2000028233 A JP2000028233 A JP 2000028233A JP 10194684 A JP10194684 A JP 10194684A JP 19468498 A JP19468498 A JP 19468498A JP 2000028233 A JP2000028233 A JP 2000028233A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
passage
expansion valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10194684A
Other languages
Japanese (ja)
Other versions
JP3924935B2 (en
Inventor
Shigeji Oishi
繁次 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP19468498A priority Critical patent/JP3924935B2/en
Publication of JP2000028233A publication Critical patent/JP2000028233A/en
Application granted granted Critical
Publication of JP3924935B2 publication Critical patent/JP3924935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Abstract

PROBLEM TO BE SOLVED: To suppress generation of a valve vibration sound of a temperature type expansion valve on the sub-evaporator side in a refrigerating cycle apparatus wherein a main evaporator and a sub-evaporator are disposed in juxtaposition. SOLUTION: The opening of a restriction passage 17 for subjecting a high- pressure side refrigerant from inlet refrigerant passages 13 and 14 to reduced- pressure expansion is regulated by a valve disk 15. A refrigerant temperature at an evaporator outlet passage 20 is transmitted by a temperature-sensing rod 21 to a first pressure chamber 28 on one side of a diaphragm 22 which displaces the valve disk 15. By a bypass passage 37 provided in a main-body case 12, the high-pressure refrigerant in the inlet refrigerant passages 13 and 14 is introduced directly, with the pressure reduced, into a position of the evaporator outlet passage 20 located in the vicinity of the temperature-sensing rod 21. Even at the time when a low pressure of a cycle lowers it is possible to cool down the temperature-sensing rod 21 to a saturation temperature corresponding to the lowering of the pressure and to maintain the valve disk 15 in a closed state, according to this constitution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主蒸発器と副蒸発器
とを並列配置するとともに、この両蒸発器の冷媒入口部
にそれぞれ温度式膨張弁を配置する冷凍サイクル装置に
おいて、副蒸発器側の温度式膨張弁の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus in which a main evaporator and a sub-evaporator are arranged in parallel, and a temperature type expansion valve is arranged at a refrigerant inlet of each of the two evaporators. The improvement of the thermal expansion valve.

【0002】[0002]

【従来の技術】従来、車室内の前席側領域および後席側
領域をそれぞれ独立に空調制御するために、車室内の前
席側および後席側の双方に空調ユニットを配置し、この
前後の両空調ユニット内にそれぞれ冷房用の蒸発器を収
納するとともに、この前後の両蒸発器と、これら蒸発器
に流入する冷媒を減圧するための膨張弁(減圧手段)と
をそれぞれ並列に配置した車両空調用冷凍サイクル装置
が知られている。
2. Description of the Related Art Conventionally, in order to independently control the air conditioning of a front seat area and a rear seat area in a vehicle interior, air conditioning units are arranged on both the front seat side and the rear seat side in the vehicle interior. In each of the two air conditioning units, a cooling evaporator is housed, and the front and rear evaporators and expansion valves (decompression means) for reducing the pressure of the refrigerant flowing into these evaporators are arranged in parallel. A refrigeration cycle device for vehicle air conditioning is known.

【0003】ここで、膨張弁は、蒸発器の熱負荷変動に
対応して蒸発器出口での冷媒の過熱度を所定値に維持す
るために、蒸発器出口の冷媒温度を感知して弁開度を変
化させて、サイクル冷媒流量を調整している。このよう
な冷凍サイクル装置では、後席側蒸発器の冷媒入口部に
電磁弁を配置して、この電磁弁の開閉により後席側蒸発
器への冷媒流入を制御している。
Here, the expansion valve senses the refrigerant temperature at the evaporator outlet to maintain the degree of superheat of the refrigerant at the evaporator outlet at a predetermined value in response to fluctuations in the heat load of the evaporator, and opens the valve. The cycle refrigerant flow rate is adjusted by changing the degree. In such a refrigeration cycle device, an electromagnetic valve is disposed at the refrigerant inlet of the rear evaporator, and the opening and closing of the electromagnetic valve controls the flow of refrigerant into the rear evaporator.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記の冷凍
サイクル装置において、電磁弁作動音の防止や、コスト
ダウンのために、後席側の電磁弁を廃止することがあ
る。電磁弁を廃止しても、後席側の空調ユニットの作動
が停止して、後席側蒸発器への送風が停止されると、後
席側蒸発器での冷媒蒸発(吸熱)がほとんど停止される
ので、膨張弁の弁体と弁座間の微小隙間を通過する冷媒
が蒸発器出口まで気液2相の飽和状態のまま流れてくる
ので、後席側膨張弁におけるダイヤフラム両側の圧力室
間に圧力差が発生せず、膨張弁の弁体をばね手段のばね
力にて閉弁させることができる。
Incidentally, in the above-mentioned refrigeration cycle apparatus, the solenoid valve on the rear seat side may be omitted in order to prevent the operation noise of the solenoid valve and to reduce the cost. Even if the solenoid valve is abolished, when the air conditioning unit on the rear seat side stops operating and the ventilation to the rear seat evaporator is stopped, refrigerant evaporation (heat absorption) in the rear seat evaporator almost stops. As a result, the refrigerant passing through the minute gap between the valve element and the valve seat of the expansion valve flows to the evaporator outlet in a saturated state of gas-liquid two-phase, so that the pressure between the pressure chambers on both sides of the diaphragm in the rear expansion valve is reduced. No pressure difference is generated, and the valve element of the expansion valve can be closed by the spring force of the spring means.

【0005】しかし、前席側空調ユニットのみ作動させ
て、後席側空調ユニットを停止している時(前席側空調
ユニットの単独運転時)には、実際には、次の理由から
後席側膨張弁の弁体が開閉振動を繰り返し、振動音を発
生することが分かった。すなわち、前席側空調ユニット
の単独運転時に、前席側蒸発器のフロスト防止のため
に、圧縮機作動が断続(ON−OFF)制御されると、
これに伴って、図3に示すように、サイクル低圧圧力の
変動が起こる。そして、圧縮機の作動(ON)によりサ
イクル低圧圧力が低下していく過程において、この低圧
圧力の低下に比して後席側膨張弁の感温部の温度低下の
方が遅れるので、ダイヤフラム片側の感温側圧力室に比
して、他の片側の圧力室の圧力(低圧圧力)の方が低く
なる。その結果、後席側膨張弁の弁体が図3のA部に示
すように微小に開弁する。
However, when only the front air conditioning unit is operated and the rear air conditioning unit is stopped (when the front air conditioning unit is operated alone), the rear seat air conditioning unit is actually used for the following reason. It was found that the valve element of the side expansion valve repeatedly opened and closed and generated vibration noise. That is, if the compressor operation is intermittently controlled (ON-OFF) in order to prevent frost on the front seat evaporator during the sole operation of the front seat air conditioning unit,
Accompanying this, as shown in FIG. 3, fluctuation of the cycle low pressure occurs. In the process of lowering the cycle low pressure due to the operation (ON) of the compressor, the temperature drop of the temperature sensing portion of the rear expansion valve is delayed more than the drop of the low pressure pressure. The pressure (low pressure) of the other pressure chamber is lower than that of the temperature-sensitive pressure chamber. As a result, the valve element of the rear seat expansion valve is slightly opened as shown in part A of FIG.

【0006】このように、圧縮機の断続作動に伴って、
その都度、後席側膨張弁の弁体が微小に開弁し、その際
に、弁体が振動して振動音を発生することが分かった。
本発明は上記点に鑑みてなされたもので、主蒸発器と副
蒸発器とを並列配置する冷凍サイクル装置において、副
蒸発器側の温度式膨張弁の弁振動音の発生を抑制するこ
とを目的とする。
Thus, with the intermittent operation of the compressor,
Each time, it was found that the valve element of the rear-seat-side expansion valve slightly opened, and at that time, the valve element vibrated and generated a vibration sound.
The present invention has been made in view of the above points, and in a refrigeration cycle apparatus in which a main evaporator and a sub-evaporator are arranged in parallel, it is possible to suppress occurrence of valve vibration noise of a temperature-type expansion valve on the sub-evaporator side. Aim.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明では、高圧側冷媒が導入され
る入口冷媒通路(13、14)と、この入口冷媒通路
(13、14)より導入された冷媒を減圧膨張させる絞
り通路(17)と、この絞り通路(17)の開度を調整
する弁体(15)と、絞り通路(17)にて減圧膨張し
た冷媒を副蒸発器(11)に供給する出口冷媒通路(1
9)と、副蒸発器(11)を通過した冷媒が流れる蒸発
器出口通路(20)と、この蒸発器出口通路(20)に
設けられ、この蒸発器出口通路(20)の冷媒温度を感
知する感温部材(21)と、弁体(15)を変位させる
圧力応動部材(22)と、この圧力応動部材(22)の
一面側に形成され、蒸発器出口通路(20)の冷媒温度
が感温部材(21)を介して伝達され、この冷媒温度に
対応した圧力が作用する第1圧力室(28)と、圧力応
動部材(22)の他面側に形成され、蒸発器出口通路
(20)の冷媒圧力が作用する第2圧力室(29)とを
備え、さらに、入口冷媒通路(13、14)の冷媒を蒸
発器出口通路(20)の感温部材(21)近傍位置に減
圧して直接導入するバイパス通路(37)を備えること
を特徴としている。
To achieve the above object, according to the first aspect of the present invention, the inlet refrigerant passages (13, 14) into which the high-pressure side refrigerant is introduced, and the inlet refrigerant passages (13, 14). ), A throttle (17) for decompressing and expanding the refrigerant introduced from), a valve element (15) for adjusting the degree of opening of the throttle (17), and sub-evaporation of the refrigerant decompressed and expanded in the throttle (17). Outlet refrigerant passage (1)
9), an evaporator outlet passage (20) through which the refrigerant that has passed through the sub-evaporator (11) flows, and the evaporator outlet passage (20) is provided to sense the refrigerant temperature of the evaporator outlet passage (20). A temperature sensitive member (21), a pressure responsive member (22) for displacing the valve element (15), and a refrigerant temperature of the evaporator outlet passage (20) formed on one surface side of the pressure responsive member (22). The first pressure chamber (28), which is transmitted through the temperature-sensitive member (21) and acts on the pressure corresponding to the refrigerant temperature, is formed on the other surface side of the pressure-responsive member (22), and is formed at the evaporator outlet passage ( And a second pressure chamber (29) in which the refrigerant pressure of (20) acts. Further, the refrigerant in the inlet refrigerant passages (13, 14) is decompressed to a position near the temperature sensing member (21) in the evaporator outlet passage (20). And a bypass passage (37) for direct introduction.

【0008】これによると、弁体(15)上流側の入口
冷媒通路(13、14)の部位から高圧液冷媒をバイパ
ス通路(37)を通して減圧し、蒸発器出口通路(2
0)の感温部材(21)近傍位置に直接導入できる。そ
して、通路(20)内にて、バイパス通路(37)から
の流入冷媒(気液2相状態)の一部が蒸発して感温部材
(21)を冷却することができる。
According to this, the high-pressure liquid refrigerant is reduced in pressure from the inlet refrigerant passages (13, 14) upstream of the valve element (15) through the bypass passage (37), and the evaporator outlet passage (2) is depressurized.
0) can be directly introduced into the vicinity of the temperature sensing member (21). Then, in the passage (20), a part of the refrigerant (two-phase gas-liquid state) flowing from the bypass passage (37) evaporates to cool the temperature-sensitive member (21).

【0009】そのため、サイクル低圧圧力が低下して
も、バイパス通路(37)からの冷媒が低圧圧力の低下
に対応した飽和温度まで感温部材(21)を冷却するこ
とができる。その結果、第1圧力室(28)と第2圧力
室(29)の圧力をほぼ同一にすることができ、弁体
(15)を閉弁状態に維持できる。従って、図3のA部
に示す、低圧圧力の低下による弁体(15)の微小な開
弁を防止でき、弁振動音の発生を抑制することができ
る。
Therefore, even if the cycle low pressure decreases, the refrigerant from the bypass passage (37) can cool the temperature sensing member (21) to a saturation temperature corresponding to the decrease in the low pressure. As a result, the pressures in the first pressure chamber (28) and the second pressure chamber (29) can be made substantially the same, and the valve element (15) can be maintained in a closed state. Therefore, it is possible to prevent a minute opening of the valve body (15) due to a decrease in the low pressure shown in the part A of FIG. 3, and it is possible to suppress the occurrence of valve vibration noise.

【0010】また、請求項2記載の発明では、請求項1
において、入口冷媒通路(13、14)、絞り通路(1
7)、出口冷媒通路(19)および蒸発器出口通路(2
0)を形成する膨張弁本体(12)を備え、この膨張弁
本体(12)に、入口冷媒通路(13、14)と蒸発器
出口通路(20)との間を直結するようにバイパス通路
(37)が形成されており、バイパス通路(37)に、
バイパス通路(37)より十分小さな開口面積を持つ絞
り(38)が配置されていることを特徴としている。
[0010] According to the second aspect of the present invention, in the first aspect,
, The inlet refrigerant passages (13, 14), the throttle passage (1)
7), outlet refrigerant passage (19) and evaporator outlet passage (2)
0) that forms an expansion valve main body (12), and the expansion valve main body (12) is provided with a bypass passage () so as to directly connect an inlet refrigerant passage (13, 14) and an evaporator outlet passage (20). 37) is formed, and in the bypass passage (37),
A throttle (38) having an opening area sufficiently smaller than the bypass passage (37) is provided.

【0011】これにより、バイパス通路(37)の穴径
を加工性の点から比較的大きな寸法にしても、絞り(3
8)によりバイパス通路(37)を通過する冷媒量を所
望量に制限することができる。そのため、バイパス通路
(37)の加工性の確保と、バイパス通路(37)を通
過する冷媒流れによる冷房性能低下への悪影響の抑止と
を両立させることができる。
Accordingly, even if the diameter of the hole of the bypass passage (37) is relatively large from the viewpoint of workability, the restriction (3) is required.
According to 8), the amount of refrigerant passing through the bypass passage (37) can be limited to a desired amount. Therefore, it is possible to achieve both the securing of the workability of the bypass passage (37) and the suppression of the adverse effect on the cooling performance deterioration due to the flow of the refrigerant passing through the bypass passage (37).

【0012】また、請求項3記載の発明では、冷媒を圧
縮し吐出する圧縮機(1)と、この圧縮機(1)から吐
出されたガス冷媒を冷却し凝縮させる凝縮器(2)と、
この凝縮器(2)で凝縮した液冷媒を減圧膨張させる第
1の膨張弁(6)と、この第1の膨張弁(6)と並列に
設けられ、凝縮器(11)で凝縮した液冷媒を減圧膨張
させる第2の膨張弁(10)と、第1の膨張弁(6)に
て減圧膨張した冷媒を蒸発させる第1の蒸発器(7)
と、この第1の蒸発器(7)と並列に設けられ、第2の
膨張弁(10)にて減圧膨張した冷媒を蒸発させる第2
の蒸発器(11)とを備え、第1、第2の蒸発器(7、
11)のうち、一方は、主に使用される主蒸発器(7)
であり、他方は選択的に使用される副蒸発器(11)で
あり、第1、第2の膨張弁(6、10)のうち、一方
は、主蒸発器(7)への流入冷媒を減圧膨張させる主膨
張弁(6)であり、他方は副蒸発器(11)への流入冷
媒を減圧膨張させる副膨張弁(10)であり、この副膨
張弁(10)を、請求項1または2に記載の温度式膨張
弁により構成した冷凍サイクル装置を特徴としている。
According to the third aspect of the present invention, there is provided a compressor (1) for compressing and discharging a refrigerant, and a condenser (2) for cooling and condensing a gas refrigerant discharged from the compressor (1).
A first expansion valve (6) for reducing and expanding the liquid refrigerant condensed in the condenser (2); and a liquid refrigerant provided in parallel with the first expansion valve (6) and condensed in the condenser (11). A second expansion valve (10) for decompressing and expanding the refrigerant, and a first evaporator (7) for evaporating the refrigerant decompressed and expanded by the first expansion valve (6).
And a second evaporator that is provided in parallel with the first evaporator (7) and evaporates the refrigerant decompressed and expanded by the second expansion valve (10).
And the first and second evaporators (7,
11) One of the main evaporators (7) is mainly used
The other is a sub-evaporator (11) that is selectively used, and one of the first and second expansion valves (6, 10) controls the refrigerant flowing into the main evaporator (7). The main expansion valve (6) for decompressing and expanding, and the other is a sub-expansion valve (10) for decompressing and expanding refrigerant flowing into the sub-evaporator (11). 2. A refrigeration cycle apparatus including the temperature-type expansion valve according to 2.

【0013】さらに、請求項4記載の発明では、車室内
前席側を空調する前席側空調ユニット(4)および車室
内後席側を空調する後席側空調ユニット(8)と、請求
項3に記載の冷凍サイクル装置とを備え、前席側空調ユ
ニット(4)に主蒸発器(7)および主膨張弁(6)を
配置し、後席側空調ユニット(8)に副蒸発器(11)
および副膨張弁(10)を配置した車両用空調装置を特
徴としている。
Further, according to the present invention, a front seat air conditioning unit (4) for air conditioning the front seat side of the vehicle compartment and a rear seat air conditioning unit (8) for air conditioning the rear seat side of the vehicle interior are provided. 3, a main evaporator (7) and a main expansion valve (6) are arranged in a front air conditioning unit (4), and a sub evaporator (8) is installed in a rear air conditioning unit (8). 11)
And a vehicle air conditioner in which the auxiliary expansion valve (10) is arranged.

【0014】本発明は、具体的には、請求項3記載の冷
凍サイクル装置および請求項4記載の車両用空調装置に
おいて好適に実施できる。なお、上記各手段の括弧内の
符号は、後述する実施形態記載の具体的手段との対応関
係を示すものである。
Specifically, the present invention can be suitably implemented in a refrigeration cycle device according to claim 3 and a vehicle air conditioner according to claim 4. In addition, the code | symbol in the parenthesis of each said means shows the correspondence with the concrete means of embodiment mentioned later.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は車両用空調装置の冷凍サイク
ル装置に本発明膨張弁を適用した一実施形態を示し、図
中、1は自動車のエンジンルーム内に配置される圧縮機
であって、この圧縮機1は電磁クラッチ1a等を介して
自動車エンジン(図示せず)により駆動され、冷媒を圧
縮、吐出するものである。圧縮機1の吐出冷媒ガスは、
エンジンルーム内の凝縮器2に送られ、ここで、図示し
ない冷却ファンにより送風される外気と熱交換して冷却
され、冷媒ガスが凝縮する。この凝縮冷媒は、受液器3
内にて気液を分離され、液冷媒が受液器3内に溜まる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment in which the expansion valve of the present invention is applied to a refrigeration cycle device of a vehicle air conditioner. In the drawing, reference numeral 1 denotes a compressor disposed in an engine room of an automobile. It is driven by an automobile engine (not shown) through the electromagnetic clutch 1a and the like to compress and discharge the refrigerant. The refrigerant gas discharged from the compressor 1 is:
It is sent to the condenser 2 in the engine room, where it is cooled by heat exchange with the outside air blown by a cooling fan (not shown), and the refrigerant gas is condensed. This condensed refrigerant is supplied to the receiver 3
Gas and liquid are separated inside, and the liquid refrigerant accumulates in the liquid receiver 3.

【0016】4は車室内の前席側を空調する前席側空調
ユニットで、車室内前部の計器盤内側に配置される。こ
の前席側空調ユニット4には、前席側電動送風機5、前
席側温度式膨張弁6、および冷房用熱交換器としての前
席側蒸発器(主蒸発器)7が備えられている。前席側蒸
発器7の空気吹出部には温度センサ7aが配置され、こ
の温度センサ7aの検出温度(蒸発器冷却温度)が所定
値以下に低下すると、電磁クラッチ1aへの通電を遮断
して圧縮機1の運転を停止することにより前席側蒸発器
7のフロストを防止するようになっている。
Reference numeral 4 denotes a front seat air-conditioning unit for air-conditioning the front seat side in the passenger compartment, which is disposed inside the instrument panel at the front of the passenger compartment. The front-seat air-conditioning unit 4 includes a front-seat electric blower 5, a front-seat thermal expansion valve 6, and a front-seat evaporator (main evaporator) 7 as a cooling heat exchanger. . A temperature sensor 7a is disposed in the air outlet of the front seat evaporator 7, and when the temperature detected by the temperature sensor 7a (evaporator cooling temperature) drops below a predetermined value, the power supply to the electromagnetic clutch 1a is cut off. By stopping the operation of the compressor 1, the frost of the front seat evaporator 7 is prevented.

【0017】前席側温度式膨張弁6は、受液器3からの
高温高圧の液冷媒を低温低圧の気液2相冷媒に減圧する
減圧手段をなすもので、前席側蒸発器7の出口部の冷媒
の過熱度が予め設定した所定値となるように弁開度を調
整して、冷媒流量を調整するものである。次に、8は車
室内の後席側を空調する後席側空調ユニットで、車室内
後部(後席側方部等)に配置される。この後席側空調ユ
ニット8には、後席側電動送風機9、後席側温度式膨張
弁10、および冷房用熱交換器としての後席側蒸発器
(副蒸発器)11が備えられている。後席側温度式膨張
弁10は、受液器3からの高温高圧の液冷媒を低温低圧
の気液2相冷媒に減圧する減圧手段をなすもので、後席
側蒸発器11の出口部の冷媒の過熱度が予め設定した所
定値となるように弁開度を調整して、冷媒流量を調整す
るものである。
The front-seat-side expansion valve 6 serves as a pressure reducing means for reducing the high-temperature and high-pressure liquid refrigerant from the receiver 3 to a low-temperature and low-pressure gas-liquid two-phase refrigerant. The flow rate of the refrigerant is adjusted by adjusting the valve opening so that the degree of superheat of the refrigerant at the outlet becomes a predetermined value set in advance. Next, reference numeral 8 denotes a rear-seat air conditioning unit for air-conditioning the rear seat side of the vehicle compartment, which is disposed at a rear portion (a rear seat side portion or the like) of the vehicle compartment. The rear-seat air-conditioning unit 8 includes a rear-seat electric blower 9, a rear-seat temperature expansion valve 10, and a rear-seat evaporator (sub-evaporator) 11 as a cooling heat exchanger. . The rear-seat-side expansion valve 10 serves as a pressure reducing means for reducing the high-temperature and high-pressure liquid refrigerant from the receiver 3 to a low-temperature and low-pressure gas-liquid two-phase refrigerant. The valve opening is adjusted so that the degree of superheat of the refrigerant becomes a predetermined value set in advance, and the flow rate of the refrigerant is adjusted.

【0018】上記した前席側温度式膨張弁6および後席
側温度式膨張弁10は基本的には同一構造のものでよい
が、後席側温度式膨張弁10には本発明独自の工夫点が
設けられている。以下、後席側温度式膨張弁10の具体
的構造を図2により詳述すると、12は後席側温度式膨
張弁10の本体ケースで、アルミニュウム等の金属で略
直方体状に成形されている。この本体ケース12の下方
部右側には冷凍サイクルの受液器3からの液冷媒が流入
する冷媒入口13が開口している。
The above-described front-seat-side thermal expansion valve 6 and rear-seat-side thermal expansion valve 10 may be of basically the same structure. A point is provided. Hereinafter, the specific structure of the rear seat side temperature type expansion valve 10 will be described in detail with reference to FIG. 2. Reference numeral 12 denotes a main body case of the rear seat side temperature type expansion valve 10, which is formed of a metal such as aluminum into a substantially rectangular parallelepiped shape. . A refrigerant inlet 13 into which a liquid refrigerant flows from the liquid receiver 3 of the refrigeration cycle is opened on the lower right side of the main body case 12.

【0019】この冷媒入口13は本体ケース12の下方
中央部に形成された弁体収容室14に連通しており、こ
の室14内には、膨張弁10の球状の弁体15、及びこ
の弁体15を支持する支持部材16が収容されている。
この弁体15と支持部材16は溶接等により結合されて
いる。本例では、冷媒入口13と弁体収容室14とによ
り入口冷媒通路を構成している。
The refrigerant inlet 13 communicates with a valve body accommodating chamber 14 formed in the lower central portion of the main body case 12, and in this chamber 14, a spherical valve element 15 of the expansion valve 10 and this valve A support member 16 for supporting the body 15 is accommodated.
The valve body 15 and the support member 16 are connected by welding or the like. In this example, an inlet refrigerant passage is constituted by the refrigerant inlet 13 and the valve housing chamber 14.

【0020】17は冷媒入口13からの液冷媒を減圧す
る絞り通路で、その入口部に弁体15に対向する円錐状
の弁座17aが形成されており、この絞り通路17の開
度を弁体15により調整するようになっている。本例で
は、上記した絞り通路17および弁体15により膨張弁
10の弁体機構部10Aが構成されている。18は絞り
通路17の中心部を貫通して配設された弁棒で、その下
端部は球状の弁体15に当接している。19は絞り通路
17を通過して減圧された低温、低圧の気液2相冷媒が
流れる出口冷媒通路で、本体ケース12の上下方向の略
中間部位に形成されており、この出口冷媒通路19は後
席側蒸発器11の冷媒入口部に接続される。
Reference numeral 17 denotes a throttle passage for reducing the pressure of the liquid refrigerant from the refrigerant inlet 13. A conical valve seat 17a facing the valve body 15 is formed at the inlet of the throttle passage. The adjustment is made by the body 15. In the present embodiment, the throttle passage 17 and the valve element 15 constitute a valve element mechanism 10A of the expansion valve 10. Reference numeral 18 denotes a valve stem disposed through the center of the throttle passage 17, and the lower end thereof is in contact with the spherical valve element 15. Reference numeral 19 denotes an outlet refrigerant passage through which a low-temperature, low-pressure gas-liquid two-phase refrigerant, which has been depressurized through the throttle passage 17, flows, and is formed at a substantially intermediate portion in the vertical direction of the main body case 12. It is connected to the refrigerant inlet of the rear evaporator 11.

【0021】20は後席側蒸発器11にて蒸発したガス
冷媒が流れる蒸発器出口通路で、本例では、本体ケース
12の上方部において左右方向に円筒状に貫通するよう
に形成されている。この蒸発器出口通路20の入口端
(図2の左端)は後席側蒸発器11の冷媒出口部に接続
され、出口端(図2の右端)は圧縮機1の吸入口に接続
される。
Reference numeral 20 denotes an evaporator outlet passage through which the gas refrigerant evaporated in the rear seat evaporator 11 flows. In this embodiment, the evaporator outlet passage is formed so as to penetrate the upper part of the main body case 12 in the left-right direction in a cylindrical shape. . The inlet end (left end in FIG. 2) of the evaporator outlet passage 20 is connected to the refrigerant outlet of the rear seat evaporator 11, and the outlet end (right end in FIG. 2) is connected to the suction port of the compressor 1.

【0022】21は後席側膨張弁10の感温棒で、変位
伝達部材としての役割も兼ねるものであり、アルミニュ
ウム等の熱伝導の良好な金属にて円柱状に形成されてい
る。この感温棒21は蒸発器出口通路20を貫通して配
設され、後席側蒸発器11で蒸発した過熱ガス冷媒の温
度を感知する感温手段をなすものである。すなわち、感
温棒21は前記過熱ガス冷媒の流れ中に位置することに
より、過熱ガス冷媒の熱が伝導され、過熱ガス冷媒の温
度を感知するものである。
Reference numeral 21 denotes a temperature sensing rod of the rear seat expansion valve 10, which also serves as a displacement transmitting member, and is formed in a cylindrical shape with a metal having good heat conduction such as aluminum. The temperature sensing rod 21 is provided through the evaporator outlet passage 20 and serves as a temperature sensing means for sensing the temperature of the superheated gas refrigerant evaporated in the rear seat evaporator 11. That is, since the temperature sensing rod 21 is located in the flow of the superheated gas refrigerant, the heat of the superheated gas refrigerant is conducted, and the temperature of the superheated gas refrigerant is sensed.

【0023】この感温棒21の具体的形態について説明
すると、蒸発器出口通路20を貫通する小径の軸部21
aと、この小径軸部21aの端部に形成され、後述のダ
イヤフラム22に当接するダイヤフラムストッパ部21
bとから構成されている。このダイヤフラムストッパ部
21bは、感温棒21の上端部側(ダイヤフラム22側
端部)から円板状に外径を拡大した形状に一体成形され
ている。
The specific configuration of the temperature sensing rod 21 will be described. A small diameter shaft portion 21 penetrating through the evaporator outlet passage 20 is described.
and a diaphragm stopper portion 21 formed at an end of the small-diameter shaft portion 21a and abutting on a diaphragm 22 described later.
b. The diaphragm stopper 21b is formed integrally with the temperature sensing rod 21 from the upper end side (the end on the side of the diaphragm 22) into a disk-like shape whose outer diameter is enlarged.

【0024】次に、後席側膨張弁10の弁体15を作動
させる弁体駆動部10Bについて説明すると、弁体15
に当接された弁棒18の上端は感温棒21の下端面に当
接しており、この感温棒21の小径軸部21aの下端部
近傍の外周溝部にはシール用のOリング23が配設さ
れ、本体ケース12の孔部24に対して感温棒21は気
密に、かつ摺動可能に嵌合している。
Next, the valve drive unit 10B for operating the valve 15 of the rear seat expansion valve 10 will be described.
The upper end of the valve stem 18 abutted against the lower end surface of the temperature sensing rod 21, and an O-ring 23 for sealing is provided in an outer peripheral groove near the lower end of the small diameter shaft portion 21 a of the temperature sensing rod 21. The temperature sensing rod 21 is disposed in the air hole 24 of the main body case 12 in an airtight and slidable manner.

【0025】感温棒21の上端部のダイヤフラムストッ
パ部21bは本体ケース12の最上部の外面側に配置さ
れたダイヤフラム(圧力応動部材)22に当接してい
る。従って、このダイヤフラム22が上下方向に変位す
ると、この変位に応じて円柱状感温棒21、弁棒18を
介して弁体15も変位するようになっている。本例で
は、弁棒18と感温棒21とにより変位伝達部材が構成
されている。
The diaphragm stopper 21b at the upper end of the temperature sensing rod 21 is in contact with a diaphragm (pressure responsive member) 22 disposed on the outermost side of the uppermost part of the main body case 12. Therefore, when the diaphragm 22 is displaced in the vertical direction, the valve element 15 is also displaced via the cylindrical temperature sensing rod 21 and the valve rod 18 in accordance with the displacement. In this example, the valve rod 18 and the temperature sensing rod 21 constitute a displacement transmitting member.

【0026】ダイヤフラム22の外周縁部は、上下のケ
ース部材25、26の間に挟持されて支持されている。
このケース部材25、26はステンレス(SUS30
4)等の金属材で構成され、溶接、ろう付け等により一
体に接合されている。下側のケース部材26は本体ケー
ス12の最上部にねじ止めにて固定されており、このね
じ止め固定部はゴム製の弾性シール材(パッキン)27
にて気密になっている。
The outer peripheral edge of the diaphragm 22 is supported by being sandwiched between upper and lower case members 25 and 26.
The case members 25 and 26 are made of stainless steel (SUS30).
4) and are integrally joined by welding, brazing, or the like. The lower case member 26 is fixed to the uppermost portion of the main body case 12 by screwing, and the screwed fixing portion is a rubber elastic sealing material (packing) 27.
Is airtight.

【0027】そして、ケース部材25、26内の空間は
ダイヤフラム22により上側室(第1圧力室)28と下
側室(第2圧力室)29に仕切られている。上側室28
には冷媒充填用のキャピラリチューブ30が接合されて
いるが、このチューブ30の先端は閉塞されているの
で、上側室28は密封空間である。この上側室28の内
部には冷凍サイクル内の循環冷媒と同種の冷媒ガスが充
填されており、この封入ガスは感温棒21の感知した蒸
発器出口の過熱ガス冷媒温度が金属製ダイヤフラム22
を介して伝導され、この過熱ガス冷媒温度に応じた圧力
変化を示す。
The space inside the case members 25 and 26 is partitioned by a diaphragm 22 into an upper chamber (first pressure chamber) 28 and a lower chamber (second pressure chamber) 29. Upper chamber 28
Is connected to a capillary tube 30 for charging the refrigerant, but since the tip of the tube 30 is closed, the upper chamber 28 is a sealed space. The inside of the upper chamber 28 is filled with the same kind of refrigerant gas as the circulating refrigerant in the refrigeration cycle, and the charged gas is the temperature of the superheated gas refrigerant at the evaporator outlet detected by the temperature sensing rod 21 and the temperature of the metal diaphragm 22.
And shows a pressure change according to the temperature of the superheated gas refrigerant.

【0028】従って、ダイヤフラム22はステンレス
(SUS304)のように弾性に富み、かつ熱伝導が良
好で、強靱な材質にて形成することが好ましい。一方、
下側室29は、感温棒21のダイヤフラムストッパ部2
1bの周囲の空隙、この空隙の下方部に形成される圧力
導入用の空間31および環状連通路32を通して、蒸発
器出口通路20に連通しており、この蒸発器出口通路2
0の冷媒圧力が下側室29内に導入される。すなわち、
下側室29内の圧力は通路20と同一の圧力となる。
Therefore, it is preferable that the diaphragm 22 be made of a tough material having high elasticity, good heat conduction, and a good quality, such as stainless steel (SUS304). on the other hand,
The lower chamber 29 is provided with the diaphragm stopper 2 of the temperature sensing rod 21.
1b, the space 31 for pressure introduction formed below the space, and the annular communication passage 32 communicate with the evaporator outlet passage 20, and the evaporator outlet passage 2
A refrigerant pressure of 0 is introduced into the lower chamber 29. That is,
The pressure in the lower chamber 29 is the same as the pressure in the passage 20.

【0029】また、本体ケース12の最下部には球状弁
体15の支持機構10Cが設けられている。本体ケース
12の最下部には外部に開口したねじ穴部33が設けら
れ、このねじ穴部33に調整ナット34がねじ止め固定
されている。この調整ナット34はその外周部にシール
用のOリング35が装着されており、これによりねじ穴
部33との間を気密にシールしている。
A support mechanism 10C for the spherical valve body 15 is provided at the lowermost part of the main body case 12. A screw hole 33 opened to the outside is provided at the lowermost portion of the main body case 12, and an adjustment nut 34 is screwed and fixed to the screw hole 33. An O-ring 35 for sealing is mounted on the outer peripheral portion of the adjusting nut 34, whereby the gap between the adjusting nut 34 and the screw hole 33 is hermetically sealed.

【0030】36はコイルばね(ばね手段)であり、そ
の一端は調整ナット34により支持され、他端は弁体1
5の支持部材16に支持されている。従って、調整ナッ
ト34の締めつけ位置の調整により、コイルばね36の
取付荷重を調整できる。後席側膨張弁10は、上記した
ように本体ケース12内に感温棒21を内蔵するタイプ
のもので、その全体形状が概略箱状であるため、一般に
ボックス型と称されており、ここまでの構造は前席側膨
張弁6も同一である。
Reference numeral 36 denotes a coil spring (spring means), one end of which is supported by an adjustment nut 34 and the other end of which is a valve 1
5 is supported by the support member 16. Therefore, the mounting load of the coil spring 36 can be adjusted by adjusting the tightening position of the adjusting nut 34. The rear-seat-side expansion valve 10 is of a type in which the temperature sensing rod 21 is built in the main body case 12 as described above, and is generally box-shaped because its overall shape is substantially box-shaped. The structure up to this is the same for the front seat expansion valve 6.

【0031】次に、後席側膨張弁10独自の工夫点につ
いて説明すると、本体ケース12において、弁体15の
上流側の弁体収容室14の部位、すなわち、高圧液冷媒
の入口部位から蒸発器出口通路(低圧側通路)20に直
接連通するバイパス通路37が設けてある。このバイパ
ス通路37の出口部は、そこからの流出冷媒により感温
棒21を良好に冷却できるようにするため、感温棒21
に近接して配置してある。
Next, a unique feature of the rear-seat expansion valve 10 will be described. A bypass passage 37 is provided that directly communicates with the container outlet passage (low-pressure side passage) 20. The outlet of the bypass passage 37 is used to cool the temperature sensing rod 21 by the refrigerant flowing out therefrom.
It is arranged close to.

【0032】また、バイパス通路37の入口部には、弁
体収容室14からバイパス通路37へ流入する高圧液冷
媒の流れを所定量以下に絞るためのオリフィス(絞り)
38が配置してある。このオリフィス38は適宜の金属
で形成され、バイパス通路37の入口部に圧入で固定さ
れている。ここで、バイパス通路37の穴径は、加工性
の観点からφ2.0mm程度の大きさであり、これに対
して、オリフィス38は、バイパス通路37を通過する
冷媒量を微小量(5〜10kg/h以下)に抑えるため
に、φ0.2〜0.3mm程度の微小穴径が好ましい。
At the inlet of the bypass passage 37, an orifice (throttle) for restricting the flow of the high-pressure liquid refrigerant flowing from the valve housing chamber 14 into the bypass passage 37 to a predetermined amount or less.
38 are arranged. The orifice 38 is formed of an appropriate metal, and is fixed to the entrance of the bypass passage 37 by press fitting. Here, the hole diameter of the bypass passage 37 is about φ2.0 mm from the viewpoint of workability, whereas the orifice 38 reduces the amount of refrigerant passing through the bypass passage 37 to a very small amount (5 to 10 kg). / H or less), a small hole diameter of about φ0.2 to 0.3 mm is preferable.

【0033】次に、上記構成において作動を説明する。
いま、図1の冷凍サイクル装置において、前席側空調ユ
ニット4の送風機5および後席側空調ユニット8の送風
機9の駆動用モータに通電して、この両送風機5、9を
ともに作動させると、前席側および後席側の両蒸発器
7、11に空調空気が送風される。また、電磁クラッチ
1aに通電すると、電磁クラッチ1aが接続状態となっ
て、圧縮機1が車両エンジンの動力により回転駆動され
る。
Next, the operation of the above configuration will be described.
Now, in the refrigeration cycle apparatus of FIG. 1, when the drive motors of the blower 5 of the front seat air conditioning unit 4 and the blower 9 of the rear seat air conditioning unit 8 are energized to operate both the blowers 5, 9, Air-conditioned air is blown to both evaporators 7, 11 on the front seat side and the rear seat side. When the electromagnetic clutch 1a is energized, the electromagnetic clutch 1a is brought into a connected state, and the compressor 1 is rotationally driven by the power of the vehicle engine.

【0034】この状態では、圧縮機1の作動によりサイ
クル内に冷媒が循環し、周知のごとく前席側膨張弁6お
よび後席側膨張弁10により高圧液冷媒が減圧されて低
温低圧の気液2相冷媒となり、この気液2相冷媒が蒸発
器7、11にて空調空気から蒸発潜熱を吸熱して蒸発す
ることにより、空調空気を冷却する。ここで、後席側膨
張弁10を例にとって、その具体的作動を説明すると、
膨張弁10の弁体駆動部10Bにおいて、ダイヤフラム
22の上側室28内の封入ガスに、感温棒21、金属製
ダイヤフラム22を介して、通路20内の蒸発器出口の
過熱ガス冷媒温度が伝導される。そのため、上側室28
内の圧力は通路20の過熱ガス冷媒温度に応じた圧力と
なり、一方、ダイヤフラム22の下側室29内の圧力は
通路20の冷媒圧力(低圧圧力)となる。
In this state, the refrigerant is circulated in the cycle by the operation of the compressor 1, and the high-pressure liquid refrigerant is reduced in pressure by the front-seat expansion valve 6 and the rear-seat expansion valve 10 as is well known, and the low-temperature low-pressure gas-liquid The gas-liquid two-phase refrigerant absorbs latent heat of evaporation from the conditioned air in the evaporators 7 and 11 to evaporate, thereby cooling the conditioned air. Here, the specific operation of the rear seat expansion valve 10 will be described as an example.
In the valve drive unit 10B of the expansion valve 10, the temperature of the superheated gas refrigerant at the evaporator outlet in the passage 20 is transmitted to the gas in the upper chamber 28 of the diaphragm 22 via the temperature sensing rod 21 and the metal diaphragm 22. Is done. Therefore, the upper chamber 28
The internal pressure becomes a pressure corresponding to the temperature of the superheated gas refrigerant in the passage 20, while the pressure in the lower chamber 29 of the diaphragm 22 becomes the refrigerant pressure (low pressure) in the passage 20.

【0035】従って、この両室28、29内の圧力差
と、弁体15を上方へ押圧するばね36の取り付け荷重
とのバランスで、弁体15が変位することになる。そし
て、この弁体15の変位により絞り通路17の開度が調
整され、冷媒流量が自動調整される。この冷媒流量の調
整作用により、蒸発器出口のガス冷媒の過熱度が所定値
に維持される。
Accordingly, the valve body 15 is displaced by the balance between the pressure difference between the two chambers 28 and 29 and the mounting load of the spring 36 for pressing the valve body 15 upward. Then, the opening degree of the throttle passage 17 is adjusted by the displacement of the valve body 15, and the refrigerant flow rate is automatically adjusted. The superheat degree of the gas refrigerant at the outlet of the evaporator is maintained at a predetermined value by the adjusting operation of the refrigerant flow rate.

【0036】ところで、本実施形態においては、前述し
たように、後席側膨張弁10の本体ケース12におい
て、弁体15の上流側の弁体収容室14の部位から蒸発
器出口通路(低圧側通路)20に直接連通するバイパス
通路37が設けてあるため、弁体15および後席側蒸発
器11をバイパスする冷媒流れが生じるが、この冷媒流
れは、オリフィス38の絞り作用により微小量(5〜1
0kg/h以下)に抑えることができる。
In the present embodiment, as described above, in the main body case 12 of the rear-seat-side expansion valve 10, the evaporator outlet passage (low-pressure side) extends from the portion of the valve housing chamber 14 upstream of the valve 15. Since the bypass passage 37 communicating directly with the passage (20) is provided, a refrigerant flow bypassing the valve body 15 and the rear seat evaporator 11 is generated. ~ 1
0 kg / h or less).

【0037】そのため、バイパス通路37による冷媒の
バイパス流れによる圧縮機1の動力増加分を2〜5%程
度の微小量に抑えることができる。また、前後の空調ユ
ニット4、8のうち、前席側空調ユニット4の送風機5
のみを作動させ、後席側空調ユニット8の送風機9を停
止させると、後席側蒸発器11での冷媒蒸発(吸熱)が
ほとんど停止されるので、後席側膨張弁10の弁体15
と弁座17a間の微小隙間を通過する冷媒が蒸発器出口
通路20まで気液2相の飽和状態のまま流れてくる。そ
の結果、後席側膨張弁10におけるダイヤフラム22上
側の圧力室28内の冷媒圧力が蒸発器出口通路20の圧
力と同一となり、両側の圧力室28、29間に圧力差が
発生しないので、弁体15をばね36のばね力にて閉弁
させることができる。
Therefore, the increase in power of the compressor 1 due to the bypass flow of the refrigerant through the bypass passage 37 can be suppressed to a small amount of about 2 to 5%. Further, of the front and rear air conditioning units 4 and 8, the blower 5 of the front seat side air conditioning unit 4 is provided.
When only the blower 9 of the rear seat side air conditioning unit 8 is stopped, the evaporation of the refrigerant (heat absorption) in the rear seat evaporator 11 is almost stopped, so that the valve body 15 of the rear seat expansion valve 10 is stopped.
The refrigerant passing through the minute gap between the valve and the valve seat 17a flows to the evaporator outlet passage 20 while maintaining the gas-liquid two-phase saturated state. As a result, the refrigerant pressure in the pressure chamber 28 above the diaphragm 22 in the rear seat expansion valve 10 becomes the same as the pressure in the evaporator outlet passage 20, and no pressure difference occurs between the pressure chambers 28 and 29 on both sides. The body 15 can be closed by the spring force of the spring 36.

【0038】ところで、前席側空調ユニット4の単独運
転時における実際のサイクルの挙動としては、前席側蒸
発器7の冷却温度(温度センサ7aの検出温度)に応じ
て圧縮機1の運転が断続されると、これに伴ってサイク
ル低圧圧力が前述の図3に示すように変動し、このサイ
クル低圧圧力の低下過程において後席側膨張弁10の弁
体15が微小に開弁しようとする現象が発生する。
The operation of the compressor 1 in accordance with the cooling temperature of the front seat evaporator 7 (the temperature detected by the temperature sensor 7a) is described as an actual cycle behavior when the front seat air conditioning unit 4 is operated alone. When the cycle is interrupted, the cycle low pressure fluctuates as shown in FIG. 3, and the valve element 15 of the rear seat expansion valve 10 slightly opens in the process of decreasing the cycle low pressure. The phenomenon occurs.

【0039】しかし、本実施形態によると、後席側膨張
弁10において、弁体15の上流側の弁体収容室14の
部位から蒸発器出口通路20に直接連通するバイパス通
路37が設けてあるため、弁体収容室14の高圧液冷媒
がオリフィス38で減圧され、バイパス通路37を通過
して蒸発器出口通路20の感温棒21近傍位置に直接流
入する。
However, according to this embodiment, the rear seat expansion valve 10 is provided with the bypass passage 37 that directly communicates with the evaporator outlet passage 20 from the portion of the valve housing chamber 14 upstream of the valve 15. Therefore, the high-pressure liquid refrigerant in the valve body accommodating chamber 14 is decompressed by the orifice 38, passes through the bypass passage 37, and flows directly into the evaporator outlet passage 20 near the temperature sensing rod 21.

【0040】そして、通路20内にて、バイパス通路3
7からの流入冷媒(気液2相状態)の一部が蒸発して感
温棒21を冷却する。ここで、圧縮機ON時にサイクル
低圧圧力が図3のように低下しても、バイパス通路37
から常時冷媒が流入し、この流入冷媒が直ちに低圧圧力
の低下に対応した飽和温度まで感温棒21を冷却するこ
とができる。
Then, in the passage 20, the bypass passage 3
A part of the refrigerant (two-phase gas-liquid state) flowing from the evaporator 7 evaporates and cools the temperature sensing rod 21. Here, even if the cycle low pressure decreases as shown in FIG.
The refrigerant always flows in from this, and the flowing refrigerant can immediately cool the temperature sensing rod 21 to a saturation temperature corresponding to the decrease in the low pressure.

【0041】その結果、ダイヤフラム22上側の圧力室
28内の冷媒圧力を圧縮機ON時にも常に蒸発器出口通
路20の圧力(サイクル低圧圧力)とほぼ同一にするこ
とができ、弁体15をばね36のばね力にて閉弁した状
態に維持できる。すなわち、本実施形態によると、図3
のA部に示す、低圧圧力の低下による弁体15の微小な
開弁を防止でき、弁振動音の発生を抑制することができ
る。
As a result, the refrigerant pressure in the pressure chamber 28 on the upper side of the diaphragm 22 can always be made substantially the same as the pressure in the evaporator outlet passage 20 (cycle low pressure) even when the compressor is ON, and the valve body 15 The valve can be kept closed by the spring force of 36. That is, according to the present embodiment, FIG.
A small opening of the valve body 15 due to a decrease in the low pressure as shown in the section A can be prevented, and the generation of valve vibration noise can be suppressed.

【0042】(他の実施形態)なお、上述の実施形態で
は、バイパス通路37の入口部に高圧液冷媒の流れを絞
るためのオリフィス38を配置しているが、バイパス通
路37自身の穴径(開口断面積)を十分小さくすること
が可能な場合は、オリフィス38を廃止することもでき
る。
(Other Embodiments) In the above embodiment, the orifice 38 for restricting the flow of the high-pressure liquid refrigerant is disposed at the inlet of the bypass passage 37. If it is possible to make the opening cross-sectional area sufficiently small, the orifice 38 can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する車両用空調装置の冷凍サイク
ル図である。
FIG. 1 is a refrigeration cycle diagram of a vehicle air conditioner to which the present invention is applied.

【図2】図1の後席側膨張弁の縦断面図である。FIG. 2 is a longitudinal sectional view of the rear-seat-side expansion valve of FIG. 1;

【図3】本発明および従来技術の作動説明図である。FIG. 3 is an operation explanatory view of the present invention and the conventional technique.

【符号の説明】[Explanation of symbols]

10…後席側膨張弁、11…後席側蒸発器、12…本体
ケース、15…弁体、17…絞り通路、20…蒸発器出
口通路、21…感温棒、22…ダイヤフラム、28…上
側室(第1圧力室)、29…下側室(第2圧力室)、3
7…バイパス通路、38…オリフィス。
DESCRIPTION OF SYMBOLS 10 ... Rear seat side expansion valve, 11 ... Rear seat side evaporator, 12 ... Body case, 15 ... Valve body, 17 ... Throttle passage, 20 ... Evaporator outlet passage, 21 ... Temperature sensing rod, 22 ... Diaphragm, 28 ... Upper chamber (first pressure chamber), 29 ... Lower chamber (second pressure chamber), 3
7: bypass passage, 38: orifice.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 並列接続された主蒸発器(7)および副
蒸発器(11)を有する冷凍サイクルに適用され、か
つ、前記副蒸発器(11)に流入する冷媒を減圧膨張さ
せる温度式膨張弁であって、 高圧側冷媒が導入される入口冷媒通路(13、14)
と、 この入口冷媒通路(13、14)より導入された冷媒を
減圧膨張させる絞り通路(17)と、 この絞り通路(17)の開度を調整する弁体(15)
と、 前記絞り通路(17)にて減圧膨張した冷媒を前記副蒸
発器(11)に供給する出口冷媒通路(19)と、 前記副蒸発器(11)を通過した冷媒が流れる蒸発器出
口通路(20)と、 この蒸発器出口通路(20)に設けられ、この蒸発器出
口通路(20)の冷媒温度を感知する感温部材(21)
と、 前記弁体(15)を変位させる圧力応動部材(22)
と、 この圧力応動部材(22)の一面側に形成され、前記蒸
発器出口通路(20)の冷媒温度が前記感温部材(2
1)を介して伝達され、前記冷媒温度に対応した圧力が
作用する第1圧力室(28)と、 前記圧力応動部材(22)の他面側に形成され、前記蒸
発器出口通路(20)の冷媒圧力が作用する第2圧力室
(29)と、 前記入口冷媒通路(13、14)の冷媒を前記蒸発器出
口通路(20)の前記感温部材(21)近傍位置に減圧
して直接導入するバイパス通路(37)とを備えること
を特徴とする温度式膨張弁。
1. A thermal expansion, which is applied to a refrigeration cycle having a main evaporator (7) and a sub-evaporator (11) connected in parallel and decompresses and expands a refrigerant flowing into the sub-evaporator (11). A valve, wherein an inlet refrigerant passage into which the high-pressure side refrigerant is introduced (13, 14)
A throttle passage (17) for reducing and expanding the refrigerant introduced from the inlet refrigerant passages (13, 14); and a valve body (15) for adjusting the opening of the throttle passage (17).
An outlet refrigerant passage (19) for supplying the refrigerant decompressed and expanded in the throttle passage (17) to the sub-evaporator (11); and an evaporator outlet passage through which the refrigerant passing through the sub-evaporator (11) flows. (20) a temperature-sensitive member (21) provided in the evaporator outlet passage (20) for sensing a refrigerant temperature of the evaporator outlet passage (20);
And a pressure responsive member (22) for displacing the valve body (15).
The refrigerant temperature of the evaporator outlet passage (20) is formed on one surface side of the pressure responsive member (22).
1) a first pressure chamber (28), which is transmitted through the first pressure chamber and receives a pressure corresponding to the refrigerant temperature, and is formed on the other surface side of the pressure responsive member (22), and the evaporator outlet passage (20). And a second pressure chamber (29) on which the refrigerant pressure acts, and a refrigerant in the inlet refrigerant passages (13, 14) is decompressed directly to a position near the temperature-sensitive member (21) in the evaporator outlet passage (20). And a bypass passage (37) for introducing.
【請求項2】 前記入口冷媒通路(13、14)、前記
絞り通路(17)、前記出口冷媒通路(19)および前
記蒸発器出口通路(20)を形成する膨張弁本体(1
2)を備え、 この膨張弁本体(12)に、前記入口冷媒通路(13、
14)と前記蒸発器出口通路(20)との間を直結する
ように前記バイパス通路(37)が形成されており、 前記バイパス通路(37)に、前記バイパス通路(3
7)より十分小さな開口面積を持つ絞り(38)が配置
されていることを特徴とする請求項1に記載の温度式膨
張弁。
2. An expansion valve body (1) forming said inlet refrigerant passages (13, 14), said throttle passage (17), said outlet refrigerant passage (19) and said evaporator outlet passage (20).
2), and the inlet refrigerant passage (13,
The bypass passage (37) is formed so as to directly connect between the evaporator outlet passage (20) and the evaporator outlet passage (20), and the bypass passage (3) is formed in the bypass passage (37).
7. The thermal expansion valve according to claim 1, wherein a throttle (38) having a sufficiently smaller opening area is arranged.
【請求項3】 冷媒を圧縮し吐出する圧縮機(1)と、 この圧縮機(1)から吐出されたガス冷媒を冷却し凝縮
させる凝縮器(2)と、 この凝縮器(2)で凝縮した液冷媒を減圧膨張させる第
1の膨張弁(6)と、この第1の膨張弁(6)と並列に
設けられ、前記凝縮器(11)で凝縮した液冷媒を減圧
膨張させる第2の膨張弁(10)と、 前記第1の膨張弁(6)にて減圧膨張した冷媒を蒸発さ
せる第1の蒸発器(7)と、 この第1の蒸発器(7)と並列に設けられ、前記第2の
膨張弁(10)にて減圧膨張した冷媒を蒸発させる第2
の蒸発器(11)とを備え、 前記第1、第2の蒸発器(7、11)のうち、一方は、
主に使用される主蒸発器(7)であり、他方は選択的に
使用される副蒸発器(11)であり、 前記第1、第2の膨張弁(6、10)のうち、一方は、
前記主蒸発器(7)への流入冷媒を減圧膨張させる主膨
張弁(6)であり、他方は前記副蒸発器(11)への流
入冷媒を減圧膨張させる副膨張弁(10)であり、 この副膨張弁(10)を、請求項1または2に記載の温
度式膨張弁により構成したことを特徴とする冷凍サイク
ル装置。
3. A compressor (1) for compressing and discharging a refrigerant, a condenser (2) for cooling and condensing a gas refrigerant discharged from the compressor (1), and a condenser (2) for condensing the refrigerant. A first expansion valve (6) for decompressing and expanding the liquid refrigerant thus obtained, and a second expansion valve provided in parallel with the first expansion valve (6) for decompressing and expanding the liquid refrigerant condensed in the condenser (11). An expansion valve (10), a first evaporator (7) for evaporating the refrigerant decompressed and expanded by the first expansion valve (6), and provided in parallel with the first evaporator (7). A second evaporating the refrigerant decompressed and expanded by the second expansion valve (10);
And one of the first and second evaporators (7, 11) comprises:
A main evaporator (7) used mainly, the other is a sub-evaporator (11) used selectively, and one of the first and second expansion valves (6, 10) is ,
A main expansion valve (6) for decompressing and expanding the refrigerant flowing into the main evaporator (7), and a sub-expansion valve (10) for depressurizing and expanding the refrigerant flowing into the sub-evaporator (11); A refrigeration cycle apparatus, wherein the auxiliary expansion valve (10) is constituted by the temperature-type expansion valve according to claim 1 or 2.
【請求項4】 車室内前席側を空調する前席側空調ユニ
ット(4)および車室内後席側を空調する後席側空調ユ
ニット(8)と、 請求項3に記載の冷凍サイクル装置とを備え、 前記前席側空調ユニット(4)に前記主蒸発器(7)お
よび前記主膨張弁(6)を配置し、 前記後席側空調ユニット(8)に前記副蒸発器(11)
および前記副膨張弁(10)を配置したことを特徴とす
る車両用空調装置。
4. The refrigeration cycle apparatus according to claim 3, wherein a front air conditioning unit (4) for air conditioning the front seat side of the vehicle compartment and a rear air conditioning unit (8) for air conditioning the rear seat side of the vehicle interior. The main evaporator (7) and the main expansion valve (6) are arranged in the front seat air conditioning unit (4), and the sub evaporator (11) is installed in the rear seat air conditioning unit (8).
And an air conditioner for a vehicle, wherein the auxiliary expansion valve (10) is arranged.
JP19468498A 1998-07-09 1998-07-09 Thermal expansion valve Expired - Lifetime JP3924935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19468498A JP3924935B2 (en) 1998-07-09 1998-07-09 Thermal expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19468498A JP3924935B2 (en) 1998-07-09 1998-07-09 Thermal expansion valve

Publications (2)

Publication Number Publication Date
JP2000028233A true JP2000028233A (en) 2000-01-28
JP3924935B2 JP3924935B2 (en) 2007-06-06

Family

ID=16328574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19468498A Expired - Lifetime JP3924935B2 (en) 1998-07-09 1998-07-09 Thermal expansion valve

Country Status (1)

Country Link
JP (1) JP3924935B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445150B1 (en) * 2001-09-25 2004-08-18 현대자동차주식회사 The expansive valve for reducing bubble of air- conditioner
EP1832822A2 (en) * 2006-03-07 2007-09-12 TGK Co., Ltd. Expansion valve
US20140096559A1 (en) * 2012-10-09 2014-04-10 Denso International America, Inc. HVAC Unit-TXV Positioning
CN113983688A (en) * 2021-10-25 2022-01-28 海宁普金新能源科技有限公司 Novel heat recovery type high-energy-efficiency air source heat pump water heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445150B1 (en) * 2001-09-25 2004-08-18 현대자동차주식회사 The expansive valve for reducing bubble of air- conditioner
EP1832822A2 (en) * 2006-03-07 2007-09-12 TGK Co., Ltd. Expansion valve
JP2007240041A (en) * 2006-03-07 2007-09-20 Tgk Co Ltd Expansion valve
EP1832822A3 (en) * 2006-03-07 2008-01-23 TGK Co., Ltd. Expansion valve
US20140096559A1 (en) * 2012-10-09 2014-04-10 Denso International America, Inc. HVAC Unit-TXV Positioning
US9259989B2 (en) 2012-10-09 2016-02-16 Denso International America, Inc. HVAC unit-TXV positioning
CN113983688A (en) * 2021-10-25 2022-01-28 海宁普金新能源科技有限公司 Novel heat recovery type high-energy-efficiency air source heat pump water heater

Also Published As

Publication number Publication date
JP3924935B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
JP3794100B2 (en) Expansion valve with integrated solenoid valve
EP0713063B1 (en) Expansion Valve
JP3882299B2 (en) Expansion valve with integrated solenoid valve
JPH09264622A (en) Pressure control valve and vapor-compression refrigeration cycle
JP2006177632A (en) Refrigerating cycle
JP2007163074A (en) Refrigeration cycle
US20040172958A1 (en) Vapor-compression-type refrigerating machine
JPH11211250A (en) Supercritical freezing cycle
JP3924935B2 (en) Thermal expansion valve
JP2009019847A (en) Refrigerating cycle device
JP3882573B2 (en) Expansion valve with integrated solenoid valve
US20020023462A1 (en) Expansion valve with vibration-proof member
JP5369259B2 (en) Expansion valve
JP2007183086A (en) Supercritical refrigeration cycle
US3803864A (en) Air conditioning control system
JPH07332807A (en) Suprecooling control valve and refrigeration cycle
JP2005201484A (en) Refrigerating cycle
JP2004345376A (en) Expansion valve for vehicle
JPH10220926A (en) Motor expansion valve
JP2004354042A (en) Safety valve device of refrigerating cycle
JPH09133436A (en) Temperature type expansion valve and air-conditioning device for vehicle using the valve
JPH07294063A (en) Expansion valve for refrigeration cycle
JPH07294023A (en) Refrigerating cycle apparatus for automotive air conditioner
JPH09300950A (en) Air conditioner for automobile
JPH10185336A (en) Refrigerating cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6