JPS6237745B2 - - Google Patents

Info

Publication number
JPS6237745B2
JPS6237745B2 JP15593678A JP15593678A JPS6237745B2 JP S6237745 B2 JPS6237745 B2 JP S6237745B2 JP 15593678 A JP15593678 A JP 15593678A JP 15593678 A JP15593678 A JP 15593678A JP S6237745 B2 JPS6237745 B2 JP S6237745B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
compressor
degree
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15593678A
Other languages
Japanese (ja)
Other versions
JPS5582270A (en
Inventor
Hikari Sugi
Kenichi Fujiwara
Mineo Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP15593678A priority Critical patent/JPS5582270A/en
Publication of JPS5582270A publication Critical patent/JPS5582270A/en
Publication of JPS6237745B2 publication Critical patent/JPS6237745B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 本発明は冷凍装置の減圧装置に関するもので、
例えば自動車用空調装置の冷凍装置として好適な
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure reducing device for a refrigeration system,
For example, it is suitable as a refrigeration system for an automobile air conditioner.

従来の冷凍装置は、第1図に示すように圧縮機
1、凝縮器2、減圧装置3をなすキヤピラリチユ
ーブ3b、蒸発器4、およびこの蒸発器4からの
冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒の
みを圧縮機1に供給するアキユムレータ5とから
構成されている。そして、自動車用冷凍装置では
圧縮機1を電磁クラツチ1aを介して自動車エン
ジン(図示せず)により駆動するようにしてい
る。
As shown in FIG. 1, a conventional refrigeration system includes a compressor 1, a condenser 2, a capillary tube 3b forming a pressure reducing device 3, an evaporator 4, and the refrigerant from the evaporator 4 is divided into gas refrigerant and liquid refrigerant. and an accumulator 5 that separates the gas refrigerant into the compressor 1 and supplies only the gas refrigerant to the compressor 1. In the automobile refrigeration system, the compressor 1 is driven by an automobile engine (not shown) via an electromagnetic clutch 1a.

また、従来この種装置では、蒸発器4の凍結防
止のために、アキユムレータ5等の低圧側回路部
品に圧力スイツチ6を取付け、この圧力スイツチ
6により電磁クラツチ1aの通電を断続して、圧
縮機1の運転を断続するようにしている。つま
り、アキユムレータ5内の冷媒圧力(低圧側圧
力)が所定値以下に低下すると圧力スイツチ6が
開となり、電磁クラツチ1aの通電を遮断して圧
縮機1を停止させ、一方アキユムレータ5内の冷
媒圧力が所定値以上に上昇すると圧力スイツチ6
が閉の状態に復帰し、圧縮機1を再起動させる。
In addition, in conventional devices of this kind, in order to prevent the evaporator 4 from freezing, a pressure switch 6 is attached to the low-pressure side circuit components such as the accumulator 5, and the pressure switch 6 is used to turn off and turn on the electromagnetic clutch 1a. 1 is operated intermittently. That is, when the refrigerant pressure (low-pressure side pressure) in the accumulator 5 falls below a predetermined value, the pressure switch 6 is opened, and the electromagnetic clutch 1a is de-energized to stop the compressor 1, while the refrigerant pressure in the accumulator 5 is When the pressure rises above a predetermined value, the pressure switch 6
returns to the closed state, and the compressor 1 is restarted.

ところが、上述のごとく圧力スイツチ6を用い
てサイクルの低圧側圧力に応じて運転を断続す
る、いわゆるON―OFF制御を行なう冷凍装置に
おいては、実際の使用に際して以下のごとき欠点
を有している。すなわち、前述の第1図図示装置
が低圧側圧力の低下により運転状態から停止する
と、圧縮機1は停止となるが、サイクル内の冷媒
は、凝縮器2内圧力(高圧側圧力)と蒸発器4内
圧力(低圧側圧力)との差により凝縮器2より固
定絞りであるキヤピラリチユーブ3bを通過して
蒸発器4内に流入する。それ故に、低圧側圧力の
上昇速度が速くなり、これが原因となつて冷凍装
置のON―OFF周期が短くなつてしまうので、圧
縮機1の断続回数がどうしても多くなり、圧縮機
1、電磁クラツチ1a等の耐久寿命および冷房フ
イーリングに悪影響を及ぼすという欠点がある。
However, as described above, the refrigeration system that performs so-called ON-OFF control, which uses the pressure switch 6 to intermittent operation depending on the pressure on the low pressure side of the cycle, has the following drawbacks in actual use. That is, when the above-mentioned device shown in FIG. Due to the difference between the internal pressure of the condenser 2 and the internal pressure (low-pressure side pressure) of the condenser 2, it flows into the evaporator 4 through the capillary tube 3b, which is a fixed throttle. Therefore, the rising speed of the pressure on the low pressure side becomes faster, and this causes the ON-OFF cycle of the refrigeration system to become shorter, which inevitably increases the number of times the compressor 1 is turned on and off, causing the compressor 1 and the electromagnetic clutch 1a to It has the disadvantage that it has a negative effect on the durability life and cooling feeling.

本発明は上記点に鑑み、冷凍装置の減圧装置と
して、装置停止時にはその冷媒通路を完全に閉じ
てしまう過冷却度制御弁を用い、この過冷却度制
御弁と低圧側圧力に応じて装置の運転を断続する
圧力スイツチとを組合せることにより、圧力スイ
ツチによる装置停止時には過冷却度制御弁の働き
で冷媒が凝縮器より蒸発器側へ流入するのを阻止
して低圧側圧力の上昇がゆるやかになるように
し、もつて圧縮機の断続回数を減少させ、その耐
久性の向上と冷房フイーリングの改善を図ること
ができる冷凍装置を提供することを目的とする。
In view of the above points, the present invention uses a supercooling degree control valve that completely closes the refrigerant passage when the equipment is stopped as a pressure reducing device for a refrigeration equipment, and controls the equipment according to the supercooling degree control valve and the low pressure side pressure. By combining this with a pressure switch that intermittents operation, when the pressure switch stops the equipment, the subcooling degree control valve works to prevent refrigerant from flowing from the condenser to the evaporator side, allowing the pressure on the low pressure side to rise slowly. It is an object of the present invention to provide a refrigeration system capable of reducing the number of times the compressor is turned on and off, thereby improving its durability and cooling feeling.

以下本発明を図に示す実施例について説明す
る。第2図は本発明を自動車用空調装置に適用し
た例を示すもので、1は圧縮機で、電磁クラツチ
1aを介して自動車エンジン(図示せず)により
駆動されるようになつている。2は凝縮器で、自
動車のエンジンルーム内のラジエータ周辺に設置
され、フアン2aにより冷却されるようになつて
いる。3は減圧装置で、凝縮器出口の液冷媒の過
冷却度を制御する過冷却度制御弁3aにて構成さ
れており、この過冷却度制御弁3aは凝縮器2の
出口配管部に一体構造として設けるのが望まし
い。
The present invention will be described below with reference to embodiments shown in the drawings. FIG. 2 shows an example in which the present invention is applied to an automobile air conditioner. Reference numeral 1 denotes a compressor, which is driven by an automobile engine (not shown) via an electromagnetic clutch 1a. A condenser 2 is installed around the radiator in the engine room of the automobile, and is cooled by a fan 2a. Reference numeral 3 denotes a pressure reducing device, which is composed of a subcooling degree control valve 3a that controls the degree of subcooling of the liquid refrigerant at the outlet of the condenser. It is desirable to set it up as a

4は蒸発器で、車室内の計器盤下部等に設置さ
れ、フアン4aにより送風される車室内または車
室外空気を冷却するためのものであり、その冷却
空気は図示しない吹出口から車室内へ吹出すよう
になつている。5はアキユムレータで、蒸発器4
からの冷媒をガス冷媒と液冷媒とに分離し、ガス
冷媒のみを圧縮機1に吸入させるものであり、自
動車のエンジンルーム内に設置されている。6は
アキユムレータ5に取付けられた圧力スイツチ
で、アキユムレータ5内の冷媒圧力すなわち低圧
側圧力に応じて開閉されるものであり、例えば低
圧側圧力が1.2〜2Kg/cm2Gまで低下すると開状
態になり、低圧側圧力が2.5〜4Kg/cm2G以上に
上昇すると閉状態になるものである。この圧力ス
イツチ6としてはダイヤフラム式等の公知のもの
を用いればよい。この圧力スイツチ6は第3図に
示すように圧縮機1の電磁クラツチ1aの通電回
路に直列に設けられている。7は冷凍装置の手動
操作の作動スイツチであり、8は自動車の電源バ
ツテリである。
Reference numeral 4 denotes an evaporator, which is installed at the bottom of the instrument panel inside the vehicle interior, and is used to cool the air inside or outside the vehicle blown by a fan 4a, and the cooling air is sent into the vehicle interior through an outlet (not shown). It's starting to blow out. 5 is an accumulator, and evaporator 4
The refrigerant is separated into gas refrigerant and liquid refrigerant, and only the gas refrigerant is sucked into the compressor 1, and is installed in the engine room of an automobile. Reference numeral 6 denotes a pressure switch attached to the accumulator 5, which opens and closes depending on the refrigerant pressure within the accumulator 5, that is, the pressure on the low pressure side . When the pressure on the low pressure side rises to 2.5 to 4 kg/cm 2 G or more, the valve becomes closed. As this pressure switch 6, a known one such as a diaphragm type may be used. This pressure switch 6 is provided in series with the energizing circuit of the electromagnetic clutch 1a of the compressor 1, as shown in FIG. 7 is a manual operation switch for the refrigeration system, and 8 is a power battery for the automobile.

次に、前記した過冷却度制御弁3aの詳細構造
を第4図に示し説明すると、9は金属製の本体ケ
ースで、凝縮器2の出口側に接続される冷媒入口
通路10および蒸発器4の入口側に接続される冷
媒出口通路11が設けてある。12は本体ケース
9内に形成された円筒状の空所、13はリン青銅
より成る円筒状のベローズで、前記空所12内に
配設されており、その一端の座部13aには金属
導管14がろう付けしてあるとともに、他端には
ニードル弁15がろう付けしてある。このベロー
ズ13の内部には上記導管14を介して冷凍サイ
クルの封入冷媒と同一の冷媒(R―12)が入れ
てあり、導管14の端部をろう付けすることによ
つてベローズ13内の冷媒が洩れないよう密封し
てある。
Next, the detailed structure of the supercooling degree control valve 3a described above is shown in FIG. A refrigerant outlet passage 11 connected to the inlet side of the refrigerant is provided. 12 is a cylindrical cavity formed in the main body case 9; 13 is a cylindrical bellows made of phosphor bronze, which is disposed within the cavity 12; a seat 13a at one end of the bellows is provided with a metal conduit; 14 is brazed, and a needle valve 15 is brazed to the other end. The same refrigerant (R-12) as the refrigerant sealed in the refrigeration cycle is introduced into the bellows 13 via the conduit 14, and by brazing the end of the conduit 14, the refrigerant inside the bellows 13 is It is sealed to prevent leakage.

なお、上記ベローズ13は伸縮可能なように外
面に蛇腹部13bを設けてある。そして、上記ベ
ローズ13は、そのニードル弁15を冷媒出口通
路11のノズル部16内に位置するようにスプリ
ング17を介して空所12内に収容してあり、か
つ空所12の内周に設けためねじ部12aに貫通
孔18a付きの調整ナツト18をねじ込み固定す
ることにより、調整ナツト18とスプリング17
との間に脱落なきよう保持してある。なお、調整
ナツト18のねじ込み量を変えることでベローズ
13の伸縮量つまりニードル弁15のノズル部1
6内への突出量が変わるようになつている。19
は盲ボルトで、Oリング20を介して本体ケース
9のめねじ部12aに気密に固定してあり、この
盲ボルト19によつて空所12の開口端が密封さ
れるようになつている。21は冷媒入口通路10
の段部に緊密に固定されている金網状フイルタ
で、冷媒中の塵埃等の異物を除去するものであ
る。
The bellows 13 is provided with a bellows portion 13b on its outer surface so that it can be expanded and contracted. The bellows 13 is housed in the cavity 12 via a spring 17 so that the needle valve 15 is located within the nozzle portion 16 of the refrigerant outlet passage 11, and is provided on the inner periphery of the cavity 12. By screwing and fixing the adjusting nut 18 with the through hole 18a into the female threaded portion 12a, the adjusting nut 18 and the spring 17
It is held so that it does not fall off between the two. Note that by changing the screwing amount of the adjusting nut 18, the amount of expansion and contraction of the bellows 13, that is, the nozzle portion 1 of the needle valve 15, can be adjusted.
The amount of protrusion into 6 can be changed. 19
is a blind bolt, which is airtightly fixed to the female threaded portion 12a of the main body case 9 via an O-ring 20, and the open end of the cavity 12 is sealed by this blind bolt 19. 21 is the refrigerant inlet passage 10
This is a wire mesh filter that is tightly fixed to the stepped portion of the refrigerant, and is used to remove foreign matter such as dust from the refrigerant.

次に、上記構成になる本発明装置の作動を説明
する。圧縮機1で圧縮されたガス冷媒は凝縮器2
で凝縮して液冷媒となる。この液冷媒は過冷却度
制御弁3aの冷媒入口通路10より空所12内に
入りニードル弁15とノズル部16との間で形成
される絞り部を通過して減圧され、冷媒出口通路
11を経て蒸発器4内に流入する。そして、蒸発
器4を出た冷媒はアキユームレータ5内に流入
し、ここでガス冷媒と液冷媒とに分離され、ガス
冷媒が圧縮機1に送られる。
Next, the operation of the apparatus of the present invention having the above structure will be explained. The gas refrigerant compressed by the compressor 1 is transferred to the condenser 2
It condenses to become a liquid refrigerant. This liquid refrigerant enters the cavity 12 from the refrigerant inlet passage 10 of the supercooling degree control valve 3a, passes through the constriction formed between the needle valve 15 and the nozzle part 16, is depressurized, and then flows through the refrigerant outlet passage 11. Then, it flows into the evaporator 4. Then, the refrigerant that has exited the evaporator 4 flows into the accumulator 5, where it is separated into gas refrigerant and liquid refrigerant, and the gas refrigerant is sent to the compressor 1.

過冷却度制御弁3aの作動を詳述すると、冷媒
入口通路10より流入した液冷媒はベローズ13
に接触する。この時、その液冷媒の過冷却度が所
定の過冷却度に比較して過大な場合、ベローズ1
3内の冷媒圧力はベローズ13の外部に比べて相
対的に低くなり、ベローズ13はスプリング17
の荷重によつて縮むことになる。それ故、ニード
ル弁15とノズル部16との間の絞り部の開口面
積が増大するため、冷媒の流路抵抗は減少し、そ
の結果冷媒流量が増大して凝縮器2内の液冷媒が
アキユムレータ5内に入るので、凝縮器2の出口
側の冷媒の過冷却度は所定の値まで低下すること
になる。一方、凝縮器2の出口側冷媒の過冷却度
が過小な場合にはベローズ13内の冷媒圧力が上
昇してベローズ13が伸長するため、ニードル弁
15とノズル部16との間の絞り部の開口面積は
減少し、その結果冷媒の流路抵抗が増大するので
冷媒流量は減少し、凝縮器2内に液冷媒が占める
割合が多くなる。それ故、冷媒の過冷却度は所定
の値まで増加することになる。従つて、冷凍サイ
クルは常に最適な過冷却度域で効率よく運転され
ることになる。
To explain the operation of the subcooling degree control valve 3a in detail, the liquid refrigerant flowing in from the refrigerant inlet passage 10 passes through the bellows 13.
come into contact with. At this time, if the degree of supercooling of the liquid refrigerant is excessive compared to the predetermined degree of supercooling, the bellows 1
The refrigerant pressure inside the bellows 13 is relatively lower than that outside the bellows 13, and the bellows 13
It will shrink due to the load. Therefore, since the opening area of the constriction between the needle valve 15 and the nozzle part 16 increases, the flow path resistance of the refrigerant decreases, and as a result, the refrigerant flow rate increases and the liquid refrigerant in the condenser 2 flows into the accumulator. 5, the degree of supercooling of the refrigerant on the outlet side of the condenser 2 decreases to a predetermined value. On the other hand, if the degree of subcooling of the refrigerant on the outlet side of the condenser 2 is too small, the refrigerant pressure in the bellows 13 increases and the bellows 13 expands, so that the constriction between the needle valve 15 and the nozzle part 16 The opening area decreases, and as a result, the flow path resistance of the refrigerant increases, so the refrigerant flow rate decreases and the proportion of liquid refrigerant in the condenser 2 increases. Therefore, the degree of subcooling of the refrigerant will increase to a predetermined value. Therefore, the refrigeration cycle is always efficiently operated in the optimum subcooling degree range.

また、蒸発器4のフロスト防止のために電磁ク
ラツチ1aへの通電を、圧力スイツチ6により断
続して、圧縮機1の運転を断続制御するようにな
つており、いま低圧側圧力が所定値まで低下して
圧力スイツチ6が開状態になり、圧縮機1の運転
が停止されると、高圧側圧力が速やかに低下する
ため、過冷却度が減少したことと同様になり、過
冷却度制御弁3aの絞り部開口面積は減少し続
け、ついには完全に閉じてしまい、凝縮器2内の
冷媒が蒸発器4側へ流れ込むことを防止する。そ
のため、圧縮機停止時における蒸発器4内の圧力
すなわち低圧側圧力の上昇度合が遅くなり、その
結果圧縮機停止時間をより長くすることが可能と
なり圧縮機1のON―OFF周期が長くなるので、
圧縮機断続回数を減少できる。また、このことは
圧縮機稼動時間を低減せしめ、省動力の観点から
も有利となる。
Furthermore, in order to prevent frosting of the evaporator 4, the pressure switch 6 is used to intermittently control the operation of the compressor 1 by intermittent power supply to the electromagnetic clutch 1a, and now the low pressure side pressure has reached a predetermined value. When the pressure decreases and the pressure switch 6 opens and the operation of the compressor 1 is stopped, the high-pressure side pressure quickly decreases, which is the same as a decrease in the degree of supercooling, and the degree of supercooling control valve The opening area of the throttle portion 3a continues to decrease until it is completely closed, preventing the refrigerant in the condenser 2 from flowing into the evaporator 4 side. Therefore, when the compressor is stopped, the pressure inside the evaporator 4, that is, the pressure on the low pressure side, increases slowly, and as a result, the compressor can be stopped for a longer time, and the ON-OFF cycle of the compressor 1 becomes longer. ,
The number of compressor interruptions can be reduced. Moreover, this reduces the operating time of the compressor, which is advantageous from the viewpoint of power saving.

また、圧縮機1の再起動時には、高圧側圧力が
速やかに上昇するので、過冷却度が過大のときと
同じ現象になり、過冷却度制御弁3aの絞り部開
口面積は充分広くなり、再起動時初期から冷房負
荷に見合う充分な冷媒が蒸発器4に供給されるこ
とになり、そのため圧縮機消費動力当りの冷房能
力を大幅に改善できる。
Furthermore, when the compressor 1 is restarted, the pressure on the high pressure side rises quickly, resulting in the same phenomenon as when the degree of supercooling is excessive, and the opening area of the throttle part of the degree of supercooling control valve 3a becomes sufficiently large, allowing the restart Sufficient refrigerant corresponding to the cooling load is supplied to the evaporator 4 from the initial stage of startup, so that the cooling capacity per unit of power consumed by the compressor can be significantly improved.

第5図は本発明によるON―OFF制御の特徴を
示すもので、縦軸にサイクルの低圧側圧力Pをと
り、横軸に時間tをとつたものであり、実線Aは
本発明装置による圧縮機ON―OFF周期を示し、
破線Bは従来装置による圧縮機ON―OFF周期を
示す。この周期A,Bの比較から明らかなごと
く、本発明では圧縮機1のOFF時間を過冷却度
制御弁3aの作用により従来装置の2倍以上に延
ばすことができ、これにより圧縮機1のON―
OFF周期を大幅に長くすることができ、圧縮機
1の断続回数を減少できる。
FIG. 5 shows the characteristics of the ON-OFF control according to the present invention. The vertical axis shows the pressure P on the low pressure side of the cycle, and the horizontal axis shows the time t. The solid line A shows the compression by the device of the present invention. Indicates the machine ON-OFF cycle,
The broken line B shows the compressor ON-OFF cycle according to the conventional device. As is clear from the comparison of cycles A and B, in the present invention, the OFF time of the compressor 1 can be extended by more than twice that of the conventional device due to the action of the subcooling degree control valve 3a, and as a result, the OFF time of the compressor 1 can be extended by more than twice that of the conventional device. ―
The OFF period can be significantly lengthened, and the number of times the compressor 1 is turned on and off can be reduced.

なお、上述の実施例は本発明の好適な実施態様
を例示するものであるが、本発明はこれに限定さ
れることなく種々変形可能である。第6図は本発
明の他の実施例を示すもので、減圧装置3として
過冷却度制御弁3aのほかにキヤピラリチユーブ
3bを併用するものである。本例のものでは、第
7図のモリエル線図に示すように、a,b間の減
圧を過冷却度制御弁3aで行ない、b,c間の減
圧をキヤピラリチユーブ3bで行なうことによ
り、過冷却度制御弁3aの負担する減圧幅が少な
くなり、その製作精度が低くてよく、製作が容易
となる。
Note that, although the above-described embodiments illustrate preferred embodiments of the present invention, the present invention is not limited thereto and can be modified in various ways. FIG. 6 shows another embodiment of the present invention, in which a capillary tube 3b is used in addition to the supercooling degree control valve 3a as the pressure reducing device 3. In this example, as shown in the Mollier diagram of FIG. 7, the pressure between a and b is reduced by the supercooling degree control valve 3a, and the pressure between b and c is reduced by the capillary tube 3b, so that: The pressure reduction width borne by the supercooling degree control valve 3a is reduced, the manufacturing precision thereof may be low, and manufacturing is facilitated.

第8図は本発明の更に他の実施例を示すもの
で、圧縮機1の作動を自動制御する制御回路22
を有する冷凍装置において、制御回路22の入力
側に圧力スイツチ6を接続するようにしたもので
ある。本例では、エンジン回転数、室温等の検出
部22aの信号に応じて増幅回路22bを介して
リレー22cを開閉させて、圧縮機1の作動を断
続するとともに、圧力スイツチ6の開閉に応じて
増幅回路22bを介してリレー22cを開閉さ
せ、圧縮機1の作動を断続する。従つて、圧力ス
イツチ6には増幅回路22b制御用の微小電流し
か流れず、圧力スイツチ6の電流容量を小さくす
ることができる。また、圧力スイツチ6はリレー
22cのコイル電流を直接断続するように結線し
てもよい。
FIG. 8 shows still another embodiment of the present invention, in which a control circuit 22 automatically controls the operation of the compressor 1.
In this refrigeration system, a pressure switch 6 is connected to the input side of a control circuit 22. In this example, the relay 22c is opened and closed via the amplifier circuit 22b in response to signals from the detection unit 22a such as the engine speed and room temperature, thereby intermittent operation of the compressor 1, and in response to the opening and closing of the pressure switch 6. The relay 22c is opened and closed via the amplifier circuit 22b, and the operation of the compressor 1 is interrupted. Therefore, only a small current for controlling the amplifier circuit 22b flows through the pressure switch 6, and the current capacity of the pressure switch 6 can be reduced. Further, the pressure switch 6 may be wired so as to directly switch on and off the coil current of the relay 22c.

なお、過冷却度制御弁3aの具体的構造は第4
図に示すごときベローズ式のものに限らず、ダイ
ヤフラム式等でもよく、種々変更できる。
The specific structure of the subcooling degree control valve 3a is as follows.
It is not limited to the bellows type shown in the figure, but may also be a diaphragm type, and various modifications can be made.

また、圧力スイツチ6の取付場所はアキユムレ
ータ5に限定されるものではなく、減圧装置3の
出口から圧縮機1の入口に至る低圧側回路内なら
ばどの場所でも取付可能である。
Further, the mounting location of the pressure switch 6 is not limited to the accumulator 5, but can be mounted anywhere within the low pressure side circuit from the outlet of the pressure reducing device 3 to the inlet of the compressor 1.

また、本発明は自動車用空調装置に限らず、冷
凍装置一般に広く適用できることはいうまでもな
い。
Furthermore, it goes without saying that the present invention is not limited to automotive air conditioners, but can be widely applied to refrigeration systems in general.

上述したように本発明では、冷凍装置の減圧装
置3として凝縮器出口の液冷媒の過冷却度を制御
する過冷却度制御弁3aを用い、この過冷却度制
御弁3aにより過冷却度が最適値から大きくずれ
るのを防止しているから、いかなる運転条件下で
も常に最適な過冷却度が得られ、冷凍装置の効率
的な運転を行なうことができ、しかも蒸発器の凍
結防止のために装置の運転を低圧側圧力スイツチ
6によりON―OFF制御するに際して、圧縮機停
止時に不要な冷媒が凝縮器から蒸発器内へ流れ込
むのを防ぐことができ、これにより低圧側圧力の
上昇度合が遅くなるので、圧縮機1のON―OFF
周期を長くして圧縮機断続回数を減少させること
ができ、圧縮機等のサイクル構成部品の耐久寿命
を延ばすことができると共に、冷房フイーリング
をも改善できるという優れた効果がある。
As described above, in the present invention, the subcooling degree control valve 3a that controls the degree of subcooling of the liquid refrigerant at the outlet of the condenser is used as the pressure reducing device 3 of the refrigeration system, and the degree of subcooling is optimized by the degree of subcooling control valve 3a. Since it prevents large deviations from the value, the optimal degree of supercooling can always be obtained under any operating conditions, allowing efficient operation of the refrigeration equipment. When controlling the operation of the compressor on and off using the low pressure side pressure switch 6, it is possible to prevent unnecessary refrigerant from flowing into the evaporator from the condenser when the compressor is stopped, thereby slowing down the rate of increase in the low pressure side pressure. Therefore, compressor 1 ON-OFF
This has the excellent effect of lengthening the cycle and reducing the number of times the compressor is turned on and off, extending the life of cycle components such as the compressor, and improving the cooling feeling.

さらに、冷凍サイクルの低圧側圧力は外気温の
低下およびサイクル内封入冷媒量の減少によつて
も低下するので、本発明における圧力スイツチ6
は外気温の低温時に圧縮機1を停止させるための
外気温センサとしての役目、および冷媒不足時に
圧縮機1を停止させるための冷媒量センサとして
の役目を兼務することができ、冷凍装置の構成の
簡素化に貢献する効果が大である。
Furthermore, since the pressure on the low pressure side of the refrigeration cycle also decreases due to a decrease in the outside temperature and a decrease in the amount of refrigerant sealed in the cycle, the pressure switch 6 in the present invention decreases.
can serve as an outside temperature sensor to stop the compressor 1 when the outside temperature is low, and as a refrigerant amount sensor to stop the compressor 1 when there is a refrigerant shortage. This has a great effect in contributing to the simplification of the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の冷凍サイクル図、第2図は
本発明装置の一実施例の冷凍サイクル図、第3図
は本発明装置の一実施例の電気回路図、第4図は
本発明装置の過冷却度制御弁の具体的構造を例示
する断面図、第5図は本発明装置の作動説明図、
第6図は本発明装置の他の実施例を示す冷凍サイ
クル図、第7図は第6図図示装置の作動説明に供
するモリエル線図、第8図は本発明の更に他の実
施例を示す電気回路図である。 1…圧縮機、2…凝縮器、3…減圧装置、3a
…過冷却度制御弁、3b…キヤピラリチユーブ、
4…蒸発器、5…アキユムレータ、6…圧力スイ
ツチ。
Fig. 1 is a refrigeration cycle diagram of a conventional device, Fig. 2 is a refrigeration cycle diagram of an embodiment of the device of the present invention, Fig. 3 is an electric circuit diagram of an embodiment of the device of the present invention, and Fig. 4 is a diagram of the refrigeration cycle of an embodiment of the device of the present invention. A sectional view illustrating the specific structure of the supercooling degree control valve, FIG. 5 is an explanatory diagram of the operation of the device of the present invention,
FIG. 6 is a refrigeration cycle diagram showing another embodiment of the device of the present invention, FIG. 7 is a Mollier diagram for explaining the operation of the device shown in FIG. 6, and FIG. 8 is a diagram showing still another embodiment of the present invention. It is an electrical circuit diagram. 1... Compressor, 2... Condenser, 3... Pressure reduction device, 3a
...supercooling degree control valve, 3b...capillary tube,
4...Evaporator, 5...Accumulator, 6...Pressure switch.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、減圧装置、蒸発器、および
アキユムレータを順次接続した閉回路にて構成さ
れる冷凍装置において、前記減圧装置として、凝
縮器出口の冷媒の過冷却度を制御する過冷却度制
御弁を少なくとも有し、かつ前記減圧装置と圧縮
機間の低圧側回路に低圧側圧力に応じて開閉され
る圧力スイツチを設け、この圧力スイツチにより
運転を断続するようにしたことを特徴とする冷凍
装置。
1. In a refrigeration system configured with a closed circuit in which a compressor, a condenser, a pressure reducing device, an evaporator, and an accumulator are sequentially connected, the degree of supercooling is used as the pressure reducing device to control the degree of supercooling of the refrigerant at the outlet of the condenser. The compressor is characterized in that it has at least a control valve, and that a pressure switch is provided in the low-pressure side circuit between the pressure reducing device and the compressor, and that is opened and closed according to the low-pressure side pressure, and the operation is made intermittent by this pressure switch. Refrigeration equipment.
JP15593678A 1978-12-15 1978-12-15 Refrigerating plant Granted JPS5582270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15593678A JPS5582270A (en) 1978-12-15 1978-12-15 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15593678A JPS5582270A (en) 1978-12-15 1978-12-15 Refrigerating plant

Publications (2)

Publication Number Publication Date
JPS5582270A JPS5582270A (en) 1980-06-20
JPS6237745B2 true JPS6237745B2 (en) 1987-08-13

Family

ID=15616744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15593678A Granted JPS5582270A (en) 1978-12-15 1978-12-15 Refrigerating plant

Country Status (1)

Country Link
JP (1) JPS5582270A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO890076D0 (en) * 1989-01-09 1989-01-09 Sinvent As AIR CONDITIONING.
JP4873842B2 (en) * 2004-07-22 2012-02-08 株式会社クマリフト技術研究所 Dam waiter and its operation method
CN101272976B (en) 2005-12-07 2011-02-16 三菱电机株式会社 Elevator control system
JP2013117354A (en) * 2011-12-05 2013-06-13 Tsubuku Kogyo Kk Temperature maintenance equipment

Also Published As

Publication number Publication date
JPS5582270A (en) 1980-06-20

Similar Documents

Publication Publication Date Title
EP0697087B1 (en) Refrigerant flow rate control based on liquid level in the phase separator of a dual evaporator two-stage refrigeration system
US3444923A (en) Heat pumps with electric booster heaters
JPH11278045A (en) Refrigerating cycle device
JPS6237745B2 (en)
US3388558A (en) Refrigeration systems employing subcooling control means
JP4043183B2 (en) Air conditioner
JPH01141119A (en) Air conditioner
JPH0960986A (en) Refrigerating cycle device
JPH04344073A (en) Controlling method for drive of cooling circuit
JPH01114668A (en) Two-stage compression refrigeration cycle device
US3786650A (en) Air conditioning control system
JPH07294023A (en) Refrigerating cycle apparatus for automotive air conditioner
JPS59149815A (en) Car refrigerating cycle controller
JPH11223426A (en) Expansion valve for automotive air conditioner
JPS5819639A (en) Method of operating and controlling variable-capacity compressor in a refrigerating system
JPS5829823Y2 (en) Refrigeration equipment
JPS6218082Y2 (en)
JP2005201484A (en) Refrigerating cycle
JP3807955B2 (en) Expansion valve
JPS6117324Y2 (en)
JPS6340758Y2 (en)
JP2007071453A (en) Refrigeration cycle
KR950002838Y1 (en) Refrigerant auot-control unit for car air conditioner
JPH039387B2 (en)
JPS61262570A (en) Controller for refrigeration cycle