JPS5819639A - Method of operating and controlling variable-capacity compressor in a refrigerating system - Google Patents

Method of operating and controlling variable-capacity compressor in a refrigerating system

Info

Publication number
JPS5819639A
JPS5819639A JP56119505A JP11950581A JPS5819639A JP S5819639 A JPS5819639 A JP S5819639A JP 56119505 A JP56119505 A JP 56119505A JP 11950581 A JP11950581 A JP 11950581A JP S5819639 A JPS5819639 A JP S5819639A
Authority
JP
Japan
Prior art keywords
capacity
compressor
set value
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56119505A
Other languages
Japanese (ja)
Other versions
JPH0215782B2 (en
Inventor
Atsushi Hasegawa
淳 長谷川
Hiroya Kono
河野 博哉
Hisao Kobayashi
久雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP56119505A priority Critical patent/JPS5819639A/en
Publication of JPS5819639A publication Critical patent/JPS5819639A/en
Publication of JPH0215782B2 publication Critical patent/JPH0215782B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve the operation efficiency of a variable-capacity compressor for automobile air conditioning by switching between the values of the compressor capacity and turning on and off the compressor in accordance with one of the temperature, pressure, degree of overheat of intake and discharge gas and the temperature at an evaporator outlet air compared with a preset reference value. CONSTITUTION:When starting refrigerating, the compressor 2 starts operation with the capacity of about 50% in accordance with the intake gas pressure Ts and preset values Ts1 and Ts2, while it is switched to 100% capacity operation when the discharge valve is opened to a standard opening degree. As refrigerating goes on to decrease the intake gas temperature Ts and its pressure Ps reducing heat exchange efficiency, so that the Ts reaches Ts2, a control unit delivers a capacity decreasing signal to switch the co mpressor 2 to 50% capacityoperation. When furthermore the pressure drops to the lowest limit value Ps2, the control unit 17 delivers a signal to disengage the clutch allowing the compressor 2 to stop. When the pressure again rises to Ps1, 50% capacity operation takes place. With these step repeated, the operational efficiency of the variable-capacity compressor is improved during refrigerating operation.

Description

【発明の詳細な説明】 本発明は負荷状況に応じて稼働容量を変えることができ
る特に車両空調用に好適な可変容量圧縮機の運転制御方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the operation of a variable capacity compressor, which is particularly suitable for vehicle air conditioning, and is capable of changing its working capacity depending on load conditions.

従来、車両用冷房装置における可変容量圧縮機の運転制
御方法として、ダクト内に配設されたエバポレータによ
り熱交換を終えて圧縮機に吸入さ扛る冷媒ガスの圧力す
なわち吸入ガス圧力を圧力センサにより検出し、運転時
間の経過とともに前記吸入ガス圧力が降下して設定値以
下になると、制御器から圧縮機の容量切換機構部へ容量
ダウン信号を出力するようにしたものがあった。
Conventionally, as a method for controlling the operation of a variable capacity compressor in a vehicle cooling system, a pressure sensor is used to measure the pressure of refrigerant gas that is sucked into the compressor after heat exchange by an evaporator installed in a duct, that is, the suction gas pressure. There has been a system in which a controller outputs a capacity down signal to a capacity switching mechanism of a compressor when the suction gas pressure falls below a set value with the passage of operating time.

(同一出願人による特開昭55−160187号)とこ
やが、前述した制御方法には圧縮機のON・OFF制御
まで行なわないため、除湿等冷房負荷が小さくて小容量
でも冷房能力が過剰のときは、ダンパを開いてヒータに
よる加熱量を多くして冷し過ぎを加熱するという余分な
仕事をし、動力損失が多くなるという欠陥があった。
(Unexamined Japanese Patent Publication No. 55-160187 by the same applicant) However, since the above-mentioned control method does not include ON/OFF control of the compressor, when the cooling load such as dehumidification is small and the cooling capacity is excessive even if the capacity is small, The problem with this was that the damper was opened to increase the amount of heating by the heater, doing extra work to heat up an area that was too cold, resulting in a large loss of power.

本発明の目的は冷房負荷が大きいときには吸入ガス圧力
、吸入ガス温度、吸入ガスの過熱度又は吐出ガスの過熱
度のいずれか一つが設定値になったとき、圧縮機の容量
切換えを大容量域で行、ない、冷房負荷が小さいときに
は、吸入ガス圧力、吸入ガス温度、吸入ガスの過熱度、
吐出ガスの過熱度又はエバポレータの出口空気温度のい
ずれが一つが設定値になったとき、圧縮機の容量制御を
小容童域で行なうことによシ、圧縮機を効率のよい状態
で運転して動力損失を少くすることができる冷房装置に
おける可変容量圧縮機の運転制御方法を提供することに
ある。
The purpose of the present invention is to switch the capacity of the compressor to a large capacity range when one of the suction gas pressure, suction gas temperature, suction gas superheat degree, or discharge gas superheat degree reaches a set value when the cooling load is large. When the cooling load is small, the suction gas pressure, suction gas temperature, suction gas superheat degree,
When either the superheat degree of the discharge gas or the evaporator outlet air temperature reaches the set value, the compressor can be operated in an efficient state by controlling the capacity of the compressor in a small volume range. An object of the present invention is to provide a method for controlling the operation of a variable capacity compressor in a cooling system that can reduce power loss.

以下、本発明を車両空調用可変容量圧縮機の運転制御方
法に具体化した第一〜第四実施例を図面について説明す
る。
Hereinafter, first to fourth embodiments in which the present invention is embodied as an operation control method for a variable capacity compressor for vehicle air conditioning will be described with reference to the drawings.

まず、各実施例の制御方法に使用される車両用冷房装置
の概要を第1図につい・て総括的に説明すると、図中1
はエンジン、2はこのエンジン1によシ駆動される可変
容量圧縮機であって、この実施例では稼働容量を50%
と100%の二段階に切換えることができる斜板式のも
のを使用・している。この圧縮機はフロント及びリヤ側
の圧縮室と吐出室とをつなぐ吐出口用の吐出弁のうち、
リヤ側の吐出弁をスプリングを介して常には開放位置に
浮上保持せしめるとともに、吐出弁の背面側に冷凍サイ
クルの吐出圧を作用させることで同吐出弁を正規の閉鎖
位置に保持させるようにした容量切換機栴3を備えてい
る。(例えば同一出願人による特願昭55−15129
8号参照)この圧縮機具外に三段階以上無段階に容量切
換えを行なうことが・できる各種圧縮機を用いてもよい
First, a general overview of the vehicle cooling system used in the control method of each embodiment will be explained with reference to FIG. 1.
is an engine, and 2 is a variable capacity compressor driven by this engine 1, and in this embodiment, the operating capacity is 50%.
It uses a swash plate type that can be switched to two stages: 100% and 100%. This compressor has one of the discharge valves for the discharge port connecting the front and rear side compression chambers and the discharge chamber.
The rear discharge valve is always held floating in the open position via a spring, and the discharge pressure of the refrigeration cycle is applied to the rear side of the discharge valve to maintain it in the normal closed position. It is equipped with a capacity switching machine 3. (For example, Japanese Patent Application No. 55-15129 filed by the same applicant)
(Refer to No. 8) In addition to this compressor, various types of compressors capable of steplessly changing the capacity in three or more stages may be used.

前記圧縮機2の吐出フランジ4と吸入フランジ5には、
冷凍サイクルを構成するコンデンサ6、レシーバ7、エ
キスパンションパルプ8及びエバポレータ9が直列に接
続されている。
The discharge flange 4 and suction flange 5 of the compressor 2 include
A condenser 6, a receiver 7, an expansion pulp 8, and an evaporator 9 that constitute a refrigeration cycle are connected in series.

一方、ダクト10内には、ファン11、前記エバポレー
タ9、ダンパ12及びエンジンlの冷却水を利用したヒ
ータ13が順次配設され、前記ダンパ12を回動調節す
ることによシダクト10の吹出口14から吹き出される
空気の温度を所望温度に調節可能である。
On the other hand, inside the duct 10, a fan 11, the evaporator 9, a damper 12, and a heater 13 using the cooling water of the engine 1 are sequentially arranged. The temperature of the air blown out from 14 can be adjusted to a desired temperature.

前記エバポレータ9と吸入フランジ5を結ぶ管路の途中
には、圧縮機へ吸入されるガスの圧力及び温度を検出す
る圧力センサ15と温度センサ16が設けられている。
A pressure sensor 15 and a temperature sensor 16 are provided in the middle of the pipe connecting the evaporator 9 and the suction flange 5 to detect the pressure and temperature of the gas sucked into the compressor.

これらの圧力、温度センサ15.16と前記容量切換機
構3との間には制御器17が接続されていて、本実施例
ではこの制御器17の圧力比較判別回路(図示路)によ
り予め設定された設定圧力PB2(例えば0.5 kg
 /d )と前記圧力センサ15によシ検出された吸入
ガス圧力PSとを比較判別し、この吸入ガス圧力が前記
設定値PS2になったとき、前記制御器17の動作回路
(図示路)から前記容量切換機構3に対し容量ダウン信
号を出力し、反対に吸入ガス圧力Psが前記設定値PS
2よシも大きい設定値Ps1(例えば3に9/l’4)
になったとき、容量切換機構3に対し容量アップ信号を
出力するようにしている。
A controller 17 is connected between these pressure and temperature sensors 15 and 16 and the capacity switching mechanism 3, and in this embodiment, the pressure and temperature sensors 15, 16 and the capacity switching mechanism 3 are connected to each other. set pressure PB2 (e.g. 0.5 kg
/d) and the suction gas pressure PS detected by the pressure sensor 15, and when this suction gas pressure reaches the set value PS2, the operation circuit (path shown in the figure) of the controller 17 A capacity down signal is output to the capacity switching mechanism 3, and conversely, the suction gas pressure Ps changes to the set value PS.
A setting value Ps1 that is larger than 2 (for example, 3 to 9/l'4)
When this happens, a capacity up signal is output to the capacity switching mechanism 3.

別記制御器17と圧力センサ15の関係と同様に、前記
温度センサ16により検出された吸入ガス温度TSが制
御器17により予め設定された設定温度TS2(例えば
2℃)になると、同側@器から容量ダウン信号が出力さ
れ、反対に前記設定値TS2よりも高い設定値Tst(
例えば10°C)になると、容量アップ信号を出力する
ようにしている。
Similarly to the relationship between the separate controller 17 and the pressure sensor 15, when the intake gas temperature TS detected by the temperature sensor 16 reaches the set temperature TS2 (for example, 2°C) preset by the controller 17, the A capacitance down signal is output from TS2, and conversely, the set value Tst(
For example, when the temperature reaches 10° C., a capacitance up signal is output.

又1.前記制御器17には前記吸入ガス温度Ts及び吸
入ガス圧力Psによって決定されるモリエIv(P−i
)線図における吸入状態点の過熱度(スーパーヒート)
が記憶されていて、この過熱度Tshが設定過熱度Ts
h2(例えば5°C)以下の状態が一定時間h1続くと
、制御器17からクラッチOFF信号を出力し、前記設
定値’r s h 2よりも高い設定[Tsh l(例
えば15℃)以上の状態が一定時間h1続くと、制御器
17からクラッチON信号を出力するようにしている。
Also 1. The controller 17 has a Morie Iv (P-i) determined by the suction gas temperature Ts and suction gas pressure Ps.
) degree of superheat at the suction state point in the diagram (superheat)
is stored, and this superheat degree Tsh is the set superheat degree Ts.
When the temperature below h2 (for example, 5°C) continues for a certain period of time h1, the controller 17 outputs a clutch OFF signal, and a setting higher than the set value 'r s h 2 [Tsh l (for example, 15°C) or more] is output. When the state continues for a certain period of time h1, the controller 17 outputs a clutch ON signal.

前記吐出フランジ4とコンデンサ6を結ぶ管路には、図
示しないが吐出圧力Pd及び温度Tdを検出する圧力セ
ンサ及び温度センサが設けられている。前記制御器17
には前記吐出圧力Pct及び温度Tclによって決定さ
れるモリエル線図におけ以下の状態が一定時間hl続く
と、制御器17からクラッチOFF信号が出力され、前
記設定値Tdh2よりも扁い設定値(例えば40’C)
以上の状態が一定時間hr続くと、制御器17からクラ
ッチON信号を出力するようにしている。
Although not shown, a pressure sensor and a temperature sensor for detecting the discharge pressure Pd and temperature Td are provided in the pipeline connecting the discharge flange 4 and the condenser 6. The controller 17
When the following state continues for a certain period of time hl in the Mollier diagram determined by the discharge pressure Pct and temperature Tcl, a clutch OFF signal is output from the controller 17, and a set value (lower than the set value Tdh2) is output. For example 40'C)
When the above state continues for a certain period of time, the controller 17 outputs a clutch ON signal.

さらに、前記制御器17は吸入ガスの過熱度Tshが前
記設定値Tsh 1よシも高い設定値Tsh8(例えば
20°C)になると、ガス不足信号を出力し圧縮機を停
止するようにしている。
Further, the controller 17 outputs a gas shortage signal and stops the compressor when the superheat degree Tsh of the suction gas reaches a set value Tsh8 (for example, 20°C) which is higher than the set value Tsh1. .

一方、前記エバポレータ9とダンパ12の間すhbちエ
バポレータの出口には、そこを通過する空気の温I!i
(以下エバポレータの出口空気温度Te又は単に出口温
度Teという)を検出する温度センサ18が配設されて
いる。そして、この温度センサ18によシ検出されたエ
バポレータの出口空気温度Teが設定温度Te2(例え
ば3℃)になったとき、制御器17からクラッチOFF
信号を出力し、前記設定値Te2よシも高い別の設定値
Te1(例えば6℃)になったとき、クラッチON信号
°を出力するようにしている。
On the other hand, between the evaporator 9 and the damper 12, there is a temperature I of the air passing through the evaporator outlet. i
A temperature sensor 18 is provided to detect the evaporator outlet air temperature Te or simply referred to as outlet temperature Te hereinafter. When the evaporator outlet air temperature Te detected by the temperature sensor 18 reaches the set temperature Te2 (for example, 3°C), the controller 17 turns off the clutch.
A clutch ON signal ° is output when the set value Te1 (for example, 6° C.) is higher than the set value Te2.

次に、前記のように構成した車両空調用冷房装置をもと
に、本発明制御方法の第一実施例を第2図について説明
する。
Next, a first embodiment of the control method of the present invention will be described with reference to FIG. 2 based on the vehicle air conditioning cooling system configured as described above.

この実施例は冷房負荷が大きいときには、吸入ガス温度
TSと設定値TSl、TEt2によって圧縮機を50%
と100%の容量で切換制御し、冷房負荷が小さいとき
には、吸入ガス圧力Psと設定値Pet、P82によっ
て圧縮機を0%と50%の容量でO,N、OFF制御す
るようにしている。
In this embodiment, when the cooling load is large, the compressor is reduced to 50% depending on the suction gas temperature TS, set values TSl, and TEt2.
and 100% capacity, and when the cooling load is small, the compressor is controlled to turn on, off, and at 0% and 50% capacity using the suction gas pressure Ps and the set value Pet, P82.

今、冷房装置の起動スイッチ(図示時)により電磁クラ
ッチがONされると、圧縮機は50%容量で起動され、
その後吐出圧が上昇して吐出弁が正規の閉鎖位置に移動
されると100%容量で駆動される。吐出フランジ4か
ら吐出された圧縮冷媒ガスはコンデンサ6、レシーバ7
及びエキスパンションパルプ8を経てエバポレータ9へ
と送うれ、ここでファン11によシ強制移送される望気
によって熱ダ換された後、吸入フランジ5から圧縮機内
に吸い込まれる。吸入ガス温度Ts及び圧力Psは、運
転時間りの経過に従って次第に低くなっていくが、クラ
ッチがONされて圧縮機が100%稼働されてからしば
らぐの間は、車室内の温度がまた高いため冷房負荷が大
きく熱交換が効率的に行なわれて温度Ts、圧力PSは
急激に降下する。その後、車室温度が低下し熱交換効率
が低下してくると温度Ts、圧力Psの下降も緩かにな
っていき、温度TSが設定温度TS2になると、制御器
17から容量ダウン信号が出力されて容量切換機構3が
作動され、圧縮機が100%から50%稼働に切換えら
れる。
Now, when the electromagnetic clutch is turned on by the cooling device start switch (as shown), the compressor is started at 50% capacity.
Thereafter, when the discharge pressure increases and the discharge valve is moved to its normal closed position, it is driven at 100% capacity. The compressed refrigerant gas discharged from the discharge flange 4 is transferred to a condenser 6 and a receiver 7.
The pulp is then sent to the evaporator 9 via the expansion pulp 8, where the heat is exchanged by the desired air forcibly transferred by the fan 11, and then sucked into the compressor from the suction flange 5. The intake gas temperature Ts and pressure Ps gradually decrease as the operating time passes, but for a while after the clutch is turned on and the compressor is operated at 100%, the temperature inside the vehicle remains high. Since the cooling load is large and heat exchange is performed efficiently, the temperature Ts and the pressure PS drop rapidly. After that, as the cabin temperature decreases and the heat exchange efficiency decreases, the decrease in temperature Ts and pressure Ps becomes gradual, and when the temperature TS reaches the set temperature TS2, a capacity down signal is output from the controller 17. Then, the capacity switching mechanism 3 is activated, and the compressor is switched from 100% to 50% operation.

こうして容量ダウンしても圧縮機の冷房能力がやや大き
い場合には、第2図実線で示すように吸入ガス温度、圧
力Ts、Psはともに降下していき、圧力Psが設定圧
力PS2になると一制御器17からクラッチOFF信号
が出力されて50%稼働状態の圧縮機が停止される。そ
の後、圧力PSが上昇して設定圧力PS1になると圧縮
機は温度TSが設定値TS1になっていないから50%
容量で稼働され、以下同様にして0%と50%の容量切
換えが交互に行なわれる。
Even if the capacity is reduced in this way, if the cooling capacity of the compressor is somewhat large, the suction gas temperature, pressure Ts, and Ps will all decrease as shown by the solid line in Figure 2, and when the pressure Ps reaches the set pressure PS2, it will stop. A clutch OFF signal is output from the controller 17, and the compressor that is operating at 50% is stopped. After that, when the pressure PS increases and reaches the set pressure PS1, the compressor temperature TS is not at the set value TS1, so the temperature TS is 50%
It is operated at the capacity, and thereafter the capacity is alternately switched between 0% and 50% in the same manner.

一方、圧縮機の容量が50%にダウンされた状態で冷房
能力が不足するときには、第2図工点鎖線で示すように
吸入ガス温度TS、圧力psが上昇し、温度Tsが設定
値TSIになると圧縮機が50%から100%容量に切
換えられる。その後は設定値TS2.T81によって5
0%と100%の容量切換えが交互に行なわれる。
On the other hand, when the compressor capacity is reduced to 50% and the cooling capacity is insufficient, the suction gas temperature TS and pressure ps rise as shown by the dashed line in Figure 2, and when the temperature Ts reaches the set value TSI. The compressor is switched from 50% to 100% capacity. After that, set value TS2. 5 by T81
Capacity switching between 0% and 100% is performed alternately.

ところで、吸入ガス一温度TS、’圧力psO間には、
モリエル線図上において過熱度TShが規定でれている
ため、温度TSが決まれば圧力Psも決まり、設定値T
S2における圧力をPBとすると、この圧力PBと前記
設定値P 8 ’2の間には圧縮機が100%容量から
一気に0%容量にならないようにPS2<PBに設定さ
れている。又、設定値TSlによって決定される圧力を
PAとすると、クラッチON時に圧縮機が50%容量で
起動6れるようにPS 1 <PAに設定されている。
By the way, between the intake gas temperature TS and the pressure psO,
Since the degree of superheating TSh is specified on the Mollier diagram, if the temperature TS is determined, the pressure Ps is also determined, and the set value T
Assuming that the pressure at S2 is PB, PS2<PB is set between this pressure PB and the set value P8'2 so that the compressor does not go from 100% capacity to 0% capacity all at once. Further, assuming that the pressure determined by the set value TS1 is PA, PS 1 <PA is set so that the compressor is started at 50% capacity when the clutch is turned on.

さて、本発明第一実施例においては冷房負荷が小さいと
きには吸入圧力Psと設定値Psx、PS2によって圧
縮機を0%と50%容量でON・OFFするようにした
ので、冷し過ぎをヒータにより加熱するという余分な仕
事をなくし、冷房負荷に応じて圧縮機を効率的に運転す
ることができるとともに、圧力及び温度の二種類のセン
サを使用しているので、これらのセンサにヒステリミス
の大き7)ON・OFF’式の安価なものを使用するコ
トカでき、コストダウンを図ることができる。
Now, in the first embodiment of the present invention, when the cooling load is small, the compressor is turned on and off at 0% and 50% capacity depending on the suction pressure Ps, set value Psx, and PS2, so that excessive cooling can be prevented by using the heater. By eliminating the extra work of heating, the compressor can be operated efficiently according to the cooling load, and since two types of sensors are used, one for pressure and one for temperature, the hysteresis of these sensors is reduced by 7. ) It is possible to use an inexpensive ON/OFF' type, and it is possible to reduce costs.

なお、この第一実施例において、吸入ガス温度TSがT
S1以上となったとき、又は圧力PsがPS2以下にな
ったとき、ガス不足信号を出すようにすれば、ガス不足
センサとしても利用できるものと々る。
In addition, in this first embodiment, the intake gas temperature TS is T
If the gas shortage signal is output when the pressure becomes S1 or more, or when the pressure Ps becomes less than PS2, it can also be used as a gas shortage sensor.

次に、本発明制御方法の第二実施例を第3図について説
明する。
Next, a second embodiment of the control method of the present invention will be described with reference to FIG.

この実施例では冷房負荷が大きいときには、吸入ガス圧
力PSと設定値Psi、PS2によシ50%と100%
の容量切換えを行ない、冷房負荷が小さいときには、吸
入ガス温度TSと設定値T81、TS2によシO%と5
0%のON −OFF制御を行なうようにしておシ、圧
力psが設定値PS2になると圧′m機が100%から
50%容量に切換えられる。容量ダウン状態において冷
房能力がやや大きいときには、第3図実線のように圧力
Ps、温度Tsが降下していき、TSが設定値TS2に
なるとクラッチがOFFされて50%稼働の圧縮機が停
止される。その後温度TSが上昇し設定値TS1になる
と、クラッチがONされるが圧力Psが設定11IPS
lになっていないので、圧縮機が50%容量で駆動され
、以下同様にして設定値Tl32.TSIによシ0%と
50%容量で圧縮機のON −OFF制御が行なわれる
In this embodiment, when the cooling load is large, the suction gas pressure PS and the set values Psi and PS2 are set at 50% and 100%.
When the cooling load is small, O% and 5 are changed depending on the intake gas temperature TS and set values T81 and TS2.
0% ON-OFF control is performed, and when the pressure ps reaches the set value PS2, the pressure 'm machine is switched from 100% to 50% capacity. When the cooling capacity is slightly large in the capacity down state, the pressure Ps and temperature Ts decrease as shown by the solid line in Figure 3, and when TS reaches the set value TS2, the clutch is turned off and the compressor, which is operating at 50%, is stopped. Ru. After that, when the temperature TS rises and reaches the set value TS1, the clutch is turned on, but the pressure Ps increases to the set value 11 IPS.
Since the set value Tl32. The TSI performs ON-OFF control of the compressor at 0% and 50% capacity.

一方、圧縮機を100%から50%に容量ダウンした状
態では冷房能力が不足しているときには、第3図工点鎖
線で示すように峻大ガス圧力Ps。
On the other hand, when the capacity of the compressor is reduced from 100% to 50% and the cooling capacity is insufficient, the gas pressure Ps rises sharply as shown by the dotted chain line in Figure 3.

温度T6が上昇し、圧力Psが設定値Pssになると圧
縮機が50%から100%に容量アップされ、その後設
定値PS2.Psiによって50%と1’OO%の容量
切換えが交互に行なわれる。
When the temperature T6 rises and the pressure Ps reaches the set value Pss, the capacity of the compressor is increased from 50% to 100%, and then the set value PS2. Capacity switching between 50% and 1'OO% is performed alternately by Psi.

この第二実施例でも前記第一実施例と同様に設定値TS
2によって決定される吸入ガヌ圧力をPBとすると、圧
縮機が一気に100%力・らO%谷量VCなるのを防止
するためPS2’>PBのように設定し、設定値TS1
によって決定される吸入ガス圧力をPAとすると、圧縮
機が50%容量で起動されるようにPsi>PAのよう
に設定している。
In this second embodiment as well, the set value TS
Let PB be the suction pressure determined by 2, in order to prevent the compressor from going from 100% power to 0% valley volume VC all at once, set PS2'>PB, and set the set value TS1.
Let PA be the suction gas pressure determined by Psi>PA so that the compressor is started at 50% capacity.

この第二実施例は冷房負荷の小δいときに吸入カス温度
TS及び設定値TS’2’、TSIによって0%と50
%の0N−OFF制御を行なうようにしたので、前述し
た第一実施例と同様に冷房負荷に応じて圧縮機を効率的
に運転することができるとともに、圧力、温度センサ1
5,16ともにヒステリミスの大きなON −OFF式
の安価なものを使用することができ、コストダウンを図
ることができる。
In this second embodiment, when the cooling load is small δ, the suction waste temperature TS and the set value TS'2' are 0% and 50% depending on the TSI.
% 0N-OFF control, the compressor can be operated efficiently according to the cooling load as in the first embodiment described above, and the pressure and temperature sensor 1 can be operated efficiently.
Both of 5 and 16 can be inexpensive ON-OFF types with large hysteresis, which can reduce costs.

なお、圧力センサ15を連続的に出力可能なタイプとし
、吸入ガス圧力Psが設定値Psgよシも小さい設定値
Psaで、吸入ガヌ温度TSが設定値Tst以上のとき
、あるいは温度センサ16を連続的に出力可能なタイプ
とし、吸入ガス温度Tsが設定値Telよりも高い設定
値TS8で′、吸入圧力Psが設定値PS2以下のとき
にガス不足信号を出力するようにすれば、ガス不足を検
出することができる。
The pressure sensor 15 is of a type capable of continuous output, and when the suction gas pressure Ps is a set value Psa smaller than the set value Psg and the suction gas temperature TS is higher than the set value Tst, or the temperature sensor 16 is If the type is configured to be able to output continuously, and the gas shortage signal is output when the suction gas temperature Ts is set at a set value TS8' which is higher than the set value Tel, and the suction pressure Ps is below the set value PS2, gas shortage can be detected. can be detected.

次に、本発明制御方法の第三実施例を第4図について説
明する。
Next, a third embodiment of the control method of the present invention will be described with reference to FIG.

この実施例は冷房負荷の大きいときには吸入圧力Psに
より50%と100%の容量切換えを行ない、冷房負荷
が小さいときには、吸入ガスの過熱度Tshによシ0%
と50%の容量でクラッチのON・OFFを行なうよう
にしており、冷房が進み吸入圧力psが設定値PS2に
なると、100%から50%に容量ダウンされる。この
状態で冷房能力がやや大きいときには吸入圧力Ps及び
過熱度TShは次第に下がっていき、過熱度Tshが設
定値Tsh2以下の状態が一定時間h11ij&続する
と、クラッチがOFFされ50%稼働の圧縮機が停止さ
れる。その後、過熱度Tshが上J%し設定値Tsh 
1以上の状態が一定時間h1継続するとクラッチがON
されるが、圧力Psが設定値Pslになっていないので
、圧縮機は50%容量で稼働される。以下、同様にして
設定値Tsh2 、’rsht 、htによシ圧縮機が
0%と50%容量で交互に0N−OFFされる。
In this embodiment, when the cooling load is large, the capacity is switched between 50% and 100% depending on the suction pressure Ps, and when the cooling load is small, the capacity is switched between 50% and 100% depending on the superheat degree Tsh of the suction gas.
The clutch is turned on and off at 50% capacity, and as cooling progresses and the suction pressure ps reaches the set value PS2, the capacity is reduced from 100% to 50%. In this state, when the cooling capacity is slightly large, the suction pressure Ps and the degree of superheat TSh gradually decrease, and when the degree of superheat Tsh remains below the set value Tsh2 for a certain period of time, the clutch is turned OFF and the compressor operates at 50%. will be stopped. After that, the superheat degree Tsh increases by J% and the set value Tsh
If the state of 1 or more continues for a certain period of time h1, the clutch will turn ON.
However, since the pressure Ps has not reached the set value Psl, the compressor is operated at 50% capacity. Thereafter, similarly, the compressor is turned off alternately at 0% and 50% capacity according to the set values Tsh2, 'rsht, and ht.

一方、圧縮機が100%から50%に容量ダウンされた
状態で冷房能力が不足していると、吸入圧力Paは第4
図工点鎖線で示すように上昇し、この圧力Psが設定値
P81になると50%から100%に容量アップされ、
以下同じように設定値PS2.Palによ)50%と1
00%の容量切換えが交互に行なわれる。
On the other hand, if the compressor capacity is reduced from 100% to 50% and the cooling capacity is insufficient, the suction pressure Pa will be reduced to the 4th level.
The pressure increases as shown by the dashed line, and when this pressure Ps reaches the set value P81, the capacity increases from 50% to 100%.
Similarly, set value PS2. (by Pal) 50% and 1
00% capacity switching is performed alternately.

なお、吸入ガスの過熱度Tshが異常に大きくT、、 
S h aを越えたときはガス不足信号が出力される。
In addition, the degree of superheating Tsh of the intake gas is abnormally large T...
When S h a is exceeded, a gas shortage signal is output.

ところで、圧縮機の運転中は吸入ガスが動いているので
、温度センサ16の取付位置に関係なく吸入ガス温度T
sを検出できるが、圧縮機がいったん停止された状態で
は温度センサを圧縮機へ近づけるほどその加熱による影
響を受は易く、従って第二実施例の吸入ガス一温度TS
又はこの第三実施例のように温度TSによって決まる過
熱度Tshを検出してクラッチのON動作を行なうと確
実な制御の支障になる。そのため、取付場所の相異によ
る影響を無視し得る位置まで圧縮機から離して取付ける
か、又は吸入ガス圧力psによる第一実施例のクラッチ
ON・OFF制御が望ましいが、このことから第三実施
例において圧力Psが第4肉の設定値PS8になったと
きクラッチをONするようにすることもできる。
By the way, since the suction gas is in motion while the compressor is operating, the suction gas temperature T is constant regardless of the mounting position of the temperature sensor 16.
However, when the compressor is once stopped, the closer the temperature sensor is to the compressor, the more likely it is to be affected by the heating. Therefore, the suction gas temperature TS of the second embodiment
Alternatively, if the clutch is turned on by detecting the superheat degree Tsh determined by the temperature TS as in the third embodiment, reliable control will be hindered. Therefore, it is desirable to install the clutch away from the compressor to a position where the influence of differences in mounting location can be ignored, or to control ON/OFF of the clutch according to the first embodiment using the suction gas pressure ps. It is also possible to turn on the clutch when the pressure Ps reaches the fourth set value PS8.

この第三実施例も前述した第一、第二実施例と同様に冷
房負荷に応じて効率のよい圧縮機の運転を行なうことが
できるとともに、圧力及び温度センサにON −OFF
式の安価なものを使用してコストダウンを図ることがで
きる。
Like the first and second embodiments described above, this third embodiment also enables efficient compressor operation according to the cooling load, and also enables pressure and temperature sensors to be turned on and off.
It is possible to reduce costs by using an inexpensive formula.

次に、本発明制御方法の第四実施例を第5図について説
明する。
Next, a fourth embodiment of the control method of the present invention will be described with reference to FIG.

との冥施例は吸入ガス圧力Psによシ50%と100%
の容量切換えを行ない、エバポレータの出口空気温度T
eによpo%と50%の容量でクラッチON・OFF制
御を行なうようにしており、吸入圧力Psが設定値PS
2になると100%から50%に容量ダウンされ、この
状態で冷房能力がやや大きいときKは吸入圧力Ps及び
出口温度Teが下がシ、同温度Te’が設定値Te2に
なるとクラッチがOFFされ50%稼働の圧縮機が停止
される。その後、出口温度Teが上昇して設定値Tel
になるとクラッチがONされ、圧力Psが設定値PS1
になっていないので圧縮機が50%容量で運転され、以
下同様にして設定値Te5Telにより0%と50%の
容量で交互に運転が行なわれる。
In this case, the suction gas pressure Ps is 50% and 100%.
The evaporator outlet air temperature T
Clutch ON/OFF control is performed with po% and 50% capacity by e, and the suction pressure Ps is the set value PS.
2, the capacity is reduced from 100% to 50%, and in this state, when the cooling capacity is slightly large, the suction pressure Ps and outlet temperature Te of K will decrease, and when the same temperature Te' reaches the set value Te2, the clutch will be turned off. A compressor running at 50% is shut down. After that, the outlet temperature Te rises to the set value Tel.
When this happens, the clutch is turned on and the pressure Ps reaches the set value PS1.
Since this is not the case, the compressor is operated at 50% capacity, and the compressor is similarly operated alternately at 0% and 50% capacity based on the set value Te5Tel.

反対に、圧縮機が100%から50%に容量ダウンされ
た状態で冷房能力が小さい場合には、吸入圧力Ps及び
出口温度Teは上昇し、圧力Psが設定値Ps IIC
なると、50%から100%に容量アップされ、以下設
定値PS2.Psiにより50%と100%の容量切換
えが交互に行なわれる。
On the other hand, when the compressor capacity is reduced from 100% to 50% and the cooling capacity is small, the suction pressure Ps and the outlet temperature Te increase, and the pressure Ps becomes the set value Ps IIC
Then, the capacity will be increased from 50% to 100%, and the setting value PS2. Psi alternately switches the capacity between 50% and 100%.

なお、吸入圧力PSがPS2以下でしかも出口温度Te
が設定値Telよりも高い別の設定値Tea(例えば2
0℃)を越えると、ガス不足信号が出力され、50%稼
働の圧縮機がOFFとなり、その後圧力Psが設定値P
82以上に復帰されてもONにならないようにすること
もできる。
Note that when the suction pressure PS is less than PS2 and the outlet temperature Te
is higher than the set value Tel (for example, 2
0℃), a gas shortage signal is output, the compressor at 50% operation is turned off, and then the pressure Ps returns to the set value P.
It is also possible to prevent it from turning ON even if it returns to 82 or higher.

この第四実施例の制御方法も前述したミニ、二実施例と
同様に、冷房能力に応じて圧縮機を効率よく運転するこ
とができるとともに、圧力、温度センサのコストダウン
を図ることができる外、エバポレータの出口温度Teが
設定値Te2になったときクラッチをCUFFするよう
にしたので、エバポレータのフロスト(霜付き)を防止
することができる。
The control method of this fourth embodiment is similar to the above-mentioned mini and second embodiments, in that it is possible to operate the compressor efficiently according to the cooling capacity, and it is also possible to reduce the cost of pressure and temperature sensors. Since the clutch is CUFFed when the evaporator outlet temperature Te reaches the set value Te2, it is possible to prevent the evaporator from frosting.

なお、本発明は次のような実施例で具体化することもで
きる。
Note that the present invention can also be embodied in the following embodiments.

圧縮機のON −OFF制御に代えて、圧縮機の容量を
既述のものよシさらに小さい別の容量とする段階を含む
容量変化を行わせること。
To change the capacity of the compressor, including a step of changing the capacity of the compressor to another capacity smaller than the one described above, instead of ON-OFF control of the compressor.

冷房負荷が大きいときには吸入ガス圧力Ps。When the cooling load is large, the suction gas pressure Ps.

吸入ガヌ温度Ts、吸入ガスの過熱度TSh又は吐出ガ
スの過熱度Tdhのいずれか一つが設定値になったとき
大容量域で圧縮機の容量切換えを行ない、冷房負荷が小
さいときには前記圧力Ps。
When any one of the suction Ganu temperature Ts, suction gas superheat degree TSh, or discharge gas superheat degree Tdh reaches a set value, the capacity of the compressor is switched in the large capacity range, and when the cooling load is small, the pressure Ps is changed. .

温度TS、過熱度Tsh、Tdh又はエバポレータの出
口温度Teのいずれか一つが設定値になったとき、小容
量域で圧縮機の容量切換え又はクラッチのON −OF
Fを行なうようにすること。
When any one of the temperature TS, superheat degree Tsh, Tdh, or evaporator outlet temperature Te reaches the set value, compressor capacity switching or clutch ON-OF occurs in the small capacity range.
Try to do F.

以上詳述したように本発明は、冷房負荷の大きいときに
は大容量域で容量切換えを行ない、冷房負荷の小さいと
きには小容量域で容量切換えを行なうようにしたので、
冷し過ぎを加熱するという余分な仕事をなくして冷房負
荷に応じて効率のよい圧縮機運転を行なうことができる
効果がある。
As detailed above, in the present invention, when the cooling load is large, the capacity is switched in the large capacity range, and when the cooling load is small, the capacity is switched in the small capacity range.
This has the effect of eliminating the extra work of heating up overly cooled areas and allowing efficient compressor operation according to the cooling load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御方法に使用される冷房装置を車両
空調用に具体化した一実施例を示す路体平面図、第2図
〜第5図はそれぞれ本発明の制御方法の第一〜第四実施
例を説明するグラフである。 可変容量圧縮@2.容量切換機構3.圧力センサ15.
温度センサ16,18.制御器17.吸入(吐出)ガス
圧力Ps(Pd)、吸入(吐出)ガス温度Ts(Td)
、吸入(吐出)ガスの過熱度T’s h (Tdh )
エバポレータの出口空気温度Te、設定値P B j 
、 P S 2 、 T、、s 1 、 T B 2 
。 Tsht 、T!3h2.T(lhl 、TCLh2 
、Tel、Te2.時間h1゜
FIG. 1 is a road body plan view showing an embodiment of the cooling device used in the control method of the present invention for vehicle air conditioning, and FIGS. 2 to 5 are the first embodiment of the control method of the present invention. - It is a graph explaining a fourth example. Variable capacity compression @2. Capacity switching mechanism 3. Pressure sensor 15.
Temperature sensors 16, 18. Controller 17. Suction (discharge) gas pressure Ps (Pd), suction (discharge) gas temperature Ts (Td)
, degree of superheating of the suction (discharge) gas T's h (Tdh)
Evaporator outlet air temperature Te, set value P B j
, P S 2 , T, , s 1 , T B 2
. Tsht, T! 3h2. T(lhl, TCLh2
, Tel, Te2. Time h1゜

Claims (1)

【特許請求の範囲】 1 容量切換機構によシ冷房負荷に応じて容量すなわち
冷房能力を切換調節し得る可変容量圧縮機から圧縮ガス
を冷凍サイクルに送って冷房作用を行なわせた後、熱交
換を終えたガスを再び前記圧縮機に吸入するようにした
冷房方法において、■ 圧縮機の吸入ガス圧力Ps ■ 圧縮機の吸入ガス温度Ts ■ 前記吸入ガス圧力Ps、温度Tsによって決定され
る吸入ガスの過熱度Tsh ■ 圧縮機の吐出ガス圧力Pd及び温度Tdによって決
定される吐出ガスの過熱度T(lh上記■〜■のいずれ
か一つと各■〜■にそれぞれ対応して予め設定された設
定値とを比較判別手段によシ比較判別し、前記■〜■の
いずれか一つが設定値になったとき、動作手段によシ容
量切換機構を作動させて圧縮機の容量を切換制御し、■
 エバポレータの出口空気温度Te 上記■〜■のいずれか一つと各■〜■にそれぞれ対応し
て予め設定され九設定値とを比較判別手段によシ比較判
別し、前記■〜■のいずれか一つが前記設定値になった
とき、動作手段により圧縮機のクラッチをON・OFF
動作するようにしたことを特徴とする冷房装置における
可変容量圧縮機の運転制御方法。 2 冷房負荷の大きいときには吸入ガス温度Tsと設定
値TS2・Telにより圧縮機の50%と100%の容
量切換えを行ない、冷房負荷の小さいときには吸入ガス
圧力Psと設定値Ps2・P81により圧縮機を0%と
50%容量で0N−OFFするようにした特許請求の範
囲第1項記載の冷房装置における可変容量圧縮機の運転
制御方法。 8 冷房負荷の大きいときには吸入ガス圧力PSと設定
値Ps2.Pstによシ圧縮機の50%と100%容量
の容量切換えを行ない、冷房負荷の小さいときには吸入
ガス温度Tsと設定値TS2゜TSlにより圧縮機を0
%と5o%容量でON・OFFするようにした特許請求
の範囲第1項記載の冷房装置における可変容量圧縮機の
運転制御方法。 4 冷房負荷の大きいときには吸入ガス圧力Psと設定
値ps2.ps−tにより圧縮機の50%と100%容
量の容量切−えを行ない、冷房負荷の小さいときには吸
入ガスの過熱度Tshと設定値TSh2.TShlによ
シ圧縮機を0%と50%容量ヤ0N−OFFするように
した特許請求の範囲第1項記載の冷房装置における可変
容量圧縮機−の運転制御方法。 5 冷房負荷が大きいときには吸入ガス圧力psと設定
@PB2.:PB1により圧縮機の50%と100%容
量の容量切換えを行ない、冷房負荷の小さいときにはエ
バポレータの出口空気温度Teと設定値Te2.Tel
によシ圧縮機を0%と50%の容量でON・OFFする
ようにした特許請求の範囲第1%記載の冷房装置におけ
る可変容量圧縮機の運転制御方法。
[Scope of Claims] 1 Compressed gas is sent to the refrigeration cycle from a variable capacity compressor whose capacity, or cooling capacity, can be switched and adjusted according to the cooling load by a capacity switching mechanism to perform cooling action, and then heat exchange is performed. In the cooling method in which the gas that has finished the process is sucked into the compressor again, ■ suction gas pressure Ps of the compressor ■ suction gas temperature Ts of the compressor ■ suction gas determined by the suction gas pressure Ps and temperature Ts Superheat degree Tsh ■ Superheat degree T of the discharge gas determined by the discharge gas pressure Pd and temperature Td of the compressor (lh Preset settings corresponding to any one of the above ■ to ■ and each of ■ to ■ When one of the values from ■ to ■ becomes the set value, the operating means operates a capacity switching mechanism to switch and control the capacity of the compressor; ■
The evaporator outlet air temperature Te is compared with any one of the above ■ to ■ and the nine preset values set in advance corresponding to each of ■ to When the value reaches the set value, the operating means turns on and off the compressor clutch.
1. A method for controlling the operation of a variable capacity compressor in a cooling device, characterized in that the variable capacity compressor is operated. 2 When the cooling load is large, the capacity of the compressor is switched between 50% and 100% according to the suction gas temperature Ts and the set value TS2・Tel, and when the cooling load is small, the compressor is switched between 50% and 100% capacity according to the suction gas pressure Ps and the set value Ps2・P81. A method for controlling the operation of a variable capacity compressor in a cooling device according to claim 1, wherein the variable capacity compressor is turned off at 0% and 50% capacity. 8 When the cooling load is large, the intake gas pressure PS and set value Ps2. The capacity of the compressor is switched between 50% and 100% capacity using Pst, and when the cooling load is small, the compressor is switched to 0 depending on the suction gas temperature Ts and the set value TS2゜TSl.
A method for controlling the operation of a variable capacity compressor in a cooling system according to claim 1, wherein the variable capacity compressor is turned on and off at 50% and 50% capacity. 4 When the cooling load is large, the suction gas pressure Ps and the set value ps2. The capacity of the compressor is switched between 50% and 100% capacity using ps-t, and when the cooling load is small, the suction gas superheat degree Tsh and the set value TSh2. A method for controlling the operation of a variable capacity compressor in a cooling system according to claim 1, wherein the compressor is turned off at 0% and 50% capacity by TShl. 5 When the cooling load is large, set the suction gas pressure ps @PB2. : The capacity of the compressor is switched between 50% and 100% capacity using PB1, and when the cooling load is small, the evaporator outlet air temperature Te and the set value Te2. Tel
A method for controlling the operation of a variable capacity compressor in a cooling device according to claim 1, wherein the variable capacity compressor is turned on and off at 0% and 50% capacity.
JP56119505A 1981-07-29 1981-07-29 Method of operating and controlling variable-capacity compressor in a refrigerating system Granted JPS5819639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56119505A JPS5819639A (en) 1981-07-29 1981-07-29 Method of operating and controlling variable-capacity compressor in a refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56119505A JPS5819639A (en) 1981-07-29 1981-07-29 Method of operating and controlling variable-capacity compressor in a refrigerating system

Publications (2)

Publication Number Publication Date
JPS5819639A true JPS5819639A (en) 1983-02-04
JPH0215782B2 JPH0215782B2 (en) 1990-04-13

Family

ID=14762915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56119505A Granted JPS5819639A (en) 1981-07-29 1981-07-29 Method of operating and controlling variable-capacity compressor in a refrigerating system

Country Status (1)

Country Link
JP (1) JPS5819639A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147954A (en) * 1983-02-10 1984-08-24 株式会社ボッシュオートモーティブ システム Controller for air conditioner for automobile
JPS637759U (en) * 1986-06-30 1988-01-19
JPH04240192A (en) * 1990-06-13 1992-08-27 Wacker Chemitronic Ges Elektron Grundstoffe Mbh Method and apparatus for casting polycrystalline silicon block as basic material for solar battery
CN109945453A (en) * 2019-03-26 2019-06-28 济南桃子智控科技有限公司 One control polyelectron expansion valve control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748563B2 (en) * 2011-05-26 2015-07-15 三菱電機株式会社 Refrigeration equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720901U (en) * 1971-04-02 1972-11-09
JPS5022941U (en) * 1973-06-25 1975-03-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720901U (en) * 1971-04-02 1972-11-09
JPS5022941U (en) * 1973-06-25 1975-03-14

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147954A (en) * 1983-02-10 1984-08-24 株式会社ボッシュオートモーティブ システム Controller for air conditioner for automobile
JPS637759U (en) * 1986-06-30 1988-01-19
JPH04240192A (en) * 1990-06-13 1992-08-27 Wacker Chemitronic Ges Elektron Grundstoffe Mbh Method and apparatus for casting polycrystalline silicon block as basic material for solar battery
CN109945453A (en) * 2019-03-26 2019-06-28 济南桃子智控科技有限公司 One control polyelectron expansion valve control method

Also Published As

Publication number Publication date
JPH0215782B2 (en) 1990-04-13

Similar Documents

Publication Publication Date Title
JPH0474210B2 (en)
JPS61178216A (en) Control unit for variable displacement compressor in air conditioner for vehicles
JPH09196478A (en) Refrigerating cycle
KR100820281B1 (en) Refrigerant cycle device and control system for vehicle
JP3576866B2 (en) Refrigeration cycle with bypass line for vehicles
JPH0338135B2 (en)
JP2005104305A (en) Air-conditioner for vehicle
JP2001063348A (en) Refrigerating cycle system
JP2001121952A (en) Air conditioner for vehicle
JPS5819639A (en) Method of operating and controlling variable-capacity compressor in a refrigerating system
JP4765921B2 (en) Refrigeration cycle equipment
JP2516986B2 (en) Vehicle air conditioning refrigeration circuit
KR20100064835A (en) Air conditioner
US4538421A (en) Refrigerating system
JPH03241260A (en) Multi-room air-conditioner
JPS5830A (en) Operation control for variable capacity compressor in cooling apparatus
JPS5818047A (en) Method of controlling operation of capacity-variable compressor used in space-cooling apparatus
JP2988078B2 (en) Vehicle air conditioner equipped with hydraulic fan
KR100866910B1 (en) The controller built in compressor
JPH036431B2 (en)
JP3961107B2 (en) Torque prediction device for externally controlled variable displacement compressor and automobile engine control device using the same
JPS59149815A (en) Car refrigerating cycle controller
JPS5862391A (en) Method for controlling operation of variable displacement compressor in refrigerating unit
KR101153420B1 (en) Method for controlling air-conditioner
JPS63173716A (en) Cooling device