JPH0413068A - Automatic expansion valve - Google Patents

Automatic expansion valve

Info

Publication number
JPH0413068A
JPH0413068A JP2114184A JP11418490A JPH0413068A JP H0413068 A JPH0413068 A JP H0413068A JP 2114184 A JP2114184 A JP 2114184A JP 11418490 A JP11418490 A JP 11418490A JP H0413068 A JPH0413068 A JP H0413068A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
control mechanism
expansion valve
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2114184A
Other languages
Japanese (ja)
Inventor
Tsutomu Itahana
板鼻 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2114184A priority Critical patent/JPH0413068A/en
Publication of JPH0413068A publication Critical patent/JPH0413068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To make it possible to maintain discharge pressure and suction pressure of a compres sor within an allowable range by driving an over heat control mechanism, a discharge pressure control mechanism, and a suction pressure control mechanism according to a predetermined sequence in conformity with an actual operation pressure in terms of a setting pressure. CONSTITUTION:An automatic expansion valve 10 is provided with an over heat control mecha nism, a discharge pressure mechanism, and suction pressure mechanism 13. When the tempera ture of refrigerant at the outlet of a vaporizer 6 rises, the pressure of refrigerant filled in a temperature detection cylinder 22 rises accordingly. This pressure is transmitted into an actuation chamber 29 by way of a lead pipe 23 of the over heat control mechanism 11 so that a diaphragm 24 may be pushed up. Then, a valve disk 26 drops by way of a rod 31, resisting against an elastic expansion force of a spring 28 where the gap between the valve disk 26 and a valve port 32 is increased so that the flow rate of refrigerant may be increased. The discharge pressure control mechanism 12 inhibits the discharge pressure of the compressor 1 by setting the volume of refrigerant to be supplied to the inlet of the vaporizer 6 as a volume which meets the pressure of refrigerant in the inlet of an expansion valve 10 while the suction pressure control mechanism 13 carries out proportional control of the suction pressure of a compressor when the pressure of refrigerant in the outlet of the vaporizer 6 fails to exceed a setting pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両用冷凍装置、空気調和機等に好適な自動膨
張弁に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an automatic expansion valve suitable for vehicular refrigeration systems, air conditioners, and the like.

(従来の技術) 従来の冷凍装置の冷媒回路の1例が第4図に示されてい
る。
(Prior Art) An example of a refrigerant circuit of a conventional refrigeration system is shown in FIG.

第4図において、lは開放型圧縮機、2は凝縮器、3は
レンーバ、4は温度式膨張弁、5は定圧自動膨張弁、6
は蒸発器、7は吸入圧力調整弁、22は感温筒、23は
導圧管である。
In Fig. 4, l is an open type compressor, 2 is a condenser, 3 is a lever, 4 is a temperature type expansion valve, 5 is a constant pressure automatic expansion valve, 6
7 is an evaporator, 7 is a suction pressure regulating valve, 22 is a temperature sensing cylinder, and 23 is a pressure guiding pipe.

圧縮機1から吐出された冷媒ガスは擬縮rM2で外気に
放熱することによって凝l1ii液化し、レンーバ3で
液冷媒中に含まれるガス冷媒を分離し・温度式膨張弁4
で絞られることによって断熱膨張し、蒸発器6で庫内空
気を冷却することによって蒸発気化し、吸入圧力調整弁
7で圧力を調整されて圧縮Illに吸入される。
The refrigerant gas discharged from the compressor 1 is condensed and liquefied by dissipating heat to the outside air in the pseudo-condensation rM2, and the gas refrigerant contained in the liquid refrigerant is separated in the reverberator 3.Thermal expansion valve 4
The air is adiabatically expanded by being throttled by the evaporator 6, evaporated by cooling the air in the refrigerator 6, the pressure is adjusted by the suction pressure regulating valve 7, and the air is sucked into the compression Ill.

冷凍装置の過負荷運転時やプルダウン運転時には、蒸発
器6の能力が凝縮器2の能力に対して過大となり、圧縮
機1の吐出圧力が許容圧力を越えるおそれがある。そこ
で、吸入圧力調整弁7によって圧縮機lに吸入される冷
媒ガスの圧力が設定圧力以上にならないように冷媒流量
を制限して圧縮機1の吐出圧力を許容圧力以下に抑制し
ている。
During overload operation or pull-down operation of the refrigeration system, the capacity of the evaporator 6 becomes excessive with respect to the capacity of the condenser 2, and there is a possibility that the discharge pressure of the compressor 1 exceeds the allowable pressure. Therefore, the refrigerant flow rate is restricted by the suction pressure regulating valve 7 so that the pressure of the refrigerant gas sucked into the compressor 1 does not exceed a set pressure, thereby suppressing the discharge pressure of the compressor 1 to below an allowable pressure.

また、外気温度が低い場合や圧縮機1の回転数が高い場
合には、圧縮機lに吸入される冷媒ガスの圧力が低下し
て負圧となる。すると、開放型圧縮機1のメカニカルシ
ールの摺動面の間隙から空気が冷媒回路内に侵入したり
、摺動面に油切れが発生してメカニカルシールの潤滑不
良を惹起する。
Further, when the outside air temperature is low or when the rotation speed of the compressor 1 is high, the pressure of the refrigerant gas sucked into the compressor 1 decreases to negative pressure. As a result, air may enter the refrigerant circuit through the gap between the sliding surfaces of the mechanical seal of the open compressor 1, or the sliding surface may run out of oil, causing poor lubrication of the mechanical seal.

そこで、定圧自動膨張弁5によって蒸発圧力が設定圧力
以下に低下しないように自動的に比例制御することによ
り圧縮機1に吸入される冷媒ガスの圧力が負圧とならな
いように抑制している。
Therefore, the constant pressure automatic expansion valve 5 automatically performs proportional control so that the evaporation pressure does not fall below a set pressure, thereby suppressing the pressure of the refrigerant gas sucked into the compressor 1 from becoming a negative pressure.

(発明が解決しようとする課題) 上記従来の冷凍装置においては、定常運転に移行して吸
入圧力調整弁7が全開となってもこれを冷媒ガスが通過
する際の流通抵抗が生ずるため定常運転時の能力が低下
する。
(Problems to be Solved by the Invention) In the above-mentioned conventional refrigeration equipment, even if the suction pressure regulating valve 7 is fully opened in steady operation, there is a flow resistance when the refrigerant gas passes through it, so the steady operation is not possible. Time ability decreases.

また、冬季等凝縮器2の能力が充分で、かつ、圧縮機l
から吐出される冷媒ガスの圧力が低い場合であっても蒸
発器6における冷媒の蒸発圧力、即ち、圧縮機1に吸入
される冷媒ガスの圧力が吸入圧力調整弁7の設定圧力以
上のときはこの1人圧力調整弁7が圧縮機1に吸入され
る冷媒流量を制限するので、冷凍装置はその最大能力を
発揮できない。
Also, in winter, the capacity of the condenser 2 is sufficient, and the compressor l
Even if the pressure of the refrigerant gas discharged from the evaporator 6 is low, if the evaporation pressure of the refrigerant in the evaporator 6, that is, the pressure of the refrigerant gas sucked into the compressor 1, is higher than the set pressure of the suction pressure regulating valve 7. Since this one-person pressure regulating valve 7 limits the flow rate of refrigerant sucked into the compressor 1, the refrigeration system cannot demonstrate its maximum capacity.

また、低外気温時に定圧自動膨張弁5が開いたとき、こ
の定圧自動膨張弁5は蒸発器6で蒸発し切れない量の液
冷媒を蒸発器6に送り出すので、圧縮機lに液冷媒が流
入して所謂液圧縮を惹起する。
Furthermore, when the constant pressure automatic expansion valve 5 opens at low outside temperatures, the constant pressure automatic expansion valve 5 sends out an amount of liquid refrigerant to the evaporator 6 that cannot be completely evaporated by the evaporator 6, so that the liquid refrigerant is supplied to the compressor l. This causes so-called liquid compression.

(課題を解決しようとする手段) 本発明は上記に鑑み吸入圧力調整弁や定圧自動膨張弁が
保有する好ましくない副作用を排除しようとするもので
あって、第1の発明の要旨とするところは、蒸発器出口
の冷媒i!l熱度を制御する過熱度制御機構を備えた自
動膨張弁において、この膨張弁入口の冷媒圧力が設定圧
力以上のとき蒸発器に流入する冷媒量を制御して圧縮機
の吐出圧力を制御する吐出圧力制御機構と、蒸発器出口
の冷媒圧力が設定圧力以下のとき圧縮機から吐出された
冷媒ガスを蒸発器出口に供給して圧縮機の吸入圧力を制
御する吸入圧力制御機構とを設け、予め設定された上記
各設定圧力に対する実際の運転圧力に応じて予め定めた
順序で上記各制?71機構を動作させることを特徴とす
る自動膨張弁にある。
(Means for Solving the Problems) In view of the above, the present invention aims to eliminate the undesirable side effects of suction pressure regulating valves and constant pressure automatic expansion valves, and the gist of the first invention is as follows: , refrigerant i at the evaporator outlet! In an automatic expansion valve equipped with a superheat degree control mechanism that controls the degree of heat, a discharge valve that controls the amount of refrigerant flowing into the evaporator and controls the discharge pressure of the compressor when the refrigerant pressure at the inlet of the expansion valve is higher than a set pressure. A pressure control mechanism and a suction pressure control mechanism that controls the suction pressure of the compressor by supplying refrigerant gas discharged from the compressor to the evaporator outlet when the refrigerant pressure at the evaporator outlet is below a set pressure are provided. Each of the above-mentioned controls is performed in a predetermined order according to the actual operating pressure for each of the above-mentioned set pressures. An automatic expansion valve characterized by operating a 71 mechanism.

上記吐出圧力制御機構は膨張弁入口の冷媒圧力が設定圧
力以上のとき上記過熱度制御機構が上記吐出圧力制御機
構の操作部として圧力制御動作するように1−記過ハ度
制御機構と連係させることもできる。
The discharge pressure control mechanism is linked with the superheat control mechanism described in 1- above so that when the refrigerant pressure at the inlet of the expansion valve is equal to or higher than a set pressure, the superheat control mechanism operates to control the pressure as an operating section of the discharge pressure control mechanism. You can also do it.

上記吐出圧力制御機構は膨張弁入口の冷媒圧力が設定圧
力以上のとき」二記過熟度制御機構の機能を停止させて
膨張弁入口の冷媒圧力に対応する冷媒量を1発器人口に
供給するようにすることもできる。
When the refrigerant pressure at the inlet of the expansion valve is equal to or higher than the set pressure, the discharge pressure control mechanism stops the function of the supermaturity control mechanism described in section 2 above, and supplies the refrigerant amount corresponding to the refrigerant pressure at the inlet of the expansion valve to one blower. You can also do it like this.

上記吸入圧力制御機構は圧縮機から吐出された冷媒ガス
を上記過熱度側?11機構の感温筒よりも茶発器出口に
近い位置に供給するようにすることもできる。
Does the above suction pressure control mechanism direct the refrigerant gas discharged from the compressor to the above superheat side? It is also possible to supply the tea at a position closer to the outlet of the tea generator than the thermosensor tube of the 11 mechanism.

(作用) 第1の発明においては、予め設定された各設定圧力に対
する実際の運転圧力に応じて予め定められた順序で過熱
度側?1114ffl横、吐出圧力制御機構、吸入圧力
側?11機構が動作する。
(Function) In the first invention, the degree of superheat is determined in a predetermined order according to the actual operating pressure for each preset pressure. 1114ffl side, discharge pressure control mechanism, suction pressure side? 11 mechanisms operate.

第2の発明においては、膨張弁入口の冷媒圧力が設定圧
力以上のとき、過熱度制御機構が吐出圧力制御機構の操
作部として圧力制御動作を行い常に圧縮機の吐出圧力を
許容圧力以下に抑制する。
In the second invention, when the refrigerant pressure at the inlet of the expansion valve is equal to or higher than the set pressure, the superheat degree control mechanism performs pressure control operation as an operation part of the discharge pressure control mechanism to always suppress the discharge pressure of the compressor to below the allowable pressure. do.

第3の発明においては、膨張弁入口の冷媒圧力が設定圧
力以上のとき、吐出圧力制御機構は過熱度制御機構の機
能を停止させて膨張弁入口の冷媒圧力に耐応する冷媒量
を蒸発器入口に供給する。
In the third invention, when the refrigerant pressure at the inlet of the expansion valve is equal to or higher than the set pressure, the discharge pressure control mechanism stops the function of the degree of superheat control mechanism and controls the amount of refrigerant corresponding to the refrigerant pressure at the inlet of the expansion valve to the evaporator. Supply at the entrance.

第4の発明においては、吸入圧力制御機構は圧縮機から
吐出された冷媒ガスを感温筒よりも蒸発器出口に近い位
置に供給し、過熱度制御機構はその感温筒が検知した蒸
発器から流出した冷媒ガスと吸入圧力制御機構により供
給された冷媒ガスとが混合した冷媒ガスの温度に応じて
過熱度を制御する。
In the fourth invention, the suction pressure control mechanism supplies the refrigerant gas discharged from the compressor to a position closer to the evaporator outlet than the temperature sensing cylinder, and the superheat degree control mechanism supplies the refrigerant gas discharged from the compressor to the evaporator outlet detected by the temperature sensing cylinder. The degree of superheating is controlled according to the temperature of the refrigerant gas that is a mixture of the refrigerant gas flowing out from the refrigerant gas and the refrigerant gas supplied by the suction pressure control mechanism.

(実施例) 本発明の1実施例が第1図及び第2図に示されている。(Example) One embodiment of the invention is shown in FIGS. 1 and 2.

第2図に示すように、第4図に示す従来のものにおける
吸入圧力調整弁7及び定圧自動膨張弁5を廃止するとと
もに膨張弁4に代えて自動膨張弁10が取り付けられて
いる。
As shown in FIG. 2, the suction pressure regulating valve 7 and constant pressure automatic expansion valve 5 in the conventional system shown in FIG. 4 are abolished, and an automatic expansion valve 10 is installed in place of the expansion valve 4.

この自動膨張弁10の詳細が第1図に示され、この自動
膨張弁10は過熱度制御機構11と、吐出圧力制御機構
12と吸入圧力制御機構13とを備えている。
Details of this automatic expansion valve 10 are shown in FIG. 1, and this automatic expansion valve 10 includes a superheat degree control mechanism 11, a discharge pressure control mechanism 12, and a suction pressure control mechanism 13.

過熱度制御機tjl 11は本体21、感温筒22、導
圧管23、ダイアフラム24、ロッド31、弁体26、
弁口32、キャリア27、スプリング28等からなる。
The superheat degree controller tjl 11 includes a main body 21, a temperature sensing tube 22, a pressure pipe 23, a diaphragm 24, a rod 31, a valve body 26,
It consists of a valve port 32, a carrier 27, a spring 28, etc.

感温筒22は蒸発器6出口の冷媒配管に取り付けられ、
かつ、ダイヤフラム24の上方に限界された作動室29
に導圧管23によって連通連結されている。
The temperature sensing cylinder 22 is attached to the refrigerant pipe at the outlet of the evaporator 6,
and a working chamber 29 bounded above the diaphragm 24.
are connected to each other by a pressure impulse pipe 23.

これら感温筒22、作動室29及び導圧管23の内部に
は冷凍装置の冷媒回路内に封入されている冷媒と同種の
冷媒が充填されている。ダイヤフラム24の下方に限界
された室3oは均圧継手25を介して吐出圧力制御機構
13に接続されている。ダイヤフラ624はロッド31
を介して弁体26に連動連結され、この弁体26はキャ
リヤ27上に載置され、その下方に配設されたスプリン
グ28によって弁口32に向がって押推されるようにな
っている。
The temperature-sensitive tube 22, the working chamber 29, and the pressure guiding tube 23 are filled with the same type of refrigerant as the refrigerant sealed in the refrigerant circuit of the refrigeration system. A chamber 3o limited below the diaphragm 24 is connected to the discharge pressure control mechanism 13 via a pressure equalizing joint 25. The diaphragm 624 is the rod 31
The valve body 26 is placed on a carrier 27 and is pushed toward the valve port 32 by a spring 28 disposed below the carrier 27. There is.

しかして、蒸発器6の出口の冷媒温度が上昇すると、感
温筒22内に充填された冷媒の圧力がこれに応じて上昇
する。この圧力は導圧管23を経て作動室29内に伝達
されてダイヤフラム24を押し下げる。ダイヤフラム2
4が下降すると、ロッド31を介して弁体26がスプリ
ング28の弾発力に抗して下降し、弁体26と弁口32
との間隙が増大してこの間隙を通る冷媒の流量が増大す
る。このようにして従来の膨張弁4と同様この過熱度制
御機構11によって蒸発器6の出口の冷媒過熱度が予め
設定された一定の値に維持される。
Therefore, when the temperature of the refrigerant at the outlet of the evaporator 6 rises, the pressure of the refrigerant filled in the temperature sensing cylinder 22 rises accordingly. This pressure is transmitted into the working chamber 29 via the pressure conduit 23 and pushes the diaphragm 24 downward. diaphragm 2
4 descends, the valve body 26 descends via the rod 31 against the elastic force of the spring 28, and the valve body 26 and the valve port 32
The gap between the two ends increases, and the flow rate of the refrigerant through this gap increases. In this manner, similar to the conventional expansion valve 4, the superheat degree control mechanism 11 maintains the refrigerant superheat degree at the outlet of the evaporator 6 at a preset constant value.

吐出圧力制御機構12はケース33、ベローズ34、ス
プリング35、弁体36、弁口37等からなる。
The discharge pressure control mechanism 12 includes a case 33, a bellows 34, a spring 35, a valve body 36, a valve port 37, and the like.

ケース33は通孔38を介してレシーバ3がらの液冷媒
が流入する液冷媒供給管39と連通している。
The case 33 communicates with a liquid refrigerant supply pipe 39 through which the liquid refrigerant from the receiver 3 flows through a through hole 38 .

このケース33の内部にはへローズ34が配設され、こ
のベローズ34の内部は通孔4oを介して大気に連通し
ている。ベローズ34はこの内部に配設されたスプリン
グ35の弾発力によって伸長し、このベローズ34の先
端に固定された弁体36を弁口37に向かって押推する
ようになっている。この弁口37は均圧継手25に連通
し、この均圧継手25はオリフィス49を介して吸入圧
力制御機構13の室47に連通し、この室47は配管4
8を介して感温筒22よりも蒸発器6の出口に近い位置
で冷媒配管に連通している。
A bellows 34 is disposed inside the case 33, and the inside of the bellows 34 communicates with the atmosphere via a through hole 4o. The bellows 34 is expanded by the elastic force of a spring 35 disposed inside the bellows 34, and pushes a valve body 36 fixed to the tip of the bellows 34 toward a valve port 37. This valve port 37 communicates with a pressure equalizing joint 25, and this pressure equalizing joint 25 communicates with a chamber 47 of the suction pressure control mechanism 13 via an orifice 49, and this chamber 47 communicates with the piping 4.
8, it communicates with the refrigerant pipe at a position closer to the outlet of the evaporator 6 than the temperature sensing cylinder 22.

しかして、液冷媒供給管39から通孔38を経てケース
33内に流入する液冷媒の圧力が設定圧力よりも上昇す
ると、この液冷媒による力かへローズ34及びスプリン
グ35の弾発力に打ち勝ってベローズ34を短縮させて
弁体36を弁口37がらに1間させる。
When the pressure of the liquid refrigerant flowing into the case 33 from the liquid refrigerant supply pipe 39 through the through hole 38 rises above the set pressure, the force of this liquid refrigerant overcomes the elastic force of the rose 34 and the spring 35. Then, the bellows 34 is shortened so that the valve body 36 is spaced from the valve port 37 by one space.

すると、ケース33内に流入した液冷媒は弁体36と弁
口37との陣間を通りその流量特性及びオリフィス49
の抵抗によって決まる圧力となって均圧継手25を経て
室30内に流入する。そして、作動室29内の圧力(蒸
発器6の出口の冷媒温度に相当する飽和蒸発圧)に打ち
勝ってダイアフラム24を上昇さゼて弁体26と弁口3
2との間隙を減少する。かくして、蒸発器6に供給され
る冷媒流量が減少し、圧縮[1の吐出圧力が低減する。
Then, the liquid refrigerant flowing into the case 33 passes through the space between the valve body 36 and the valve port 37, and changes its flow rate characteristics and the orifice 49.
It flows into the chamber 30 through the pressure equalizing joint 25 with a pressure determined by the resistance of the pressure. Then, the pressure in the working chamber 29 (the saturated evaporation pressure corresponding to the refrigerant temperature at the outlet of the evaporator 6) is overcome and the diaphragm 24 rises, causing the valve body 26 and the valve port 3 to rise.
Reduce the gap with 2. Thus, the flow rate of refrigerant supplied to the evaporator 6 is reduced, and the discharge pressure of compression [1] is reduced.

このようにして吐出圧力制御機構12は膨張弁10人口
の冷媒圧力が設定圧力以上のとき過熱度制御機構11の
過熱度制御機能を停止させ、自らはあたかもバイロフト
弁として機能すると同時に過熱度制御機構11をあたか
も操作部として機能させることにより痰発器6人口に供
給する冷媒量を膨張弁10の入口の冷媒圧力に対応する
量として圧縮機1の吐出圧力を抑制する。
In this way, the discharge pressure control mechanism 12 stops the superheat degree control function of the superheat degree control mechanism 11 when the refrigerant pressure of the expansion valve 10 is equal to or higher than the set pressure, and functions as a viroft valve while simultaneously functioning as a superheat degree control mechanism. 11 as if it were an operating section, the amount of refrigerant supplied to the sputum generator 6 corresponds to the refrigerant pressure at the inlet of the expansion valve 10, thereby suppressing the discharge pressure of the compressor 1.

吸入圧力制御機構13はケース41、ベローズ42、ス
プリング43、弁体44、弁口45等からなる。
The suction pressure control mechanism 13 includes a case 41, a bellows 42, a spring 43, a valve body 44, a valve port 45, and the like.

ケース41内にベローズ42が配設され、このベローズ
42の内部には窒素ガス等の不活性ガスが封入されてい
る。そして、このベローズ42はその内部に配設された
スプリング43の弾発力によって伸長し、このベローズ
42の一端に固定された弁体44を弁口45から離間さ
せるようζこなっている。この弁口45は配管46を介
して圧縮mlの吐出側に連結されている。ベローズ42
の右側に限界された室47は配管48を介して蒸発器6
の出口側に連通ずるとともにオリフィス49を介して均
圧継手25に連結されている。
A bellows 42 is disposed within the case 41, and an inert gas such as nitrogen gas is sealed inside the bellows 42. The bellows 42 is expanded by the elastic force of a spring 43 disposed inside the bellows 42, and is bent so as to separate the valve body 44 fixed to one end of the bellows 42 from the valve port 45. This valve port 45 is connected to the compressed ml discharge side via a pipe 46. bellows 42
A chamber 47 bounded on the right side of the evaporator 6 is connected to the evaporator 6 via a pipe 48.
and is connected to the pressure equalizing joint 25 via an orifice 49.

しかして、圧縮機1に吸入されるガス冷媒の圧力、即ち
、蒸発器6出口の冷媒圧力が設定圧力以下に下降すると
、配管48、室47を経てケース41内の圧力が低下し
、ベローズ42内に封入されている窒素ガスによる力が
ベローズ42及びスプリング43の弾発力に抗してベロ
ーズ42を短縮させるので、弁体44と弁口45との間
隙が増大する。かくして、圧縮機1から吐出された冷媒
ガスが配管46、弁口45を経てケース41内に入り、
更に、室47、配管48を経て蒸発器6の出口と感温筒
22との間に供給される。
When the pressure of the gas refrigerant sucked into the compressor 1, that is, the refrigerant pressure at the outlet of the evaporator 6, falls below the set pressure, the pressure inside the case 41 decreases through the pipe 48 and the chamber 47, and the bellows 42 Since the force of the nitrogen gas sealed therein shortens the bellows 42 against the elastic force of the bellows 42 and spring 43, the gap between the valve body 44 and the valve port 45 increases. In this way, the refrigerant gas discharged from the compressor 1 enters the case 41 through the pipe 46 and the valve port 45.
Furthermore, it is supplied between the outlet of the evaporator 6 and the temperature sensing tube 22 via a chamber 47 and a pipe 48.

このようにして吸入圧力側?21機構13は蒸発器6出
口の冷媒圧力が設定圧力以下のとき、これに応じて圧縮
機1の吸入圧力を比例制御する。
Suction pressure side like this? 21 mechanism 13 proportionally controls the suction pressure of the compressor 1 when the refrigerant pressure at the outlet of the evaporator 6 is below a set pressure.

この場合、感温筒22は吸入圧力制御機構13から配管
48を経て供給される冷媒ガスと蒸発器6から流出した
冷媒ガスとからなる混合冷媒の過熱度を検知し、過熱度
制御機構11はこの感温筒22からの指令に応じて過熱
度制御を行う。従って、圧縮機1に吸入される冷媒は通
常の運転時のそれと同様となり、圧縮機1の液バツクや
過熱を防止できる。
In this case, the temperature sensing cylinder 22 detects the degree of superheat of the mixed refrigerant made up of the refrigerant gas supplied from the suction pressure control mechanism 13 via the pipe 48 and the refrigerant gas flowing out from the evaporator 6, and the superheat degree control mechanism 11 Superheat degree control is performed in accordance with commands from this temperature sensing cylinder 22. Therefore, the refrigerant sucked into the compressor 1 is the same as that during normal operation, and liquid back-up and overheating of the compressor 1 can be prevented.

以上述べたように、この自動膨張弁10は吐出圧力制御
機能を使先さセ、過熱度制御R能と吸入圧力制御機能を
選択的に切り換えて動作させることができるので、従来
の吸入圧力調整弁7及び定圧自動膨張弁5の好ましくな
い副作用を回避できる。
As described above, this automatic expansion valve 10 can be operated by selectively switching between the discharge pressure control function, the superheat control R function, and the suction pressure control function. Undesirable side effects of the valve 7 and constant pressure automatic expansion valve 5 can be avoided.

第3図には本発明の第2の実施例が示されている。A second embodiment of the invention is shown in FIG.

この第2の実施例は吐出圧力制御機構14が第1の実施
例のそれと異なっているが他は同様である。
This second embodiment differs from the first embodiment in the discharge pressure control mechanism 14, but is otherwise similar.

吐出圧力制御機構14はケース51、ベローズ52、ス
プリング53、第1の弁体54、弁口55、第2の弁体
56、弁口57等からなる。
The discharge pressure control mechanism 14 includes a case 51, a bellows 52, a spring 53, a first valve body 54, a valve port 55, a second valve body 56, a valve port 57, and the like.

ケース51は通孔59を介して液冷媒供給管39と連通
し、このケース51内にベローズ52が配設されている
。このベローズ52の内部は通孔60を介して大気と連
通している。ベローズ52の内部に配設されたスプリン
グ53の弾発力によってベローズ52が伸長すると、こ
のベローズ52に固定された弁体54は弁口55に向か
って接近し、かつ、弁体56は弁口57から離間するよ
うになっている。なお、同じリフトのとき弁口55の開
度は弁口57に比し格段に大きくなるように構成されて
いる。弁口57は配管61を介してキャリヤ27の下方
に形成された室62に連通し、弁口57は配管63を介
して蒸発器6の入口側に連通している。
The case 51 communicates with the liquid refrigerant supply pipe 39 through a through hole 59, and a bellows 52 is disposed within the case 51. The inside of this bellows 52 communicates with the atmosphere via a through hole 60. When the bellows 52 expands due to the elastic force of a spring 53 disposed inside the bellows 52, the valve body 54 fixed to the bellows 52 approaches the valve port 55, and the valve body 56 moves toward the valve port 55. 57. Note that the opening degree of the valve port 55 is configured to be much larger than that of the valve port 57 at the same lift. The valve port 57 communicates with a chamber 62 formed below the carrier 27 via a pipe 61, and the valve port 57 communicates with the inlet side of the evaporator 6 via a pipe 63.

しかして、通孔59からケース51内に流入する液冷媒
の圧力が設定圧力以上に上昇すると、この液冷媒による
力がへローズ52及びスプリング53の弾発力に打ち勝
ってベローズ52が短縮し、弁体54と弁口55との間
隙が増大すると同時に弁体56と弁口57との間隙が減
少する。かくして、ケース51内に流入した液冷媒は弁
口55、配管61を経て作動室62内に流入し、キャリ
ヤ27を押し上げることによって弁体26は弁口32を
閉塞する。これと同時に弁口57から流出した液冷媒は
配管63を経て蒸発器6の入口に流入する。
When the pressure of the liquid refrigerant flowing into the case 51 from the through hole 59 rises above the set pressure, the force of the liquid refrigerant overcomes the elastic force of the bellows 52 and the spring 53, causing the bellows 52 to shorten. At the same time as the gap between the valve body 54 and the valve port 55 increases, the gap between the valve body 56 and the valve port 57 decreases. Thus, the liquid refrigerant that has flowed into the case 51 flows into the working chamber 62 through the valve port 55 and the pipe 61, and by pushing up the carrier 27, the valve body 26 closes the valve port 32. At the same time, the liquid refrigerant flowing out from the valve port 57 flows into the inlet of the evaporator 6 via the pipe 63.

このようにして、この吐出圧力制御機構I4は弁口32
を閉塞することによって過熱度制御機構11の過熱度制
御機能を停止させた上で蒸発器6に供給される冷媒量を
膨張弁IO人口の液冷媒の圧力に反比例するように制御
するので、圧縮機1の吐出圧力は吐出圧力制御機構14
によって膨張弁10入口の液冷媒の圧力に反比例するよ
うに種制御される。
In this way, this discharge pressure control mechanism I4
By blocking the superheat degree control mechanism 11, the superheat degree control function is stopped and the amount of refrigerant supplied to the evaporator 6 is controlled to be inversely proportional to the pressure of the liquid refrigerant in the expansion valve IO population. The discharge pressure of the machine 1 is controlled by the discharge pressure control mechanism 14.
The pressure is controlled to be inversely proportional to the pressure of the liquid refrigerant at the inlet of the expansion valve 10.

他の作用は第1の実施例と同様である。Other operations are similar to those in the first embodiment.

(発明の効果) 本発明においては、従来の吸入圧力制御弁及び定圧自動
膨張弁が保有していた好ましくない副作用を回避して冷
凍装置のあらゆる運転条件下で圧縮機の吐出圧力、吸入
圧力をその許容範囲内に維持できるとともに液バンクを
防止して冷凍装置にその最大能力を発揮させることがで
きる。
(Effects of the Invention) The present invention avoids the undesirable side effects of conventional suction pressure control valves and constant pressure automatic expansion valves, and maintains the discharge pressure and suction pressure of the compressor under all operating conditions of the refrigeration system. It is possible to maintain the temperature within the allowable range, prevent liquid banks, and allow the refrigeration system to perform at its maximum capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の1実施例を示し、第1図は
自動膨張弁の略示的断面図、第2図は冷凍装置の冷媒回
路図である。第3図は本発明の第2の実施例に係わる自
動膨張弁の略示的断面図である。第4図は従来の冷凍装
置の冷媒回路図である。 圧縮機−1、自動膨張弁−10、蒸発器−6、過熱度制
御機構・−11、吐出圧力制御機構−12、吸入圧第2
1 and 2 show one embodiment of the present invention, with FIG. 1 being a schematic sectional view of an automatic expansion valve, and FIG. 2 being a refrigerant circuit diagram of a refrigeration system. FIG. 3 is a schematic cross-sectional view of an automatic expansion valve according to a second embodiment of the present invention. FIG. 4 is a refrigerant circuit diagram of a conventional refrigeration system. Compressor-1, automatic expansion valve-10, evaporator-6, superheat control mechanism-11, discharge pressure control mechanism-12, suction pressure second
figure

Claims (4)

【特許請求の範囲】[Claims] (1)蒸発器出口の冷媒過熱度を制御する過熱度制御機
構を備えた自動膨張弁において、この膨張弁入口の冷媒
圧力が設定圧力以上のとき蒸発器に流入する冷媒量を制
御して圧縮機の吐出圧力を制御する吐出圧力制御機構と
、蒸発器出口の冷媒圧力が設定圧力以下のとき圧縮機か
ら吐出された冷媒ガスを蒸発器出口に供給して圧縮機の
吸入圧力を制御する吸入圧力制御機構とを設け、予め設
定された上記各設定圧力に対する実際の運転圧力に応じ
て予め定めた順序で上記各制御機構を動作させることを
特徴とする自動膨張弁。
(1) In an automatic expansion valve equipped with a degree of superheating control mechanism that controls the degree of superheating of the refrigerant at the outlet of the evaporator, when the refrigerant pressure at the inlet of the expansion valve is higher than the set pressure, the amount of refrigerant flowing into the evaporator is controlled and compressed. a discharge pressure control mechanism that controls the discharge pressure of the evaporator, and a suction mechanism that controls the suction pressure of the compressor by supplying refrigerant gas discharged from the compressor to the evaporator outlet when the refrigerant pressure at the evaporator outlet is below the set pressure. 1. An automatic expansion valve comprising a pressure control mechanism and operating each of the control mechanisms in a predetermined order according to an actual operating pressure with respect to each of the preset pressures.
(2)上記吐出圧力制御機構は膨張弁入口の冷媒圧力が
設定圧力以上のとき上記過熱度制御機構が上記吐出圧力
制御機構の操作部として圧力制御動作するように上記過
熱度制御機構と連係されていることを特徴とする(1)
項記載の自動膨張弁。
(2) The discharge pressure control mechanism is linked with the superheat degree control mechanism so that when the refrigerant pressure at the inlet of the expansion valve is equal to or higher than a set pressure, the superheat degree control mechanism operates to control the pressure as an operating section of the discharge pressure control mechanism. (1)
Automatic expansion valve as described in section.
(3)上記吐出圧力制御機構は膨張弁入口の冷媒圧力が
設定圧力以上のとき上記過熱度制御機構の機能を停止さ
せて膨張弁入口の冷媒圧力に対応する冷媒量を蒸発器入
口に供給することを特徴とする(1)項記載の自動膨張
弁。
(3) The discharge pressure control mechanism stops the function of the superheat degree control mechanism when the refrigerant pressure at the expansion valve inlet is equal to or higher than the set pressure, and supplies the refrigerant amount corresponding to the refrigerant pressure at the expansion valve inlet to the evaporator inlet. The automatic expansion valve according to item (1), characterized in that:
(4)上記吸入圧力制御機構は圧縮機から吐出された冷
媒ガスを上記過熱度制御機構の感温筒よりも蒸発器出口
に近い位置に供給することを特徴とする(1)項記載の
自動膨張弁。
(4) The automatic suction pressure control mechanism according to item (1), wherein the suction pressure control mechanism supplies the refrigerant gas discharged from the compressor to a position closer to the evaporator outlet than the temperature sensing tube of the superheat degree control mechanism. expansion valve.
JP2114184A 1990-04-27 1990-04-27 Automatic expansion valve Pending JPH0413068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2114184A JPH0413068A (en) 1990-04-27 1990-04-27 Automatic expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114184A JPH0413068A (en) 1990-04-27 1990-04-27 Automatic expansion valve

Publications (1)

Publication Number Publication Date
JPH0413068A true JPH0413068A (en) 1992-01-17

Family

ID=14631304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114184A Pending JPH0413068A (en) 1990-04-27 1990-04-27 Automatic expansion valve

Country Status (1)

Country Link
JP (1) JPH0413068A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698756B1 (en) * 2015-11-11 2017-01-23 (주) 액트 Device for adjusting refrigerant amount of heat pump system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698756B1 (en) * 2015-11-11 2017-01-23 (주) 액트 Device for adjusting refrigerant amount of heat pump system

Similar Documents

Publication Publication Date Title
US3564865A (en) Automotive air-conditioning system
US3667247A (en) Refrigeration system with evaporator outlet control valve
EP0602996B1 (en) Dual capacity thermal expansion valve
US3817053A (en) Refrigerating system including flow control valve
US3435626A (en) Pressure control apparatus for refrigeration system
JPH0694953B2 (en) Closed refrigeration circuit
US2463951A (en) Refrigeration expansion valve
US5531077A (en) Refrigerating system with auxiliary compressor-cooling device
US6209793B1 (en) Thermostatic expansion valve in which a valve seat is movable in a flow direction of a refrigerant
US5277364A (en) Dual capacity thermal expansion valve
US3054273A (en) Thermal expansion valve
US3388558A (en) Refrigeration systems employing subcooling control means
US4890458A (en) Refrigerating circuit for car air conditioning
EP0351204A2 (en) Automotive air conditioning with control device
US2614393A (en) Art of refrigeration
JPH0413068A (en) Automatic expansion valve
US3803864A (en) Air conditioning control system
GB2068522A (en) Temperature-sensitive control system
US3688517A (en) Air conditioning control system
US2181416A (en) Refrigerating apparatus
US2540550A (en) Art of refrigeration
JPH01141119A (en) Air conditioner
JPH05196324A (en) Expansion valve for refrigerating cycle
JP3442949B2 (en) Refrigeration cycle using variable capacity compressor
JP2808514B2 (en) Subcooling control valve, oil separator for refrigeration system, and refrigeration system