WO2019049459A1 - インバータの制御方法、モータ駆動ユニット、モータモジュールおよび電動パワーステアリング装置 - Google Patents
インバータの制御方法、モータ駆動ユニット、モータモジュールおよび電動パワーステアリング装置 Download PDFInfo
- Publication number
- WO2019049459A1 WO2019049459A1 PCT/JP2018/022923 JP2018022923W WO2019049459A1 WO 2019049459 A1 WO2019049459 A1 WO 2019049459A1 JP 2018022923 W JP2018022923 W JP 2018022923W WO 2019049459 A1 WO2019049459 A1 WO 2019049459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- value
- inverter
- current
- switching
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
Definitions
- the present disclosure relates to a control method of an inverter, a motor drive unit, a motor module, and an electric power steering apparatus.
- the phase current flowing in the winding is controlled by manipulating the phase voltage of the winding of each phase of the electric motor (hereinafter simply referred to as "motor").
- the inverter can be regarded as a voltage source as one of the components of the motor drive unit.
- the switching pattern of the switch element is determined so that the on / off time average of the switch element matches the target value.
- PWM Pulse Width Modulation
- Patent Document 1 discloses a motor control device that controls a motor in which the windings are Y-connected, and further discloses a motor control device including three H bridge circuits.
- the three H bridge circuits are respectively connected to the three phase windings.
- Each FET (Field Effect Transistor) in the H-bridge circuit is provided by providing an energization control period for energizing the winding and a non-conduction control period for not conducting the winding in one cycle of the PWM and changing the ratio thereof. It is possible to reduce the heat generation of the
- a redundant design is adopted that can continue safe operation even if part of the part fails.
- redundant design it is considered to provide two inverters for one motor.
- the configuration of Patent Document 1 in which three H bridge circuits are respectively connected to three-phase windings can be said to be an example of a redundant design.
- there is always a component that is not used at all e.g., the FET of the inverter
- a component that is over-used relative to others which can lead to a bias in the frequency of use among the components. Therefore, a control method that can reduce the occurrence of failure or abnormality of parts by smoothing the use frequency of each part as much as possible is desired.
- an inverter control method and a motor drive unit capable of appropriately suppressing heat generation and supplying more current to the inverter, a motor module including the motor drive unit, and the motor module
- An electric power steering apparatus is provided.
- An exemplary inverter control method of the present disclosure is a control method for controlling switching operations of a plurality of switch elements of an inverter that supplies power to a motor having n-phase (n is an integer of 3 or more) windings.
- PWM control method wherein one cycle of the switching operation is composed of a plurality of switching pattern periods each having an independent time ratio, and the sum of the respective time ratios of the plurality of switching patterns is 1
- the time ratio is a value that can change in each cycle of the switching operation, and a current acquisition step of acquiring a phase current of the n-phase winding, and an update of the time ratio of the plurality of switching patterns Estimating an average current per cycle flowing through each of the plurality of switch elements based on the value of the phase current and the phase current;
- the plurality of switching patterns are determined by determining the optimal distribution of the time ratio of the plurality of switching patterns based on a fixed value for each phase, and changing the latest value of the time ratio to the value of the optimal distribution.
- the current acquisition step, the estimation step, the update step and the generation step are repeatedly performed.
- FIG. 1 is a block diagram schematically showing a typical hardware block configuration of a motor drive unit 1000 according to an exemplary embodiment 1.
- FIG. 2 is a flowchart showing an outline of a process flow of a control method of an inverter according to an exemplary embodiment 1.
- FIG. 3 is a flowchart showing a specific example of the control method of the inverter according to the first embodiment.
- FIG. 4A is a schematic view showing the state of current and phase voltage flowing in the H bridge when the first switching pattern P1 is selected.
- FIG. 4B is a schematic view showing the state of current and phase voltage flowing in the H bridge when the second switching pattern P2 is selected.
- FIG. 1 is a block diagram schematically showing a typical hardware block configuration of a motor drive unit 1000 according to an exemplary embodiment 1.
- FIG. 2 is a flowchart showing an outline of a process flow of a control method of an inverter according to an exemplary embodiment 1.
- FIG. 3 is a flowchart showing a specific example of the control
- FIG. 4C is a schematic view showing the state of current and phase voltage flowing in the H bridge when the third switching pattern P3 is selected.
- FIG. 4D is a schematic view showing the state of current and phase voltage flowing in the H bridge when the fourth switching pattern P4 is selected.
- FIG. 5A is a schematic view illustrating logic for generating a switching pattern based on PWM control for an H bridge.
- FIG. 5B is a waveform diagram illustrating control signal waveforms of switch elements corresponding to Table 1 in the first to fourth switching patterns P1, P2, P3 and P4 in one cycle of PWM.
- FIG. 6 is a current waveform obtained by plotting current values flowing in U-phase, V-phase, and W-phase windings of motor 200 when power conversion device 100 is controlled according to PWM control according to the first embodiment Is a graph illustrating a sine wave).
- FIG. 7 is a flowchart illustrating another specific example of the control method of the inverter according to the exemplary embodiment 1.
- FIG. 8 is a flowchart showing a specific example of a control method of the inverter in consideration of the thermal characteristics of the switch element.
- FIG. 9 is a flowchart showing a specific example of a control method of an inverter that adjusts the amount of current flowing to each switch element according to the measurement result of the temperature sensor.
- FIG. 10 is a block diagram schematically showing a hardware block configuration of a motor module 2000 according to an exemplary embodiment 2 and mainly showing a hardware block configuration of a motor drive unit 1000.
- FIG. 11 is a circuit diagram showing an example of a circuit configuration of the power conversion device 100 of the motor drive unit 1000 according to the second embodiment.
- FIG. 12 is a schematic view showing a typical configuration of an electric power steering apparatus 3000 according to an exemplary embodiment 3. As shown in FIG.
- a control method for controlling a power converter that converts power from a power supply into power supplied to a three-phase motor having three-phase (U-phase, V-phase, W-phase) windings Embodiments of the present disclosure will now be described.
- a control method for controlling a power converter that converts power from a power supply into power supplied to an n-phase motor having n-phase (n is an integer of 4 or more) windings such as four-phase or five-phase Is also a category of the present disclosure.
- Embodiment 1 [1.1. System Configuration that can Use Inverter Control Method] First, a typical hardware block configuration of a motor drive unit 1000 that can suitably use the inverter control method according to the present embodiment will be described.
- the control method of the inverter according to the present disclosure is not limited to the motor drive unit exemplified below, and may be suitably used for various motor drive units.
- FIG. 1 schematically shows a typical hardware block configuration of a motor drive unit 1000.
- Motor drive unit 1000 includes power converter 100 and control circuit 300.
- Motor drive unit 1000 is connected to a power supply (not shown) and motor 200.
- the motor 200 is, for example, a three-phase alternating current motor.
- the motor 200 includes a U-phase winding M1, a V-phase winding M2, and a W-phase winding M3.
- the motor drive unit 1000 can convert the power from the power supply into the power to be supplied to the motor 200.
- motor drive unit 1000 can convert DC power into three-phase AC power which is a pseudo-sine wave of U-phase, V-phase and W-phase.
- the power converter 100 includes, for example, a first inverter 120, a second inverter 130, and a current sensor 150.
- the current sensor 150 detects the current value of the motor (hereinafter, referred to as “actual current value”), that is, the phase current flowing through the winding of each phase.
- the first inverter 120 of the power conversion device 100 has three-phase legs, and is connected to one end of the winding of each phase of the motor 200.
- the second inverter 130 has three-phase legs and is connected to the other end of the winding of each phase.
- the motor connection of the motor 200 according to the present embodiment is different from so-called star connection and delta connection.
- the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a controller 340, a drive circuit 350, and a ROM 360.
- Control circuit 300 is connected to power conversion device 100, and drives power conversion device 100 to energize windings M1, M2, and M3 of motor 200.
- the controller 340 of the control circuit 300 can control the target position, rotational speed, current, and the like of the rotor of the motor 200 to realize closed loop control.
- Control circuit 300 may include a torque sensor instead of angle sensor 320. In that case, the control circuit 300 can control the target motor torque.
- the power supply circuit 310 generates, for example, power supply voltages (for example, 3 V, 5 V) necessary for each block in the circuit based on a 12 V power supply voltage from the power supply.
- the angle sensor 320 is, for example, a resolver or a Hall IC. Alternatively, the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet. The angle sensor 320 detects the rotation angle of the rotor of the motor 200 (hereinafter referred to as “rotation signal”), and outputs a rotation signal to the controller 340.
- rotation signal the rotation angle of the rotor of the motor 200
- the input circuit 330 receives the actual current value detected by the current sensor 150, converts the level to the input level of the controller 340 as necessary, and outputs the actual current value to the controller 340.
- the input circuit 330 is, for example, an analog-to-digital converter.
- the controller 340 is an integrated circuit that controls the entire motor drive unit 1000, and is realized by, for example, a microcontroller or a field programmable gate array (FPGA).
- the controller 340 controls the switching operation (turn on or off) of each switch element in the first inverter 120 and the second inverter 130 of the power conversion device 100.
- the controller 340 can set the target current value according to the actual current value, the rotation signal of the rotor, etc. to generate a PWM signal and output it to the drive circuit 350.
- the drive circuit 350 is typically a predriver.
- the predriver may also be referred to as a gate driver.
- the drive circuit 350 controls a control signal (typically, a gate control signal) for controlling the switching operation of each switch element (typically, a semiconductor transistor) in the first inverter 120 and the second inverter 130 from the PWM from the controller 340. It generates according to the signal and gives it to each switch element.
- a control signal typically, a gate control signal
- the ROM 360 is, for example, a writable memory (for example, a PROM), a rewritable memory (for example, a flash memory), or a read only memory.
- the ROM 360 stores a control program including an instruction group for causing the controller 340 to control the power conversion apparatus 100.
- the control program is temporarily expanded in a RAM (not shown) at boot time.
- the control method of the inverter relates to a control method of controlling the switching operation of a plurality of switch elements in the first inverter 120 and the second inverter 130.
- Control of the switching operation of the switch element typically refers to PWM control.
- the control method of the inverter will be described by taking PWM control as an example.
- the circuit configuration of the inverter provided with the H bridge has redundancy. Specifically, in the case where the same current flows in the winding of the motor 200, there is a path of current flowing through each inverter, that is, a degree of freedom in mainly selecting a switch element.
- redundancy means that there are a plurality of energization patterns or current paths for obtaining the same motor output.
- the temperature of the switch element can be one of the factors that limit the maximum current that can be supplied to the inverter.
- the amount of current flowing through the switch element is one of the main factors that determine the temperature. If even one of the switch elements in the inverter approaches the heat generation limit, it may result in the heat generation limit of the entire inverter.
- a degree of freedom there is a degree of freedom, and there are multiple switching patterns that provide the same phase voltage to the windings.
- a plurality of switching patterns are included in one cycle of PWM.
- the current flowing through the switch element differs depending on the switching pattern.
- the current path is determined by the switching pattern.
- the amount of current flowing through each switch element can be determined.
- the total amount of current flowing to each switch element is recorded in the memory. By appropriately selecting the current path based on the recorded values, it is possible to balance the load of each switch element. If this can be realized, an average larger current can flow through the entire inverter.
- the present inventor considered distributing the load by using each switch element in the inverter in a well-balanced manner to widen the heat generation limit of the entire inverter.
- FIG. 2 shows an overview of a process flow of a control method of an inverter according to the present disclosure.
- the control method of the inverter updates step S100 of acquiring phase current, step S200 of estimating average current flowing to each switch element in H bridge, and time ratio R of a plurality of switching patterns in one PWM cycle.
- Step S300 of performing, Step S400 of generating PWM control based on the updated time ratio R, and Step S500 of judging stop of PWM control are included.
- the plurality of switching patterns preferably include four switching patterns.
- Steps S100 to S400 are a series of processes for generating a PWM control signal of one cycle, and the series of processes are repeatedly executed each time a PWM control signal of one cycle is generated.
- a control program including an instruction group describing these processes is stored in the ROM 360 (see FIG. 1).
- the controller 340 (see FIG. 1) can read the control program from the ROM 360 and sequentially execute each process.
- the outline of the control method of the inverter according to the present disclosure is as follows.
- Controller 340 obtains phase currents I u , I V and I W of three-phase windings M1, M2 and M3 based on the actual current values measured by current sensor 150 (see FIG. 1) (step S100). ).
- the controller 340 controls a plurality of switch elements of the first inverter 120 and the second inverter 130 based on the latest value of the time ratio R of the plurality of switching patterns in one PWM cycle, the phase current I u , I V and I W
- the average current per cycle flowing in each of the two is estimated (step S200).
- the controller 340 preferably writes the estimated value of the average current IAv in the memory, or more preferably calculates the integrated value of the estimated value of the average current IAv and writes it in the memory. More preferably, the controller 340 writes the estimated value of the average power to the memory or calculates the integrated value of the estimated value of the average power and writes it to the memory.
- the controller 340 optimizes, for each phase, the balance of the current flowing in each of the plurality of switch elements based on the estimated value of the average current IAv (step S300). Specifically, controller 340 determines the optimum distribution of time ratio R for each phase based on the estimated value of average current IAv, and uses the value of time ratio R used for estimation of the average current in step S200. By changing the value of the optimal allocation, the time ratio R is updated for each phase.
- the controller 340 generates a PWM control signal for controlling the switching operation of the plurality of switch elements of the first inverter 120 and the second inverter 130 based on the optimization result, that is, the updated value of the time ratio R. Output to (see FIG. 1) (step S400).
- the controller 340 repeatedly executes the processing of steps S100 to S400 as long as the PWM control continues (step S500).
- FIG. 3 is a flowchart showing a specific example of the control method of the inverter according to the present embodiment. The processing of each step will be described in detail below.
- the controller 340 determines the phase currents I u , I V and I W of the three-phase windings M1, M2 and M3 based on the actual current values measured by the current sensor 150 (see FIG. 1).
- three shunt resistors for detecting a three-phase phase current may be provided in each inverter, and the controller 340 may obtain currents flowing in the three shunt resistors as three-phase phase currents, respectively. it can.
- Techniques have been proposed for acquiring phase current without using a current sensor. It is also an aspect of the present disclosure to obtain three-phase phase current using such a technique.
- Step S210> The controller 340 calculates the latest values of the time ratios r1, r2, r3 and r4 of the first to fourth switching patterns P1, P2, P3 and P4, and the phase currents I u , I V and I W The average current per cycle flowing to each switch element in the H bridge is estimated on a phase basis based on
- the first to fourth switching patterns P1, P2, P3 and P4 and their time ratios r1, r2, r3 and r4 included in one cycle of PWM will be described with reference to FIGS. 4A to 4D.
- the time ratio of a plurality of switching patterns is referred to as “time ratio R”.
- the time ratio R refers to "time ratios r1, r2, r3 and r4".
- FIGS. 4A to 4D schematically show the current and the phase voltage flowing in the H bridge when the first to fourth switching patterns P1, P2, P3 and P4 are selected.
- Table 1 shows the on / off state of each switch element in each of the first to fourth switching patterns P1, P2, P3 and P4.
- One cycle of the switching operation is composed of periods of a plurality of switching patterns each having an independent time ratio.
- the sum of the time ratios of each of the plurality of switching patterns is 1, and the time ratio is a value that can change for each cycle of PWM.
- the plurality of switching patterns according to the present embodiment includes a first switching pattern P1 having a first time ratio r1, a second switching pattern P2 having a second time ratio r2, a third switching pattern P3 having a third time ratio r3, and a third switching pattern P3 having a third time ratio r3.
- a fourth switching pattern P4 having a 4-hour ratio r4 is included.
- the sum of the first to fourth time ratios r1, r2, r3 and r4 is expressed by the equation (1).
- R1 + r2 + r3 + r4 1 Formula (1)
- FIG. 4A-4D illustrate an exemplary H-bridge configuration.
- the switch element H1 of the left leg of the H bridge is the high side switch element of the leg of the first inverter 120
- the switch element L1 is the low side switch element of the leg of the first inverter 120
- the switch element H2 of the right leg of the H bridge is a high side switch element of the leg of the second inverter 130
- the switch element L2 is a low side switch element of the leg of the second inverter 130.
- FIGS. 4A to 4D show how phase current flows in the winding from the first inverter 120 to the second inverter 130 (from left to right in the drawing). Although not particularly illustrated, it is also natural to flow the phase current from the second inverter 130 to the first inverter 120 through the first to fourth switching patterns P1, P2, P3 and P4 described below. It is possible.
- the current flowing through the switch element H1 is represented by the current I H1 .
- the current flowing through the switch element H2 is represented by the current I H2 .
- the current flowing through the switch element L1 is represented by a current Il1 .
- the current flowing through the switch element L2 is represented by a current I12 .
- the switch elements H1 and H2 are turned on and the switch elements L1 and L2 are turned off.
- the phase current I flows from the switch element H1 to the switch element H2.
- the phase voltage is 0 V because both of the switch elements H1 and H2 are turned on.
- the switch elements L1 and L2 are turned on and the switch elements H1 and H2 are turned off.
- the phase current I flows from the switch element L1 to the switch element L2.
- the phase voltage is 0 V because both of the switch elements L1 and L2 are turned on, as in the first switching pattern P1.
- the switch elements H1 and L2 are turned on and the switch elements L1 and H2 are turned off.
- the phase current I flows from the switch element H1 to the switch element L2.
- the phase voltage becomes the power supply voltage Vdc because the switch elements H1 and L2 are turned on.
- the switch elements L2 and H2 are turned on and the switch elements H1 and L2 are turned off.
- the phase current I flows from the switch element L1 to the switch element H2.
- the phase voltage is a reverse voltage (-Vdc) of the power supply voltage Vdc because the switch elements L1 and H2 are turned on.
- FIG. 5A schematically illustrates logic for generating a switching pattern based on PWM control for an H bridge.
- FIG. 5B illustrates control signal waveforms of the switch elements corresponding to Table 1 in the first to fourth switching patterns P1, P2, P3 and P4 in one cycle of PWM.
- the horizontal axis of the graph in FIG. 5B indicates time, and the vertical axis indicates control signals Leg1_Logic and Leg2_Logic that control on / off of each switch element.
- the control signal Leg1_Logic is applied to the leg including the switch elements H1 and L1 of the H bridge, and the control signal Leg2_Logic is applied to the leg including the switch elements H2 and L2.
- the inverter provides control signals of different polarities to the two switch elements of the leg.
- FIG. 5B illustrates a signal waveform having a 50% duty ratio.
- the average voltage VAv per cycle of PWM per H bridge can be expressed by equation (2) using time ratios r1 to r4.
- the average voltage VAv is applied to the load or winding.
- IAv H1 , IAv L1 , IAv H2 and IAv L2 per one cycle of the currents I H1 , I L1 , I H2 and I L2 flowing to the switch elements H1, L1, H2 and L2 are expressed by the formula (3 It is represented by).
- the controller 340 sets each of the switch elements H1, L1, H2, and L2 based on the set of the phase current I and the time ratio R acquired in step S100, that is, the time ratios r1 to r4 using equation (4).
- the average current IAv per period of the flowing PWM can be estimated.
- the controller 340 can further estimate the average power loss WAv per cycle of PWM based on Equation (4).
- the average power loss WAv refers to the conduction loss of the switch element (for example, FET) as described above, and is expressed using the product of the average current IAv and the voltage. More specifically, the average power loss WAv is expressed by a matrix in which I is replaced by (R on ⁇ I 2 ) in Equation (4).
- R on is the on resistance of the switch element.
- the time ratio R used to estimate the average current needs to be the latest value.
- the latest value is the value of the time ratio R updated in step S330 of the process for generating the current one previous PWM signal. This will be described in detail later.
- the controller 340 reads the updated value of the time ratio R written in the ROM 360 in step S330 as the latest value, and estimates the average current IAv or the average power loss WAv using Equation (4).
- the controller 340 can write the estimated value of the average current IAv or the average power loss WAv to the memory.
- controller 340 integrates the estimated value of average current IAv or average power loss WAv for each switch element, and uses the integrated value as the amount of current flowing through each switch element (for example, the total amount of current flowing in a certain period) For example, it can be written in the ROM 360.
- controller 340 reads from ROM 360 the integrated value of average current IAv or average power loss WAv acquired in step S220 of the process for generating a PWM control signal one cycle before, and acquires the average acquired in step S210.
- the controller 340 By adding the estimated value of the current IAv or the average power loss WAv to the readout integrated value, the latest integrated value of the average current IAv or the average power loss WAv is obtained.
- the controller 340 preferably writes the estimated value of the average power loss WAv or its integrated value in the memory as the estimated value of the heat quantity. Thereby, various operations based on the estimated value of heat quantity can be efficiently performed in the subsequent processing steps.
- the controller 340 reads the integrated value of the average power loss WAv from the ROM 360.
- the controller 340 is a value obtained by adding up the integrated values of the average power loss WAv of the high-side switch elements H1 and H2 of the H bridge (referred to as “upper integrated value”); A value obtained by adding up the integrated values of the average power loss WAv of L2 (referred to as “lower integrated value”) can be compared.
- Step S321> If the controller 340 determines that the lower integrated value is larger than the upper integrated value, it can positively select the first switching pattern P1. In other words, the controller 340 can set the time ratio r1 relatively higher than the time ratio r3. By this selection, a large amount of current can be supplied to the high side switch elements H1 and H2.
- the controller 340 can positively select the second switching pattern P2 when determining that the lower integrated value is equal to or less than the upper integrated value.
- the controller 340 can set the time ratio r2 relatively higher than the time ratio r4. By this selection, a large amount of current can be supplied to the low side switch elements L1 and L2.
- the controller 340 can perform the determination using the threshold value on a switch element basis.
- the threshold is, for example, held in advance in the ROM 360.
- the threshold value can be set commonly to the switch elements H1, L1, H2 and L2, or, for example, individual values in consideration of the thermal characteristics of the switch elements can be set to the respective switch elements.
- the first switching pattern P1 or the phase voltage becomes zero when the controller 340 determines that the integrated value of the average power loss WAv of a specific switch element among the switch elements H1, L1, H2 and L2 is larger than the threshold.
- the second switching pattern P2 can be positively selected.
- the controller 340 can set the time ratios r1 and r2 relatively higher than the time ratios r3 and r4. At this time, the controller 340 may set the time ratio r3 or r4 to zero.
- the controller 340 can set the time ratio r2 or r4 in one PWM cycle relatively high. By such selection, it is possible to perform adjustment such as reducing the amount of current flowing to the switch element H1 and increasing the amount of current flowing to the other switch elements L1, H2 and L2.
- the controller 340 determines that the integrated value of the average power loss WAv of a specific switch element among the switch elements H1, L1, H2 and L2 is less than the threshold value, a phase voltage flows more current through the switch element
- the third switching pattern P3 or the fourth switching pattern P4 may be positively selected.
- the controller 340 may set the time ratios r3 and r4 relatively higher than the time ratios r1 and r2.
- Step S330> The controller 340 updates the time ratio R to the latest value by writing the time ratio R selected in step S321 or S322 to the ROM 360 as the value of the optimal distribution.
- Step S400> The controller 340 generates a PWM control signal for controlling the switching operation of the switch elements H1, L1, H2 and L2 in the H bridge of each phase based on the updated value of the time ratio R, and drives the drive circuit 350. Output to (See Figure 1).
- Step S500> For example, when detecting the stop of the PWM control, the controller 340 stops the control of the inverter. When the PWM control is continued, the controller 340 generates a PWM control signal for one cycle in step S400, and then returns to step S100 again, and performs the switching operation of the switch element according to the PWM control signal. Acquire the phase current flowing in the
- FIG. 6 is a current waveform (sine wave) obtained by plotting current values flowing in U-phase, V-phase, and W-phase windings of motor 200 when power converter 100 is controlled according to the PWM control according to the present embodiment. Is illustrated. The horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A). In the current waveform of FIG. 5, current values are plotted every 30 ° of electrical angle. I pk represents the maximum current value (peak current value) of each phase.
- the current waveform shown in FIG. 6 can be obtained by repeatedly executing the processing flow shown in FIG. 2 every one cycle of PWM to energize the three-phase windings M1, M2 and M3.
- the amount of current flowing through each switch element can be properly dispersed in the H bridge.
- the load can be distributed across the four switch elements without applying a load only to a specific switch element. For example, it is possible to balance the average current flowing through the high side switch elements H1 and H2 and the average current flowing through the low side switch elements L1 and L2. As a result, the temperature rise of a specific switch element can be suppressed. Therefore, it is possible to flow more current to the entire inverter.
- FIG. 7 is a flowchart showing another specific example of the control method of the inverter according to the present embodiment. Hereinafter, points different from the processing flow shown in FIG. 3 will be mainly described.
- vector control is widely used as a method of motor control.
- the control method of the inverter according to the present disclosure relates to PWM control, and its concept can be extended and incorporated into part of vector control.
- Equation (5) In the vector control, in order to control the phase voltage of the winding, a phase voltage command value V * indicative of a target phase voltage is usually given.
- the time ratio R of one cycle of PWM needs to satisfy the matrix of equation (5). Since the rank rank of the matrix on the left side of Equation (5) is 2, it can be seen that there are two linearly independent variables. Therefore, equation (5) can be transformed as equation (6) using two variables r1 and r2.
- the control method of the inverter shown in FIG. 7 further includes step S120 of obtaining phase voltage command value V * in vector control.
- Step S120> the controller 340 obtains the phase voltage command value V * from a control block (not shown) that performs vector control.
- the controller 340 estimates the average current IAv for each phase based on the power supply voltage Vdc, the phase voltage command value V * , and the phase currents I u , I v and I w acquired in step S110. For example, the controller 340 reads the latest values of the variables r1 and r2 from the ROM 360 instead of the latest value of the time ratio R, and estimates the average current IAv or the average power loss WAv based on equation (6). Calculate every time. The variables r1 and r2 are updated in step S340, similarly to the time ratio R.
- the controller 340 obtains the ratio of the average power of each element.
- the controller 340 reads the latest integrated value of the average power loss WAv from the ROM 360.
- the controller 340 can determine the optimal distribution of the time ratio R for each phase by adjusting the variables r1 and r2 in Equation (6) with reference to the latest integrated value. For example, when adjusting the ratio of the average power in the high-side switching element [rho *, to increase the [rho ⁇ [rho * If r2, to increase the [rho ⁇ [rho * if r1.
- the controller 340 updates the variables r1 and r2 and the time ratio R to the latest values by writing the adjusted variables r1 and r2 and the corresponding time ratio R in the ROM 360.
- control is not necessarily required. For example, if the heat dissipation of a particular switch element is poor, control may be required to reduce the current flowing through that switch element. Moreover, it is also possible to adjust the current value which flows through the switch element by using other parameters which show the thermal characteristic etc. of the switch element together.
- FIG. 8 is a flowchart showing a specific example of a control method of the inverter in consideration of the thermal characteristics of the switch element.
- the thermal characteristics of the switch elements H1 and H2 on the high side are better than the switch elements L1 and L2 on the low side of the H bridge in advance in the design stage or the like.
- the thermal properties are represented by the parameter d.
- the controller 340 determines a switching pattern that causes more current to flow to the high-side switch elements H1 and H2.
- the parameter d can be used as the threshold.
- the controller 340 controls the lower integration value and the upper integration value to be constant. If the threshold value, that is, the parameter d is set to 1, the current flowing to the high side switch elements H1 and H2 is the same as the current flowing to the low side switch elements L1 and L2. If the threshold value d is set to be larger than 1, more current can be supplied to the low-side switch elements L1 and L2, and if the threshold value d is set to less than 1, more current can be supplied to the high-side switch elements H1 and H2. It becomes.
- the controller 340 when the ratio P is equal to or greater than the threshold d, the controller 340 positively selects the first switching pattern P1. When the ratio P is less than the threshold d, the controller 340 positively selects the second switching pattern P2. Select to Thus, the controller 340 can further utilize the parameter d to determine the optimal distribution of the time ratio R on a phase by phase basis.
- FIG. 9 shows an inverter that adjusts the amount of current flowing in each switch element by measuring the actual temperature of the high side switch elements H1 and H2 and the actual temperature of the low side switch elements L1 and L2 using a temperature sensor. It is a flowchart which shows the specific example of the control method of.
- the temperature sensor is, for example, a thermistor.
- the H bridge can include, for example, a thermistor (not shown) for each switch element.
- the controller 340 can determine the switching pattern in accordance with the temperature difference ⁇ T between the high side switch elements H1 and H2 and the low side switch elements L1 and L2 (steps S310 and S311).
- the temperature difference ⁇ T1 represents a temperature difference obtained by subtracting the temperature of the low side switch elements L1 and L2 from the temperature of the high side switch elements H1 and H2.
- the temperature difference ⁇ T2 represents a temperature difference obtained by subtracting the temperature of the high side switch elements H1 and H2 from the temperature of the low side switch elements L1 and L2.
- the controller 340 determines the switching pattern by comparing the temperature difference ⁇ T1 or ⁇ T2 with the threshold. For example, about several K can be set as a threshold value regarding temperature.
- the controller 340 positively selects the second switching pattern P2 (step S321). By this selection, a large amount of current can be supplied to the low side switch elements L1 and L2.
- step S3111 When the temperature difference ⁇ T1 is less than the threshold and the temperature difference ⁇ T2 is equal to or more than the threshold (step S311), an excessive current flows in the low-side switch elements L1 and L2. In that case, the controller 340 positively selects the first switching pattern P1 (step S322). By this selection, a large amount of current can be supplied to the high side switch elements H1 and H2. If the temperature difference ⁇ T2 is less than the threshold, the controller 340 can select the first and second switching patterns P1 and P2 equally (step S323). Thus, the controller 340 can determine the optimal distribution of the time ratio R for each phase based on the measurement results of the temperatures of the switch elements.
- the controller 340 preferably resets the integrated value of the average current IAv recorded, for example, in the ROM 360 periodically, for example, every five minutes. If an integrated value is acquired in a long time, the value may become a value that can not be treated as the total current. This can be avoided by resetting.
- a control method of an inverter according to the present disclosure is a so-called single inverter type power converter that drives a motor using one inverter, or two inverters disclosed in, for example, JP-A-2016-34204. It can utilize suitably also for the power converter provided. For example, power converters incorporating a redundant design are being considered so that even if one leg fails, motor drive can be continued using the remaining legs.
- the redundant design makes it possible to drive, for example, a Y-connected five-phase or four-phase motor with three or two phases.
- bias may occur in the energization pattern or current path, that is, the frequency of use of the switch element due to the redundancy. Therefore, it is desirable to distribute the load by smoothing the use frequency of each switch element as much as possible in the entire inverter.
- the number of the switch elements can be balanced and the load is distributed to widen the heat generation limit of the entire inverter.
- Current can be supplied to the inverter.
- FIG. 10 schematically shows a hardware block configuration of a motor module 2000 according to the present embodiment, and mainly shows a hardware block configuration of a motor drive unit 1000.
- FIG. 11 schematically illustrates a circuit configuration example of the power conversion device 100 of the motor drive unit 1000.
- the more detailed structure of the power conversion device 100 of the motor drive unit 1000 will be mainly described.
- Motor module 2000 includes motor 200 and motor drive unit 1000.
- the motor module 2000 can be modularized and manufactured and sold as an electromechanical integrated motor including, for example, a motor, a sensor, a predriver and a controller.
- Motor drive unit 1000 includes power converter 100 and control circuit 300.
- the motor drive unit 1000 is connected to the motor 200 and to the power supply 101 via the coil 102.
- each component of the control circuit 300 is mounted on, for example, a single circuit board (typically, a printed circuit board).
- the controller 340 of the control circuit 300 can generate a PWM signal and output it to the drive circuit 350 according to the flowchart illustrated in FIG. 1, FIG. 2 or FIG. 3.
- the controller 340 can generate the PWM signal and output it to the drive circuit 350 according to the flowchart illustrated in FIG. 8 or FIG.
- the power converter 100 includes, for example, a switching circuit 110, a first inverter 120, a second inverter 130, and a current sensor 150.
- the first inverter 120 has terminals U_L, V_L and W_L corresponding to the respective phases.
- the second inverter 130 has terminals U_R, V_R and W_R corresponding to each phase.
- the terminal U_L of the first inverter 120 is connected to one end of the U-phase winding M1, the terminal V_L is connected to one end of the V-phase winding M2, and the terminal W_L is connected to one end of the W-phase winding M3.
- the terminal U_R of the second inverter 130 is connected to the other end of the U-phase winding M1
- the terminal V_R is connected to the other end of the V-phase winding M2
- the terminal W_R is , W phase is connected to the other end of the winding M3.
- the first inverter 120 includes three legs each having a low side switch element and a high side switch element.
- the U-phase leg has a low side switch element 121L and a high side switch element 121H.
- the V-phase leg has a low side switch element 122L and a high side switch element 122H.
- the W phase leg has a low side switch element 123L and a high side switch element 123H.
- a switch element for example, a MOSFET in which a parasitic diode is formed or a combination of an insulated gate bipolar transistor (IGBT) and a free wheel diode connected in parallel thereto can be used.
- IGBT insulated gate bipolar transistor
- the first inverter 120 includes three shunt resistors 121R, 122R and 123R as a current sensor 150 for detecting the current flowing in the windings of the U-phase, V-phase and W-phase.
- Current sensor 150 includes a current detection circuit (not shown) that detects the current flowing in each shunt resistor. As shown in FIG. 11, for example, three shunt resistors 121R, 122R and 123R are respectively connected between the three low side switch elements 121L, 122L, 123L and GND included in the three legs of the first inverter 120. It can be connected.
- the second inverter 130 includes three legs each having a low side switch element and a high side switch element.
- the U-phase leg has a low side switch element 131L and a high side switch element 131H.
- the V-phase leg has a low side switch element 132L and a high side switch element 132H.
- the W phase leg has a low side switch element 133L and a high side switch element 133H.
- the second inverter 130 includes three shunt resistors 131R, 132R and 133R. The shunt resistors may be connected between the three low side switch elements 131L, 132L, 133L and GND included in the three legs.
- the number of shunt resistors is not limited to three for each inverter. For example, it is possible to use two shunt resistors for U phase and V phase, two shunt resistors for V phase and W phase, and two shunt resistors for U phase and W phase.
- the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of product cost, design specifications and the like.
- the switching circuit 110 includes first to fourth switch elements 111, 112, 113 and 114.
- first and second inverters 120 and 130 can be electrically connected to power supply 101 and GND by switching circuit 110, respectively.
- the first switch element 111 switches connection / non-connection between the first inverter 120 and GND.
- the second switch element 112 switches connection / non-connection between the power supply 101 and the first inverter 120.
- the third switch element 113 switches connection / disconnection between the second inverter 130 and GND.
- the fourth switch element 114 switches connection / disconnection between the power supply 101 and the second inverter 130.
- the on / off of the first to fourth switch elements 111, 112, 113 and 114 may be controlled by, for example, a controller 340 (see FIG. 10) or a dedicated driver (not shown).
- the first to fourth switch elements 111, 112, 113 and 114 can block bidirectional current.
- semiconductor switches such as thyristors, analog switch ICs, or MOSFETs having parasitic diodes formed therein, mechanical relays, etc. can be used.
- a combination of a diode and an IGBT may be used.
- MOSFETs are used as the first to fourth switch elements 111, 112, 113 and 114.
- the first to fourth switch elements 111, 112, 113 and 114 will be denoted as SW 111, 112, 113 and 114, respectively.
- the SW 111 is arranged such that a forward current flows toward the first inverter 120 in an internal parasitic diode.
- the SW 112 is arranged such that forward current flows in the parasitic diode toward the power supply 101.
- the SW 113 is disposed such that a forward current flows to the second inverter 130 in the parasitic diode.
- the SW 114 is arranged such that forward current flows in the parasitic diode toward the power supply 101.
- the switching circuit 110 may further include fifth and sixth switch elements 115 and 116 for reverse connection protection, as shown in FIG.
- the fifth and sixth switch elements 115, 116 are typically semiconductor switches of a MOSFET having parasitic diodes.
- the fifth switch element 115 is connected in series to the SW 112, and is disposed such that a forward current flows toward the first inverter 120 in the parasitic diode.
- the sixth switch element 116 is connected in series to the SW 114, and is disposed such that a forward current flows toward the second inverter 130 in the parasitic diode. Even when the power supply 101 is connected in the reverse direction, the reverse current can be cut off by the two switch elements for reverse connection protection.
- the number of switch elements to be used is not limited to the illustrated example, and is appropriately determined in consideration of design specifications and the like. Particularly in the on-vehicle field, high quality assurance is required from the viewpoint of safety, so it is preferable to provide a plurality of switch elements for each inverter.
- the power supply 101 generates a predetermined power supply voltage (for example, 12 V).
- a DC power supply is used as the power supply 101.
- the power supply 101 may be an AC-DC converter or a DC-DC converter, or may be a battery (storage battery).
- the power supply 101 may be a single power supply common to the first and second inverters 120, 130, or separately provided with a first power supply for the first inverter 120 and a second power supply for the second inverter 130. May be
- a coil 102 is provided between the power supply 101 and the switching circuit 110.
- the coil 102 functions as a noise filter, and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 101 side.
- a capacitor 103 is connected to the power supply line.
- the capacitor 103 is a so-called bypass capacitor, which suppresses voltage ripple.
- the capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined depending on design specifications and the like.
- the motor drive unit including the power conversion device having two inverters has been described.
- the present disclosure is not limited to this, and may be a motor drive unit including a power converter having one inverter, which incorporates the redundant design as described above.
- FIG. 12 schematically shows a typical configuration of an electric power steering apparatus 3000 according to this embodiment.
- Vehicles such as automobiles generally have an electric power steering (EPS) device.
- the electric power steering apparatus 3000 according to the present embodiment has a steering system 520 and an auxiliary torque mechanism 540 that generates an auxiliary torque.
- Electric power steering apparatus 3000 generates an assist torque that assists the steering torque of the steering system generated by the driver operating the steering wheel. The assist torque reduces the burden on the driver's operation.
- the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, free shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, rack shafts 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A, 528B, and left and right steering wheels 529A, 529B.
- the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an electronic control unit (ECU) 542 for a car, a motor 543, and a reduction mechanism 544.
- the steering torque sensor 541 detects a steering torque in the steering system 520.
- the ECU (electronic control unit) 542 generates a drive signal based on a detection signal of the steering torque sensor 541.
- the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
- the motor 543 transmits the generated assist torque to the steering system 520 via the reduction mechanism 544.
- the ECU 542 includes, for example, the controller 340 and the drive circuit 350 according to the first embodiment.
- an electronic control system is built around an ECU.
- a motor drive unit is constructed by the ECU 542, the motor 543 and the inverter 545.
- the motor module 2000 by Embodiment 2 can be used suitably for the unit.
- Embodiments of the present disclosure can be widely used in a variety of devices equipped with various motors, such as vacuum cleaners, dryers, ceiling fans, washing machines, refrigerators, and electric power steering devices.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Inverter Devices (AREA)
Abstract
スイッチ素子の発熱を適切に抑えてより多くの電流をインバータに流すことが可能なインバータの制御方法を提供する。インバータの制御方法は、相電流を獲得する電流獲得ステップS100と、インバータの複数のスイッチ素子の各々に流れる、スイッチング動作の1周期当たりの平均電流を推定する推定ステップS200と、平均電流の推定値に基づいて複数のスイッチングパターンの時間比の最適な配分を相毎に決定する更新ステップS300と、時間比の最適な配分の値に基づいて、複数のスイッチ素子のスイッチング動作を制御する制御信号を生成する生成ステップS400と、を包含し、電流獲得ステップ、推定ステップ、更新ステップおよび生成ステップを繰り返し実行する。
Description
本開示は、インバータの制御方法、モータ駆動ユニット、モータモジュールおよび電動パワーステアリング装置に関する。
一般のベクトル制御によるモータ駆動では、電動モータ(以下、単に「モータ」と表記する。)の各相の巻線の相電圧を操作することにより、巻線に流れる相電流が制御される。インバータは、モータ駆動ユニットの構成要素の一つとして電圧源と見なすことができる。例えば、スイッチング電源では、スイッチ素子のオン・オフの時間平均と目標値を一致させるように、スイッチ素子のスイッチングパターンが決定される。PWM(Pulse Width Modulation)制御を行う場合、時間平均は、PWMの1周期に相当する。従って、PWMの1周期に含まれる幾つかのスイッチングパターンの時間配分を操作することにより、出力電圧を制御することが可能となる。
特許文献1は、巻線同士がY結線されたモータを制御するモータ制御装置を開示し、さらに、3個のHブリッジ回路を備えるモータ制御装置を開示している。3個のHブリッジ回路は、三相の巻線にそれぞれ接続される。巻線を通電する通電制御期間と巻線を導通しない非導通制御期間とをPWMの1周期に設けて、それらの比率を変更することにより、Hブリッジ回路の中の各FET(Field Effect Transistor)の発熱を低減することが可能となる。
上述した従来の技術では、インバータにおける各スイッチ素子(典型的にはFET)をバランスよく使用して負荷を分散させることが求められていた。より大きな電流をモータに流す場合、主にスイッチ素子の伝導損失に起因する電力損失、つまり発熱がボトルネックになり得る。大電流が流れ得るインバータでは、伝導損失がスイッチ素子の負荷の中で支配的となる。本明細書において、スイッチ素子の負荷は、主に伝導損失を指す。
特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つのインバータを設けることが検討されている。3個のHブリッジ回路を三相の巻線にそれぞれ接続する特許文献1の構成も冗長設計の一例と言える。冗長設計では、全く使用されない部品(例えばインバータのFET)または他と比べて過剰に使用される部品がどうしても存在し、部品の間の使用頻度に偏りが生じ得る。そのため、各部品の使用頻度を可能な限り平滑することにより、部品の故障・異常の発生を減らすことができる制御手法が望まれる。
本開示の実施形態は、発熱を適切に抑えてより多くの電流をインバータに流すことが可能となる、インバータの制御方法およびモータ駆動ユニット、ならびに、当該モータ駆動ユニットを備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置を提供する。
本開示の例示的なインバータの制御方法は、n相(nは3以上の整数)の巻線を有するモータに電力を供給するインバータの複数のスイッチ素子のスイッチング動作を制御する制御方法(典型的にはPWM制御方法)であって、前記スイッチング動作の1周期は、各々が独立した時間比を有する複数のスイッチングパターンの期間から構成され、前記複数のスイッチングパターンの各々の時間比の総和は1であり、前記時間比は、前記スイッチング動作の1周期毎に変化し得る値であり、前記n相の巻線の相電流を獲得する電流獲得ステップと、前記複数のスイッチングパターンの時間比の最新の値と前記相電流とに基づいて、前記複数のスイッチ素子の各々に流れる前記1周期当たりの平均電流を推定する推定ステップと、前記平均電流の推定値に基づいて前記複数のスイッチングパターンの時間比の最適な配分を相毎に決定し、かつ、前記時間比の最新の値を前記最適な配分の値に変更することにより、前記複数のスイッチングパターンの時間比を更新する更新ステップと、前記複数のスイッチングパターンの時間比の更新値に基づいて、前記複数のスイッチ素子のスイッチング動作を制御する制御信号を生成する生成ステップと、を包含し、前記電流獲得ステップ、前記推定ステップ、前記更新ステップおよび前記生成ステップを繰り返し実行する。
本開示の例示的な実施形態によると、インバータにおける各スイッチ素子をバランスよく使用して負荷を分散させてインバータ全体の発熱限界を広げることにより、より多くの電流をインバータに流すことが可能となる、インバータの制御方法およびモータ駆動ユニット、ならびに、当該モータ駆動ユニットを備えるモータモジュールおよび当該モータモジュールを備える電動パワーステアリング装置を提供する。
以下、添付の図面を参照しながら、本開示のインバータの制御方法、モータ駆動ユニット、モータモジュールおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。
本明細書において、電源からの電力を、三相(U相、V相、W相)の巻線を有する三相モータに供給する電力に変換する電力変換装置を制御するための制御手法を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置を制御するための制御手法も本開示の範疇である。
(実施形態1) 〔1.1.インバータの制御方法を利用できるシステム構成〕 先ず、本実施形態によるインバータの制御方法を好適に用いることが可能なモータ駆動ユニット1000の典型的なハードウェアブロック構成を説明する。本開示によるインバータの制御方法は、以下で例示するモータ駆動ユニットに限られず、様々なモータ駆動ユニットに好適に利用され得る。
図1は、モータ駆動ユニット1000の典型的なハードウェアブロック構成を模式的に示している。モータ駆動ユニット1000は、電力変換装置100および制御回路300を備える。モータ駆動ユニット1000は、電源(不図示)およびモータ200に接続される。モータ200は、例えば、三相交流モータである。モータ200は、U相の巻線M1、V相の巻線M2およびW相の巻線M3を備える。
モータ駆動ユニット1000は、電源からの電力を、モータ200に供給する電力に変換することができる。例えば、モータ駆動ユニット1000は、直流電力を、U相、V相およびW相の擬似正弦波である三相交流電力に変換することが可能である。
電力変換装置100は、例えば、第1インバータ120、第2インバータ130および電流センサ150を備える。電流センサ150は、モータの電流値(以下、「実電流値」と表記する。)、つまり、各相の巻線を流れる相電流を検出する。電力変換装置100の第1インバータ120は、三相のレグを有し、モータ200の各相の巻線の一端に接続される。第2インバータ130は、三相のレグを有し、各相の巻線の他端に接続される。本実施形態によるモータ200のモータ結線は、いわゆるスター結線およびデルタ結線とは異なる。
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、コントローラ340と、駆動回路350と、ROM360とを備える。制御回路300は、電力変換装置100に接続され、電力変換装置100を駆動することによりモータ200の巻線M1、M2およびM3を通電する。
制御回路300の主にコントローラ340は、目的とするモータ200のロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、制御回路300は、角度センサ320に代えてトルクセンサを備えてもよい。その場合、制御回路300は、目的とするモータトルクを制御することができる。
電源回路310は、例えば、回路内の各ブロックに必要な電源電圧(例えば3V、5V)を、電源からの12Vの電源電圧に基づいて生成する。角度センサ320は、例えばレゾルバまたはホールICである。または、角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、モータ200のロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をコントローラ340に出力する。
入力回路330は、電流センサ150によって検出された実電流値を受け取って、そのレベルをコントローラ340の入力レベルに必要に応じて変換し、実電流値をコントローラ340に出力する。入力回路330は、例えばアナログデジタル変換回路である。
コントローラ340は、モータ駆動ユニット1000の全体を
制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)により実現される。コントローラ340は、電力変換装置100の第1インバータ120および第2インバータ130における各スイッチ素子のスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力することができる。
制御する集積回路であり、例えば、マイクロコントローラまたはFPGA(Field Programmable Gate Array)により実現される。コントローラ340は、電力変換装置100の第1インバータ120および第2インバータ130における各スイッチ素子のスイッチング動作(ターンオンまたはターンオフ)を制御する。コントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力することができる。
駆動回路350は、典型的にはプリドライバである。プリドライバは、ゲートドライバとも称され得る。駆動回路350は、第1インバータ120および第2インバータ130における各スイッチ素子(典型的には半導体トランジスタ)のスイッチング動作を制御する制御信号(典型的にはゲート制御信号)を、コントローラ340からのPWM信号に従って生成し、各スイッチ素子に与える。
ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、コントローラ340に電力変換装置100を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。
〔1.2.インバータの制御方法〕 本実施形態によるインバータの制御方法は、第1インバータ120および第2インバータ130における複数のスイッチ素子のスイッチング動作を制御する制御手法に関する。スイッチ素子のスイッチング動作の制御は、典型的にはPWM制御を指す。本明細書では、PWM制御を例に、インバータの制御方法を説明する。
インバータの制御方法を具体的に説明する前に、本発明の基礎になった知見を説明する。
Hブリッジを備えるインバータの回路構成は冗長性を有する。具体的に説明すると、モータ200の巻線に同じ電流を流す場合、各インバータを流れる電流の経路、主として、スイッチ素子を選択する自由度が存在する。本明細書では、冗長性は、同じモータ出力を得るための通電パターンまたは電流経路が複数存在することを意味する。
スイッチ素子の温度は、インバータに流せる最大電流を制限する要因の1つであり得る。ここで、スイッチ素子に流れた電流量は、その温度を決定する主要因の1つである。インバータの中の複数のスイッチ素子のうちの1個でも発熱限界に近づくと、それは、インバータ全体の発熱限界を招く結果となり得る。
Hブリッジを備える回路構成では、自由度が存在し、巻線に同じ相電圧を与えるスイッチングパターンが複数存在する。複数のスイッチングパターンはPWMの1周期に含まれる。スイッチ素子を流れる電流は、スイッチングパターンに応じて異なる。換言すると、電流経路は、スイッチングパターンによって決定される。決定したスイッチングパターンに従って、各スイッチ素子に流れる電流量を求めることができる。一例として、各スイッチ素子に流れた電流の総量をメモリに記録しておく。記録した値に基づいて電流経路を適切に選択することにより、各スイッチ素子の負荷のバランスをとることが可能となる。これが実現できれば、インバータ全体に平均的により大きな電流を流すことができる。
本発明者は、インバータにおける各スイッチ素子をバランスよく使用することにより負荷を分散させ、インバータ全体の発熱限界を広げることを検討した。
図2は、本開示によるインバータの制御方法の処理フローの概要を示している。
本開示によるインバータの制御方法は、相電流を獲得するステップS100と、Hブリッジにおける各スイッチ素子に流れる平均電流を推定するステップS200と、PWMの1周期における複数のスイッチングパターンの時間比Rを更新するステップS300と、更新した時間比Rに基づいてPWM制御を生成するステップS400と、PWM制御の停止を判断するステップS500とを包含する。後述するように、複数のスイッチングパターンは、4つのスイッチングパターンを含んでいることが好ましい。
ステップS100からS400は、1周期のPWM制御信号を生成するための一連の処理であり、1周期のPWM制御信号を生成する毎にその一連の処理は繰り返し実行される。例えば、これらの処理を記述した命令群を含む制御プログラムは、ROM360(図1を参照)に格納される。例えば、コントローラ340(図1を参照)は、ROM360からその制御プログラムを読み出して各処理を逐次実行することが可能である。
本開示によるインバータの制御方法の概要は以下のとおりである。
コントローラ340は、電流センサ150(図1を参照)によって測定された実電流値に基づいて三相の巻線M1、M2およびM3の相電流Iu、IVおよびIWを獲得する(ステップS100)。
コントローラ340は、PWMの1周期における複数のスイッチングパターンの時間比Rの最新の値、相電流Iu、IVおよびIWに基づいて、第1インバータ120および第2インバータ130の複数のスイッチ素子の各々に流れる1周期当たりの平均電流を推定する(ステップS200)。コントローラ340は、平均電流IAvの推定値をメモリに書き込むことが好ましく、または、平均電流IAvの推定値の積算値を演算してメモリに書き込むことがより好ましい。コントローラ340は、平均電力の推定値をメモリに書き込むこと、または、平均電力の推定値の積算値を演算してメモリに書き込むことがさらに好ましい。
コントローラ340は、平均電流IAvの推定値に基づいて、複数のスイッチ素子の各々に流れる電流のバランスを相毎に最適化する(ステップS300)。具体的には、コントローラ340は、平均電流IAvの推定値に基づいて時間比Rの最適な配分を相毎に決定し、かつ、ステップS200において平均電流の推定に用いた時間比Rの値を最適な配分の値に変更することにより、時間比Rを相毎に更新する。
コントローラ340は、最適化した結果、すなわち、時間比Rの更新値に基づいて第1インバータ120および第2インバータ130の複数のスイッチ素子のスイッチング動作を制御するPWM制御信号を生成し、駆動回路350(図1を参照)に出力する(ステップS400)。
コントローラ340は、PWM制御が継続している限り、ステップS100からS400の処理を繰り返し実行する(ステップS500)。
図3は、本実施形態によるインバータの制御方法の具体例を示すフローチャートである。以下、各ステップの処理を詳細に説明する。
<ステップS100> コントローラ340は、例えば、電流センサ150(図1を参照)によって測定された実電流値に基づいて三相の巻線M1、M2およびM3の相電流Iu、IVおよびIWを獲得する。後述するように、例えば、三相の相電流を検出する3個のシャント抵抗を各インバータに設け、コントローラ340は、3個のシャント抵抗に流れる電流を三相の相電流としてそれぞれ獲得することができる。電流センサを用いずに相電流を獲得する技術が提案されている。そのような技術を用いて三相の相電流を獲得することも本開示の一態様である。
<ステップS210> コントローラ340は、第1から第4スイッチングパターンP1、P2、P3およびP4の時間比r1、r2、r3およびr4の最新の値と、相電流Iu、IVおよびIWと、に基づいて、Hブリッジの中の各スイッチ素子に流れる1周期当たりの平均電流を相毎に推定する。
図4Aから図4Dを参照して、PWMの1周期に含まれる第1から第4スイッチングパターンP1、P2、P3、P4、その時間比r1、r2、r3およびr4を説明する。本明細書では、複数のスイッチングパターンの時間比を「時間比R」と表記する。この具体例では、時間比Rは、「時間比r1、r2、r3およびr4」を指す。
図4Aから図4Dは、第1から第4スイッチングパターンP1、P2、P3およびP4を選択した場合にHブリッジに流れる電流および相電圧の様子を模式的にそれぞれ示している。表1は、第1から第4スイッチングパターンP1、P2、P3およびP4のそれぞれにおける各スイッチ素子のオン・オフ状態を示している。
スイッチング動作の1周期は、各々が独立した時間比を有する複数のスイッチングパターンの期間から構成される。複数のスイッチングパターンの各々の時間比の総和は1であり、時間比は、PWMの1周期毎に変化し得る値である。
本実施形態による複数のスイッチングパターンは、第1時間比r1を有する第1スイッチングパターンP1、第2時間比r2を有する第2スイッチングパターンP2、第3時間比r3を有する第3スイッチングパターンP3および第4時間比r4を有する第4スイッチングパターンP4を含む。第1から第4時間比r1、r2、r3およびr4の総和は式(1)で表される。 r1+r2+r3+r4=1 式(1)
第1インバータ120のU相、V相、W相の3個のレグ、第2インバータのU相、V相、W相の3個のレグ、三相の巻線M1、M2およびM3によって、3個のHブリッジが構成される。図4Aから図4Dには、典型的なHブリッジの構成を例示している。紙面においてHブリッジの左側レグのスイッチ素子H1は、第1インバータ120のレグのハイサイドスイッチ素子であり、スイッチ素子L1は、第1インバータ120のレグのローサイドスイッチ素子である。Hブリッジの右側レグのスイッチ素子H2は、第2インバータ130のレグのハイサイドスイッチ素子であり、スイッチ素子L2は、第2インバータ130のレグのローサイドスイッチ素子である。
図4Aから図4Dには、第1インバータ120から第2インバータ130に向けて(紙面の左から右に向けて)相電流が巻線に流れる様子を示している。特に図示しないが、以下で説明する第1から第4スイッチングパターンP1、P2、P3およびP4を利用して、第2インバータ130から第1インバータ120に向けて巻線に相電流を流すことも当然可能である。
スイッチ素子H1に流れる電流を電流IH1で表している。スイッチ素子H2に流れる電流を電流IH2で表している。スイッチ素子L1に流れる電流を電流Il1で表している。スイッチ素子L2に流れる電流を電流Il2で表している。
第1スイッチングパターンP1を選択すると、スイッチ素子H1、H2はオンし、スイッチ素子L1、L2はオフする。このとき、図4Aに示すように、スイッチ素子H1からスイッチ素子H2に相電流Iは流れる。相電圧は、スイッチ素子H1、H2の両方がオンするために0Vとなる。
第2スイッチングパターンP2を選択すると、スイッチ素子L1、L2はオンし、スイッチ素子H1、H2はオフする。このとき、図4Bに示すように、スイッチ素子L1からスイッチ素子L2に相電流Iは流れる。相電圧は、第1スイッチングパターンP1と同様に、スイッチ素子L1、L2の両方がオンするために0Vとなる。
第3スイッチングパターンP3を選択すると、スイッチ素子H1、L2はオンし、スイッチ素子L1、H2はオフする。このとき、図4Cに示すように、スイッチ素子H1から
スイッチ素子L2に相電流Iは流れる。相電圧は、スイッチ素子H1、L2がオンするために電源電圧Vdcとなる。
スイッチ素子L2に相電流Iは流れる。相電圧は、スイッチ素子H1、L2がオンするために電源電圧Vdcとなる。
第4スイッチングパターンP4を選択すると、スイッチ素子L2、H2はオンし、スイッチ素子H1、L2はオフする。このとき、図4Dに示すように、スイッチ素子L1からスイッチ素子H2に相電流Iは流れる。相電圧は、スイッチ素子L1、H2がオンするために電源電圧Vdcの逆電圧(-Vdc)となる。
図5Aは、Hブリッジに対し、PWM制御に基づいてスイッチングパターンを生成する論理を模式的に例示している。図5Bは、PWMの1周期における第1から第4スイッチングパターンP1、P2、P3およびP4の、表1に対応したスイッチ素子の制御信号波形を例示している。図5Bのグラフの横軸は時間を示し、縦軸は、各スイッチ素子のオン・オフを制御する制御信号Leg1_Logic、Leg2_Logicを示している。
Hブリッジのスイッチ素子H1、L1を含むレグには制御信号Leg1_Logicが与えられ、スイッチ素子H2、L2を含むレグには制御信号Leg2_Logicが与えられる。インバータによって、レグの2つのスイッチ素子には極性の異なる制御信号が与えられる。図5Bには、デユーティ比50%の信号波形を例示している。
Hブリッジ毎のPWMの1周期当たりの平均電圧VAvは、時間比r1からr4を用いて式(2)で表すことができる。平均電圧VAvは、負荷つまり巻線に加わる。 VAv=r1・0+r2・0+r3・Vdc+r4・(-Vdc) =(r3-r4)・Vdc 式(2)
スイッチ素子H1、L1、H2およびL2のそれぞれに流れる電流IH1、IL1、IH2およびIL2のPWMの1周期当たりの平均電流IAvH1、IAvL1、IAvH2およびIAvL2は、式(3)で表される。 IAvH1=I・r1+I・r3=I・(r1+r3) IAvH2=I・r1+I・r4=I・(r1+r4) IAvL1=I・r2+I・r4=I・(r2+r4) 式(3) IAvL2=I・r2+I・r3=I・(r2+r3)
v=VAv/Vdcと置いて、0≦r1、r2、r3、r4≦1であることに注意する。その場合、1-|v|≧r1+r2を満足する任意のr1、r2に対して、 r3=〔(1+v)-(r1+r2)〕/2 r4=〔(1-v)-(r1+r2)〕/2と置けば、平均電力は、上述した式(2)のVAvとなる。一方、式(3)の平均電流IAvH1、IAvL1、IAvH2およびIAvL2は、式(4)の行列で表現できる。
コントローラ340は、式(4)を用いて、ステップS100において取得した相電流Iおよび時間比R、つまり、時間比r1からr4の組に基づいて、スイッチ素子H1、L1、H2およびL2のそれぞれに流れるPWMの1周期当たりの平均電流IAvを推定することができる。
コントローラ340は、さらに、式(4)に基づいて、PWMの1周期当たりの平均電力損失WAvを推定することができる。平均電力損失WAvは、上述したようにスイッチ素子(例えばFET)の伝導損失を指し、平均電流IAvと電圧の積を用いて表される。より具体的には、平均電力損失WAvは、式(4)においてIを(Ron・I2)で置き換えた行列で表現される。ここで、Ronはスイッチ素子のオン抵抗である。
平均電流の推定に用いる時間比Rは、最新の値である必要がある。最新の値とは、現在の1つ前のPWM信号を生成するための処理のステップS330において更新された時間比Rの値である。これについては後で詳細に説明する。例えば、コントローラ340は、ステップS330においてROM360に書き込まれた時間比Rの更新値を最新の値として読み出し、式(4)を用いて平均電流IAvまたは平均電力損失WAvを推定する。
再び図3を参照する。
<ステップS220> コントローラ340は、平均電流IAvまたは平均電力損失WAvの推定値をメモリに書き込むことができる。または、コントローラ340は、平均電流IAvまたは平均電力損失WAvの推定値をスイッチ素子毎に積算し、各スイッチ素子に流れた電流量(例えば、ある期間において流れた電流の総量)としてその積算値を例えばROM360に書き込むことができる。具体的には、コントローラ340は、1周期前のPWM制御信号を生成するための処理のステップS220で取得した平均電流IAvまたは平均電力損失WAvの積算値をROM360から読み出し、ステップS210で取得した平均電流IAvまたは平均電力損失WAvの推定値を、読み出した積算値に加算することによって、平均電流IAvまたは平均電力損失WAvの最新の積算値を取得する。ただし、Hブリッジにおいてスイッチ素子の負荷を分散させる観点から、コントローラ340は、熱量の推定値として、平均電力損失WAvの推定値またはその積算値をメモリに書き込んでおくことが好ましい。これにより、以降の処理ステップにおいて熱量の推定値に基づく各種の演算を効率よく行うことができる。
<ステップS310> ハイサイドのスイッチ素子H1、H2の平均電流IAvおよびローサイドのスイッチ素子L1、L2の平均電流IAvを調整できることが、式(4)から分かる。例えば、r1=1-v、r2=0のときに、ハイサイドのスイッチ素子H1、H2の平均電流IAvまたは平均電力損失WAvは最小化され、r1=0、r2=1-vのときに、ローサイドのスイッチ素子L1、L2の平均電流IAvまたは平均電力損失WAvは最小化される。
コントローラ340は、例えば、平均電力損失WAvの積算値をROM360から読み出す。コントローラ340は、Hブリッジのハイサイドのスイッチ素子H1、H2の平均電力損失WAvの積算値を合算した値(「上側の積算値」と表記する。)と、Hブリッジのローサイドのスイッチ素子L1、L2の平均電力損失WAvの積算値を合算した値(「下側の積算値」と表記する。)を比較することができる。
<ステップS321> コントローラ340は、下側の積算値が上限の積算値よりも大きいと判定した場合、第1スイッチングパターンP1を積極的に選択することができる。換言すると、コントローラ340は、時間比r3よりも時間比r1を相対的に高く設定することができる。この選択により、ハイサイドのスイッチ素子H1、H2により多くの電流を流すことができる。
<ステップS322> コントローラ340は、下側の積算値が上限の積算値以下であると判定した場合、第2スイッチングパターンP2を積極的に選択することができる。換言すると、コントローラ340は、時間比r4よりも時間比r2を相対的に高く設定することができる。この選択により、ローサイドのスイッチ素子L1、L2により多くの電流を流すことができる。
他の例として、コントローラ340は、閾値を用いた判定をスイッチ素子単位で行うことができる。閾値は、例えばROM360に予め保持されている。その閾値は、スイッチ素子H1、L1、H2およびL2に共通に設定することができるし、または、例えばスイッチ素子の熱特性を考慮した個別の値をそれぞれのスイッチ素子に設定することができる。
コントローラ340は、スイッチ素子H1、L1、H2およびL2の中で特定のスイッチ素子の平均電力損失WAvの積算値が閾値よりも大きいと判定した場合、相電圧がゼロとなる第1スイッチングパターンP1または第2スイッチングパターンP2を積極的に選択することができる。換言すると、コントローラ340は、時間比r3、r4よりも時間比r1、r2を相対的に高く設定することができる。このとき、コントローラ340は、時間比r3またはr4をゼロに設定してもよい。
例えば、スイッチ素子H1の平均電力損失WAvの積算値が閾値を超えた場合、スイッチ素子H1に電流を流さない第2スイッチングパターンP2または第4スイッチングパターンP4を選択することができる。換言すると、コントローラ340は、PWMの1周期における時間比r2またはr4を相対的に高く設定することができる。このような選択により、スイッチ素子H1に流れる電流量を減らし、かつ、他のスイッチ素子L1、H2およびL2に流れる電流量を増やすなどの調整を行うことが可能となる。
コントローラ340は、スイッチ素子H1、L1、H2およびL2の中で特定のスイッチ素子の平均電力損失WAvの積算値が閾値未満であると判定した場合、そのスイッチ素子により多くの電流を流す、相電圧がゼロとならない第3スイッチングパターンP3または第4スイッチングパターンP4を積極的に選択してもよい。換言すると、コントローラ340は、時間比r1、r2よりも時間比r3、r4を相対的に高く設定してもよい。
<ステップS330> コントローラ340は、ステップS321またはS322において選択された時間比Rを最適な配分の値としてROM360に書き込むことにより、時間比Rを最新の値に更新する。
<ステップS400> コントローラ340は、各相のHブリッジの中のスイッチ素子H1、L1、H2およびL2のスイッチング動作を制御するPWM制御信号を時間比Rの更新値に基づいて生成し、駆動回路350(図1を参照)に出力する。
<ステップS500> 例えば、コントローラ340は、PWM制御の停止を検知すると、当該インバータの制御を停止する。コントローラ340は、PWM制御が継続しているときは、ステップS400において1周期分のPWM制御信号を生成した後、ステップS100に再び戻り、そのPWM制御信号に従ったスイッチ素子のスイッチング動作により巻線に流れる相電流を獲得する。
図6は、本実施形態によるPWM制御に従って電力変換装置100を制御したときにモータ200のU相、V相およびW相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図5の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。例えば、図2に示す処理フローをPWMの1周期毎に繰り返し実行して三相の巻線M1、M2およびM3を通電することにより、図6に示す電流波形を得ることができる。
本実施形態によれば、Hブリッジにおいて各スイッチ素子を流れる電流量を適切に分散させることができる。4個のスイッチ素子H1、L1、H2およびL2の中で特定のスイッチ素子にのみ負荷をかけることなく、4個のスイッチ素子の全体に負荷を分散させることができる。例えば、ハイサイドのスイッチ素子H1、H2を流れる平均電流およびローサイドのスイッチ素子L1、L2を流れる平均電流のバランスを取ることができる。その結果、特定のスイッチ素子の温度上昇を抑制できる。従って、インバータ全体により多くの電流を流すことが可能となる。
図7を参照して、本実施形態によるインバータの制御方法の他の具体例を説明する。
図7は、本実施形態によるインバータの制御方法の他の具体例を示すフローチャートである。以下、図3に示す処理フローと異なる点を主として説明する。
モータ制御の手法に、一般にベクトル制御が広く用いられる。本開示によるインバータの制御方法は、PWM制御に関連し、その概念を拡張してベクトル制御の一部に組み込むことが可能である。
ベクトル制御において、巻線の相電圧を制御するため、通常、目標とする相電圧を示す相電圧指令値V*が与えられる。相電圧指令値V*を考慮する場合、PWMの1周期の時間比Rは、式(5)の行列を満たす必要がある。式(5)の左辺の行列の階数rankは2であることから、1次独立となる変数は2つ存在することが分かる。従って、式(5)は2つの変数r1、r2を用いて式(6)のように変形することができる。
式(6)を満足するように変数r1、r2を調整し、式(4)に代入することにより、Hブリッジのスイッチ素子H1、L1、H2およびL2のそれぞれにおける平均電流IAvH1、IAvL1、IAvH2およびIAvL2を求めることができる。
図7に示すインバータの制御方法は、ベクトル制御において相電圧指令値V*を獲得するステップS120をさらに包含する。
<ステップS120> 例えば、コントローラ340は、ベクトル制御を行う制御ブロック(不図示)から相電圧指令値V*を獲得する。
<ステップS210> コントローラ340は、電源電圧Vdc、相電圧指令値V*、および、ステップS110において取得した相電流Iu、IvおよびIwに基づいて平均電流IAvを相毎に推定する。例えば、コントローラ340は、時間比Rの最新の値に代えて、変数r1、r2の最新の値をROM360から読み出し、式(6)に基づいて平均電流IAvまたは平均電力損失WAvの推定値を相毎に算出する。変数r1、r2は、時間比Rと同様に、ステップS340において更新される。
<ステップS330> コントローラ340は、各素子の平均電力の比率を求める。例えば、各スイッチ素子(H1、L1、H2、L2)の平均電力の積算値をJH1、JL1、JH2、JL2とすると、ハイサイド側のスイッチ素子H1、H2における平均電力の比率ρを、ρ=(JH1+JH2)/(JH1+JL1+JH2+JL2)と表すことができる。ローサイド側のスイッチ素子L1、L2における平均電力の比率は、ρを用いて(JL1+JL2)/(JH1+JL1+JH2+JL2)=1-ρと表すことができる。
<ステップS340> コントローラ340は、平均電力損失WAvの最新の積算値をROM360から読み出す。コントローラ340は、最新の積算値を参照しながら、式(6)において変数r1、r2を調整することにより、時間比Rの最適な配分を相毎に決定することができる。例えば、ハイサイド側のスイッチ素子における平均電力の比率をρ*に調整する場合、ρ≧ρ*ならばr2を大きくし、ρ<ρ*ならばr1を大きくする。コントローラ340は、調整した変数r1、r2およびそれらに対応した時間比RをROM360に書き込むことにより、変数r1、r2および時間比Rを最新の値に更新する。
上述した具体例では、スイッチ素子H1、L1、H2およびL2の全ての負荷のバランスを取ることを目的としていたが、そのような制御は必ずしも必要とされない。例えば、特定のスイッチ素子の放熱性が悪い場合、そのスイッチ素子に流れる電流を減らす制御が必要とされ得る。また、スイッチ素子の熱特性などを示す他のパラメータを併用することによって、スイッチ素子を流れる電流値を調整することも可能である。
図8および図9を参照して、本実施形態によるインバータの制御方法のさらなる他の具体例を説明する。
図8は、スイッチ素子の熱特性を考慮したインバータの制御方法の具体例を示すフローチャートである。この具体例では、Hブリッジのローサイドのスイッチ素子L1、L2よりもハイサイドのスイッチ素子H1、H2の熱特性が良いことが、設計段階などにおいて事前に分かっている場合を想定している。熱特性は、パラメータdによって表される。コントローラ340は、ハイサイドのスイッチ素子H1、H2により多くの電流を流すスイッチングパターンを決定する。
この具体例では、コントローラ340は、上側の積算値に対する下側の積算値の比率P(=下側の積算値/上側の積算値)と閾値とを比較する。閾値としてパラメータdを用いることができる。コントローラ340は、下側の積算値と上側の積算値を一定に制御する。閾値、つまり、パラメータdを1にすれば、ハイサイドのスイッチ素子H1、H2に流れる電流は、ローサイドのスイッチ素子L1、L2に流れる電流と同じになる。閾値dを1よりも大きく設定すると、ローサイドのスイッチ素子L1、L2により多くの電流を流し、閾値dを1未満に設定すると、ハイサイドのスイッチ素子H1、H2により多くの電流を流すことが可能となる。
例えば、比率Pが閾値d以上であるとき、コントローラ340は、第1スイッチングパターンP1を積極的に選択し、比率Pが閾値d未満であるとき、コントローラ340は、第2スイッチングパターンP2を積極的に選択する。このように、コントローラ340は、パラメータdをさらに利用して、時間比Rの最適な配分を相毎に決定することができる。
図9は、ハイサイドのスイッチ素子H1、H2の実温度と、ローサイドのスイッチ素子L1、L2の実温度とを温度センサを用いて測定することにより、各スイッチ素子に流れる電流量を調整するインバータの制御方法の具体例を示すフローチャートである。
温度センサは、例えばサーミスタである。Hブリッジは、例えばスイッチ素子毎にサーミスタ(不図示)を備えることができる。コントローラ340は、ハイサイドのスイッチ素子H1、H2およびローサイドのスイッチ素子L1、L2の間の温度差ΔTに応じて、スイッチングパターンを決定することができる(ステップS310、311)。ステップS310では、温度差ΔT1は、ハイサイドのスイッチ素子H1、H2の温度からローサイドのスイッチ素子L1、L2の温度を差し引いた温度差を表す。ステップS311では、温度差ΔT2は、ローサイドのスイッチ素子L1、L2の温度からハイサイドのスイッチ素子H1、H2の温度を差し引いた温度差を表す。
コントローラ340は、温度差ΔT1またはΔT2と閾値とを比較することにより、スイッチングパターンを決定する。例えば、温度に関する閾値として数K程度を設定することができる。温度差ΔT1が閾値以上である場合(ステップS310)、ハイサイドのスイッチ素子H1、H2には過剰な電流が流れている。その場合、コントローラ340は、第2スイッチングパターンP2を積極的に選択する(ステップS321)。この選択により、ローサイドのスイッチ素子L1、L2により多くの電流を流すことができる。
温度差ΔT1が閾値未満であり、かつ、温度差ΔT2が閾値以上である場合(ステップS311)、ローサイドのスイッチ素子L1、L2には過剰な電流が流れている。その場合、コントローラ340は、第1スイッチングパターンP1を積極的に選択する(ステップS322)。この選択により、ハイサイドのスイッチ素子H1、H2により多くの電流を流すことができる。温度差ΔT2が閾値未満である場合、コントローラ340は、第1および第2スイッチングパターンP1、P2を同等に選択することができる(ステップS323)。このように、コントローラ340は、各スイッチ素子の温度の測定結果に基づいて、時間比Rの最適な配分を相毎に決定することが可能となる。
コントローラ340は、例えばROM360に記録された平均電流IAvの積算値を定期的に、例えば5分毎にリセットすることが好ましい。長時間において積算値を取得すると、その値は電流総量として扱えない値になり得る。リセットによりこれを回避することができる。
本開示のインバータの制御方法は、1個のインバータを用いてモータを駆動する、いわゆるシングルインバータタイプの電力変換装置、または、例えば特開2016-34204号公報に開示された、2個のインバータを備える電力変換装置にも好適に利用することができる。例えば、1個のレグが故障しても残りのレグを用いてモータ駆動を継続できるように、冗長設計を取り入れた電力変換装置が検討されている。
冗長設計によると、例えばY結線された五相または四相モータを三相または二相などで駆動することが可能となる。このような電力変換装置では、冗長性が故に通電パターンまたは電流経路、すなわち、スイッチ素子の使用頻度に偏りが発生し得る。そのため、インバータ全体で各スイッチ素子の使用頻度を可能な限り平滑することにより、負荷を分散させることが望まれる。
本開示のインバータの制御方法によれば、上述したような様々なタイプの電力変換装置において、各スイッチ素子をバランスよく使用して負荷を分散させてインバータ全体の発熱限界を広げることにより、より多くの電流をインバータに流すことが可能となる。
(実施形態2) 図10は、本実施形態によるモータモジュール2000のハードウェアブロック構成を模式的に示し、主に、モータ駆動ユニット1000のハードウェアブロック構成を模式的に示している。図11は、モータ駆動ユニット1000の電力変換装置100の回路構成例を模式的に示している。以下、モータ駆動ユニット1000の電力変換装置100のより詳細な構造を主に説明する。
モータモジュール2000は、モータ200およびモータ駆動ユニット1000を備える。モータモジュール2000は、モジュール化されて、例えば、モータ、センサ、プリドライバおよびコントローラを備える機電一体型モータとして製造および販売され得る。
モータ駆動ユニット1000は、電力変換装置100および制御回路300を備える。モータ駆動ユニット1000は、モータ200に接続され、かつ、コイル102を介して電源101に接続される。
制御回路300の構造および機能は、実施形態1で説明したとおりである。モータモジュール2000において、制御回路300の各部品は、例えば1枚の回路基板(典型的にはプリント基板)に実装される。例えば、制御回路300のコントローラ340は、図1、図2または図3に例示するフローチャートに従ってPWM信号を生成し駆動回路350に出力することができる。または、例えば、コントローラ340は、図8または図9に例示するフローチャートに従ってPWM信号を生成し駆動回路350に出力することができる。
電力変換装置100は、例えば、切替回路110、第1インバータ120、第2インバータ130および電流センサ150を備える。
第1インバータ120は、各相に対応した端子U_L、V_LおよびW_Lを有する。第2インバータ130は、各相に対応した端子U_R、V_RおよびW_Rを
有する。第1インバータ120の端子U_Lは、U相の巻線M1の一端に接続され、端子V_Lは、V相の巻線M2の一端に接続され、端子W_Lは、W相の巻線M3の一端に接続される。第1インバータ120と同様に、第2インバータ130の端子U_Rは、U相の巻線M1の他端に接続され、端子V_Rは、V相の巻線M2の他端に接続され、端子W_Rは、W相の巻線M3の他端に接続される。
有する。第1インバータ120の端子U_Lは、U相の巻線M1の一端に接続され、端子V_Lは、V相の巻線M2の一端に接続され、端子W_Lは、W相の巻線M3の一端に接続される。第1インバータ120と同様に、第2インバータ130の端子U_Rは、U相の巻線M1の他端に接続され、端子V_Rは、V相の巻線M2の他端に接続され、端子W_Rは、W相の巻線M3の他端に接続される。
第1インバータ120は、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有する3個のレグを備える。U相用レグは、ローサイドスイッチ素子121Lおよびハイサイドスイッチ素子121Hを有する。V相用レグは、ローサイドスイッチ素子122Lおよびハイサイドスイッチ素子122Hを有する。W相用レグは、ローサイドスイッチ素子123Lおよびハイサイドスイッチ素子123Hを有する。
スイッチ素子として、例えば、寄生ダイオードが内部に形成されたMOSFET、または、絶縁ゲートバイポーラトランジスタ(IGBT)とそれに並列接続された還流ダイオードとの組み合わせを用いることができる。本実施形態では、スイッチ素子としてMOSFETを用いる例を説明する。
第1インバータ120は、U相、V相およびW相の各相の巻線に流れる電流を検出するための電流センサ150として、3個のシャント抵抗121R、122Rおよび123Rを備える。電流センサ150は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を含む。図11に示すように、例えば、3個のシャント抵抗121R、122Rおよび123Rは、第1インバータ120の3個のレグに含まれる3個のローサイドスイッチ素子121L、122L、123LとGNDの間にそれぞれ接続され得る。
第2インバータ130は、第1インバータ120と同様に、各々がローサイドスイッチ素子およびハイサイドスイッチ素子を有する3個のレグを備える。U相用レグは、ローサイドスイッチ素子131Lおよびハイサイドスイッチ素子131Hを有する。V相用レグは、ローサイドスイッチ素子132Lおよびハイサイドスイッチ素子132Hを有する。W相用レグは、ローサイドスイッチ素子133Lおよびハイサイドスイッチ素子133Hを有する。また、第2インバータ130は、3個のシャント抵抗131R、132Rおよび133Rを備える。それらのシャント抵抗は、3個のレグに含まれる3個のローサイドスイッチ素子131L、132L、133LとGNDの間に接続され得る。
各インバータに対し、シャント抵抗の数は3つに限られない。例えば、U相、V相用の2つのシャント抵抗、V相、W相用の2つのシャント抵抗、および、U相、W相用の2つのシャント抵抗を用いることが可能である。使用するシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などを考慮して適宜決定される。
切替回路110は、第1から第4スイッチ素子111、112、113および114を有する。電力変換装置100において、第1および第2インバータ120、130は、切替回路110によって電源101とGNDとに電気的にそれぞれ接続可能である。具体的に説明すると、第1スイッチ素子111は、第1インバータ120とGNDとの接続・非接続を切替える。第2スイッチ素子112は、電源101と第1インバータ120との接続・非接続を切替える。第3スイッチ素子113は、第2インバータ130とGNDとの接続・非接続を切替える。第4スイッチ素子114は、電源101と第2インバータ130との接続・非接続を切替える。
第1から第4スイッチ素子111、112、113および114のオン・オフは、例えばコントローラ340(図10を参照)または専用ドライバ(不図示)によって制御され得る。第1から第4スイッチ素子111、112、113および114は、双方向の電流を遮断することが可能である。第1から第4スイッチ素子111、112、113および114として、例えば、サイリスタ、アナログスイッチICまたは寄生ダイオードが内部に形成されたMOSFETなどの半導体スイッチ、および、メカニカルリレーなどを用いることができる。ダイオードおよびIGBTなどの組み合わせを用いても構わない。本実施形態では、第1から第4スイッチ素子111、112、113および114として、MOSFETを用いる。以降、第1から第4スイッチ素子111、112、113および114を、SW111、112、113および114とそれぞれ表記する。
SW111は、内部の寄生ダイオードに順方向電流が第1インバータ120に向けて流れるよう配置される。SW112は、寄生ダイオードに順方向電流が電源101に向けて流れるよう配置される。SW113は、寄生ダイオードに順方向電流が第2インバータ130に向けて流れるよう配置される。SW114は、寄生ダイオードに順方向電流が電源101に向けて流れるよう配置される。
切替回路110は、図11に示すように、逆接続保護用の第5および第6スイッチ素子115、116をさらに有していてもよい。第5および第6スイッチ素子115、116は、典型的に、寄生ダイオードを有するMOSFETの半導体スイッチである。第5スイッチ素子115は、SW112に直列に接続され、寄生ダイオードにおいて第1インバータ120に向けて順方向電流が流れるよう配置される。第6スイッチ素子116は、SW114に直列に接続され、寄生ダイオードにおいて第2インバータ130に向けて順方向電流が流れるよう配置される。電源101が逆向きに接続された場合でも、逆接続保護用の2つのスイッチ素子によって逆電流を遮断することができる。
図示する例に限られず、使用するスイッチ素子の個数は、設計仕様などを考慮して適宜決定される。特に車載分野においては、安全性の観点から高い品質保証が要求されるので、各インバータ用として複数のスイッチ素子を設けておくことが好ましい。
電源101は所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC-DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。
電源101は、第1および第2インバータ120、130に共通の単一電源であってもよいし、第1インバータ120用の第1電源および第2インバータ130用の第2電源を個別に備えていてもよい。
電源101と切替回路110の間にコイル102が設けられている。コイル102は、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、電源供給線に、コンデンサ103が接続されている。コンデンサ103は、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサ103は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。
本実施形態では、2個のインバータを有する電力変換装置を備えるモータ駆動ユニットを説明した。しかしながら、本開示はこれに限定されず、上述したような冗長設計を取り入れた、1個のインバータを有する電力変換装置を備えるモータ駆動ユニットであり得る。
(実施形態3) 図12は、本実施形態による電動パワーステアリング装置3000の典型的な構成を模式的に示している。
自動車等の車両は一般に、電動パワーステアリング(EPS)装置を有する。本実施形態による電動パワーステアリング装置3000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置3000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。
ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bを備える。
補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544を備える。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU(電子制御ユニット)542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。
ECU542は、例えば、実施形態1によるコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置3000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのユニットに、実施形態2によるモータモジュール2000を好適に用いることができる。
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。
100 :電力変換装置101 :電源102 :コイル103 :コンデンサ110 :切替回路120 :第1インバータ130 :第2インバータ150 :電流センサ200 :モータ300 :制御回路310 :電源回路320 :角度センサ330 :入力回路340 :コントローラ350 :駆動回路360 :ROM1000 :モータ駆動ユニット2000 :モータモジュール3000 :電動パワーステアリング装置
Claims (19)
- n相(nは3以上の整数)の巻線を有するモータに電力を供給するインバータの複数のスイッチ素子のスイッチング動作を制御するインバータの制御方法であって、前記スイッチング動作の1周期は、各々が独立した時間比を有する複数のスイッチングパターンの期間から構成され、前記複数のスイッチングパターンの各々の時間比の総和は1であり、前記時間比は、前記スイッチング動作の1周期毎に変化し得る値であり、
前記n相の巻線の相電流を獲得する電流獲得ステップと、
前記複数のスイッチングパターンの時間比の最新の値と前記相電流とに基づいて、前記複数のスイッチ素子の各々に流れる前記1周期当たりの平均電流を推定する推定ステップと、
前記平均電流の推定値に基づいて前記複数のスイッチングパターンの時間比の最適な配分を相毎に決定し、かつ、前記時間比の最新の値を前記最適な配分の値に変更することにより、前記複数のスイッチングパターンの時間比を相毎に更新する更新ステップと、
前記複数のスイッチングパターンの時間比の更新値に基づいて、前記複数のスイッチ素子のスイッチング動作を制御する制御信号を生成する生成ステップと、を包含し、
前記電流獲得ステップ、前記推定ステップ、前記更新ステップおよび前記生成ステップを繰り返し実行する、制御方法。 - 前記推定ステップにおいて、前記平均電流または前記平均電流に基づき求まる平均電力損失の推定値をメモリに書き込む、請求項1に記載の制御方法。
- 前記推定ステップで取得した前記平均電流または前記平均電流に基づき求まる平均電力損失の推定値をスイッチ素子毎に積算し、積算値をメモリに書き込む積算ステップをさらに包含する、請求項1に記載の制御方法。
- 前記積算ステップにおいて、前記メモリに記録された前記積算値を定期的にリセットする、請求項3に記載の制御方法。
- ベクトル制御において相電圧指令値を獲得するステップをさらに包含し、
前記推定ステップにおいて、電源電圧、前記相電圧指令値および前記相電流に基づいて前記平均電流を相毎に推定する、請求項1から4のいずれかに記載の制御方法。 - 前記インバータは、前記モータの各相の巻線の一端に接続され、n個のレグを有する第1インバータと、前記各相の巻線の他端に接続され、n個のレグを有する第2インバータと、を備え、
前記複数のスイッチングパターンは、第1時間比を有する第1スイッチングパターン、第2時間比を有する第2スイッチングパターン、第3時間比を有する第3スイッチングパターンおよび第4時間比を有する第4スイッチングパターンを含み、前記第1から第4時間比の総和は1であり、
前記第1および第2スイッチングパターンは、巻線の相電圧を0Vとするパターンであり、前記第3スイッチングパターンは、巻線の相電圧を電源電圧とするパターンであり、
前記第4スイッチングパターンは、巻線の相電圧を前記電源電圧の逆電圧とするパターンである、請求項3または4に記載の制御方法。 - 前記更新ステップにおいて、前記積算ステップで取得した最新の前記積算値と、前記メモリに予め保持された閾値とをスイッチ素子毎に比較し、前記積算値が前記閾値よりも大きい場合、前記第3および第4時間比よりも前記第1および第2時間比を高く設定することによって、前記第1から第4時間比の前記最適な配分を相毎に決定する、請求項6に記載の制御方法。
- 前記積算値が前記閾値よりも大きい場合、前記第3または第4時間比をゼロに設定する、請求項7に記載の制御方法。
- ベクトル制御において相電圧指令値を求めるステップをさらに包含し、
前記推定ステップにおいて、前記電源電圧、前記相電圧指令値および前記相電流に基づいて前記平均電流を相毎に推定する、請求項6から8のいずれかに記載の制御方法。 - 前記更新ステップにおいて、各スイッチ素子の熱特性を示すパラメータをさらに用いて前記複数のスイッチングパターンの時間比の前記最適な配分を相毎に決定する、請求項1から10のいずれかに記載の制御方法。
- 温度センサを用いて各スイッチ素子の温度を測定するステップをさらに包含し、
前記更新ステップにおいて、各スイッチ素子の温度の測定結果に基づいて前記複数のスイッチングパターンの時間比の前記最適な配分を相毎に決定する、請求項1から10のいずれかに記載の制御方法。 - 前記更新ステップにおいて、前記積算ステップで取得した最新の前記積算値のうち、前記第1インバータの前記n個のレグ、前記第2インバータの前記n個のレグおよび前記n相の巻線から構成されるn個のHブリッジの各相のブリッジにおいて、ハイサイド側の2個のスイッチ素子の積算値を合算した値である上側の積算値と、ローサイド側の2個のスイッチ素子の積算値を合算した値である下側の積算値とに基づいて、前記第1から第4時間比の前記最適な配分を相毎に決定する、請求項6に記載の制御方法。
- 前記下側の積算値は前記上側の積算値よりも大きい場合、前記第1パターンを積極的に選択し、
前記下側の積算値は前記上側の積算値以下である場合、前記第2パターンを積極的に選択する、請求項13に記載の制御方法。 - 前記上側の積算値に対する前記下側の積算値の比率が、前記メモリに予め保持された閾値よりも大きい場合、前記第1パターンを積極的に選択し、
前記比率が、前記閾値以下である場合、前記第2パターンを積極的に選択する、請求項13に記載の制御方法。 - n相(nは3以上の整数)の巻線を有するモータに電力を供給するインバータの複数のスイッチ素子のスイッチング動作を制御する制御方法であって、 前記n相の巻線の相電流を獲得し、
前記複数のスイッチ素子の各々に流れる、前記スイッチング動作の1周期当たりの平均電流を前記相電流に基づいて推定し、
前記平均電流の推定値に基づいて、前記複数のスイッチ素子の各々に流れる電流のバランスを相毎に最適化し、
前記複数のスイッチ素子のスイッチング動作を制御する制御信号を、最適化した結果に基づいて生成する、制御方法。 - n相(nは3以上の整数)の巻線を有するモータに電力を供給し、複数のスイッチ素子を有するインバータと、
前記複数のスイッチ素子のスイッチング動作を制御する制御回路であって、前記スイッチング動作の1周期は、各々が独立した時間比を有する複数のスイッチングパターンの期間から構成され、前記複数のスイッチングパターンの各々の時間比の総和は1であり、前記時間比は、前記スイッチング動作の1周期毎に変化し得る値であり、
前記n相の巻線の相電流を獲得し、
前記複数のスイッチングパターンの時間比の最新の値と前記相電流とに基づいて、前記複数のスイッチ素子の各々に流れる前記1周期当たりの平均電流を相毎に推定し、
前記平均電流の推定値に基づいて前記複数のスイッチングパターンの時間比の最適な配分を相毎に決定し、かつ、前記時間比の最新の値を前記最適な配分の値に変更することにより、前記複数のスイッチングパターンの時間比を更新し、
前記複数のスイッチングパターンの時間比の更新値に基づいて、前記複数のスイッチ素子のスイッチング動作を制御する制御信号を生成することを繰り返し実行する制御回路と、
を備える、モータ駆動ユニット。 - モータと、
請求項17に記載のモータ駆動ユニットと、
を備えるモータモジュール。 - 請求項18に記載のモータモジュールを備える電動パワーステアリング装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880053624.6A CN111034005B (zh) | 2017-09-07 | 2018-06-15 | 逆变器的控制方法、马达驱动单元、马达模块以及电动助力转向装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017172292 | 2017-09-07 | ||
JP2017-172292 | 2017-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019049459A1 true WO2019049459A1 (ja) | 2019-03-14 |
Family
ID=65635242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022923 WO2019049459A1 (ja) | 2017-09-07 | 2018-06-15 | インバータの制御方法、モータ駆動ユニット、モータモジュールおよび電動パワーステアリング装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111034005B (ja) |
WO (1) | WO2019049459A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021114826A (ja) * | 2020-01-17 | 2021-08-05 | 株式会社デンソー | モータ制御装置 |
CN113315502A (zh) * | 2020-02-26 | 2021-08-27 | Abb瑞士股份有限公司 | 功率开关控制 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10337084A (ja) * | 1997-05-30 | 1998-12-18 | Aisin Seiki Co Ltd | スイッチングモジュ−ルの過熱保護装置 |
JP2011045214A (ja) * | 2009-08-24 | 2011-03-03 | Daikin Industries Ltd | インバータ装置 |
JP2014121129A (ja) * | 2012-12-14 | 2014-06-30 | Honda Motor Co Ltd | 駆動制御装置及び該駆動制御装置を適用した電動パワーステアリング装置 |
JP2017022927A (ja) * | 2015-07-14 | 2017-01-26 | 株式会社日本自動車部品総合研究所 | 電力変換装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007221857A (ja) * | 2006-02-14 | 2007-08-30 | Honda Motor Co Ltd | モータ制御装置 |
JP6067105B2 (ja) * | 2013-04-12 | 2017-01-25 | 三菱電機株式会社 | 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機 |
WO2015083244A1 (ja) * | 2013-12-03 | 2015-06-11 | 三菱電機株式会社 | 電力変換装置、およびそれを備えたモータ駆動装置、およびそれを備えた送風機、圧縮機、およびそれらを備えた空気調和機、冷蔵庫、ならびに冷凍機 |
-
2018
- 2018-06-15 WO PCT/JP2018/022923 patent/WO2019049459A1/ja active Application Filing
- 2018-06-15 CN CN201880053624.6A patent/CN111034005B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10337084A (ja) * | 1997-05-30 | 1998-12-18 | Aisin Seiki Co Ltd | スイッチングモジュ−ルの過熱保護装置 |
JP2011045214A (ja) * | 2009-08-24 | 2011-03-03 | Daikin Industries Ltd | インバータ装置 |
JP2014121129A (ja) * | 2012-12-14 | 2014-06-30 | Honda Motor Co Ltd | 駆動制御装置及び該駆動制御装置を適用した電動パワーステアリング装置 |
JP2017022927A (ja) * | 2015-07-14 | 2017-01-26 | 株式会社日本自動車部品総合研究所 | 電力変換装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021114826A (ja) * | 2020-01-17 | 2021-08-05 | 株式会社デンソー | モータ制御装置 |
JP7283402B2 (ja) | 2020-01-17 | 2023-05-30 | 株式会社デンソー | モータ制御装置 |
CN113315502A (zh) * | 2020-02-26 | 2021-08-27 | Abb瑞士股份有限公司 | 功率开关控制 |
CN113315502B (zh) * | 2020-02-26 | 2024-03-26 | Abb瑞士股份有限公司 | 功率开关控制 |
Also Published As
Publication number | Publication date |
---|---|
CN111034005A (zh) | 2020-04-17 |
CN111034005B (zh) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017150641A1 (ja) | 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 | |
WO2018173424A1 (ja) | 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 | |
JP7070420B2 (ja) | 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 | |
JP6361541B2 (ja) | 回転電機の制御装置 | |
JP7088200B2 (ja) | モータ制御方法、電力変換装置、モータモジュールおよび電動パワーステアリング装置 | |
JP6217554B2 (ja) | インバータ装置 | |
JP7070575B2 (ja) | 電力変換装置、モータモジュールおよび電動パワーステアリング装置 | |
JP7014183B2 (ja) | 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 | |
JPWO2019054026A1 (ja) | 電力変換装置、モータモジュールおよび電動パワーステアリング装置 | |
US11114969B2 (en) | Power converter, motor driving unit, and electric power steering device | |
US20200274461A1 (en) | Electric power conversion device, motor driver, and electric power steering device | |
US11031880B2 (en) | Power converter, motor driving unit, and electric power steering device | |
US11095233B2 (en) | Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus | |
JPWO2018061818A1 (ja) | 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 | |
WO2019049459A1 (ja) | インバータの制御方法、モータ駆動ユニット、モータモジュールおよび電動パワーステアリング装置 | |
US11476777B2 (en) | Power conversion device, driving device, and power steering device | |
JP7010282B2 (ja) | 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 | |
WO2019021647A1 (ja) | 電力変換装置、モータモジュールおよび電動パワーステアリング装置 | |
US11420672B2 (en) | Power conversion device, motor drive unit, and electric power steering device | |
WO2019150911A1 (ja) | 電力変換装置、駆動装置およびパワーステアリング装置 | |
WO2019064725A1 (ja) | 電力変換装置、モータモジュールおよび電動パワーステアリング装置 | |
WO2019064830A1 (ja) | 電力変換装置、モータモジュールおよび電動パワーステアリング装置 | |
WO2019064829A1 (ja) | 電力変換装置、モータモジュールおよび電動パワーステアリング装置 | |
JP2021045012A (ja) | 電力変換装置、駆動装置およびパワーステアリング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18854848 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18854848 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |