WO2019049407A1 - 炭酸氷の製造装置及び製造方法 - Google Patents

炭酸氷の製造装置及び製造方法 Download PDF

Info

Publication number
WO2019049407A1
WO2019049407A1 PCT/JP2018/012842 JP2018012842W WO2019049407A1 WO 2019049407 A1 WO2019049407 A1 WO 2019049407A1 JP 2018012842 W JP2018012842 W JP 2018012842W WO 2019049407 A1 WO2019049407 A1 WO 2019049407A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
pressure
carbonated
container
resistant
Prior art date
Application number
PCT/JP2018/012842
Other languages
English (en)
French (fr)
Inventor
博 胡
Original Assignee
アイスマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイスマン株式会社 filed Critical アイスマン株式会社
Publication of WO2019049407A1 publication Critical patent/WO2019049407A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice

Definitions

  • the present invention relates to an apparatus and method for freezing carbonated water to produce carbonated ice.
  • carbonated water can be frozen to obtain carbonated ice
  • carbonated ice can be divided into a suitable size and put in a drink, put in a carbonated drink so as not to lower the concentration of carbonated, eat as it is and have a new texture It can be expected that a large demand can be expected from obtaining carbon dioxide, but it is considered difficult to produce carbonated ice. This is because, when it is attempted to freeze carbonated water, carbonic acid contained in carbonated water is released to the atmosphere as crystallization of ice progresses.
  • Patent Document 1 a pressure-resistant ice container into which raw carbon dioxide-containing ice-making water is injected, and a pressurized medium are supplied to expand so as to contact the ice-raw water surface injected into the pressure-resistant ice container.
  • a hollow elastic pressurized capsule disposed in the pressure-resistant ice container, a brine covering portion for cooling the pressure-resistant ice container from the outside, and a cooling means comprising a central brine supply portion for cooling from the center side as well
  • the invention of an apparatus for producing carbonated ice is disclosed.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a carbonized ice manufacturing apparatus and method capable of mass-producing carbonated ice by automation.
  • a first invention is an apparatus for producing carbonated ice by freezing carbonated water, A pressure container for carbonated water, a pressure-resistant ice container for storing and freezing carbonated water supplied from the pressure container for carbonated water, a cooling means for cooling the pressure-resistant ice container, and heating for heating Means, a vacuum pump for evacuating the inside of the pressure-resistant ice-making vessel, a carbon dioxide gas feeding means for supplying carbon dioxide gas into the pressure-resistant ice-making container, and the pressure-resistant ice-making container into which carbonated water is injected to a set water level.
  • An electric ball valve connected to an inert gas supply means for supplying an inert gas, and connected to a carbonated ice outlet provided on the lower surface of the pressure resistant ice making container and having a bore equal to or larger than that of the carbonated ice outlet And providing.
  • a second invention is a method for producing carbonated ice using the apparatus for producing carbonated ice according to the first invention, and is characterized by including the following steps.
  • (1) A step of operating the vacuum pump to evacuate the inside of the pressure-resistant ice making container (2)
  • carbonated water is supplied from a pressure container for carbonated water to a pressure-resistant ice making container from a pressure container for carbonated water, the carbonated water in the pressure-resistant ice making container is pressurized with an inert gas, and the pressure forming ice container is cooled to obtain carbonated water.
  • the pressure-resistant ice making container is heated to separate carbonated ice from the inner surface of the pressure-resistant ice forming container, a motorized ball valve is opened, and a series of operations for discharging carbonated ice from a carbonated ice outlet are automated.
  • FIG. 1 It is a block diagram which shows the structure of the carbonated ice manufacturing apparatus based on one Example of this invention. It is a perspective view of the pressure-resistant ice making container which comprises the carbonic acid ice manufacturing apparatus.
  • A is a plan view of the electric ball valve
  • B is a side sectional view when the electric ball valve is opened
  • C is a side sectional view when the electric ball valve is closed.
  • the structure of the carbonic acid ice manufacturing apparatus 10 which concerns on one Example of this invention is shown in FIG.
  • the carbonated ice manufacturing apparatus 10 is a pressure-resistant container 11 for carbonated water that is used for producing carbonated water and stores carbonated water after production, and a pressure-resistant ice that stores carbonated water supplied from the pressure-resistant container 11 for carbonated water and freezes it.
  • a container 12 a vacuum pump 15 for evacuating the inside of the pressure container 11 for carbonated water and the inside of the pressure-resistant ice container 12, a carbon dioxide gas cylinder for feeding carbon dioxide gas into the pressure container 11 for carbonated water and the pressure-made ice container 12
  • a gas feeding means 16 and an inert gas cylinder (inert gas feeding means) 17 for feeding an inert gas into the pressure-resistant ice making container 12 into which carbonated water is injected to a set water level are provided.
  • the vacuum pump 15 is connected to the pressure resistant container 11 for carbonated water through the pipes 51 and 50, and is connected to the pressure-resistant ice-making container 12 through the pipes 51, 54 and 52.
  • the motor-operated valve 23 is installed on the path of the pipe 51, and the motor-operated valve 25 is installed on the path of the pipe 54.
  • Carbon dioxide gas is supplied from the carbon dioxide gas cylinder 16 to the pressure resistant container 11 for carbonated water via the pipes 52 and 50, and from the carbon dioxide gas cylinder 16 to the pressure-resistant ice making container 12 via the pipe 52.
  • the motor-operated valve 26 and the check valve 36 are installed on the path of the pipe 50, and the motor-operated valve 27 and the check valve 37 are installed on the path of the pipe 52.
  • An inert gas is fed from the inert gas cylinder 17 to the pressure-resistant ice making container 12 through a pipe 53.
  • An electrically operated valve 28 is installed on the path of the pipe 53. Nitrogen, argon or the like can be used as the inert gas.
  • the carbonated water pressure container 11 has a pipe 45 with a motorized valve 21 for injecting the raw material water into the carbonated water pressure container 11 and a level meter 39 which operates to stop the injection when the raw material water reaches the set water level. Is installed. Further, in order to carbonate the raw material water in the pressure container 11 for carbonated water, the pressure container 11 for carbonated water is provided with a facility for circulating the raw material water (carbonated water) in the pressure container 11 for carbonated water. .
  • the pipes 46 and 47 connecting the circulation pump 18 and the spray nozzle 38 and the three-way valve 34 are provided.
  • the three-way valve 34 is switched to operate the circulation pump 18 and carbonated water is supplied to the ice container 12 through the pipes 46 and 48. .
  • the electrically operated valve 22 and the check valve 35 are installed on the path of the pipe 48.
  • the pressure container 11 for carbonated water and the pressure-resistant ice container 12 are connected by a pipe 49 having a pressure equalizing valve 33. ing.
  • the pressure-resistant ice making container 12 has a vertical cylindrical shape, and an electric ball valve 14 having a diameter equal to or larger than that of the carbonated ice outlet is connected to a carbonated ice outlet (not shown) provided on the lower surface See Figure 2).
  • the electric ball valve 14 includes a tube 14a connected to the carbonated ice discharge port, and an actuator 14b for rotating the ball 14c fitted in the tube 14a via the pivot shaft 14d (see FIG. 3 (A) to (C)).
  • a through hole having a diameter equal to or larger than that of the carbonated ice discharge port is formed in the central portion of the ball 14c, and the electric ball valve 14 is opened and closed by rotating the rotation shaft 14d by ⁇ 90 °.
  • the upper surface of the pressure resistant ice making container 12 is sealed with a flange 12a, and carbon dioxide gas cylinders (carbon dioxide gas feeding means) 16 and inert gas cylinders (inert gas feeding (inert gas feeding) via pipes 52, 53, 55 penetrating the flange 12a.
  • the feeding means 17 is connected to the motor-operated valve 24 for exhaust and the pressure sensor 40 respectively.
  • the peripheral wall 13 of the pressure resistant ice making container 12 has a double pipe structure, and the brine circulates inside the double pipe.
  • the cooling brine flows from the cooling brine tank (cooling means) 43 through the pipe 56 into the peripheral wall 13 of the pressure resistant ice making container 12.
  • the cooling brine that has flowed out of the peripheral wall 13 of the pressure resistant ice making container 12 flows into the cooling brine tank 43 via the pipe 58.
  • the circulation pump 19 and the motor-operated valve 31 are provided on the pipe 56, and the motor-operated valve 30 is provided on the pipe 58.
  • the heating brine flows from the heating brine tank (heating means) 44 through the pipe 57 into the peripheral wall 13 of the pressure-resistant ice forming container 12.
  • the heating brine that has flowed out of the peripheral wall 13 of the pressure resistant ice making container 12 flows into the heating brine tank 44 via the pipe 59.
  • the circulation pump 20 and the motor-operated valve 32 are installed on the pipe 57, and the motor-operated valve 29 is installed on the pipe 59.
  • PLC programmable logic controller
  • the method of producing carbonated ice is roughly divided into three processes: production of carbonated water, injection of carbonated water into a pressure-resistant ice container, and production of carbonated ice. The following will be described in order.
  • the motor operated valve 21 is opened, and the raw material water is injected into the carbonated water pressure container 11.
  • the raw material water should be low temperature water as close to 0 ° C. as possible.
  • the level meter 39 operates and the motor operated valve 21 closes.
  • the motor operated valve 26 is opened, and carbon dioxide gas is fed from the carbon dioxide gas cylinder 16 to the pressure container 11 for carbonated water.
  • the injection pressure is appropriately determined by presupposing the carbonic acid concentration of carbonic acid ice. In general, it is about 0.15 MPa to 1.0 MPa.
  • the motor operated valve 26 is closed.
  • the motor operated valve 27 is opened to feed carbon dioxide gas from the carbon dioxide gas cylinder 16 to the pressure-resistant ice making container 12.
  • the injection pressure is about 0.15 MPa to about 1.0 MPa as described above.
  • the motor operated valve 27 is closed.
  • the present invention can be used to produce carbonated ice. At that time, according to the present invention, since a series of operations from production to discharge of carbonated ice are automated, it is possible to mass-produce carbonated ice without loss of working time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

炭酸氷の製造を自動化して大量生産することが可能な炭酸氷の製造装置及び製造方法を提供する。 炭酸水を氷結させて炭酸氷を製造する炭酸氷製造装置10であって、炭酸水を貯留する炭酸水用耐圧容器11と、炭酸水用耐圧容器11から供給される炭酸水を貯留して氷結させる耐圧製氷容器12と、耐圧製氷容器12を冷却する冷却手段43及び加温する加温手段44と、耐圧製氷容器12内を真空にする真空ポンプ15と、耐圧製氷容器12内に炭酸ガスを送給する炭酸ガス送給手段16と、設定水位まで炭酸水が注水された耐圧製氷容器12内に不活性ガスを送給する不活性ガス送給手段17と、耐圧製氷容器12の下面に設けられた炭酸氷排出口に接続され、炭酸氷排出口と同じ若しくはそれを超える口径を有する電動ボール弁14とを備える。

Description

炭酸氷の製造装置及び製造方法
 本発明は、炭酸水を氷結させて炭酸氷を製造する装置及び方法に関する。
 炭酸水を氷結させて炭酸氷を得ることができれば、炭酸氷を適当な大きさに割って飲み物に入れたり、炭酸飲料に入れて炭酸の濃度を下げないようにしたり、そのまま食して新しい食感が得られることから大きな需要が期待できるが、炭酸氷の製造は困難とされている。なぜなら、炭酸水を氷結させようとすると、氷の結晶化が進むにつれて炭酸水に含まれている炭酸が大気中に放出されてしまうからである。
 そこで、特許文献1では、炭酸ガス入りの製氷原水が注水される耐圧製氷容器と、加圧媒体が供給されることで膨脹し、耐圧製氷容器内に注水されている製氷原水面に接触するよう、耐圧製氷容器内に配装されている中空弾性加圧嚢と、耐圧製氷容器をその外部から冷却するブライン包覆部、同じく中心側から冷却する中央ブライン供給部からなる冷却手段とを備えたことを特徴とする炭酸入り氷の製造装置の発明が開示されている。
 また、特許文献2では、製氷原水を耐圧容器に所定の位置まで注水し、前記製氷原水にアルコール類と炭酸ガスを溶解させて不溶性ガスにて加圧し、耐圧容器を冷却して前記製氷原水を凍結させることを特徴とする炭酸入り氷の製造方法の発明が開示されている。
日本国特開平7-120123号公報 日本国特開2014-219194号公報
 しかしながら、特許文献1及び2の発明は、耐圧(製氷)容器の上蓋を外して耐圧(製氷)容器内に製氷原水を注水し、製氷後に再び耐圧(製氷)容器の上蓋を外して耐圧(製氷)容器内の炭酸氷を取り出さなければならないため、炭酸氷を大量に自動生産することができない。
 本発明はかかる事情に鑑みてなされたもので、炭酸氷の製造を自動化して大量生産することが可能な炭酸氷の製造装置及び製造方法を提供することを目的とする。
 上記目的を達成するため、第1の発明は、炭酸水を氷結させて炭酸氷を製造する装置であって、
 炭酸水を貯留する炭酸水用耐圧容器と、前記炭酸水用耐圧容器から供給される炭酸水を貯留して氷結させる耐圧製氷容器と、前記耐圧製氷容器を冷却する冷却手段及び加温する加温手段と、前記耐圧製氷容器内を真空にする真空ポンプと、前記耐圧製氷容器内に炭酸ガスを送給する炭酸ガス送給手段と、設定水位まで炭酸水が注水された前記耐圧製氷容器内に不活性ガスを送給する不活性ガス送給手段と、前記耐圧製氷容器の下面に設けられた炭酸氷排出口に接続され、前記炭酸氷排出口と同じ若しくはそれを超える口径を有する電動ボール弁とを備えることを特徴としている。
 また、第2の発明は、第1の発明に係る炭酸氷製造装置を用いた炭酸氷の製造方法であって、以下の工程を備えることを特徴としている。
(1)前記真空ポンプを作動して前記耐圧製氷容器内を真空にする工程
(2)真空にされた前記耐圧製氷容器内に、前記炭酸ガス送給手段により炭酸ガスを送給する工程
(3)炭酸ガス雰囲気の前記耐圧製氷容器内に、前記炭酸水用耐圧容器から炭酸水を設定水位まで注水する工程
(4)設定水位まで炭酸水が注水された前記耐圧製氷容器内に、前記不活性ガス送給手段により不活性ガスを送給して前記耐圧製氷容器内の炭酸水を加圧する工程
(5)前記冷却手段により前記耐圧製氷容器を冷却して該耐圧製氷容器内の炭酸水を氷結させる工程
(6)前記加温手段により前記耐圧製氷容器を加温して前記耐圧製氷容器の内面から炭酸氷を剥離させる工程
(7)前記電動ボール弁を開いて前記炭酸氷排出口から炭酸氷を排出する工程
 本発明では、炭酸水を貯留する炭酸水用耐圧容器から耐圧製氷容器に炭酸水を供給して耐圧製氷容器内の炭酸水を不活性ガスで加圧し、耐圧製氷容器を冷却して炭酸水を氷結させた後、耐圧製氷容器を加温して耐圧製氷容器の内面から炭酸氷を剥離させ、電動ボール弁を開いて炭酸氷排出口から炭酸氷を排出する一連の作業が自動化されている。
 本発明に係る炭酸氷の製造装置及び製造方法では、炭酸氷の製造から排出までの一連の作業が自動化されているので、作業時間のロスがなく、炭酸氷を大量生産することができる。
本発明の一実施例に係る炭酸氷製造装置の構成を示すブロック図である。 同炭酸氷製造装置を構成する耐圧製氷容器の斜視図である。 (A)は電動ボール弁の平面図、(B)は電動ボール弁が開いたときの側断面図、(C)は電動ボール弁が閉じたときの側断面図である。
 続いて、添付した図面を参照しつつ、本発明を具体化した実施例について説明し、本発明の理解に供する。
 本発明の一実施例に係る炭酸氷製造装置10の構成を図1に示す。
 炭酸氷製造装置10は、炭酸水の製造に使用され製造後の炭酸水を貯留する炭酸水用耐圧容器11と、炭酸水用耐圧容器11から供給される炭酸水を貯留して氷結させる耐圧製氷容器12と、炭酸水用耐圧容器11内及び耐圧製氷容器12内を真空にする真空ポンプ15と、炭酸水用耐圧容器11内及び耐圧製氷容器12内に炭酸ガスを送給する炭酸ガスボンベ(炭酸ガス送給手段)16と、設定水位まで炭酸水が注水された耐圧製氷容器12内に不活性ガスを送給する不活性ガスボンベ(不活性ガス送給手段)17とを備えている。
 真空ポンプ15は、配管51、50を介して炭酸水用耐圧容器11に接続され、配管51、54、52を介して耐圧製氷容器12に接続されている。配管51の経路上には電動弁23が、配管54の経路上には電動弁25がそれぞれ設置されている。
 炭酸ガスボンベ16から炭酸水用耐圧容器11へは配管52、50を介して、炭酸ガスボンベ16から耐圧製氷容器12へは配管52を介して、それぞれ炭酸ガスが送給される。配管50の経路上には電動弁26と逆止弁36が、配管52の経路上には電動弁27と逆止弁37がそれぞれ設置されている。
 不活性ガスボンベ17から耐圧製氷容器12へは配管53を介して不活性ガスが送給される。配管53の経路上には電動弁28が設置されている。
 なお、不活性ガスには窒素やアルゴン等を使用することができる。
 炭酸水用耐圧容器11には、炭酸水用耐圧容器11内に原料水を注水するための電動弁21付きの配管45と、原料水が設定水位になると作動して注水を停止させるレベル計39が設置されている。
 また、炭酸水用耐圧容器11内の原料水を炭酸化させるため、炭酸水用耐圧容器11には、炭酸水用耐圧容器11内の原料水(炭酸水)を循環させる設備が設置されている。具体的には、炭酸水用耐圧容器11内の原料水(炭酸水)を循環させる循環ポンプ18と、循環させた原料水(炭酸水)を炭酸水用耐圧容器11内に噴射するスプレーノズル38と、循環ポンプ18とスプレーノズル38とを繋ぐ配管46、47及び三方弁34が設置されている。
 炭酸水用耐圧容器11から耐圧製氷容器12へ炭酸水を供給する際は、三方弁34を切り替えて循環ポンプ18を作動させ、配管46、48を介して耐圧製氷容器12に炭酸水を供給する。配管48の経路上には電動弁22と逆止弁35が設置されている。
 その際、炭酸水用耐圧容器11内の圧力と耐圧製氷容器12内の圧力を同じレベルにするため、炭酸水用耐圧容器11と耐圧製氷容器12は、均圧弁33を有する配管49により接続されている。
 耐圧製氷容器12は竪型円筒状とされ、下面に設けられた炭酸氷排出口(図示省略)には炭酸氷排出口と同じ若しくはそれを超える口径を有する電動ボール弁14が接続されている(図2参照)。
 電動ボール弁14は、炭酸氷排出口に接続される管体14aと、管体14a内に嵌め込まれたボール14cを回動軸14dを介して回動させるアクチュエータ14bとから構成されている(図3(A)~(C)参照)。ボール14cの中央部には、炭酸氷排出口と同じ若しくはそれを超える口径を有する貫通孔が形成されており、回動軸14dを±90°回動させることにより電動ボール弁14が開閉する。
 一方、耐圧製氷容器12の上面はフランジ12aで封止され、フランジ12aを貫通する配管52、53、55を介して、炭酸ガスボンベ(炭酸ガス送給手段)16、不活性ガスボンベ(不活性ガス送給手段)17、排気用の電動弁24及び圧力センサー40にそれぞれ接続されている。
 耐圧製氷容器12を冷却及び加温するため、耐圧製氷容器12の周壁13は二重管構造とされ、二重管の内部をブラインが循環する。
 耐圧製氷容器12を冷却する際は、冷却用ブラインタンク(冷却手段)43から配管56を介して冷却用ブラインが耐圧製氷容器12の周壁13に流入する。耐圧製氷容器12の周壁13から流出した冷却用ブラインは配管58を介して冷却用ブラインタンク43に流入する。配管56上には循環ポンプ19と電動弁31が、配管58上には電動弁30が設置されている。
 一方、耐圧製氷容器12を加温する際は、加温用ブラインタンク(加温手段)44から配管57を介して加温用ブラインが耐圧製氷容器12の周壁13に流入する。耐圧製氷容器12の周壁13から流出した加温用ブラインは配管59を介して加温用ブラインタンク44に流入する。配管57上には循環ポンプ20と電動弁32が、配管59上には電動弁29が設置されている。
 なお、上述した電動弁を含む各機器の制御には、図示していないPLC(プログラマブル・ロジック・コントローラ)が使用される。
 次に、上記構成を有する炭酸氷製造装置10を用いた炭酸氷の製造方法について説明する。
 炭酸氷の製造方法は、大きく分けて、炭酸水の製造、炭酸水の耐圧製氷容器への注入、炭酸氷の製造の3つのプロセスから構成される。以下、順に説明する。
[炭酸水の製造]
(1)電動弁23を開けて真空ポンプ15を作動させ、炭酸水用耐圧容器11内を真空にする。
(2)真空引きが完了した時点で電動弁23を閉じ、真空ポンプ15を停止する。
(3)電動弁21を開き、原料水を炭酸水用耐圧容器11に注入する。炭酸の溶解度を上げるため、原料水は、できるだけ0℃近い低温水が良い。
(4)原料水が設定水位になるとレベル計39が作動し、電動弁21が閉じる。
(5)電動弁26を開き、炭酸ガスボンベ16から炭酸水用耐圧容器11へ炭酸ガスを送給する。注入圧力は、炭酸氷の炭酸濃度を予め想定し適宜決定する。概ね0.15MPa~1.0MPa程度である。
(6)炭酸ガスの送給が完了した時点で電動弁26を閉じる。
(7)三方弁34のB弁を閉じてA弁を開き、循環ポンプ18を作動させる。これにより、スプレーノズル38から炭酸水用耐圧容器11内に原料水(炭酸水)が噴射され、炭酸水用耐圧容器11内の原料水(炭酸水)が循環混合される。水量にもよるが3分~30分程度で炭酸水は最大濃度に達する。
(8)原料水の炭酸化作業が完了した時点で循環ポンプ18を停止する。
[炭酸水の耐圧製氷容器への注入]
(1)電動弁25を開け、電動ボール弁14を閉じて真空ポンプ15を作動させ、耐圧製氷容器12内を真空にする。
(2)真空引きが完了した時点で電動弁25を閉じ、真空ポンプ15を停止する。
(3)電動弁27を開き、炭酸ガスボンベ16から耐圧製氷容器12へ炭酸ガスを送給する。注入圧力は、前述したように、概ね0.15MPa~1.0MPa程度である。
(4)炭酸ガスの送給が完了した時点で電動弁27を閉じる。
(5)電動弁22と均圧弁33を開くと共に、三方弁34のA弁を閉じてB弁を開いて循環ポンプ18を作動させ、炭酸水用耐圧容器11から炭酸ガス雰囲気の耐圧製氷容器12へ炭酸水を供給する。その際、炭酸水の凍結膨張による容器破壊を防止するため、炭酸水の体積の少なくとも2割以上の空間を耐圧製氷容器12の上方に設ける。
(6)炭酸水用耐圧容器11から耐圧製氷容器12への炭酸水の供給が完了(設定水位まで注水)した時点で循環ポンプ18を停止し、電動弁22と均圧弁33を閉じる。
[炭酸氷の製造]
(1)電動弁28を開き、不活性ガスボンベ17から耐圧製氷容器12へ不活性ガスを送給して耐圧製氷容器12内の炭酸水を加圧する。注入圧力は1.0MPa~1.5MPa程度である。
(2)不活性ガスの送給が完了した時点で電動弁28を閉じる。
(3)電動弁31と電動弁30を開き、循環ポンプ19を作動させ、冷却用ブラインタンク43からの冷却用ブラインにより耐圧製氷容器12を冷却して製氷(炭酸水の氷結)を開始する。冷却用ブラインの温度は-20℃程度である。
(4)製氷が完了した時点で、電動弁31と電動弁30を閉じ、循環ポンプ19を停止する。
(5)電動ボール弁14と電動弁24を開く。
(6)電動弁32と電動弁29を開き、循環ポンプ20を作動させ、加温用ブラインタンク44からの加温用ブラインにより耐圧製氷容器12を加温して脱氷を開始する。加温用ブラインの温度は10℃~40℃程度である。耐圧製氷容器12の内面から炭酸氷が剥離すると、炭酸氷は自重により電動ボール弁14から外部に排出される。
(7)脱氷が完了した時点で、電動弁32と電動弁29を閉じ、循環ポンプ20を停止する。
 以上、本発明の一実施例について説明してきたが、本発明は何ら上記した実施例に記載の構成に限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。例えば、上記実施例では、炭酸水用耐圧容器及び耐圧製氷容器は各1個としているが、それぞれ複数個としてもよい。
 本発明は、炭酸氷の製造に利用することができる。その際、本発明によれば、炭酸氷の製造から排出までの一連の作業が自動化されているので、作業時間のロスがなく、炭酸氷を大量生産することができる。
10:炭酸氷製造装置、11:炭酸水用耐圧容器、12:耐圧製氷容器、12a:フランジ、13:周壁、14:電動ボール弁、14a:管体、14b:アクチュエータ、14c:ボール、14d:回動軸、15:真空ポンプ、16:炭酸ガスボンベ(炭酸ガス送給手段)、17:不活性ガスボンベ(不活性ガス送給手段)、18~20:循環ポンプ、21~32:電動弁、33:均圧弁、34:三方弁、35~37:逆止弁、38:スプレーノズル、39:レベル計、40:圧力センサー、43:冷却用ブラインタンク(冷却手段)、44:加温用ブラインタンク(加温手段)、45~59:配管

Claims (2)

  1.  炭酸水を氷結させて炭酸氷を製造する装置であって、
     炭酸水を貯留する炭酸水用耐圧容器と、前記炭酸水用耐圧容器から供給される炭酸水を貯留して氷結させる耐圧製氷容器と、前記耐圧製氷容器を冷却する冷却手段及び加温する加温手段と、前記耐圧製氷容器内を真空にする真空ポンプと、前記耐圧製氷容器内に炭酸ガスを送給する炭酸ガス送給手段と、設定水位まで炭酸水が注水された前記耐圧製氷容器内に不活性ガスを送給する不活性ガス送給手段と、前記耐圧製氷容器の下面に設けられた炭酸氷排出口に接続され、前記炭酸氷排出口と同じ若しくはそれを超える口径を有する電動ボール弁とを備えることを特徴とする炭酸氷製造装置。
  2.  請求項1記載の炭酸氷製造装置を用いた炭酸氷の製造方法であって、
     前記真空ポンプを作動して前記耐圧製氷容器内を真空にする第1工程と、
     真空にされた前記耐圧製氷容器内に、前記炭酸ガス送給手段により炭酸ガスを送給する第2工程と、
     炭酸ガス雰囲気の前記耐圧製氷容器内に、前記炭酸水用耐圧容器から炭酸水を設定水位まで注水する第3工程と、
     設定水位まで炭酸水が注水された前記耐圧製氷容器内に、前記不活性ガス送給手段により不活性ガスを送給して前記耐圧製氷容器内の炭酸水を加圧する第4工程と、
     前記冷却手段により前記耐圧製氷容器を冷却して該耐圧製氷容器内の炭酸水を氷結させる第5工程と、
     前記加温手段により前記耐圧製氷容器を加温して前記耐圧製氷容器の内面から炭酸氷を剥離させる第6工程と、
     前記電動ボール弁を開いて前記炭酸氷排出口から炭酸氷を排出する第7工程とを備えることを特徴とする炭酸氷製造方法。
PCT/JP2018/012842 2017-09-05 2018-03-28 炭酸氷の製造装置及び製造方法 WO2019049407A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017170257A JP6368413B1 (ja) 2017-09-05 2017-09-05 炭酸氷の製造装置及び製造方法
JP2017-170257 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049407A1 true WO2019049407A1 (ja) 2019-03-14

Family

ID=63036690

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/012842 WO2019049407A1 (ja) 2017-09-05 2018-03-28 炭酸氷の製造装置及び製造方法
PCT/JP2018/030675 WO2019049644A1 (ja) 2017-09-05 2018-08-20 気体溶解氷製造装置及び製造方法
PCT/JP2018/030679 WO2019049645A1 (ja) 2017-09-05 2018-08-20 気体溶解氷製造装置及び製造方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/030675 WO2019049644A1 (ja) 2017-09-05 2018-08-20 気体溶解氷製造装置及び製造方法
PCT/JP2018/030679 WO2019049645A1 (ja) 2017-09-05 2018-08-20 気体溶解氷製造装置及び製造方法

Country Status (2)

Country Link
JP (1) JP6368413B1 (ja)
WO (3) WO2019049407A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020538A (ja) * 2018-08-02 2020-02-06 アイスマン株式会社 気体溶解氷製造装置及び製造方法
JP2020046130A (ja) * 2018-09-20 2020-03-26 J’sファクトリー株式会社 気体含有氷製造装置及び気体含有氷製造方法
JP7445282B2 (ja) * 2019-11-25 2024-03-07 アイスマン株式会社 粒状気体溶解氷製造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114681A (ja) * 1987-10-28 1989-05-08 Nkk Corp 炭酸入り氷の製造方法及びそのための装置
JPH06343398A (ja) * 1993-06-03 1994-12-20 Nakayama Eng Kk 炭酸氷、炭酸入り定形氷菓の製造方法及びその製造装置
JPH07120123A (ja) * 1993-10-27 1995-05-12 Nakayama Eng Kk 炭酸入り氷の製造方法及びその製造装置
JP2014219194A (ja) * 2013-04-08 2014-11-20 株式会社Kiyoraきくち 炭酸入り氷の製造方法
WO2015032682A1 (en) * 2013-09-05 2015-03-12 Ecochroma Ag Preparation system for the preparation of white ice
WO2016056059A1 (ja) * 2014-10-07 2016-04-14 株式会社Kiyoraきくち 炭酸入り氷の製造方法及び炭酸入り氷

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359372A (ja) * 1989-07-28 1991-03-14 Nakayama Eng Kk 炭酸氷、高圧気泡入り氷の製造方法
JP2005069548A (ja) * 2003-08-22 2005-03-17 Iceman Corp 製氷機
JP4052465B2 (ja) * 2003-09-02 2008-02-27 福岡県 オゾン含有氷の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114681A (ja) * 1987-10-28 1989-05-08 Nkk Corp 炭酸入り氷の製造方法及びそのための装置
JPH06343398A (ja) * 1993-06-03 1994-12-20 Nakayama Eng Kk 炭酸氷、炭酸入り定形氷菓の製造方法及びその製造装置
JPH07120123A (ja) * 1993-10-27 1995-05-12 Nakayama Eng Kk 炭酸入り氷の製造方法及びその製造装置
JP2014219194A (ja) * 2013-04-08 2014-11-20 株式会社Kiyoraきくち 炭酸入り氷の製造方法
WO2015032682A1 (en) * 2013-09-05 2015-03-12 Ecochroma Ag Preparation system for the preparation of white ice
WO2016056059A1 (ja) * 2014-10-07 2016-04-14 株式会社Kiyoraきくち 炭酸入り氷の製造方法及び炭酸入り氷

Also Published As

Publication number Publication date
WO2019049645A1 (ja) 2019-03-14
WO2019049644A1 (ja) 2019-03-14
JP6368413B1 (ja) 2018-08-01
JP2019045101A (ja) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2019049407A1 (ja) 炭酸氷の製造装置及び製造方法
KR101151671B1 (ko) 브라스트 세정방법과 이에 사용되는 고체 이산화탄소의 제조방법 및 제조장치
EP2781468B1 (en) Container for storing, transporting, and disassociating hydrate pellets and method for storing, transporting, and disassociating hydrate pellets by using same
US20050181086A1 (en) Apparatus for supplying a resin material to an injection molding machine
CN101790319A (zh) 用于生产通常称作软冰淇淋的设备和用于供给相关混合物的方法
JPH04280801A (ja) スラッシュ水素製造装置
JP3185212U (ja) 窒素氷製造装置及び冷却機器
TWI657224B (zh) 氮氣置換冰塊之製造系統及製造方法
CN211650843U (zh) 一种海水颗粒冰生产线
CN103349139B (zh) 一种跳跳糖生产设备
US20160216019A1 (en) Preparation system for the preparation of white ice
CN207702787U (zh) 一种工业冰块制造设备
WO2020059241A1 (ja) 気体含有氷製造装置及び気体含有氷製造方法
JP2007269874A (ja) ガスハイドレートの移送方法
JP2020020537A (ja) 気体溶解氷製造装置及び製造方法
JP2020020538A (ja) 気体溶解氷製造装置及び製造方法
CN111543482A (zh) 酸奶制造装置及使用方法
JP2005069548A (ja) 製氷機
CN214554001U (zh) 一种藏药打粉设备
CN220712759U (zh) 一种番茄酱罐装冷冻冷藏一体机
CN220514054U (zh) 一种雪糕生产的自动搅拌设备
JPH03110364A (ja) 製氷器およびコンクリート製造装置
CN110214887B (zh) 针对液体自冷型超高压杀菌的装置及方法
CN217248894U (zh) 一种淀粉糖糖化装置
CN114659316B (zh) 静磁场辅助液化co2脉冲喷动速冻装置及加压高效冷冻方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853926

Country of ref document: EP

Kind code of ref document: A1