WO2019049305A1 - 原子炉格納容器内のドレン水溜め及びそのドレン水溜めの施工方法 - Google Patents
原子炉格納容器内のドレン水溜め及びそのドレン水溜めの施工方法 Download PDFInfo
- Publication number
- WO2019049305A1 WO2019049305A1 PCT/JP2017/032433 JP2017032433W WO2019049305A1 WO 2019049305 A1 WO2019049305 A1 WO 2019049305A1 JP 2017032433 W JP2017032433 W JP 2017032433W WO 2019049305 A1 WO2019049305 A1 WO 2019049305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shield
- thermal
- drain
- heat
- drain sump
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C13/00—Pressure vessels; Containment vessels; Containment in general
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C9/00—Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
- G21C9/016—Core catchers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present invention relates to a drain sump in a reactor containment vessel and a method of installing the drain sump, and more particularly to a sump in a reactor containment vessel suitable for application to a boiling water reactor and its sump On the construction method of
- BWRs boiling water reactors
- PWRs pressurized water reactors
- Fuel debris may be generated in which melts such as internals are mixed. Molten fuel debris can fall to the bottom of the reactor pressure vessel, melt the bottom, and fall onto the floor of the reactor containment vessel surrounding the reactor pressure vessel.
- a reactor pressure vessel disposed in a reactor containment vessel is supported by a cylindrical pedestal installed on a concrete mat that forms the floor of the reactor containment vessel.
- the reactor containment vessel should Fall on a pedestal floor that is part of the floor. Molten fuel debris that has fallen can spread on the floor of the reactor containment, surrounded by pedestals, and can attack the concrete that forms the floor. If the floor concrete is significantly corroded, it may also affect the integrity of the reactor containment, which has the function of preventing the spread of radioactive materials to the external environment.
- the pressure inside the reactor containment vessel will rise due to non-condensable gas generated when the molten fuel debris and its concrete react, which may affect the integrity of the reactor vessel containment There is also.
- drain water reservoir for collecting and discharging drain water generated in the reactor containment vessel during operation of the boiling water nuclear plant.
- Drain sump a drain water reservoir for collecting and discharging drain water generated in the reactor containment vessel during operation of the boiling water nuclear plant.
- the drain sump is formed on the floor of the reactor containment vessel inside the cylindrical pedestal supporting the reactor pressure vessel, and the side and bottom of the drain sump, and further
- the floor surface of the reactor containment vessel is covered with a heat-resistant material such as magnesium oxide. This heat resistant material prevents damage due to molten fuel debris of concrete on the sides and bottom of the reactor containment floor and drain sump inside the pedestal.
- the corium shield (corium shield) described in Japanese Patent No. 3510670 is a roof that covers a drain sump formed on the floor of the reactor containment vessel below the reactor pressure vessel and inside the pedestal, drain water An upper wall surrounding the sump and extending above the reactor containment floor, and a lower part of the reactor containment floor surrounding the drain sump, directly below the upper wall. It has a lower wall located. A plurality of fluid passages spaced apart from one another and extending radially from the reactor containment floor outside the upper wall to the drain sump in the radial direction of the upper wall form the upper wall through the upper wall. It is done.
- the roof, upper wall and lower wall constituting the corium shield are made of, for example, firebricks.
- drain water generated in the reactor containment vessel flows from the floor surface of the reactor containment vessel through the plurality of flow paths formed in the upper wall into the drain reservoir. Stored in the drain sump. The drain water stored in the drain sump is drained to the treatment facility by a pump.
- WO 2015/146218 also describes a corium shield similar to the one described in patent 3510670.
- Nuclear power plants are required to have higher earthquake resistance than other industry facilities from the viewpoint of securing important functions for facility safety. From this point of view, a corium shield provided in the drain sump formed on the floor of the reactor containment vessel below the reactor pressure vessel and inside the pedestal is also made to meet the required earthquake resistance. ing.
- An object of the present invention is to provide a drain sump in a reactor containment and a method of constructing the drain sump, which can further improve the earthquake resistance of the corium shield.
- the feature of the present invention for achieving the above-mentioned object is a drain sump formed on a concrete mat located below the reactor pressure vessel and forming the floor of the reactor containment vessel,
- a corium shield is placed on the concrete mat covering the entire inner surface of the drain sump,
- a corium shield covers the entire inner surface of the drain sump and is provided with a form on a concrete mat, and a heat shield disposed inside the form and covering the inner surface of the form and attached to the inner surface of the form
- a layer and a liner plate disposed inside the thermal shield layer and covering the inner surface of the thermal shield layer and attached to the inner surface of the thermal shield layer;
- Inside the liner plate a drain water storage area surrounded by the liner plate is formed;
- a drain water passage for guiding drain water on the floor to the drain water storage area is formed in the corium shield.
- the corium shield Since the formwork included in the corium shield is attached to the side surface and the bottom surface of the side surface and the bottom surface of the depression serving as a drain sump, the corium shield provided inside the recess Earthquake resistance is further improved.
- the four drains facing the four side faces of the drain sump and the one form facing the bottom surface of the drain sump are the drain sump. Put in place to form The lower ends of the four molds opposed to the side are joined to the one mold facing the bottom by welding, and the adjacent molds of the four molds are joined.
- the present invention it is possible to provide a drain sump in a reactor containment and a method of installing the drain sump, which can further improve the earthquake resistance of the corium shield.
- FIG. 5 is a transverse cross-sectional view of the vicinity of the flow passage of a corium shield provided in a drain sump formed on the floor of the reactor containment vessel shown in FIG. 1 and a cross-sectional view taken along line II-II of FIG.
- FIG. 5 is a cross-sectional view of the corium shield provided in the drain sump formed on the floor of the reactor containment vessel shown in FIG. 1 at a position below the floor of the reactor containment vessel, III-III cross-sectional view of FIG. It is IV-IV sectional drawing of FIG. FIG.
- FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2 showing another configuration example of the corium shield provided in the drain sump.
- FIG. 5 a state of the corium shield after removing a part of the corium shield interfering with the removal of the motor of the internal pump from the reactor pressure vessel FIG.
- FIG. 1 The structure of a drain sump in a reactor containment vessel applied to a boiling water nuclear plant, which is a preferred embodiment of the present invention, will be described with reference to FIGS. 1, 2, 3 and 4.
- FIG. 1 The structure of a drain sump in a reactor containment vessel applied to a boiling water nuclear plant, which is a preferred embodiment of the present invention, will be described with reference to FIGS. 1, 2, 3 and 4.
- FIG. 1 The structure of a drain sump in a reactor containment vessel applied to a boiling water nuclear plant, which is a preferred embodiment of the present invention, will be described with reference to FIGS. 1, 2, 3 and 4.
- FIG. 1 The structure of a drain sump in a reactor containment vessel applied to a boiling water nuclear plant
- the boiling water nuclear power plant includes a reactor containment vessel 2 installed in a reactor building (not shown) and a reactor pressure vessel 1 installed in the reactor containment vessel 2.
- the reactor containment vessel 2 is installed on a concrete mat 4.
- the reactor pressure vessel 1 is installed on a concrete mat 4 and supported by a cylindrical pedestal (cylindrical support) 3 disposed in the reactor containment vessel 2.
- a reactor core (not shown) loaded with a plurality of fuel assemblies (not shown) is disposed in the reactor pressure vessel 1.
- an upper dry well 6 and a pressure suppression chamber 8 which are mutually separated by a diaphragm floor.
- a pressure suppression pool 9 filled with cooling water is formed in the pressure suppression chamber 8.
- a lower dry well 7 is formed inside the pedestal 3 below the reactor pressure vessel 1.
- a number of control rod drive mechanism housings are provided at the bottom of the reactor pressure vessel 1 and extend downward.
- a control rod drive mechanism (not shown) for moving control rods (not shown) into and out of the core is installed in each control rod drive housing.
- a plurality of internal pumps (not shown) for supplying cooling water to each fuel assembly loaded in the core are arranged to surround a number of control rod drive mechanism housings and attached to the bottom of the reactor pressure vessel ing.
- a drain sump 10 having a square (square or rectangular) cross section is formed as a recess in the floor 5 of the reactor containment vessel 2 surrounded by the pedestal 3 and surrounded by a concrete mat 4 serving as a side wall. It is done. Furthermore, the bottom surface 33 of the drain sump 10 is also formed of the concrete mat 4.
- the drain sump 10 is disposed near the inner surface of the pedestal 3 between the central axis of the pedestal 3 and the inner surface of the pedestal 3.
- the drain sump 10 includes a corium shield.
- the corium shield 12 is disposed so as to cover the entire inner surface of the drain sump 10, that is, the entire side surfaces 32 and the bottom surface 33 of the drain sump 10.
- the cross-sectional shape of the drain sump 10 is a square (square or rectangle).
- the drain reservoir 10 stores drain water 11 generated in the reactor containment vessel 2 during operation and shutdown of the boiling water nuclear plant.
- the corium shield 12 includes a thermal shielding layer 13, a mold 18 and a liner plate 20.
- the thermal shielding layer 13 includes a thermal shielding cylindrical portion 13A having a rectangular (square or rectangular) cross section in a cylindrical shape, and a thermal shielding bottom portion 13B which is a bottom portion of the thermal shielding layer 13.
- the liner plate 20, the heat shielding layer 13 (specifically, the heat shielding cylinder 13A), and the form 18 are disposed in the portion of the corium shield 12 covering the four side surfaces of the drain reservoir 10, respectively. In order, they are arranged from the central axis of the drain sump 10 toward the concrete mat 4 which is the side wall of the drain sump 10.
- a form 18 made of a stainless steel plate is disposed in contact with the concrete mat 4 on each side and bottom of each side of the drain sump 10.
- a plurality of anchor members 19 are attached to the surface of each form 18 in contact with the concrete mat 4.
- the anchor members 19 are embedded in the concrete mat 4.
- Adjacent forms 18 of each form 18 in contact with each side surface of four sides of drain sump 10 are joined by uninterrupted continuous welding over the entire axial length of drain sump 10 There is.
- the four peripheral portions of the form 18 in contact with the bottom surface 33 extend to the lower end of each form 18 in contact with the four side surfaces of the drain sump 10 over the entire length of the width of the lower end. It is joined by uninterrupted continuous welding.
- a heat shielding cylindrical portion 13A which is a side wall portion of the heat shielding layer 13 facing the form 18 of each side of the drain reservoir 10 is formed by a plurality of heat shielding blocks 14.
- These thermal shield blocks 14 include three types of thermal shield blocks 14A, 14B and 14C.
- the heat shield blocks 14A, 14B and 14C have different shapes as described later, but any of these heat shield blocks is made of a heat resistant material (for example, magnesium oxide, aluminum oxide, etc.)
- the components are contained in a stainless steel container. The entire surface of the heat resistant member is surrounded by a stainless steel container.
- each heat resistant member surrounded by the stainless steel container in the thermal shield blocks 14A, 14B and 14C has a size and heat
- the size of each heat resistant member is smaller than the size of each of the shield blocks 14A, 14B and 14C
- the shape of each heat resistant member is the same as the shape of each of the heat shield blocks 14A, 14B and 14C.
- the thermal shield block 14A has a horizontal width along the form 18 on the side of the form 18 facing the side 32 of the drain reservoir 10 on the liner plate 20 side. It has a stepped cross-sectional shape that is wider than the horizontal width along the form 18.
- the heat shield block 14B has a type in which the horizontal width along the mold 18 is opposed to the side surface 32 on the liner plate 20 side, contrary to the heat shield block 14A. It has a stepped cross-sectional shape that is wider than the horizontal width along the form 18 on the side of the frame 18. The wider portion of the thermal shield block 14B on the liner plate 20 side is located closer to the liner plate 20 than the wider portion of the thermal shield block 14A on the mold 18 side.
- the heat shield blocks 14C disposed at the four corners of the heat shield cylinder 13A have a cross-sectional shape such that the side surfaces are in contact with the side surfaces of the heat shield blocks 14B disposed adjacent to both sides.
- Each of the heat shield blocks 14A and 14B is also divided in the axial direction of the drain reservoir 10. In the axial direction of the drain sump 10, each of the heat shield blocks 14A and 14B is stacked.
- the heat shield blocks 14A and 14B are alternately arranged side by side in the horizontal direction.
- the heat shield block 14B disposed between the pair of heat shield blocks 14A adjacent to each other has a portion where the width in the horizontal direction of the heat shield block 14B is narrow on the mold frame 18 side of the heat shield blocks 14A.
- the horizontal width is disposed between the wide portions.
- a mortar is filled in a thin layer between the adjacent heat shield block 14A and the heat shield block 14B, and the adjacent heat shield block 14A and the heat shield block 14B are adhered by the mortar. ing.
- Adjacent thermal shield block 14B and thermal shield block 14C are also bonded by mortar.
- each of the heat shield blocks 14A, 14B and 14C on the side of the mold 18 is bonded to the mold 18 by mortar and the heat shield
- Each of the blocks 14A, 14B and 14C is attached to the formwork 18.
- the stacked thermal shield blocks 14A and the stacked thermal shield blocks 14B are also bonded by mortar.
- the heat shielding bottom portion 13B which is opposed to the bottom surface 33 and the mold frame 18, has a two-layer structure of the heat shielding layers 15 and 16.
- the heat shielding layer 15 is positioned closer to the mold 18 than the heat shielding layer 16 in contact with the bottom surface 33. That is, the thermal shielding layer 16 is located above the thermal shielding layer 15.
- Each of the thermal shielding layers 15 and 16 is configured by laying a plurality of brick-like thermal shielding body blocks (not shown) made of the above-described heat-resistant material.
- Each thermal shield block of the thermal shield layer 15 is bonded to the upper surface of the form 18 facing the bottom surface 33 by mortar, and each thermal shield block of the thermal shield layer 15 is attached to the form 18 ing.
- Each thermal shield block of the thermal shield layer 16 is bonded to the top surface of each thermal shield block of the thermal shield layer 15 by mortar. Adjacent thermal barrier blocks forming the thermal barrier layer 15 are also bonded with mortar, and adjacent thermal barrier blocks forming the thermal barrier layer 16 are also bonded with mortar.
- the lowermost thermal shield block 14A of the thermal shield blocks 14A included in the thermal shield cylindrical portion 13A is positioned directly below the thermal shield cylindrical portion 13A in the thermal shield body block of the thermal shield layer 15. It is placed on the thermal shield block and glued with mortar to the thermal shield block located directly below the thermal shield block.
- the lowermost thermal shield block 14B of the thermal shield blocks 14B included in the thermal shield cylinder 13A is located on the thermal shield block of the thermal shield layer 15 located directly below the thermal shield cylinder 13A. It is placed with mortar and glued to the thermal shield block located directly below this.
- the heat shield block 14C located at the lowermost position of the heat shield blocks 14C included in the heat shield cylinder portion 13A is a heat shield block of the heat shield layer 15 located directly below the heat shield cylinder portion 13A. It is placed on top of this and glued with mortar to the thermal shield block located directly below this.
- a stainless steel liner plate 20 covers the inner surface of each of the heat shielding block 14A, 14B and 14C disposed on the side wall to cover these inner surfaces. Mounted separately. Further, the liner plate 20 is attached to the top surface of the thermal shield layer 16 at the thermal shield bottom 13 B including the thermal shield layers 15 and 16. The liner plates 20 adjacent to each other are joined by welding over the entire axial length of the drain sump 10 in each of the liner plates 20 covering the inner surfaces of the four side walls of the heat shielding cylindrical portion 13A.
- the four peripheral portions of the liner plate 20 in contact with the upper surface of the thermal shielding layer 16 are joined by welding to the lower end portions of the respective liner plates 20 in contact with the internal surfaces of the thermal shield cylindrical portion 13A.
- the drain water storage area 30 of the drain sump 10 is formed on the inner side of each liner plate 20 joined by welding.
- a plurality of rod-like (for example, round-bar-like) support structures 26 are horizontally provided in the heat shielding cylindrical portion 13A facing each form 18 which covers each side surface of the drain reservoir 10 on four sides. Are arranged (see FIG. 3).
- Each support structure 26 is attached to the form 18 whose lower end is in contact with the bottom surface 33 and extends upward from the form 18.
- the upper end of each support structure 26 is located below the upper surface near the upper surface of the floor 5 of the reactor containment vessel 2 surrounded by the pedestal 3.
- Each support structure 26 is attached to a support member 27 installed on the inner surface of the mold 18 in contact with the heat shielding cylindrical portion 13A at a plurality of locations in the axial direction of the drain water reservoir 10.
- the support structure 26 is fixed to the form 18 facing the heat shielding cylindrical portion 13A by a plurality of support members 27 arranged in the axial direction.
- the respective thermal shield blocks 14B included in the thermal shield cylinder 13A which are positioned below the upper surface of the floor 5 of the reactor containment vessel 2 surrounded by the pedestal 3, are drained to the respective thermal shield blocks 14B.
- An axially extending through hole (not shown) of the water reservoir 10 is formed.
- the respective heat shield blocks of the heat shield layers 15 and 16 located directly under the heat shield blocks 14B arranged in the horizontal direction in the heat shield cylinder portion 13A are also the above-mentioned through holes of the respective heat shield blocks 14B.
- a through hole is formed at a position directly below.
- the support structure 26 attached to the mold 18 in contact with the heat shielding layer 15 is formed in the through holes formed in the heat shielding block of the heat shielding layers 15 and 16 and the heat shielding block 14B. It is inserted in each of the through holes.
- each heat shield block and each heat shield block 14B included in the heat shield cylinder 13A are bonded to the form 18 whose side faces the side 32 by mortar, the heat shield cylinder in the case of an earthquake Even if there is a horizontal swing from the mold 18 of the 13A towards the liner plate 20, there is very little possibility of the thermal shield blocks 14A and 14B moving horizontally. Furthermore, since each thermal shield block 14B is supported by the support structure 26, horizontal movement of each thermal shield block 14B during an earthquake is reliably prevented.
- each thermal shield block 14A is horizontally oriented by each thermal shield block 14B supported by the support structure 26. Movement is blocked. That is, a portion of the thermal shield block 14B on the side of the liner plate 20 in the horizontal direction is closer to the liner plate 20 than a portion of the thermal shield block 14A on the side of the mold 18 on the liner plate 20 side. Because of the arrangement, even if the above-mentioned horizontal shaking occurs due to an earthquake, the wide part of the thermal shield block 14B supported by the support structure 26 is the width of the thermal shield cylinder 13A. It prevents horizontal movement of the wide portion toward the liner plate 20 side.
- Each heat-resistant block constituting the heat shielding layer 17 is also configured by placing a brick-shaped heat-resistant member made of the above-described heat-resistant material in a stainless steel container. The entire surface of these heat resistant members is surrounded by a stainless steel container.
- the thermal shielding layer 17 does not cover the entire top surface of the floor 5 of the reactor containment vessel 2 surrounded by the pedestal 3, and is one of the floors 5 of the reactor containment vessel 2 existing around the sidewall of the corium shield 12. It covers only the top of the part.
- the portion of the floor 5 of the reactor containment vessel 2 which exists around the side wall portion of the corium shield 12 is dug down by the thickness of the thermal shielding layer 17 and the thermal shielding layer 17 is provided on the dug part of the floor 5 It is done.
- the heat shielding layer 17 also covers the upper surface of the floor 5 between the drain sump 10 and the inner surface of the pedestal 3 (see FIG. 4).
- the top surface of the floor 5 on which the heat shielding layer 17 is not provided and the top surface of the heat shielding layer 17 have the same height.
- the drain water 11 flowing on the upper surface of the floor 5 flows along the upper surface of the thermal shielding layer 17 As a result, it can be easily led into the drain water storage area 30 of the drain water reservoir 10 through the drain water flow passage 23 formed in the side wall portion of the corium shield 12.
- the corium shield 12 protrudes upward from the top surface of the thermal shield layer 17.
- the upper surface of the floor 5 of the corium shield 12, that is, the portion protruding upward from the upper surface of the thermal shield layer 17 is referred to as a corium shield 12A for convenience of description.
- the corium shield 12 ⁇ / b> A is a protrusion of the corium shield 12 which protrudes upward from the floor 5. The detailed structure of the corium shield 12A will be described below.
- the corium shield 12A includes a cylindrical heat shielding cylindrical portion 13C of which the cross section of the heat shielding layer 13 is square (square or rectangular). As shown in FIG. 2, the heat shielding cylindrical portion 13C has four side wall portions A, B, C, and D.
- the B part is located on the pedestal 3 side of the drain sump 10, and the A part faces the B part.
- C part and D part are remaining two side wall parts, and C part and D part are mutually opposed.
- a heat shielding portion 13D is formed at A portion which is one side wall portion of the heat shielding cylindrical portion 13C, and the heat shielding portion 13E of the heat shielding cylindrical portion 13C includes three side wall portions of B portion, C portion and D portion See Figure 2).
- the heat shielding portion 13D includes a heat shielding block (hereinafter referred to as a fixed heat shielding block) 29A and a heat shielding block (hereinafter referred to as a separated heat shielding block) 29B shown in FIG. 4 separated from the heat shielding portion 13E.
- a fixed heat shielding block 29A and a separated heat shielding block 29B shown in FIG. 4 separated from the heat shielding portion 13E.
- a separated heat shielding block 29B shown in FIG. 4 separated from the heat shielding portion 13E.
- Each of the fixed heat shield block 29A and the separated heat shield block 29B arranges a plurality of heat shield blocks 14A and 14B alternately in a row, similarly to the heat shield cylinder 13A.
- the heat shield blocks 14B included in the fixed heat shield block 29A and the separated heat shield block 29B do not have through holes for inserting the support structure 26.
- the heat shield blocks 14A and 14B constituting each of the fixed heat shield block 29A and the separated heat shield block 29B are heat-resistant members in the same manner as the heat shield blocks 14A, 14B and 14C of the heat shield cylinder 13A. Is surrounded by a stainless steel container.
- the fixed heat shield block 29A covers the outer and inner surfaces of each of the heat shield blocks 14A and 14B with a cover member 25 made of stainless steel.
- the fixed heat shield block 29A is also covered with the cover member 25 at the upper end surface and the lower end surface of each of the heat shield blocks 14A and 14B.
- the separate heat shield block 29B covers the outer and inner surfaces of the heat shield blocks 14A and 14B, respectively, with the cover member 25.
- the upper and lower end surfaces of each of the heat shield blocks 14A and 14B are also covered with the cover member 25 in the separated heat shield block 29B.
- the lower end of the fixed heat shield block 29A is bonded to the upper end of the side wall of the heat shield cylinder 13A opposite to the pedestal 3 by mortar. Both ends in the horizontal direction of the fixed thermal shield block 29A are bonded to the inner surfaces of the portions C and D of the thermal shield portion 13E by mortar.
- the separated heat shield block 29B is removably installed on the upper end of the fixed heat shield block 29A. Both ends in the horizontal direction of the separate heat shield block 29B are removably installed on the inner surfaces of the C and D portions of the heat shield 13E.
- the liner plate 20 covering each of the inner surface of the heat shielding cylindrical portion 13A and the upper surface of the heat shielding bottom portion 13B leaks radioactive drain water stored in the drain water containing area 30 to the heat shielding body blocks 14A and 14B. High airtightness is required to prevent
- the cover member 25 is not required to be as airtight as the liner plate 20 because the drain water level in the drain water storage area 30 can be suppressed to the upper surface of the thermal shield layer 17 or less even at maximum.
- thermal shield blocks 14A and 14B are alternately arranged in a line on each of two opposing side walls C and D of the thermal shield 13E.
- the thermal shield blocks 14B disposed in the portions C and D also have no through holes for inserting the support structure 26.
- Each of the heat shield blocks 14A and 14B is divided into a plurality of pieces in the axial direction of the drain sump 10.
- the thermal shield blocks 14A and 14B are stacked in the axial direction of the drain sump 10.
- the horizontally adjacent heat shield blocks 14A and 14B are bonded with mortar, respectively.
- the lower end surfaces of the heat shield blocks 14A and 14B disposed at the lowermost position in the axial direction of the drain water reservoir 10 are the axial directions of the drain water reservoir 10 of the heat shielding cylindrical portion 13A.
- a mortar is attached to the upper end surface of each of the uppermost heat shield blocks 14A and 14B.
- the heat shield blocks 14C are respectively disposed at both end parts in the horizontal direction. The heat shield block 14C is bonded to the adjacent heat shield blocks 14B in the horizontal direction by mortar.
- the lower end face of the thermal shield block 14C disposed at the lowermost position in the axial direction of the drain reservoir 10 is the thermal shield block 14C disposed at the uppermost position in the axial direction of the drain reservoir 10 of the thermal shield cylinder 13A. Bonded to the upper end face of the
- the cover member 25 is provided on each of the inner surface, the outer surface and the upper surface of the heat shielding block 14A, 14B and 14C disposed in each of the C and D portions. It covers and is attached to each of these inner, outer and upper surfaces.
- the lower end surface of the cover member 25 covering the inner surface of the C portion is joined by welding to the upper end surface of the liner plate 20 covering the inner surface of the portion of the heat shielding cylindrical portion 13A located immediately below the C portion.
- the lower end surface of the cover member 25 covering the inner surface of the D portion is joined by welding to the upper end surface of the liner plate 20 covering the inner surface of the portion of the thermal shield cylinder 13A located immediately below the D portion.
- the B portion of the thermal shield 13E includes the thermal shield block layer 21 (see FIG. 4). At the lower end portion of the heat shield block layer 21, a plurality of (for example, three) flow path defining portions 31 (see FIG. 2) are formed at predetermined intervals.
- the heat shield block layer 21 is made of a plurality of heat shield blocks (not shown) formed by placing a heat resistant member made of a heat resistant material (for example, magnesium oxide and aluminum oxide etc.) in a stainless steel container. , Horizontally laid, and further stacked in the axial direction of the drain sump 10.
- the heat shield blocks adjacent to each other in the horizontal direction and the heat shield blocks adjacent to each other in the axial direction of the drain reservoir 10 are bonded with mortar, respectively.
- the heat shield block layer 21 is disposed between the inner surface of the side wall portion on the pedestal 3 side of the heat shield cylindrical portion 13A and the inner surface of the pedestal 3 in the direction from the A portion to the B portion.
- each of the heat shield block layer 21 and each flow path defining portion 31 is covered with a cover member 25.
- the top surface of the heat shield block layer 21 is also covered by the cover member 25.
- the cover member 25 is attached to the inner surface of the heat shield block layer 21 and the flow path defining portions 31.
- the lower end of the cover member 25 is joined by welding to the upper end of the liner plate 20 covering the inner surface of the portion of the heat shielding cylindrical portion 13A located immediately below the heat shielding body block layer 21.
- the thermal shield block layer 21 extends to the inner surface of the pedestal 3 in the radial direction of the pedestal 3, and the side surface of the thermal shield block layer 21 on the pedestal 3 side is in contact with the inner surface of the pedestal 3.
- One side end of the cover member 25 covering the inner surface of the heat shield block layer 21 is a side adjacent to this side end of the cover member 25 covering the inner surface of each heat shield block of the C part. Welded to the end.
- the other side end of the cover member 25 covering the inner surface of the heat shield block layer 21 is the side adjacent to this side end of the cover member 25 covering the inner surface of each heat shield block of the D part. Welded to the end.
- the cover member 25 covering the inner surface of the body block is joined by welding to the side end adjacent to this side end.
- the cover member 25 covering the inner surface of the heat shield block is joined by welding to the side end adjacent to this side end.
- a drain water storage area 30 is formed above the liner plate 20 provided on the top surface of the bottom 13B. Substantially, the drain water storage area 30 is below the upper end of the heat shield cylinder 13A.
- a drain water flow path 23 is formed by the heat shield block layer 21, the heat shield cylinder 13A, and the heat shield layer 17 present on the floor 5 between the pedestal 3 and the heat shield cylinder 13A.
- the drain water channel 23 includes a channel portion 22 and a channel portion 24 (see FIGS. 2 and 4).
- the pedestal 3 is a drain water flow path 23, specifically, one side wall of the flow path portion 22.
- a plurality of flow path defining portions 31 projecting downward are formed.
- the lower surfaces of the flow path defining portions 31 are bonded to the upper surface of one side wall portion of the heat shielding cylindrical portion 13A located immediately below the flow path defining portion 31 by mortar.
- the flow passage portion 22 flows in the radial direction of the pedestal 3 between the flow passage defining surface 34 (see FIG. 4) formed in the thermal shield layer 17 and the thermal shield block layer 21 in the axial direction of the drain reservoir 10. It is formed between the passage defining portion 31 and the inner surface of the pedestal 3.
- the flow path defining surface 34 faces the upper surface of the thermal shielding layer 17 disposed between the outer surface of the thermal shielding cylinder 13A and the inner surface of the pedestal 3 and is located above the upper surface, and the thermal shielding member
- the block layer 21 is formed closer to the inner surface of the pedestal 3 than the flow path defining portion 31. Openings 23 A opening to the lower dry well 7 are formed at both ends of the flow path 22.
- Two flow path portions 24 are formed between the three flow path definition portions 31, and the bottom surface of the flow path portion 24 is formed by the upper end surface of the thermal shield cylinder portion 13A located directly below the thermal shield block layer 21. Be done.
- Each flow path portion 24 connects the flow path portion 22 and the drain water storage area 30.
- each side wall portion present in four directions in the portion of the corium shield 12 below the corium shield 12A (the portion including the heat shielding cylindrical portion 13A) is the same.
- Three side walls of the corium shield 12A that is, side walls of the corium shield 12A including the A portion of the heat shielding cylindrical portion 13C, side walls of the corium shield 12A including the C portion of the heat shielding cylindrical portion 13C, and heat
- the thickness of each of the side wall portions of the corium shield 12A including the D portion of the shielding cylinder portion 13C is the same, and each of the above-described corium shield 12 exists in the four directions below the corium shield 12A. It is the same as the thickness of the side wall.
- the thickness of the side wall of the corium shield 12A including the portion B of the heat shielding cylindrical portion 13C is larger than the thickness of the other three side walls of the corium shield 12A.
- Two drainage pumps 28 are disposed in the drain water storage area 30 on the upper surface of the liner plate 20 which is disposed opposite to the heat shielding layer 16 to form the bottom of the drain water storage area 30.
- a form setting process is performed.
- the concrete of the concrete mat 4 is cast to a certain height (a certain position below the bottom surface 33 of the drain sump 10)
- the square 4 facing the side face 32 of the drain sump 10 A single rectangular frame 18 opposed to the sheet frame 18 and the bottom surface 33 of the drain water reservoir 10 is transferred to a position on the inside of the pedestal 3 to form the drain water reservoir 10.
- These molds 18 are made of stainless steel.
- the latter one formwork 18 is horizontal at a position above the cast concrete surface to form the bottom surface 33 so that the surface to which the plurality of anchor members 19 are attached is directed downward. Be placed.
- the one frame 18 is supported by a plurality of support members (not shown) partially embedded in the cast concrete.
- Each of the four molds 18 opposed to the side surface 32 has this mold on the periphery of the mold 18 supported by these support members such that the surface to which the plurality of anchor members 19 are attached faces outward. It is sequentially erected so as to be perpendicular to the frame 18.
- the lower end surface of each erected form 18 is continuously welded to the periphery of the form 18 supported by the support member over the entire length of each side of the form 18.
- the side end of each erected form 18 is erected and welded to the side end of the adjacent form 18. In this manner, adjacent side ends of the erected form 18 are welded continuously over the entire axial length of the drain sump 10.
- the cylindrical pedestal 3 and the reactor containment vessel 2 surrounding the pedestal 3 are placed on the concrete mat 4.
- the reactor pressure vessel 1 is installed on the pedestal 3 in the reactor containment vessel 2.
- the heat shielding layer 13 is formed on the inner side of these molds 18 (heat shielding layer forming step).
- a plurality of brick-like heat shielding body blocks forming the heat shielding layer 15 of the heat shielding bottom portion 13B are spread without gaps in the horizontal direction so as to cover the upper surface of the mold 18 in contact with the bottom surface 33. These heat shield blocks are bonded to the upper surface of the form 18 with mortar, and are further spread while bonding adjacent heat shield blocks together.
- a plurality of brick-like heat shield blocks forming the heat shield layer 16 of the heat shield bottom portion 13B are laid on the top surface of the heat shield layer 15 without any gap in the horizontal direction. These heat shield blocks of the heat shield layer 16 are bonded to the upper surface of each heat shield block of the heat shield layer 15 by mortar, and are further spread while bonding adjacent heat shield blocks together.
- a plurality of support structures 26 attached to the upper surface of the form 18 in contact with the bottom surface of the drain water reservoir 10 at a position directly below the aforementioned through hole formed in each thermal shield block 14B has a cross section It is inserted into a through hole formed in each thermal shield block located at the periphery of the thermal shield layers 15 and 16 located directly under each thermal shield block 14B included in the rectangular thermal shield cylinder 13A. Ru. Each thermal shield block located at the periphery of the thermal shield layers 15 and 16 is lowered along each support structure 26 and bonded to the adjacent thermal shield blocks etc. as described above at a predetermined position. .
- the heat shield cylinder 13 A is formed on the top surface of the heat shield layer 16.
- the formation of the heat shielding cylindrical portion 13A is performed as follows.
- Each of the thermal shield blocks 14A, 14B and 14C disposed at the lowermost position in the thermal shield cylinder 13A is disposed on the upper surface of the thermal shield layer 16 in the horizontal direction, as shown in FIG.
- the thermal shield blocks 14A and the thermal shield blocks 14B are alternately arranged.
- Each thermal shield block 14B is lowered to the upper surface of the thermal shield layer 16 with the support structure 26 inserted in the through hole formed in the thermal shield block 14B.
- the lower surface of each of the thermal shield blocks 14A, 14B and 14C disposed at the lowermost position in the thermal shield cylinder 13A is bonded to the upper surface of each thermal shield block of the thermal shield layer 16 by mortar.
- the side surfaces of the heat shield blocks 14A, 14B and 14C facing the form 18 are bonded to the inner surface of the form 18 by mortar. Further, in the horizontal direction, the adjacent heat shield block 14A and the heat shield block 14B, and the adjacent heat shield block 14B and the heat shield block 14C are adhered to each other by mortar.
- Additional thermal shield blocks 14A, 14B and 14C are sequentially stacked on top of the bonded thermal shield blocks 14A, 14B and 14C.
- Each of the stacked thermal shield blocks 14A, 14B and 14C is bonded with mortar to the respective thermal shield blocks in contact with the lower surface and to the inner surface of the opposing mold 18 as described above.
- each of the stacked thermal shield blocks 14A, 14B and 14C is bonded by mortar between the adjacent thermal shield blocks in the horizontal direction, as described above.
- the support structure 26 is inserted into the through holes of the stacked heat shield blocks 14B as described above. Each time a predetermined number of heat shield blocks 14B are stacked in the axial direction of the drain sump 10, a support member 27 is disposed, and the support member 27 is attached to the inner surface of the mold 18 and the support structure 26 by welding. .
- the formation of the heat shielding layer 17 is performed.
- the portion of the floor 5 of the reactor containment vessel 2 surrounding the thermal shield cylinder portion 13A where the thermal shield layer 16 is formed is dug down to a depth corresponding to the thickness of the thermal shield layer 16.
- a heat shielding layer 17 is formed on the excavated part of the floor 5 of the reactor containment vessel 2 so as to surround the heat shielding cylinder 13A.
- the heat shielding layer 17 is formed by laying a plurality of heat resistant blocks formed by placing a brick-like heat resistant member in a stainless steel container in the dug-down portion of the floor 5.
- the formation of the heat shielding cylindrical portion 13C of the corium shield 12A will be described.
- the B portion of the thermal shielding portion 13E included in the thermal shielding cylindrical portion 13C is a thermal shielding layer formed between the thermal shielding cylindrical portion 13A and the pedestal 3 with the thermal shielding body block layer 21 already manufactured at another place. It is formed by arranging to cover 17.
- the lower surface of the flow path defining portion 31 of the heat shield block layer 21 is bonded to the upper end surface of the portion of the heat shielding cylindrical portion 13A located immediately below the flow path defining portion 31 by mortar.
- the side of the heat shield block layer 21 opposite to the inner surface of the pedestal 3 is bonded to the inner surface of the pedestal 3 by mortar.
- the drain water passage 23 is on the inner side of the inner surface of the pedestal 3, and the upper end face of the heat shield block layer 21 and the heat shield cylinder 13A directly below the flow passage defining portion 31 and the heat shield layer. It is formed between it and the upper surface of 17.
- the plurality of heat shielding block 14A, 14B and 14C are arranged in a line in the horizontal direction, similarly to the part of the heat shielding cylinder part 13A located immediately below them. Be done.
- the thermal shield blocks 14A and the thermal shield blocks 14B are alternately arranged.
- the heat shield block 14A and the heat shield block 14B adjacent to each other are bonded with the heat shield block 14B and the heat shield block 14C adjacent to each other by mortar.
- the lower surface of each of the lowermost heat shield blocks 14A, 14B and 14C in the C and D parts is the most located in the part of the heat shield cylinder 13A directly below the C and D parts by mortar.
- each of the heat shield blocks 14A, 14B and 14C located above.
- the heat shield blocks 14A, 14B and 14C are stacked one on top of the other.
- the lower surface of each of the stacked thermal shield blocks 14A, 14B and 14C is bonded with mortar to the upper surface of each of the lower thermal shield blocks 14A, 14B and 14C.
- the cover member 25 covers the outer and inner surfaces of the thermal shield blocks 14A, 14B and 14C by mortar and is adhered to the outer and inner surfaces.
- a cover member 25 is disposed covering the upper end surfaces of the C and D portions, and the cover members 25 are attached to the upper end surfaces of the C and D portions.
- the fixed heat shield block 29A is disposed between the C and D portions of the heat shield 13E as shown in FIG. 2, and further, as shown in FIG. 4, the flow path definition of the heat shield cylinder 13A. It is disposed directly on the other side wall of the heat shield cylinder 13A facing the side wall facing the lower surface of the part 31, and placed on the upper end face of this side wall.
- the inner surface, the outer surface, the lower end surface and the upper end surface of the fixed heat shield block 29A are covered with a cover member 25.
- a cover member 25 covering the lower end face of the fixed heat shield block 29A is adhered to the upper end face of the other side wall portion of the heat shield cylinder portion 13A by mortar. Further, both ends in the horizontal direction of the fixed heat shield block 29A are bonded to the inner surfaces of the C portion and the D portion of the heat shield portion 13E by mortar.
- the fixed thermal shield block 29A is bonded by mortar to the upper end surface of the other side wall portion of the thermal shield cylinder portion 13A between the C portion and the D portion of the thermal shield portion 13E. Is disposed on the upper surface of the and is removably attached to the upper surface. Further, both ends in the horizontal direction of the separated heat shield block 29B are bonded to the inner surfaces of the C portion and the D portion of the heat shield portion 13E by mortar.
- a liner plate installation process is implemented.
- a plurality of liner plates 20 are provided on the upper surface of the heat shield bottom 13B, the inner surface of the heat shield cylinder 13A, and the inner surface of the heat shield 13E.
- a square liner plate 20 forming the bottom of the drain water storage area 30 is placed on the upper surface of the thermal shielding layer 16 with the entire lower surface of the liner plate 20 in contact with the upper surface of the thermal shielding layer 16 .
- the four liner plates 20 covering the inner surfaces of the side walls of the heat shielding cylindrical portion 13A are sequentially carried into the heat shielding cylindrical portion 13A, and further opposed to the inner surface of the heat shielding cylindrical portion 13A. Will be placed.
- the lower end portion of one liner plate 20 disposed opposite to the inner surface is continuously welded to one side of one square liner plate 20 placed on the upper surface of the thermal shielding layer 16 over this entire length. Be done.
- the lower end portion of another liner plate 20 disposed adjacent to the above-described one liner plate 20 facing the inner surface thereof and facing the inner surface of the heat shielding cylinder portion 13A is the upper surface of the thermal shielding layer 16
- the other side of the placed liner plate 20 is continuously welded along this entire length.
- the side end portions of the liner plates 20 adjacent to and facing the inner surface are welded continuously along the entire axial length of the drain sump 10.
- each of the other two liner plates 20 disposed opposite to the inner surface of the heat shielding cylindrical portion 13A corresponds to the remaining two sides of the liner plate 20 placed on the upper surface of the heat shielding layer 16. It is welded separately and continuously over the entire length of the side.
- the side ends of the other two liner plates 20 are continuously welded to the side ends of the adjacent liner plate 20 along the entire axial length of the drain sump 10.
- the entire surface of each of the four liner plates 20 facing the inner surface of the heat shielding cylindrical portion 13A on the heat shielding cylindrical portion 13A side is in contact with the inner surface of the heat shielding cylindrical portion 13A.
- the drain water storage area 30 of the flow path portion 24 at each position of the two flow path portions 24 is formed.
- a drainage pump installation step is carried out.
- Two drainage pumps 28 are carried into the drain water storage area 30 surrounded by the plurality of liner plates 20.
- the drainage pumps 28 are disposed on the top surface of the liner plate 20 which is disposed in contact with the top surface of the thermal shielding layer 16 and which forms the bottom of the drain water storage area 30.
- a drainage pipe (not shown) is connected to the outlet of each drainage pump 28.
- the drainage pipe extends to a radioactive waste disposal building (not shown).
- radioactive substances generated in the reactor containment vessel 2 are included.
- the drain water 11 falls on the floor 5 of the reactor containment vessel 2 inside the pedestal 3 and flows along the upper surface of the floor 5 and the upper surface of each of the heat shielding layers 17, and drain water channel 23 from the opening 23 A, Specifically, it flows into the flow passage 22.
- the drain water 11 having flowed into the flow path portion 22 flows through the flow path portion 22 and the flow path portion 24 which are the drain water flow path 23 into the drain water storage area 30 in the drain water reservoir 10, and the drain water storage area It is stored in 30.
- the control rod drive mechanism for performing maintenance inspection is the reactor pressure in the lower dry well 7
- a control rod drive handling device (not shown) arranged below the container 1 and pivotably mounted on the inner surface of the pedestal 3, it is removed from the control rod drive housing and within the control rod drive housing It is pulled out from.
- the cooling water present in the control rod drive mechanism housing becomes drain water 11 of the reactor containment vessel 2. It falls on the floor 5.
- the drain water also flows into the drain water storage area 30 through the drain water passage 23 as described above.
- the drainage pump 28 When the water level of the drain water 11 stored in the drain water storage area 30 rises to the set water level, the drainage pump 28 is driven, and the drain water 11 in the drain water storage area 30 is connected to the discharge port of the drainage pump 28 The waste water is discharged to a drain pipe (not shown), and is led to the radioactive waste disposal building through this drain pipe.
- the set water level of the drain water 11 in the drain water storage area 30 is set to a predetermined position lower than the upper surface of the heat shielding layer 17.
- molten fuel debris may be generated, in which the melt is mixed, such as the assembly structure, and also the core internals of the core support plate and the control rod guide tube.
- the molten fuel debris may fall from the core onto the bottom of the reactor pressure vessel 1, melt the bottom, and fall onto the floor 5 of the reactor containment vessel 2 located immediately below the reactor pressure vessel 1. There is also.
- the molten fuel debris falls onto the floor 5, the molten fuel debris flows along the upper surface of the floor 5, and eventually, on the upper surface of the thermal shielding layer 17 present around the thermal shielding cylinder 13A. To reach. Molten fuel debris that has reached the upper surface of the thermal shielding layer 17 is blocked by the thermal shielding cylindrical portion 13C that protrudes above the upper surface of the thermal shielding layer 17 and enters the drain water storage area 30 from the upper surface of the thermal shielding layer 17 It can not flow directly.
- the thermal shielding bottom 13B prevents the concrete mat 4 existing below the thermal shielding bottom 13B from being eroded by the molten fuel debris dropped into the drain sump 10, and the integrity of the reactor containment vessel 2 is maintained. can do.
- the heat possessed by the molten fuel debris flowing into the drain water flow passage 23 is a heat shielding block located above the drain water flow passage 23 while the molten fuel debris flows in the flow passage portion 22 of the drain water flow passage 23.
- the molten fuel debris flowing in the drain water channel 23 while releasing heat reduces the temperature and eventually solidifies in the drain water channel 23.
- the width in the horizontal direction of the drain water channel 23 is set to an optimum width for solidifying the molten fuel debris. Since the molten fuel debris solidifies in the drain water channel 23, the inflow of molten fuel debris into the drain water storage area 30 through the drain water channel 23 can be prevented.
- the present embodiment maintains the drainage function of drain water to the drain water storage area 30 through the drain water passage 23, and then, if the molten fuel debris falls to the floor 5, the molten fuel debris should be melted. It is possible to prevent the fuel debris from flowing into the drain water storage area 30 through the drain water channel 23.
- a motor (not shown) of the internal pump attached to the bottom of the reactor pressure vessel 1 is removed using the motor handling device (not shown) for inspection work of the motor. Is moved downward to a predetermined position.
- the removed motor is transferred from the lower dry well 7 inside the pedestal 3 to the maintenance area located outside the pedestal 3, and the removed motor is inspected in this area.
- the motor determined to be normal is transferred into the lower dry well 7, mounted on the motor handling device, raised to the position of the internal pump, and attached to the internal pump. If it is determined by maintenance inspection that a part of the motor has an abnormality, the part having the abnormality is replaced with a new part, and the motor having the new part attached is attached to the internal pump. In some cases, the motor itself is replaced with a new motor.
- the separated thermal shield block 29 B of the corium shield 12 covering the inner surface of the drain sump 10 is located directly below a portion of the internal pump attached to the bottom of the reactor pressure vessel 1. If the motor handling device is removed by the motor handling device and it is attempted to lower the motor handling device carrying the removed motor to a predetermined position, the motor handling device interferes with the separation heat shield block 29B, It can not be lowered to the position of Therefore, before the motor is removed from the internal pump, the separated thermal shield block 29B is removed from each of the C and D portions of the fixed thermal shield block 29A and the thermal shield portion 13E.
- the motor handling device mounted with the removed motor lowered to the predetermined position does not interfere with the separation heat shield block 29B, and the fixed heat heat is installed. It does not interfere with the upper end of the shield block 29A. Therefore, the motor can be easily removed from the internal pump.
- the thermal shield 13 including the stationary thermal shield block 29A and the separate thermal shield block 29B shown in FIG. 4 of the corium shield 12A is a thermal shield including the separate thermal shield block 35. It may be replaced by part 13D.
- the separate thermal shield block 35 includes a plurality of horizontally alternating thermal shield blocks 14A and 14B, the outer and inner surfaces of each of the thermal shield blocks 14A and 14B being made of stainless steel. It is covered by a cover member 25. In the separate heat shield block 35, the upper end surface and the lower end surface of each of the heat shield blocks 14A and 14B are also covered with the cover member 25.
- the lower end of the separate thermal shield block 35 is removably attached to the upper end of the side wall of the thermal shield cylinder 13A opposite to the pedestal 3. Both ends in the horizontal direction of the separated thermal shield block 35 are removably attached to the inner surfaces of the C and D portions of the thermal shield 13E.
- the side wall and heat shield 13E of the heat shield cylinder 13A opposite to the pedestal 3 are provided. Remove from each of part C and part D (see FIG. 6). Since the separation heat shield block 35 is removed, the motor handling device carrying the removed motor can be lowered to a predetermined position without interfering with the separation heat shield block 35.
- the formwork 18 since the formwork 18 is attached to the side surfaces and the bottom surface of the side surfaces and the bottom surface of the recess serving as the drain sump 10, the formwork 18 is provided inside the recess A liner 18 mounted on the thermal shielding layer 13 covering the inner surface of the outermost mold frame 18, the thermal shielding layer 13 covering the inner surface of the molding frame 18 and attached to the molding frame 18, and the thermal shielding layer 13
- the earthquake resistance of the corium shield 12 including the plate 20 is further improved.
- the formwork 18 contributes to the improvement of the earthquake resistance of the corium shield 12 and, as described above, is used as a formwork in concrete placement when forming the drain sump 10.
- a support structure 26 attached to the upper surface of the mold 18 disposed to cover the bottom of the recess serving as the drain water reservoir 10 and extending upward is a side wall portion (thermal thermal conductivity) of the heat shield layer 13 of the corium shield 12 Because it is provided in the side wall portion of the shielding cylinder portion 13A, the earthquake resistance of the corium shield 12 is further improved.
- the side wall portion which is made of heat resistant material demarcating drain water flow path 23 is separately there is no need to provide it. Therefore, the configuration of the corium shield 12 can be simplified.
- the portion 22 can be formed utilizing the space between the flow path defining portion 31 formed in the B portion of the heat shielding portion 13E and the inner surface of the pedestal 3, and the drain water flow path 23 can be lengthened. Therefore, the molten fuel debris flowing in the drain water channel 23 can be reliably solidified in the drain water channel 23.
- the heat transfer area for transferring the heat of the molten fuel debris can be increased, and the cooling effect of the molten fuel debris is increased. Debris can be solidified efficiently in the drain water channel 23.
- the structure of a drain sump in a reactor containment vessel applied to a boiling water nuclear power plant which is another preferred embodiment of the present invention, will be described.
- the structure of the drain sump in the containment vessel of the present embodiment is the same as the structure of the drain sump in the containment vessel of the first embodiment.
- the method of constructing the drain sump in the reactor containment vessel of the present embodiment is different from the method of constructing the drain sump in the reactor containment vessel of the first embodiment. That is, the method of installing the drain sump in the reactor containment vessel of the first embodiment is implemented for a novel boiling water nuclear plant. On the other hand, the construction method of the drain sump in the reactor containment vessel of the present embodiment is implemented for the existing boiling water nuclear power plant.
- a drain sump is already formed below the reactor pressure vessel 1 in the floor 5 of the reactor containment vessel 2 surrounded by the pedestal 3. No corium shield 12 is provided in this drain sump.
- the construction method of the drain sump in the reactor containment vessel of the present embodiment is a method of forming the drain sump 10 in which the corium shield 12 is formed on the inner surface in the floor 5 of the reactor containment vessel 2.
- the construction method of the drain sump in the reactor containment vessel of the present embodiment will be described below. This construction method is implemented after the operation of the existing boiling water nuclear plant is stopped.
- the method of installing the drain sump in the reactor containment vessel of the present embodiment only portions different from the method of installing the drain sump in the reactor containment vessel of the first embodiment will be described in detail.
- the installation method of the drain sump in the reactor containment vessel of the present embodiment differs from the construction method of the drain sump in the reactor containment vessel of Example 1 in order to install the corium shield 12 It is a process of expanding the existing drain sump.
- the volume of the drain sump decreases by the volume of the corium shield 12 installed, and the inside of the drain sump Amount of drain water stored in the In order to avoid such a situation, in the method of installing the drain sump in the reactor containment vessel of the present embodiment, an expansion step of the drain sump is performed.
- the side and floor of the drain reservoir formed on the floor 5 of the reactor containment vessel 2 surrounded by the pedestal 3 The surface is excavated and the depression for drain sump formed in the concrete mat 4 is expanded.
- the excavation widens the width of the depression in the horizontal direction and deepens the depression.
- Concrete fragments generated by excavation are stored inside a pedestal 3 in a predetermined transport container surrounded by a radiation shield to be solidified as radioactive solid waste. After being sealed, the transport container containing the concrete fragments is transported from the inside of the pedestal 3 to the outside of the reactor building (not shown) surrounding the reactor containment vessel 2 and, further, the radioactive waste treatment building (not shown) ).
- a form setting process is performed.
- five square formwork pieces 18 having a plurality of anchor members 19 mounted on one side are carried into the depression formed in the concrete mat 4.
- four square molds 18 facing the side surface 32 of the drain sump 10 and one square mold 18 facing the bottom surface 33 of the drain sump 10 are in this recess. It arrange
- positions and formwork 18 comrades are arrange
- the heat shielding layer forming step, the liner plate setting step, the divided block setting step, and the drainage pump setting step performed in the first embodiment are sequentially performed.
- the present embodiment can obtain each effect produced in the first embodiment.
- the drain water reservoir 10 having the large-capacity drain water storage area 30 formed inside the liner plate 20 is concrete in which the reactor containment vessel 2 is installed. It can be formed on the mat 4.
- Each of the foregoing embodiments 1 and 2 may be applied to a pressurized water nuclear plant.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
コリウムシールドの耐震性をさらに向上させることができる原子炉格納容器内のドレン水溜めを提供する。ドレン水溜め10が、原子炉圧力容器1の下方で原子炉格納容器2の床5を形成するコンクリートマット4に形成される。コリウムシールド12が、ドレン水溜め10の内面全体を覆ってコンクリートマット4に設置される。コリウムシールド12は、ドレン水溜め10の内面全体を覆ってコンクリートマット4に設置された型枠18、型枠18の内側に配置され、型枠18の内面を覆っている熱遮へい層13、熱遮へい層13の内側に配置され、熱遮へい層13の内面を覆っているライナプレート20を備える。ライナプレート20の内側に、ライナプレート20によって取り囲まれたドレン水収納領域30が形成される。床5上のドレン水をドレン水収納領域30に導くドレン水流路23が、コリウムシールド12に形成される。
Description
本発明は、原子炉格納容器内のドレン水溜め及びそのドレン水溜めの施工方法に係り、特に、沸騰水型原子炉に適用するのに好適な原子炉格納容器内の水溜め及びその水溜めの施工方法に関する。
沸騰水型原子炉(BWR)及び加圧水型原子炉(PWR)等の軽水炉では、万が一、冷却材喪失事故が発生した場合において、炉心に装荷された燃料集合体を冷却して燃料集合体の溶融を回避するために、多重の冷却系を備えた非常用炉心冷却装置が設けられている。しかしながら、極めて少ない確率ではあるが、非常用炉心冷却装置の機能が消失して炉心内の水位が低下し、炉心に装荷された燃料集合体内の核燃料物質で発生する崩壊熱を除去することができず、燃料集合体が溶融する可能性がある。
燃料集合体が溶融した場合には、燃料集合体内の核燃料物質、及び燃料集合体の被覆管及び下部タイプレート等の燃料集合体の構造物、さらには、炉心支持板及び制御棒案内管の炉内構造物等の溶融物が混合された燃料デブリが生成される可能性がある。溶融している燃料デブリは、原子炉圧力容器の底部に落下してこの底部を溶融し、原子炉圧力容器を取り囲んでいる原子炉格納容器の床上に落下する可能性もある。
沸騰水型原子力プラントでは、原子炉格納容器内に配置された原子炉圧力容器は、原子炉格納容器の床を形成するコンクリートマット上に設置された円筒状のペデスタルによって支持されている。上記したように、万が一、炉心に装荷された燃料集合体が溶融して燃料デブリが生成され、溶融した燃料デブリが原子炉圧力容器の底部を貫通して落下した場合には、原子炉格納容器の床の一部である、ペデスタルで囲まれた床上に落下する。落下した溶融燃料デブリは、ペデスタルで囲まれた、原子炉格納容器の床上で拡がり、この床を形成するコンクリートを侵食する可能性がある。この床のコンクリートが著しく侵食されると、外部環境への放射性物質の拡散を防止する機能を有する原子炉格納容器の健全性に影響を与える可能性もある。さらには、溶融燃料デブリとそのコンクリートが反応する際に発生する非凝縮性ガスにより原子炉格納容器内の圧力が上昇し、この圧力上昇により、原子炉格納容器の健全性が影響を受ける可能性もある。
そこで、溶融燃料デブリによる原子炉格納容器へのこれらの影響を緩和するため、例えば、原子炉圧力容器に供給される冷却水が喪失した段階で、外部より原子炉格納容器内への注水を実施し、ペデスタルの内側で原子炉格納容器の床上に、注水された冷却水により水プールを形成することが考えられている。この水プール内の冷却水が、その床上に落下した溶融燃料デブリの崩壊熱を除去する。
ところで、ペデスタルによって取り囲まれた、原子炉格納容器の床の一部には、沸騰水型原子力プラントの運転時において、原子炉格納容器内で発生したドレン水を収集し排出するためのドレン水溜め(ドレンサンプ)が形成されている。万が一、溶融燃料デブリがこのドレン水溜め内に落下すると、ドレン水溜めの底面から原子炉格納容器バウンダリまでの距離が近いため,ドレン水溜め内でのコンクリートの侵食により原子炉格納容器バウンダリが損傷し,外部環境に放射性物質が放出される大事故につながる可能性がある。このため、ドレン水溜め内への溶融燃料デブリの流入を抑制することを目的としてドレン水溜めにコリウムシールドを設置することが考えられている(特開平5-5795号公報、特許第3510670号公報及び国際公開第2015/146218号公報参照)。
特開平5-5795号公報では、ドレン水溜めを、原子炉圧力容器を支持する円筒状のペデスタルの内側の、原子炉格納容器の床に形成しており、ドレン水溜めの側面及び底面、さらに、その原子炉格納容器の床面を、酸化マグネシウム等の耐熱材で覆っている。この耐熱材により、ペデスタル内側の原子炉格納容器の床及びドレン水溜めの側面及び底面のコンクリートの溶融燃料デブリによる損傷を防いでいる。
特許第3510670号公報に記載されたコリウムシールド(コリウム遮へい体)は、原子炉圧力容器の下方でペデスタルの内側において原子炉格納容器の床に形成されたドレン水溜めを覆う屋根部、ドレン水溜めの周囲を取り囲んで、原子炉格納容器の床より上方に伸びている上部壁体、及びドレン水溜めの周囲を取り囲んで原子炉格納容器の床より下方に配置され、上部壁体の真下に位置している下部壁体を有する。互いに離れて配置されてペデスタルの半径方向において上部壁体の外側の原子炉格納容器の床面からドレン水溜めまで伸びている複数の流路が、上部壁体を貫通して上部壁体に形成されている。コリウムシールドを構成する屋根部、上部壁体及び下部壁体は、例えば、耐火レンガで構成される。
沸騰水型原子力プラントの運転時において、原子炉格納容器内で発生したドレン水は、原子炉格納容器の床面から上部壁体に形成された複数の流路を通ってドレン水溜め内に流入し、ドレン水溜め内に溜められる。ドレン水溜め内に溜められたドレン水は、ポンプによって処理施設に排出される。
溶融燃料デブリが、ペデスタルで取り囲まれた、原子炉格納容器の床上に落下した場合には、この溶融燃料デブリは、床上を拡がり、上記の流路内に流入する。床上に拡がった溶融燃料デブリは、流路の部分を除いて、ドレン水溜め内への流入を上部壁体によって遮られる。流路内に流入した溶融燃料デブリの熱は上部壁体及び下部壁体を通して放散されるため、流路内の溶融燃料デブリの温度が低下し、やがて、この溶融燃料デブリはその流路内で凝固する。このため、その流路を通しての溶融燃料デブリのドレン水溜め内への流入も阻止される。
国際公開第2015/146218号公報も、特許第3510670号公報に記載されたコリウムシールドと同様なコリウムシールドを記載している。
特開昭62-105095号公報は、ペデスタルで取り囲まれた原子炉格納容器の床に、コンクリートを打設してドレン水溜めを形成し、このドレン溜めの側面及び底面のそれぞれをライナプレートで覆うことを記載している。
原子力プラントは、施設の安全上重要な機能を確保する観点から他産業の施設よりも厳しい耐震性が要求されている。このような観点から、原子炉圧力容器の下方でペデスタルの内側において原子炉格納容器の床に形成されたドレン水溜めに設けられるコリウムシールドも、要求される耐震性を満足するように作られている。
しかしながら、落下した溶融燃料デブリの、原子炉格納容器の床に形成されたドレン水溜めへの流入を阻止する重要な構造物であるコリウムシールドの耐震性を、さらに向上させることが望まれる。
本発明の目的は、コリウムシールドの耐震性をさらに向上させることができる原子炉格納容器内のドレン水溜め及びそのドレン水溜めの施工方法を提供することにある。
上記した目的を達成する本発明の特徴は、原子炉圧力容器の下方に位置し、原子炉格納容器の床を形成するコンクリートマットに形成されたドレン水溜めであって、
コリウムシールドが、ドレン水溜めの内面全体を覆ってコンクリートマットに設置され、
コリウムシールドは、ドレン水溜めの内面全体を覆ってコンクリートマットに設置された型枠と、この型枠の内側に配置され、型枠の内面を覆って型枠の内面に取り付けられた熱遮へい層と、熱遮へい層の内側に配置され、熱遮へい層の内面を覆って熱遮へい層の内面に取り付けられたライナプレートとを備え、
ライナプレートの内側に、ライナプレートによって取り囲まれたドレン水収納領域が形成されており、
床上のドレン水をドレン水収納領域に導くドレン水流路が、コリウムシールドに形成されていることにある。
コリウムシールドが、ドレン水溜めの内面全体を覆ってコンクリートマットに設置され、
コリウムシールドは、ドレン水溜めの内面全体を覆ってコンクリートマットに設置された型枠と、この型枠の内側に配置され、型枠の内面を覆って型枠の内面に取り付けられた熱遮へい層と、熱遮へい層の内側に配置され、熱遮へい層の内面を覆って熱遮へい層の内面に取り付けられたライナプレートとを備え、
ライナプレートの内側に、ライナプレートによって取り囲まれたドレン水収納領域が形成されており、
床上のドレン水をドレン水収納領域に導くドレン水流路が、コリウムシールドに形成されていることにある。
コリウムシールドに含まれる型枠が、ドレン水溜めとなる窪みの各側面及び底面のそれぞれを覆ってこれらの側面及びその底面に取り付けられているため、その窪みの内側に設けられたコリウムシールドの耐震性がさらに向上する。
また、ドレン水溜めの窪みを形成するために、前記ドレン水溜めの四方の側面に対向する4枚の型枠及び前記ドレン水溜めの底面に対向する1枚の型枠を、前記ドレン水溜めを形成する位置に配置し、
前記底面を対向する前記1枚の型枠に、前記側面に対向する前記4枚の型枠のそれぞれの下端部を溶接によって接合して、前記4枚の型枠のうち隣り合う前記型枠の側端部同士を溶接によって接合し、
接合されたそれぞれの前記型枠の外側にコンクリートを打設してこれらの型枠の外側に、前記ドレン水溜めとなる、前記打設されたコンクリートで囲まれた前記窪みを形成し、
耐熱材で作られた熱遮へい層を、前記接合された各型枠の内面を覆って配置してそれぞれの前記型枠に取り付け、
ライナプレートを、前記熱遮へい層の内面を覆って配置して前記熱遮へい層に取り付けることによっても、上記した目的を達成することができる。
前記底面を対向する前記1枚の型枠に、前記側面に対向する前記4枚の型枠のそれぞれの下端部を溶接によって接合して、前記4枚の型枠のうち隣り合う前記型枠の側端部同士を溶接によって接合し、
接合されたそれぞれの前記型枠の外側にコンクリートを打設してこれらの型枠の外側に、前記ドレン水溜めとなる、前記打設されたコンクリートで囲まれた前記窪みを形成し、
耐熱材で作られた熱遮へい層を、前記接合された各型枠の内面を覆って配置してそれぞれの前記型枠に取り付け、
ライナプレートを、前記熱遮へい層の内面を覆って配置して前記熱遮へい層に取り付けることによっても、上記した目的を達成することができる。
本発明によれば、コリウムシールドの耐震性をさらに向上させることができる原子炉格納容器内のドレン水溜め及びそのドレン水溜めの施工方法を提供することができる。
本発明の実施例を、以下に説明する。
本発明の好適な一実施例である、沸騰水型原子力プラントに適用される原子炉格納容器内のドレン水溜めの構造を、図1、図2、図3及び図4を用いて説明する。
このドレン水溜めを説明する前に、ドレン水溜めが適用される沸騰水型原子力プラントの概略構造を、図1を用いて説明する。沸騰水型原子力プラントは、原子炉建屋(図示せず)内に設置された原子炉格納容器2、及び原子炉格納容器2内に設置された原子炉圧力容器1を備えている。原子炉格納容器2は、コンクリートマット4上に設置されている。原子炉圧力容器1は、コンクリートマット4上に設置されて、原子炉格納容器2内に配置された円筒状のペデスタル(筒状の支持体)3によって支持される。複数の燃料集合体(図示せず)が装荷された炉心(図示せず)が、原子炉圧力容器1内に配置される。
原子炉格納容器2内には、ダイヤフラムフロアによって互いに隔離された上部ドライウェル6及び圧力抑制室8が形成される。圧力抑制室8には、冷却水が充填された圧力抑制プール9が形成される。下部ドライウェル7が、ペデスタル3の内側で原子炉圧力容器1の下方に形成される。
多数の制御棒駆動機構ハウジング(図示せず)が、原子炉圧力容器1の底部に設けられて下方に向かって伸びている。制御棒(図示せず)を炉心内に出し入れする制御棒駆動機構(図示せず)が、それぞれの制御棒駆動機構ハウジング内に設置される。炉心に装荷された各燃料集合体に冷却水を供給する複数のインターナルポンプ(図示せず)が、多数の制御棒駆動機構ハウジングを取り囲むように配置され、原子炉圧力容器の底部に取り付けられている。
横断面が四角形(正方形または長方形)であるドレン水溜め10が、ペデスタル3で取り囲まれた、原子炉格納容器2の床5の部分に窪みとして形成されており、側壁となるコンクリートマット4で取り囲まれている。さらに、ドレン水溜め10の底面33も、コンクリートマット4で形成されている。ドレン水溜め10は、ペデスタル3の中心軸とペデスタル3の内面との間で、ペデスタル3の内面寄りに配置されている。このドレン水溜め10は、コリウムシールドを含んでいる。このコリウムシールド12が、ドレン水溜め10の内面全体、すなわち、ドレン水溜め10の側面32及び底面33のそれぞれの全体を覆って設置されている。ドレン水溜め10の横断面の形状は四角形(正方形または長方形)である。ドレン水溜め10は、沸騰水型原子力プラントの運転中及び停止中において原子炉格納容器2内で発生したドレン水11を収納する。
コリウムシールド12の詳細構造を図2、図3及び図4に基づいて説明する。コリウムシールド12は、熱遮へい層13、型枠18及びライナプレート20を含んでいる。熱遮へい層13は、横断面が四角形(正方形または長方形)の筒状である熱遮へい筒部13A、及び熱遮へい層13の底の部分である熱遮へい底部13Bを含んでいる。ドレン水溜め10の四方のそれぞれの側面を覆っている、コリウムシールド12の部分では、ライナプレート20、熱遮へい層13(具体的には、熱遮へい筒部13A)及び型枠18が、この順番で、ドレン水溜め10の中心軸からドレン水溜め10の側壁であるコンクリートマット4に向かって配置される。底面33を覆っている、コリウムシールド12の部分でも、ライナプレート20、熱遮へい層13(具体的には、熱遮へい底部13B)及び型枠18が、この順番で、下部ドライウェル7からドレン水溜め10の底面33を形成するコンクリートマット4に向かって配置されている。
ステンレス鋼板で作られた型枠18は、ドレン水溜め10の四方の各側面、及び底面において、コンクリートマット4に接触して配置される。各型枠18のコンクリートマット4に接触する面には、それぞれ、複数のアンカー部材19が取り付けられている。これらのアンカー部材19はコンクリートマット4に埋設されている。ドレン水溜め10の四方の各側面に接触している各型枠18の、隣り合う型枠18同士は、ドレン水溜め10の軸方向の全長に亘って切れ目のない連続した溶接により接合されている。底面33に接触している型枠18の四方の周辺部は、ドレン水溜め10の四方の各側面に接触している各型枠18の下端部に、この下端部の幅の全長に亘って切れ目のない連続した溶接により接合されている。
ドレン水溜め10の四方の各側面の型枠18と向かい合っている、熱遮へい層13の側壁部である熱遮へい筒部13Aは、複数の熱遮へい体ブロック14によって形成される。これらの熱遮へい体ブロック14は三種類の熱遮へい体ブロック14A,14B及び14Cを含んでいる。熱遮へい体ブロック14A,14B及び14Cは後述するように個々の形状が異なっているが、これらの熱遮へい体ブロックのいずれもが耐熱材(例えば、酸化マグネシウム及び酸化アルミニウム等)で作られた耐熱部材をステンレス鋼製の容器に入れて構成されている。耐熱部材の全面がステンレス鋼製容器で取り囲まれている。
このステンレス鋼製容器の厚みは熱遮へい体ブロックのあらゆる位置で均一であるため、熱遮へい体ブロック14A,14B及び14Cにおける、ステンレス鋼製容器で取り囲まれたそれぞれの耐熱部材は、大きさが熱遮へい体ブロック14A,14B及び14Cそれぞれの大きさよりも小さくなっているが、それぞれの耐熱部材の形状は熱遮へい体ブロック14A,14B及び14Cのそれぞれの形状と同じである。
熱遮へい体ブロック14Aは、図2及び図3に示すように、ドレン水溜め10の側面32に対向する型枠18側におけるその型枠18に沿った水平方向の幅がライナプレート20側でその型枠18に沿った水平方向の幅よりも広い、段付きの横断面形状を有する。熱遮へい体ブロック14Bは、図2及び図3に示すように、熱遮へい体ブロック14Aとは逆に、ライナプレート20側でその型枠18に沿った水平方向の幅が側面32に対向する型枠18側におけるその型枠18に沿った水平方向の幅よりも広い、段付きの横断面形状を有する。熱遮へい体ブロック14Bの、ライナプレート20側のその幅が広い部分が、熱遮へい体ブロック14Aの、型枠18側のその幅が広い部分よりもライナプレート20側に位置している。
また、熱遮へい筒部13Aの四隅に配置される各熱遮へい体ブロック14Cは、側面が両側に隣接して配置される各熱遮へい体ブロック14Bの側面に接触するような横断面形状を有する。なお、熱遮へい体ブロック14A及び14Bのそれぞれは、ドレン水溜め10の軸方向においても分割されている。ドレン水溜め10の軸方向において、熱遮へい体ブロック14A及び14Bのそれぞれは積み重ねられている。
熱遮へい筒部13A内では、水平方向において、熱遮へい体ブロック14A及び14Bは並んで交互に配置される。隣り合う一対の熱遮へい体ブロック14Aの間に配置された熱遮へい体ブロック14Bは、型枠18側では熱遮へい体ブロック14Bの水平方向の幅が狭い部分がその一対の熱遮へい体ブロック14Aの水平方向の幅が広い部分の間に配置される。隣り合っている熱遮へい体ブロック14Aと熱遮へい体ブロック14Bの間には、モルタルが薄い層状に充填され、隣り合っている熱遮へい体ブロック14Aと熱遮へい体ブロック14Bとはそのモルタルによって接着されている。隣り合う熱遮へい体ブロック14Bと熱遮へい体ブロック14Cも、モルタルによって接着される。熱遮へい体ブロック14A,14B及び14Cのそれぞれの、型枠18(ドレン水溜め10の側面32に対向している)側の側面は、モルタルによってその型枠18に接着されており、熱遮へい体ブロック14A,14B及び14Cのそれぞれが型枠18に取り付けられている。積層された熱遮へい体ブロック14A同士、及び積層された熱遮へい体ブロック14B同士も、モルタルによって接着されている。
底面33と型枠18を挟んで向かい合っている熱遮へい底部13Bは、図4に示すように、熱遮へい層15及び16の二層構造になっている。熱遮へい層15は、熱遮へい層16よりも底面33に接触する型枠18側に位置している。すなわち、熱遮へい層16は、熱遮へい層15の上方に位置している。熱遮へい層15及び16のそれぞれは、前述の耐熱材で作られた、レンガ状の複数の熱遮へい体ブロック(図示せず)を敷き詰めて構成される。熱遮へい層15の各熱遮へい体ブロックは、底面33と対向している型枠18の上面にモルタルにより接着されており、熱遮へい層15の各熱遮へい体ブロックはその型枠18に取り付けられている。熱遮へい層16の各熱遮へい体ブロックは、熱遮へい層15の各熱遮へい体ブロックの上面にモルタルによって接着される。熱遮へい層15を形成する隣り合う各熱遮へい体ブロック同士もモルタルで接着され、また、熱遮へい層16を形成する隣り合う各熱遮へい体ブロック同士もモルタルで接着されている。
熱遮へい筒部13Aに含まれる熱遮へい体ブロック14Aのうちで最も下方に位置する熱遮へい体ブロック14Aは、熱遮へい層15の熱遮へい体ブロックのうちで熱遮へい筒部13Aの真下に位置する熱遮へい体ブロックの上に配置されてこの真下に位置する熱遮へい体ブロックにモルタルで接着される。熱遮へい筒部13Aに含まれる熱遮へい体ブロック14Bのうちで最も下方に位置する熱遮へい体ブロック14Bは、熱遮へい筒部13Aの真下に位置する、熱遮へい層15の熱遮へい体ブロックの上に配置されてこの真下に位置する熱遮へい体ブロックにモルタルで接着される。さらに、熱遮へい筒部13Aに含まれる熱遮へい体ブロック14Cのうちで最も下方に位置する熱遮へい体ブロック14Cは、熱遮へい筒部13Aの真下に位置する、熱遮へい層15の熱遮へい体ブロックの上に配置されてこの真下に位置する熱遮へい体ブロックにモルタルで接着される。
熱遮へい筒部13Aの四方の各側壁部では、ステンレス鋼製のライナプレート20が、これらの側壁部にそれぞれ配置された熱遮へい体ブロック14A,14B及び14Cのそれぞれの内面を覆ってこれらの内面に別々に取り付けられる。さらに、そのライナプレート20は、熱遮へい層15及び16を含む熱遮へい底部13Bにおける熱遮へい層16の上面を覆ってこの上面に取り付けられる。熱遮へい筒部13Aの四方の側壁部の内面をそれぞれ覆う各ライナプレート20において、隣り合うライナプレート20同士が、ドレン水溜め10の軸方向の全長に亘って溶接により接合されている。熱遮へい層16の上面に接触しているライナプレート20の四方の周辺部は、熱遮へい筒部13Aの四方の内面に接触している各ライナプレート20の下端部に溶接により接合されている。溶接により接合された各ライナプレート20の内側には、ドレン水溜め10のドレン水収納領域30が形成される。
ドレン水溜め10の四方のそれぞれの側面を覆っている各型枠18に向かい合っている、熱遮へい筒部13Aには、水平方向において、棒状(例えば、丸棒状)の複数本の支持構造物26が配置されている(図3参照)。それぞれの支持構造物26は、その下端が底面33に接触している型枠18に取り付けられ、この型枠18よりも上方に向かって伸びている。それぞれの支持構造物26の上端は、ペデスタル3によって取り囲まれた原子炉格納容器2の床5の上面付近で、この上面よりも下方に位置している。各支持構造物26は、ドレン水溜め10の軸方向において、複数の箇所で、熱遮へい筒部13Aに接触している型枠18の内面に設置される支持部材27に取り付けられる。支持構造物26は、その軸方向に複数配置された支持部材27によって熱遮へい筒部13Aに面している型枠18に固定される。
その熱遮へい筒部13Aに含まれる各熱遮へい体ブロック14Bであってペデスタル3によって取り囲まれた原子炉格納容器2の床5の上面よりも下方に位置する各熱遮へい体ブロック14Bには、ドレン水溜め10の軸方向に伸びる貫通孔(図示せず)が形成される。熱遮へい筒部13Aにおいて水平方向に配置された各熱遮へい体ブロック14Bの真下に位置する、熱遮へい層15及び16のそれぞれの熱遮へい体ブロックも、各熱遮へい体ブロック14Bの上記貫通孔の真下の位置に、貫通孔が形成されている。熱遮へい層15に接触した型枠18に取り付けられた支持構造物26は、熱遮へい層15及び16のそれぞれの熱遮へい体ブロックに形成された貫通孔、及び熱遮へい体ブロック14Bに形成された貫通孔のそれぞれに挿入されている。
熱遮へい筒部13Aに含まれる各熱遮へい体ブロック及び各熱遮へい体ブロック14Bは、側面がモルタルによって側面32に対向している型枠18に接着されているため、地震時において熱遮へい筒部13Aの型枠18からライナプレート20に向かう水平方向の揺れが生じたとしても、熱遮へい体ブロック14A及び14Bが水平方向に移動する可能性は極めて少ない。さらに、各熱遮へい体ブロック14Bが支持構造物26で支持されているため、各熱遮へい体ブロック14Bの地震時における水平方向への移動は、確実に阻止される。
また、地震時において型枠18からライナプレート20に向かう水平方向の揺れが生じたとしても、各熱遮へい体ブロック14Aは、支持構造物26で支持された各熱遮へい体ブロック14Bによってその水平方向への移動が阻止される。すなわち、各熱遮へい体ブロック14Aの、型枠18側の水平方向の幅が広い部分よりもライナプレート20側に、熱遮へい体ブロック14Bの、ライナプレート20側の水平方向の幅が広い部分が配置されているため、地震による上記の水平方向の揺れが生じたとしても、支持構造物26で支持された熱遮へい体ブロック14Bのその幅が広い部分が、熱遮へい筒部13Aのその幅の広い部分の、ライナプレート20側への水平方向の移動を阻止する。
複数の耐熱ブロック(図示せず)が敷き詰められて構成された熱遮へい層17が、側面32に対向するコリウムシールド12の側壁部の周囲に形成されている。熱遮へい層17を構成する各耐熱ブロックも、前述の耐熱材で作られたレンガ状の耐熱部材をステンレス鋼製の容器に入れて構成される。これらの耐熱部材の全面がステンレス鋼製容器で取り囲まれている。熱遮へい層17は、ペデスタル3によって取り囲まれる原子炉格納容器2の床5の上面全体を覆っていなく、コリウムシールド12の側壁部の周囲に存在する、原子炉格納容器2の床5の一部の上面だけを覆っている。原子炉格納容器2の床5の、コリウムシールド12の側壁部の周囲に存在する部分を熱遮へい層17の厚みだけ掘り下げ、床5の、この掘り下げられた部分に、熱遮へい層17が設けられている。熱遮へい層17は、ドレン水溜め10とペデスタル3の内面の間でも床5の上面を覆っている(図4参照)。熱遮へい層17が設けられていない床5の上面と熱遮へい層17の上面が、同じ高さになっている。このため、ドレン水11が、熱遮へい層17が設けられていない床5の上面を流れる場合には、床5の上面を流れるドレン水11が、熱遮へい層17の上面に沿って流れ、後述するように、コリウムシールド12の側壁部に形成されたドレン水流路23を通して、ドレン水溜め10のドレン水収納領域30内に容易に導くことができる。
コリウムシールド12は、熱遮へい層17の上面よりも上方に向かって突出している。コリウムシールド12の、床5の上面、すなわち、熱遮へい層17の上面よりも上方に向かって突出している部分を、説明の都合上、コリウムシールド12Aと称する。コリウムシールド12Aは、床5より上方に突出している、コリウムシールド12の突出部である。このコリウムシールド12Aの詳細構造を以下に説明する。
コリウムシールド12Aは、熱遮へい層13の、横断面が四角形(正方形または長方形)である筒状の熱遮へい筒部13Cを含んでいる。熱遮へい筒部13Cは、図2に示すように、4つの側壁部であるA部、B部、C部及びD部を有する。B部はドレン水溜め10のペデスタル3側に位置しており、A部はB部と対向している。C部及びD部は残りの2つの側壁部であり、C部及びD部はお互いに対向している。熱遮へい筒部13Cの1つの側壁部であるA部では熱遮へい部13Dが形成され、熱遮へい筒部13Cの熱遮へい部13EはB部、C部及びD部の3つの側壁部を含む(図2参照)。
熱遮へい部13Dは、熱遮へい部13Eから分離された、図4に示す熱遮へい体ブロック(以下、固定熱遮へい体ブロックという)29A及び熱遮へい体ブロック(以下、分離熱遮へい体ブロックという)29Bを含んでいる。固定熱遮へい体ブロック29A及び分離熱遮へい体ブロック29Bのそれぞれは、熱遮へい筒部13Aと同様に、複数の熱遮へい体ブロック14A及び14Bを交互に一列に配置している。なお、固定熱遮へい体ブロック29A及び分離熱遮へい体ブロック29Bに含まれる各熱遮へい体ブロック14Bは、支持構造物26を挿入する貫通孔を形成していない。固定熱遮へい体ブロック29A及び分離熱遮へい体ブロック29Bのそれぞれを構成している熱遮へい体ブロック14A及び14Bは、熱遮へい筒部13Aの熱遮へい体ブロック14A,14B及び14Cと同様に、耐熱部材をステンレス鋼製容器で取り囲んで構成している。
固定熱遮へい体ブロック29Aは、熱遮へい体ブロック14A及び14Bのそれぞれの外面及び内面のそれぞれをステンレス鋼製のカバー部材25で覆っている。固定熱遮へい体ブロック29Aは、熱遮へい体ブロック14A及び14Bのそれぞれの上端面及び下端面も、カバー部材25で覆われる。分離熱遮へい体ブロック29Bは、熱遮へい体ブロック14A及び14Bのそれぞれの外面及び内面のそれぞれをカバー部材25で覆っている。分離熱遮へい体ブロック29Bも、熱遮へい体ブロック14A及び14Bのそれぞれの上端面及び下端面がカバー部材25で覆われる。
固定熱遮へい体ブロック29Aの下端が、熱遮へい筒部13Aの、ペデスタル3とは反対側に位置する側壁部の上端にモルタルにより接着される。固定熱遮へい体ブロック29Aの水平方向における両端が、熱遮へい部13EのC部及びD部のそれぞれの内面にモルタルにより接着される。分離熱遮へい体ブロック29Bは、固定熱遮へい体ブロック29Aの上端に取り外し可能に設置される。分離熱遮へい体ブロック29Bの水平方向における両端は、熱遮へい部13EのC部及びD部のそれぞれの内面に取り外し可能に設置される。
熱遮へい筒部13Aの内面及び熱遮へい底部13Bの上面のそれぞれを覆うライナプレート20は、ドレン水収納領域30内に収納された放射性のドレン水の、熱遮へい体ブロック14A及び14B側への漏洩を防止するために高い気密性が要求される。これに対し、カバー部材25は、ドレン水収納領域30内におけるドレン水の水位が最大でも熱遮へい層17の上面以下に抑えられる関係上、ライナプレート20ほど気密性が要求されない。
熱遮へい部13Eの対向する2つの側壁部であるC部及びD部のそれぞれでは、熱遮へい筒部13Aと同様に、複数の熱遮へい体ブロック14A及び14Bが交互に一列に配置されている。C部及びD部に配置された各熱遮へい体ブロック14Bも、支持構造物26を挿入する貫通孔を形成していない。熱遮へい体ブロック14A及び14Bのそれぞれは、ドレン水溜め10の軸方向において複数に分割されている。C部及びD部において、熱遮へい体ブロック14A及び14Bのそれぞれは、ドレン水溜め10の軸方向において、積み重ねられている。さらに、C部及びD部において、水平方向で隣り合う熱遮へい体ブロック14A及び14Bのそれぞれはモルタルで接着される。C部及びD部では、ドレン水溜め10の軸方向において最も下方に配置された熱遮へい体ブロック14A及び14Bのそれぞれの下端面が、熱遮へい筒部13Aの、ドレン水溜め10の軸方向において最も上方に配置された熱遮へい体ブロック14A及び14Bのそれぞれの上端面にモルタルで接着される。また、C部及びD部では、水平方向の両端部には熱遮へい体ブロック14Cがそれぞれ配置される。この熱遮へい体ブロック14Cは水平方向において隣り合う熱遮へい体ブロック14Bにモルタルで接着される。ドレン水溜め10の軸方向において最も下方に配置された熱遮へい体ブロック14Cの下端面が、熱遮へい筒部13Aの、ドレン水溜め10の軸方向において最も上方に配置された熱遮へい体ブロック14Cの上端面にモルタルで接着される。
熱遮へい部13EのC部及びD部のそれぞれでは、カバー部材25が、C部及びD部のそれぞれに配置された熱遮へい体ブロック14A,14B及び14Cのそれぞれの内面、外面及び上面のそれぞれを覆ってこれらの内面、外面及び上面のそれぞれに取り付けられる。C部の内面を覆うカバー部材25の下端面は、熱遮へい筒部13Aの、C部の真下に位置する部分の内面を覆っているライナプレート20の上端面に溶接で接合されている。D部の内面を覆うカバー部材25の下端面は、熱遮へい筒部13Aの、D部の真下に位置する部分の内面を覆っているライナプレート20の上端面に溶接で接合されている。
熱遮へい部13EのB部の構造について説明する。熱遮へい部13EのB部は、熱遮へい体ブロック層21を含んでいる(図4参照)。熱遮へい体ブロック層21の下端部には、複数(例えば、3つ)の流路画定部31(図2参照)が所定の間隔を置いて形成されている。熱遮へい体ブロック層21は、耐熱材(例えば、酸化マグネシウム及び酸化アルミニウム等)で作られた耐熱部材をステンレス鋼製の容器に入れて構成された複数の熱遮へい体ブロック(図示せず)を、水平方向に敷き詰め、さらに、ドレン水溜め10の軸方向に積み重ねて構成される。水平方向において隣り合う熱遮へい体ブロック同士、及びドレン水溜め10の軸方向において隣り合う熱遮へい体ブロック同士は、モルタルでそれぞれ接着される。熱遮へい体ブロック層21は、A部からB部に向かう方向において、熱遮へい筒部13Aの、ペデスタル3側の側壁部の内面とペデスタル3の内面の間に配置されている。
熱遮へい体ブロック層21及び各流路画定部31のそれぞれの内面(ドレン水収納領域30側の面)は、カバー部材25で覆われている。熱遮へい体ブロック層21の上面もカバー部材25で覆われている。このカバー部材25が熱遮へい体ブロック層21及び各流路画定部31の内面に取り付けられる。このカバー部材25の下端は、熱遮へい筒部13Aの、熱遮へい体ブロック層21の真下に位置する部分の内面を覆っているライナプレート20の上端に溶接により接合される。熱遮へい体ブロック層21は、ペデスタル3の半径方向において、ペデスタル3の内面まで伸びており、熱遮へい体ブロック層21のペデスタル3側の側面はペデスタル3の内面に接触している。
熱遮へい体ブロック層21の内面を覆っているカバー部材25の一つの側端部は、C部の各熱遮へい体ブロックの内面を覆っているカバー部材25の、この側端部に隣接する側端部に溶接で接合される。熱遮へい体ブロック層21の内面を覆っているカバー部材25の他の側端部は、D部の各熱遮へい体ブロックの内面を覆っているカバー部材25の、この側端部に隣接する側端部に溶接で接合される。熱遮へい筒部13Cの、1つの側壁部であるC部に隣接する1つの流路画定部31の内面を覆っているカバー部材25のC部側の側端部は、C部の各熱遮へい体ブロックの内面を覆っているカバー部材25の、この側端部に隣接する側端部に溶接で接合される。熱遮へい筒部13Cの、1つの側壁部であるD部に隣接する他の1つの流路画定部31の内面を覆っているカバー部材25のD部側の側端部は、D部の各熱遮へい体ブロックの内面を覆っているカバー部材25の、この側端部に隣接する側端部に溶接で接合される。
熱遮へい筒部13Aの内面に設けられたライナプレート20の内側、熱遮へい筒部13CのA部、B部、C部及びD部のそれぞれの内面に設けられたカバー部材25の内側及び熱遮へい底部13Bの上面に設けられたライナプレート20の上方に、ドレン水収納領域30が形成される。実質的には、ドレン水収納領域30は熱遮へい筒部13Aの上端よりも下方である。
ドレン水流路23が、熱遮へい体ブロック層21、熱遮へい筒部13A、及びペデスタル3と熱遮へい筒部13Aの間で床5上に存在する熱遮へい層17によって形成される。ドレン水流路23は、流路部22及び流路部24を含んでいる(図2及び図4参照)。ペデスタル3は、ドレン水流路23、具体的には、流路部22の一つの側壁になっている。熱遮へい体ブロック層21の、ドレン水収納領域30側の下端部には、下方に向かって突出している複数の流路画定部31が形成されている。これらの流路画定部31の下面は、熱遮へい筒部13Aの、流路画定部31の真下に位置する一つの側壁部の上面にモルタルにより接着されている。流路部22は、ドレン水溜め10の軸方向において熱遮へい層17と熱遮へい体ブロック層21に形成された流路画定面34(図4参照)の間で、ペデスタル3の半径方向において流路画定部31とペデスタル3の内面の間に形成される。その流路画定面34は、熱遮へい筒部13Aの外面とペデスタル3の内面の間に配置された熱遮へい層17の上面に対向し、この上面よりも上方に位置しており、熱遮へい体ブロック層21において流路画定部31よりもペデスタル3の内面に向かって形成されている。下部ドライウェル7に開口する開口部23Aが、流路部22の両端に形成される。2つの流路部24が3つの流路画定部31の間に形成され、流路部24の底面は、熱遮へい筒部13Aの、熱遮へい体ブロック層21の真下に位置する上端面によって形成される。各流路部24は、流路部22とドレン水収納領域30を連絡する。
コリウムシールド12の、コリウムシールド12Aよりも下方の部分(熱遮へい筒部13Aが含まれる部分)における四方に存在する各側壁部の厚みは、全て同じである。コリウムシールド12Aの3つの側壁部、すなわち、熱遮へい筒部13CのA部を含むコリウムシールド12Aの側壁部、熱遮へい筒部13CのC部を含むコリウムシールド12Aの側壁部、及び熱遮へい筒部13CのD部を含むコリウムシールド12Aの側壁部のそれぞれの厚みは、同じであって、前述のコリウムシールド12の、コリウムシールド12Aよりも下方の部分における四方に存在する各側壁部の厚みと同じである。熱遮へい筒部13CのB部を含むコリウムシールド12Aの側壁部の厚みは、コリウムシールド12Aの他の3つの側壁部の厚みよりも厚くなっている。
2台の排水ポンプ28が、ドレン水収納領域30内において、熱遮へい層16に対向して配置されてドレン水収納領域30の底を形成するライナプレート20の上面に設置される。
上記のように構成される、原子炉格納容器内のドレン水溜めの施工方法を以下に説明する。新規の沸騰水型原子力プラントを対象にして、ドレン水溜めの施工方法を説明する。
新規の沸騰水型原子力プラントの建設予定地を、岩盤が露出するまで掘り下げる。この岩盤上に鉄筋を配置してコンクリートを打設し、コンクリートマット4の一部を形成する。
次に、型枠設置工程が実施される。この工程では、コンクリートマット4のコンクリートが或る高さ(ドレン水溜め10の底面33よりも下方の或る位置)まで打設された後、ドレン水溜め10の側面32に対向する四角形の4枚の型枠18及びドレン水溜め10の底面33に対向する四角形の1枚の型枠18を、ペデスタル3の内側の、ドレン水溜め10を形成する位置まで移送する。これらの型枠18はステンレス鋼製である。後者の1枚の型枠18は、複数のアンカー部材19が取り付けられた面が下向きになるように、打設済みのコンクリート表面よりも上方の、底面33を形成する位置に水平になるように配置される。この1枚の型枠18は、打設済みのコンクリートに一部が埋設された複数の支持部材(図示せず)によって支持される。側面32に対向する4枚の型枠18のそれぞれが、複数のアンカー部材19が取り付けられた面が外側を向くように、これらの支持部材で支持された型枠18の周辺部に、この型枠18に対して垂直になるように、順次、立てられる。立てられた各型枠18の下端面が、支持部材で支持された型枠18の周辺部に、この型枠18の各辺の全長に亘って連続して溶接される。立てられた各型枠18の側端部が立てられて隣接する型枠18の側端部に溶接される。このように、隣接する、立てられた型枠18の側端部同士が、ドレン水溜め10の軸方向の全長に亘って連続して溶接される。
ドレン水溜め10を形成する位置まで移送された5枚の型枠18が溶接にて接合された後、コンクリートマット4形成のためのコンクリートの打設が再開される(コンクリート打設工程)。コンクリートが支持部材で支持される型枠18の下方、及び建てられた4枚の型枠18の周囲にそれぞれ打設される。やがて、コンクリートが床5の上面の位置まで打設される。上記の支持部材及び各型枠18に取り付けられた各アンカー部材19が打設されたコンクリートに埋設される。各型枠18の外側に打設されたコンクリートによって、支持部材で支持された型枠18の下面に接触する、窪みであるドレン水溜め10の底面33が形成され、立てられた各型枠18の外面に接触する、窪みであるドレン水溜め10の側面32が形成される。
円筒状のペデスタル3、及びペデスタル3を取り囲む原子炉格納容器2のそれぞれをコンクリートマット4上に設置する。原子炉格納容器2内で、原子炉圧力容器1をペデスタル3に設置する。
次に、これらの型枠18の内側に熱遮へい層13を形成する(熱遮へい層形成工程)。
まず、底面33に接触している型枠18の上面を覆うように、熱遮へい底部13Bの熱遮へい層15を形成するレンガ状の複数の熱遮へい体ブロックを、水平方向において隙間なく敷き詰める。これらの熱遮へい体ブロックは、その型枠18の上面にモルタルで接着され、さらに、隣り合う熱遮へい体ブロック同士を接着しながら敷き詰められる。熱遮へい底部13Bの熱遮へい層16を形成するレンガ状の複数の熱遮へい体ブロックが、熱遮へい層15の上面に水平方向において隙間なく敷き詰められる。熱遮へい層16のこれらの熱遮へい体ブロックは、熱遮へい層15の各熱遮へい体ブロックの上面にモルタルで接着され、さらに、隣り合う熱遮へい体ブロック同士を接着しながら敷き詰められる。
各熱遮へい体ブロック14Bに形成された前述の貫通孔の真下に位置でドレン水溜め10の底面に接触している型枠18の上面に取り付けられた複数の支持構造物26が、横断面が四角形である熱遮へい筒部13Aに含まれる各熱遮へい体ブロック14Bの真下に位置する、熱遮へい層15及び16の周辺部に位置する各熱遮へい体ブロックに形成された貫通孔内に挿入される。熱遮へい層15及び16の周辺部に位置する各熱遮へい体ブロックは、各支持構造物26に沿って下降され、所定の位置で前述したように、隣り合う熱遮へい体ブロック等に接着される。
熱遮へい筒部13Aを熱遮へい層16の上面に形成する。熱遮へい筒部13Aの形成は以下のように実施する。
熱遮へい筒部13Aにおいて最も下方に配置される熱遮へい体ブロック14A,14B及び14Cのそれぞれが、図3に示すように、水平方向において熱遮へい層16の上面に配置される。熱遮へい体ブロック14Aと熱遮へい体ブロック14Bは交互に配置される。なお、各熱遮へい体ブロック14Bは、熱遮へい体ブロック14Bに形成された貫通孔に支持構造物26を挿入した状態で、熱遮へい層16の上面まで下降される。熱遮へい筒部13Aにおいて最も下方に配置される熱遮へい体ブロック14A,14B及び14Cのそれぞれの下面が、モルタルにより熱遮へい層16の各熱遮へい体ブロックの上面に接着される。これらの熱遮へい体ブロック14A,14B及び14Cの、型枠18に対向する側面が、モルタルによりこの型枠18の内面に接着される。また、水平方向において、隣り合う熱遮へい体ブロック14Aと熱遮へい体ブロック14Bが、及び隣り合う熱遮へい体ブロック14Bと熱遮へい体ブロック14Cが、互いに、モルタルで接着される。
別の熱遮へい体ブロック14A,14B及び14Cが、接着された熱遮へい体ブロック14A,14B及び14Cの上に、順次、積み重ねられる。積み重ねられた熱遮へい体ブロック14A,14B及び14Cのそれぞれは、前述したように、下面に接触する各熱遮へい体ブロックに、及び対向する型枠18の内面にモルタルで接着される。さらに、積み重ねられた熱遮へい体ブロック14A,14B及び14Cのそれぞれは、前述したように、水平方向において隣り合う熱遮へい体ブロック同士でモルタルにより接着される。このような熱遮へい体ブロック14A,14B及び14Cの積み重ね及び接着の作業は、熱遮へい筒部13Aの四方の各側壁部において熱遮へい体ブロック14A,14B及び14Cの上端面の位置が熱遮へい層17の上面の位置になるまで繰り返される。
積み重ねられる熱遮へい体ブロック14Bの貫通孔内には、上記したように、支持構造物26が挿入される。所定個数の熱遮へい体ブロック14Bがドレン水溜め10の軸方向において積み重ねられるごとに、支持部材27が配置され、この支持部材27は型枠18の内面と支持構造物26に溶接にて取り付けられる。
熱遮へい筒部13A及び熱遮へい層16の形成が終了した後、熱遮へい層17の形成が実施される。熱遮へい層16が形成される、熱遮へい筒部13Aを取り囲む原子炉格納容器2の床5の部分が、熱遮へい層16の厚みに相当する深さだけ、掘り下げられる。原子炉格納容器2の床5の掘り下げられた部分に、熱遮へい筒部13Aを取り囲むように、熱遮へい層17を形成する。この熱遮へい層17は、レンガ状の耐熱部材をステンレス鋼製の容器に入れて構成される複数の耐熱ブロックを、床5の掘り下げられた部分に敷き詰めることによって形成される。
コリウムシールド12Aの熱遮へい筒部13Cの形成について説明する。熱遮へい筒部13Cに含まれる熱遮へい部13EのB部は、別の場所で既に製造された熱遮へい体ブロック層21を、熱遮へい筒部13Aとペデスタル3の間に形成された熱遮へい層17を覆うように配置することによって形成される。熱遮へい体ブロック層21の流路画定部31の下面が、モルタルにより、熱遮へい筒部13Aの、流路画定部31の真下に位置する部分の上端面に接着される。熱遮へい体ブロック層21のペデスタル3の内面に対向する側面が、モルタルにより、ペデスタル3の内面に接着される。このとき、ドレン水流路23が、ペデスタル3の内面よりも内側で、熱遮へい体ブロック層21と熱遮へい筒部13Aの、流路画定部31の真下に位置する部分の上端面及び熱遮へい層17の上面との間に形成される。
熱遮へい部13EのC部及びD部では、これらの真下に位置する、熱遮へい筒部13Aの部分と同様に、複数の熱遮へい体ブロック14A,14B及び14Cのそれぞれが水平方向において一列に配置される。熱遮へい体ブロック14Aと熱遮へい体ブロック14Bは交互に配置される。隣り合う熱遮へい体ブロック14Aと熱遮へい体ブロック14Bが、隣り合う熱遮へい体ブロック14Bと熱遮へい体ブロック14Cが、モルタルにより接着される。C部及びD部において最も下方に配置された熱遮へい体ブロック14A,14B及び14Cのそれぞれの下面が、モルタルにより、熱遮へい筒部13Aの、C部及びD部の真下に位置する部分において最も上方に位置する熱遮へい体ブロック14A,14B及び14Cのそれぞれの上面に接着される。C部及びD部において、熱遮へい体ブロック14A,14B及び14Cのそれぞれは、上方に向かって、順次、積み重ねられる。積み重ねられた熱遮へい体ブロック14A,14B及び14Cのそれぞれの下面が、下方に位置する熱遮へい体ブロック14A,14B及び14Cのそれぞれの上面にモルタルで接着される。
なお、熱遮へい部13EのC部及びD部では、カバー部材25が、モルタルにより、熱遮へい体ブロック14A,14B及び14Cのそれぞれの外面及び内面を覆ってこれらの外面及び内面に接着される。C部及びD部のそれぞれの上端面を覆ってカバー部材25が配置され、これらのカバー部材25はC部及びD部のそれぞれの上端面に取り付けられる。
その後、固定熱遮へい体ブロック29A及び分離熱遮へい体ブロック29Bのそれぞれの設置工程が実施される。固定熱遮へい体ブロック29Aが、図2に示すように、熱遮へい部13EのC部とD部の間に配置され、さらに、図4に示すように、熱遮へい筒部13Aの、流路画定部31の下面と向き合っている側壁部と対向している、熱遮へい筒部13Aの他の側壁部の真上に配置され、この側壁部の上端面上に置かれる。固定熱遮へい体ブロック29Aの内面、外面、下端面及び上端面が、カバー部材25で覆われている。固定熱遮へい体ブロック29Aの下端面を覆っているカバー部材25が、熱遮へい筒部13Aの前述の他の側壁部の上端面にモルタルにより接着される。さらに、固定熱遮へい体ブロック29Aの水平方向における両端が、熱遮へい部13EのC部及びD部のそれぞれの内面にモルタルにより接着される。
分離熱遮へい体ブロック29Bが、熱遮へい部13EのC部とD部との間で、熱遮へい筒部13Aの前述の他の側壁部の上端面にモルタルにより接着された固定熱遮へい体ブロック29Aの上面上に配置され、この上面に取り外し可能に取り付けられる。さらに、分離熱遮へい体ブロック29Bの水平方向の両端が、熱遮へい部13EのC部及びD部のそれぞれの内面にモルタルにより接着される。
そして、ライナプレート設置工程が実施される。複数のライナプレート20が、熱遮へい底部13Bの上面、熱遮へい筒部13Aの内面及び熱遮へい部13Eの内面にそれぞれ設置される。ドレン水収納領域30の底を形成する四角形のライナプレート20が、ライナプレート20の下面全体が熱遮へい層16の上面に接触した状態で、熱遮へい層16の上面を覆ってこの上面に置かれる。その後、熱遮へい筒部13Aの、四方の側壁部の内面を覆う4枚のライナプレート20が、順次、熱遮へい筒部13Aの内側に搬入され、さらに、熱遮へい筒部13Aの内面に対向して配置される。この内面に対向して配置された1枚のライナプレート20の下端部が、熱遮へい層16の上面に置かれた四角形の1枚のライナプレート20の一辺にこの全長に亘って連続して溶接される。その内面に対向した上記の1枚のライナプレート20の隣りに配置されて熱遮へい筒部13Aの内面に対向して配置された他のライナプレート20の下端部が、熱遮へい層16の上面に置かれたライナプレート20の他の一辺にこの全長に亘って連続して溶接される。その内面に対向して隣り合っている各ライナプレート20の側端部同士が、ドレン水溜め10の軸方向の全長に亘って連続して溶接される。熱遮へい筒部13Aの内面に対向して配置された他の2枚のライナプレート20のそれぞれの下端部が、熱遮へい層16の上面に置かれたライナプレート20の残りの二辺にこれらの辺の全長に亘って連続して別々に溶接される。他の2枚のライナプレート20のそれぞれの側端部が隣り合っているライナプレート20の側端部にドレン水溜め10の軸方向の全長に亘って連続して溶接される。熱遮へい筒部13Aの内面に対向する4枚のライナプレート20のそれぞれの、熱遮へい筒部13A側の面全体が、熱遮へい筒部13Aの内面に接触している。
熱遮へい筒部13Aの、熱遮へい筒部13CのA部、B部、C部及びD部のそれぞれの真下に位置するそれぞれの側壁部の内面に対向している各ライナプレート20の上端が、熱遮へい筒部13CのA部の位置に配置される固定熱遮へい体ブロック29Aの内面を覆ったカバー部材25の下端、及び熱遮へい部13EのB部、C部及びD部のそれぞれの内面を覆っているカバー部材25のそれぞれの下端に溶接により接合される。
なお、熱遮へい部13EのB部における熱遮へい体ブロック層21の内面を覆う1枚のカバー部材25には、2つの流路部24のそれぞれの位置で流路部24のドレン水収納領域30側の開口となる開口部が形成されている。
その後、排水ポンプ設置工程が実施される。2台の排水ポンプ28が、複数のライナプレート20によって取り囲まれたドレン水収納領域30内に搬入される。そして、これらの排水ポンプ28は、熱遮へい層16の上面に接触して配置された、ドレン水収納領域30の底を形成するライナプレート20の上面に設置される。それぞれの排水ポンプ28の排出口に排水管(図示せず)を接続する。この排水管は、放射性廃棄物処理建屋(図示せず)まで伸びている。
本実施例のドレン水溜め10を備えた沸騰水型原子力プラントの運転時、及び沸騰水型原子力プラントの定期検査を行う運転停止時において、原子炉格納容器2内で発生した、放射性物質を含むドレン水11は、ペデスタル3内側の、原子炉格納容器2の床5上に落下し、床5の上面及び熱遮へい層17のそれぞれの上面に沿って流れ、開口部23Aからドレン水流路23、具体的には、流路部22に流入する。流路部22に流入したドレン水11は、ドレン水流路23である流路部22及び流路部24をそれぞれ通ってドレン水溜め10内のドレン水収納領域30に流入し、ドレン水収納領域30に収納される。なお、沸騰水型原子力プラントの定期検査を行う運転停止時において制御棒駆動機構の保守点検を実施する場合には、保守点検を実施する制御棒駆動機構が、下部ドライウェル7内で原子炉圧力容器1の下方に配置され、ペデスタル3の内面に旋回可能に取り付けられた制御棒駆動機構取扱い装置(図示せず)を用いることによって、制御棒駆動機構ハウジングから取り外されて制御棒駆動機構ハウジング内から引き抜かれる。制御棒駆動機構を制御棒駆動機構ハウジングから取り外されて制御棒駆動機構ハウジング内から引き抜くときに、制御棒駆動機構ハウジング内に存在する冷却水が、ドレン水11となって原子炉格納容器2の床5上に落下する。このドレン水も、前述したように、ドレン水流路23を通ってドレン水収納領域30に流入する。
ドレン水収納領域30内に収納されたドレン水11の水位が設定水位まで上昇したとき、排水ポンプ28が駆動され、ドレン水収納領域30内のドレン水11が排水ポンプ28の排出口に接続された排水管(図示せず)に排出され、この排水管を通して放射性廃棄物処理建屋まで導かれる。なお、ドレン水収納領域30内のドレン水11の設定水位は、熱遮へい層17の上面よりも低い所定の位置に設定される。
万が一、炉心内に装荷されている燃料集合体の冷却機能が喪失し、燃料集合体が溶融した場合には、燃料集合体内の核燃料物質、及び燃料集合体の被覆管及び下部タイプレート等の燃料集合体の構造物、さらには、炉心支持板及び制御棒案内管の炉内構造物等の溶融物が混合された溶融している燃料デブリが生成される可能性がある。この溶融燃料デブリは、炉心から原子炉圧力容器1の底部上に落下してこの底部を溶融し、原子炉圧力容器1の真下に存在する原子炉格納容器2の床5上に落下する可能性もある。万が一、溶融燃料デブリが床5上に落下した場合には、この溶融燃料デブリは、床5の上面に沿って流れ、やがて、熱遮へい筒部13Aの周囲に存在する熱遮へい層17の上面に到達する。熱遮へい層17の上面に達した溶融燃料デブリは、熱遮へい層17の上面よりも上方に突出している熱遮へい筒部13Cによって遮られ、熱遮へい層17の上面からドレン水収納領域30内に直接流入することはできない。
万が一、溶融燃料デブリが、原子炉圧力容器1の底部から上端部が解放されているドレン水溜め10内に落下した場合には、この溶融燃料デブリは、ドレン水溜め10の底面を覆っている熱遮へい層13の熱遮へい底部13B上に落下する。このため、ドレン水溜め10内に落下した溶融燃料デブリによる、熱遮へい底部13Bよりも下方に存在するコンクリートマット4の侵食が熱遮へい底部13Bによって防止され、原子炉格納容器2の健全性を維持することができる。
しかしながら、熱遮へい層17の上面に達した溶融燃料デブリの一部は、開口部23Aからドレン水流路23内に流入する。ドレン水流路23内に流入した溶融燃料デブリが保有する熱は、溶融燃料デブリがドレン水流路23の流路部22内を流動する間に、ドレン水流路23の上方に位置する熱遮へい体ブロック層21、熱遮へい体ブロック層21の下方に位置する熱遮へい層17、流路画定部31、この流路画定部31の下方に位置する熱遮へい筒部13Aの側壁部、及びペデスタル3にそれぞれ伝えられる。このように、熱を放出しながらドレン水流路23内を流れる溶融燃料デブリは、温度を低下させ、やがて、ドレン水流路23内で凝固する。ドレン水流路23の水平方向における幅は、溶融燃料デブリを凝固させるために最適な幅に設定する。溶融燃料デブリはドレン水流路23内で凝固するので、ドレン水流路23を通してのドレン水収納領域30への溶融燃料デブリの流入を阻止することができる。
このように、本実施例は、ドレン水流路23を通しての、ドレン水のドレン水収納領域30への排水機能を維持した上で、万が一、溶融燃料デブリが床5に落下した場合において、この溶融燃料デブリのドレン水流路23を通してのドレン水収納領域30への流入を阻止することができる。
或る1つの運転サイクルにおける沸騰水型原子炉の運転が終了したとき、沸騰水型原子力プラントの運転が停止される。沸騰水型原子力プラントの運転が停止されてから次の運転サイクルのために沸騰水型原子力プラントが起動されるまでの沸騰水型原子力プラントの運転停止期間において、炉心内の使用済燃料集合体の交換作業及び沸騰水型原子力プラントの保守点検作業が実施される。この沸騰水型原子力プラントの保守点検作業では、保守点検作業の一つとしてインターナルポンプのモータの点検作業が行われる。
このモータの点検作業のために、原子炉圧力容器1の底部に取り付けられているインターナルポンプのモータ(図示せず)がモータ取扱い装置(図示せず)を用いて取り外され、取り外されたモータを載せたモータ取扱い装置が下方に向かって所定の位置まで移動される。取り外されたモータは、ペデスタル3の内側の下部ドライウェル7からペデスタル3の外部に存在する保守点検エリアまで移送され、このエリア内で取り外されたモータの保守点検が行われる。保守点検の結果、正常であると判定されたモータは、下部ドライウェル7内に移送され、モータ取扱い装置に載せられてインターナルポンプの位置まで上昇されてインターナルポンプに取り付けられる。保守点検によってモータの一部の部品に異常があると判定された場合には、異常である部品が新しい部品と交換され、新しい部品が取り付けられたモータが、インターナルポンプに取り付けられる。場合によっては、モータ自体が新しいモータと交換される。
ドレン水溜め10の内面を覆っているコリウムシールド12の分離熱遮へい体ブロック29Bは、原子炉圧力容器1の底部に取り付けられたインターナルポンプの一部の真下に位置している。このインターナルポンプのモータをモータ取扱い装置により取り外し、取り外されたモータを載せたモータ取扱い装置を所定の位置まで下降させようとすると、モータ取扱い装置が、分離熱遮へい体ブロック29Bと干渉し、所定の位置までの下降ができなくなる。このため、インターナルポンプからモータを取り外す前に、分離熱遮へい体ブロック29Bを、固定熱遮へい体ブロック29A及び熱遮へい部13EのC部及びD部のそれぞれから取り外す。分離熱遮へい体ブロック29Bが取り外されているため、所定の位置まで下降された、取り外されたモータを載せたモータ取扱い装置は、分離熱遮へい体ブロック29Bと干渉しなく、設置されている固定熱遮へい体ブロック29Aの上端とも干渉しない。このため、インターナルポンプからのモータの取外しを容易に行える。
コリウムシールド12Aの、図4に示された固定熱遮へい体ブロック29A及び分離熱遮へい体ブロック29Bを含む熱遮へい部13Dを、図5に示すように、分離熱遮へい体ブロック35を含む熱遮へい部13Dに替えてもよい。分離熱遮へい体ブロック35は、水平方向に交互に配置された複数の熱遮へい体ブロック14A及び14Bを含んでおり、これらの熱遮へい体ブロック14A及び14Bのそれぞれの外面及び内面はステンレス鋼製のカバー部材25で覆われている。分離熱遮へい体ブロック35では、熱遮へい体ブロック14A及び14Bのそれぞれの上端面及び下端面も、カバー部材25で覆われる。
分離熱遮へい体ブロック35の下端が、熱遮へい筒部13Aの、ペデスタル3とは反対側に位置する側壁部の上端に取り外し可能に取り付けられる。分離熱遮へい体ブロック35の水平方向における両端が、熱遮へい部13EのC部及びD部のそれぞれの内面に取り外し可能に取り付けられる。
原子炉圧力容器1の底部に取り付けられたインターナルポンプから取り外す前に、分離熱遮へい体ブロック35を、熱遮へい筒部13Aの、ペデスタル3とは反対側に位置する側壁部及び熱遮へい部13EのC部及びD部のそれぞれから取り外す(図6参照)。分離熱遮へい体ブロック35が取り外されているため、取り外されたモータを載せたモータ取扱い装置は、分離熱遮へい体ブロック35と干渉しないで、所定の位置まで下降できる。
本実施例によれば、型枠18が、ドレン水溜め10となる窪みの各側面、及び底面のそれぞれを覆ってこれらの側面及びその底面に取り付けられているため、その窪みの内側に設けられた、最も外側に配置された型枠18、型枠18の内面を覆って型枠18に取り付けられた熱遮へい層13、及び熱遮へい層13の内面を覆って熱遮へい層13に取り付けられるライナプレート20を含むコリウムシールド12の耐震性がさらに向上する。本実施例では、型枠18は、コリウムシールド12の耐震性の向上に寄与すると共に、前述したように、ドレン水溜め10を形成する際のコンクリート打設において型枠として用いられる。
各型枠18の外面に取り付けられたアンカー部材19が、各型枠18の周囲に存在するコンクリートマット4に埋設されているため、コリウムシールド12の耐震性は、さらに向上する。
ドレン水溜め10となる窪みの底面を覆って配置された型枠18の上面に取り付けられて上方に向かって伸びる支持構造物26が、コリウムシールド12の、熱遮へい層13の側壁部(熱遮へい筒部13Aの側壁部)内に設けられているため、コリウムシールド12の耐震性は、より向上する。
ドレン水流路23の流路部22を画定する一つの側壁としてペデスタル3を利用するために、コリウムシールド12Aの外側に、ドレン水流路23を画定する、耐熱材で構成された側壁部を別途設ける必要がない。このため、コリウムシールド12の構成を単純化できる。ドレン水流路23の流路部24を、図2に示すように、熱遮へい部13Eの、ペデスタル3の内面側に位置するB部に形成するため、この流路部24に連絡される流路部22を、熱遮へい部13EのB部に形成される流路画定部31とペデスタル3の内面との間を利用して形成することができ、ドレン水流路23を長くすることができる。このため、ドレン水流路23内を流れる溶融燃料デブリをドレン水流路23内で確実に凝固させることができる。
流路部24を、熱遮へい部13EのB部ではなく、熱遮へい部EのC部及びD部のいずれか、または熱遮へい部13D部に形成した場合には、流路部24内で溶融燃料デブリを凝固させるために、該当する熱遮へい部の厚みを、特許第3510670号公報の図2及び国際公開第2015/146218号公報の図2に示すように、厚くする必要がある。または、前述したように、熱遮へい部EのC部及びD部のいずれか、または熱遮へい部13D部の外側に、ドレン水流路23を画定する、耐熱材で構成された側壁部を別途設ける必要がある。
複数の流路部24を熱遮へい部13EのB部に形成しているので、溶融燃料デブリの熱を伝える伝熱面積を増大させることができ、溶融燃料デブリの冷却効果が増大し、溶融燃料デブリをドレン水流路23内で効率よく凝固させることができる。
本発明の好適な他の実施例である、沸騰水型原子力プラントに適用される原子炉格納容器内のドレン水溜めの構造を説明する。本実施例の原子炉格納容器内のドレン水溜めの構造は、実施例1の原子炉格納容器内のドレン水溜めの構造と同じである。
しかしながら、本実施例の原子炉格納容器内のドレン水溜めを施工する方法は、実施例1の原子炉格納容器内のドレン水溜めを施工する方法とは異なっている。すなわち、実施例1の原子炉格納容器内のドレン水溜めの施工方法は、新規の沸騰水型原子力プラントを対象にして実施する。これに対して、本実施例の原子炉格納容器内のドレン水溜めの施工方法は、既設の沸騰水型原子力プラントを対象にして実施する。
既設の沸騰水型原子力プラントでは、ペデスタル3で取り囲まれた、原子炉格納容器2の床5に、原子炉圧力容器1の下方において、ドレン水溜めが既に形成されている。このドレン水溜めには、コリウムシールド12が設けられていない。
本実施例の原子炉格納容器内のドレン水溜めの施工方法は、コリウムシールド12を内面に形成したドレン水溜め10を原子炉格納容器2の床5に形成する方法である。本実施例の原子炉格納容器内のドレン水溜めの施工方法を、以下に説明する。この施工方法は、既設の沸騰水型原子力プラントの運転が停止された後に実施される。以下には、本実施例の原子炉格納容器内のドレン水溜めの施工方法における、実施例1の原子炉格納容器内のドレン水溜めの施工方法とは異なる部分のみを詳細に説明する。
本実施例の原子炉格納容器内のドレン水溜めの施工方法の、実施例1の原子炉格納容器内のドレン水溜めの施工方法とは異なる点は、コリウムシールド12を設置するために、既設のドレン水溜めを拡張する工程を必要とすることである。既設のドレン水溜めの内面を覆うコリウムシールド12をドレン水溜め内に設置した場合には、設置したコリウムシールド12の体積分だけドレン水溜めの容積が減少してしまい、ドレン水溜め内に溜められるドレン水の量が減少してしまう。このような事態を避けるために、本実施例の原子炉格納容器内のドレン水溜めの施工方法では、ドレン水溜めの拡張工程が実施される。
このドレン水溜めの拡張工程では、既設の沸騰水型原子力プラントの運転が停止された後、ペデスタル3で取り囲まれた、原子炉格納容器2の床5に形成されたドレン水溜めの側面及び床面を掘削し、コンクリートマット4に形成されたドレン水溜め用の窪みを拡げる。掘削により、その窪みの水平方向における幅が拡がり、窪みの深さが深くなる。掘削により生じたコンクリートの破片は、放射性固体廃棄物として固化処理をするために、ペデスタル3の内側で、放射線遮へい体で取り囲まれた所定の搬送容器に収納される。コンクリート破片を収納した搬送容器は、密封された後、ペデスタル3の内側から原子炉格納容器2を取り囲む原子炉建屋(図示せず)外に搬送され、さらに、放射性廃棄物処理建屋(図示せず)まで搬送される。
次に、型枠設置工程が実施される。本実施例の型枠設置工程では、複数のアンカー部材19が一面に取り付けられた、四角形の5枚の型枠18が、コンクリートマット4に形成されたその窪み内に搬入される。ドレン水溜め10の側面32に対向する四角形の4枚の型枠18及びドレン水溜め10の底面33に対向する四角形の1枚の型枠18が、この窪み内で、実施例1と同様に配置され、型枠18同士が実施例1と同様に配置される。
その後のコンクリート打設工程において、コンクリートが、互いに溶接された5枚の型枠18の外側で上記の窪み内に打設される。窪み内のコンクリートが床5の上面の位置まで達したとき、このコンクリートの打設が終了する。
その後、実施例1で行われる熱遮へい層形成工程、ライナプレート設置工程、分割ブロック設置工程及び排水ポンプ設置工程が、順次、実施される。
本実施例は実施例1で生じる各効果を得ることができる。本実施例では、既設の沸騰水型原子力プラントにおいても、ライナプレート20の内側に形成された、容積の大きなドレン水収納領域30を有するドレン水溜め10を、原子炉格納容器2を設置するコンクリートマット4に形成することができる。
前述の実施例1及び2のそれぞれは、加圧水型原子力プラントに適用してもよい。
1…原子炉圧力容器、2…原子炉格納容器、3…ペデスタル、4…コンクリートマット、5…床、10…ドレン水溜め、12,12A…コリウムシールド、13,15,16,17…熱遮へい層、13A,13C…熱遮へい筒部、13B…熱遮へい底部、13D,13E…熱遮へい部、14,14A,14B,14C…熱遮へい体ブロック、18…型枠、19…アンカー部材、20…ライナプレート、21…熱遮へい体ブロック層、22,24…流路部、23…ドレン水流路、26…支持構造物、27…支持部材、29A,29B…分離熱遮へい体ブロック、30…ドレン水収納領域、31…流路画定部、32…ドレン水溜めの側面、33…ドレン水溜めの底面。
Claims (11)
- 原子炉圧力容器の下方に位置し、原子炉格納容器の床を形成するコンクリートマットに形成されたドレン水溜めであって、
コリウムシールドが、前記ドレン水溜めの内面全体を覆って前記コンクリートマットに設置され、
前記コリウムシールドは、前記ドレン水溜めの内面全体を覆って前記コンクリートマットに設置された型枠と、前記型枠の内側に配置され、前記型枠の内面を覆って前記型枠の内面に取り付けられた第1熱遮へい層と、前記第1熱遮へい層の内側に配置され、前記第1熱遮へい層の内面を覆って前記第1熱遮へい層の内面に取り付けられたライナプレートとを備え、
前記ライナプレートの内側に、前記ライナプレートによって取り囲まれたドレン水収納領域が形成されており、
前記床上のドレン水を前記ドレン水収納領域に導くドレン水流路が、前記コリウムシールドに形成されていることを特徴とする原子炉格納容器内のドレン水溜め。 - 前記ドレン水溜めの内面に面する前記型枠の外面に取り付けられた複数のアンカー部材が、前記コンクリートマットに埋設されている請求項1に記載の原子炉格納容器内のドレン水溜め。
- 前記第1熱遮へい層は、前記型枠の内面に接着されることにより前記型枠の内面に取り付けられる請求項1または2に記載の原子炉格納容器内のドレン水溜め。
- 前記型枠の、前記ドレン水溜めの前記内面の一部である前記ドレン水溜めの底面に対向する部分に取り付けられて上方に向かって伸びている複数の支持構造物が、間隔を置いて、前記第1熱遮へい層の側壁部内に設けられている請求項1ないし3のいずれか1項に記載の原子炉格納容器内のドレン水溜め。
- 前記第1熱遮へい層は、耐熱材で作られた複数の熱遮へい体ブロックを並べて構成され、
前記第1熱遮へい層の側壁部は、前記型枠側における前記型枠に沿った水平方向の幅が前記ライナプレート側における前記水平方向の幅よりも広い複数の第1熱遮へい体ブロック、及び前記型枠側における前記水平方向の幅が前記ライナプレート側における前記水平方向の幅よりも広い複数の第2熱遮へい体ブロックを含んでおり、
前記第1熱遮へい層の側壁部では、前記第1熱遮へい体ブロック及び前記第2熱遮へい体ブロックが、前記水平方向において交互に配置され、
前記第2熱遮へい体ブロックの、前記水平方向の前記幅が広い部分が、前記第1熱遮へい体ブロックの、前記水平方向の前記幅が広い部分よりも前記ライナプレート側に配置されており、
前記支持構造物がそれぞれの前記第2熱遮へい体ブロック内に配置されている請求項4に記載の原子炉格納容器内のドレン水溜め。 - 支持部材が、前記ドレン水溜めの軸方向において複数箇所に配置され、前記複数箇所に配置されたそれぞれの前記支持部材が、間隔を置いて配置されたそれぞれの前記支持構造物及び型枠の外面に取り付けられている請求項4または5に記載の原子炉格納容器内のドレン水溜め。
- 第2熱遮へい層が、前記コリウムシールドの周囲を取り囲んで前記床の一部を覆い、前記床上に設置されている請求項1ないし6のいずれか1項に記載の原子炉格納容器内のドレン水溜め。
- 前記ドレン水溜めが、前記コンクリートマットに設置された、前記原子炉圧力容器を支持する筒状の支持体の内側で、前記支持体の中心軸と前記支持体の内面との間に配置され、
前記コリウムシールドは、前記第2熱遮へい層の上面よりも上方に突出しているコリウムシールド突出部を含んでおり、
このコリウムシールド突出部は、前記支持体の中心軸側に位置する側壁部、及びこの側壁部と対向する、前記支持体の内面側に位置する他の側壁部を有し、
一端が前記支持体の内側で前記コリウムシールド突出部の外側に形成された領域に開口し、他端が前記ドレン水収納領域に開口する前記ドレン水流路が、前記コリウムシールド突出部の前記他の側壁部に形成される請求項7に記載の原子炉格納容器内のドレン水溜め。 - 前記コリウムシールド突出部における前記他の側壁部が、前記原子炉圧力容器を支持する前記支持体の半径方向において、前記支持体の内面まで伸びており、
前記ドレン水流路は、前記コリウムシールド突出部の前記他の側壁部の下端部に形成された複数の流路画定部であって、前記コリウムシールドの、前記第2熱遮へい層の上面よりも下方に位置して前記支持体の内面側に位置する側壁部の真上に位置する前記複数の流路画定部と前記支持体の内面との間で、かつ前記第2熱遮へい層と、前記コリウムシールド突出部の前記他の側壁部の、前記流路画定部よりも前記支持体の内面側に形成されてこの第2熱遮へい層と対向している流路画定面との間に形成される第1流路部、及び前記第1流路部に連絡されて前記流路画定部の相互間に形成され、前記ドレン水収納領域に開口する第2流路部を含んでおり、
前記第1流路部は、前記コリウムシールド突出部の外側に形成された領域に開口する請求項8に記載の原子炉格納容器内のドレン水溜め。 - 前記コリウムシールド突出部の、前記支持体の中心軸側に位置する前記側壁部は、前記コリウムシールド突出部の、この側壁部と直交して配置された対向する一対の側壁部から分離された分離熱遮へい体ブロックであり、この分離熱遮へい体ブロックは、前記第1熱遮へい層の、前記分離熱遮へい体ブロックの真下に位置する側壁部の上端に置かれ、前記分離熱遮へい体ブロックは、前記真下に位置する側壁部に取り外し可能に取り付けられる請求項8または9に記載の原子炉格納容器内のドレン水溜め。
- ドレン水溜めの窪みを形成するために、前記ドレン水溜めの四方の側面に対向する4枚の型枠及び前記ドレン水溜めの底面に対向する1枚の型枠を、前記ドレン水溜めを形成する位置に配置し、
前記底面を対向する前記1枚の型枠に、前記側面に対向する前記4枚の型枠のそれぞれの下端部を溶接によって接合して、前記4枚の型枠のうち隣り合う前記型枠の側端部同士を溶接によって接合し、
接合されたそれぞれの前記型枠の外側にコンクリートを打設してこれらの型枠の外側に、前記ドレン水溜めとなる、前記打設されたコンクリートで囲まれた前記窪みを形成し、
耐熱材で作られた熱遮へい層を、前記接合された各型枠の内面を覆って配置してそれぞれの前記型枠に取り付け、
ライナプレートを、前記熱遮へい層の内面を覆って配置して前記熱遮へい層に取り付けることを特徴とする原子炉格納容器内のドレン水溜めの施工方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/032433 WO2019049305A1 (ja) | 2017-09-08 | 2017-09-08 | 原子炉格納容器内のドレン水溜め及びそのドレン水溜めの施工方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/032433 WO2019049305A1 (ja) | 2017-09-08 | 2017-09-08 | 原子炉格納容器内のドレン水溜め及びそのドレン水溜めの施工方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019049305A1 true WO2019049305A1 (ja) | 2019-03-14 |
Family
ID=65633724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/032433 WO2019049305A1 (ja) | 2017-09-08 | 2017-09-08 | 原子炉格納容器内のドレン水溜め及びそのドレン水溜めの施工方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019049305A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62105095A (ja) * | 1985-11-01 | 1987-05-15 | 株式会社日立製作所 | サンプピツト |
JPS63177096A (ja) * | 1987-01-19 | 1988-07-21 | 株式会社東芝 | 原子炉格納容器 |
JPH055795A (ja) * | 1991-06-28 | 1993-01-14 | Toshiba Corp | 原子炉格納容器 |
JPH06222177A (ja) * | 1992-11-25 | 1994-08-12 | General Electric Co <Ge> | コリウム防護用アセンブリ |
DE4320534A1 (de) * | 1993-06-21 | 1994-12-22 | Siemens Ag | Kernreaktoranlage mit einer Trag- und Schutzstruktur für einen Reaktordruckbehälter |
DE19531626A1 (de) * | 1995-08-28 | 1997-03-06 | Siemens Ag | Auffangraum zum Auffangen von Kernschmelze aus einem Reaktordruckbehälter |
JP2005290665A (ja) * | 2004-03-31 | 2005-10-20 | Japan Science & Technology Agency | 組積ユニットの成形方法 |
JP2017003443A (ja) * | 2015-06-11 | 2017-01-05 | 株式会社東芝 | ドレンサンプ保護用構造物及び格納容器 |
US20170154692A1 (en) * | 2014-07-04 | 2017-06-01 | Retech Co., Ltd. | Porous cooling block for cooling corium and corium cooling apparatus including same, and corium cooling method using same |
-
2017
- 2017-09-08 WO PCT/JP2017/032433 patent/WO2019049305A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62105095A (ja) * | 1985-11-01 | 1987-05-15 | 株式会社日立製作所 | サンプピツト |
JPS63177096A (ja) * | 1987-01-19 | 1988-07-21 | 株式会社東芝 | 原子炉格納容器 |
JPH055795A (ja) * | 1991-06-28 | 1993-01-14 | Toshiba Corp | 原子炉格納容器 |
JPH06222177A (ja) * | 1992-11-25 | 1994-08-12 | General Electric Co <Ge> | コリウム防護用アセンブリ |
DE4320534A1 (de) * | 1993-06-21 | 1994-12-22 | Siemens Ag | Kernreaktoranlage mit einer Trag- und Schutzstruktur für einen Reaktordruckbehälter |
DE19531626A1 (de) * | 1995-08-28 | 1997-03-06 | Siemens Ag | Auffangraum zum Auffangen von Kernschmelze aus einem Reaktordruckbehälter |
JP2005290665A (ja) * | 2004-03-31 | 2005-10-20 | Japan Science & Technology Agency | 組積ユニットの成形方法 |
US20170154692A1 (en) * | 2014-07-04 | 2017-06-01 | Retech Co., Ltd. | Porous cooling block for cooling corium and corium cooling apparatus including same, and corium cooling method using same |
JP2017003443A (ja) * | 2015-06-11 | 2017-01-05 | 株式会社東芝 | ドレンサンプ保護用構造物及び格納容器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3554001B2 (ja) | コリウム防護用アセンブリ | |
CN107251153B (zh) | 核反应堆堆芯熔融物的冷却和封闭系统 | |
JP4612558B2 (ja) | コアキャッチャーおよび原子炉格納容器 | |
JP5306074B2 (ja) | 原子炉格納容器ドレンサンプ | |
EP2581913B1 (en) | Core catcher having an integrated cooling path | |
KR20170104474A (ko) | 수냉식-수변식 원자로 코어로부터의 용해물을 저장하여 냉각하는 시스템 | |
KR100597723B1 (ko) | 노심용융물 피동 냉각 및 가둠장치 | |
US11227695B2 (en) | Core catcher and boiling water nuclear plant using the same | |
KR101606872B1 (ko) | 노심 용융물 냉각용 다공성 냉각블록 및 이를 구비하는 노심 용융물 냉각장치 및 이들을 이용한 노심 용융물 냉각방법 | |
JP5377064B2 (ja) | 炉心溶融物保持装置および原子力プラント | |
KR19980086786A (ko) | 우발적인 노심 용융에 따른 노심 회수장치가 내장된 용기를 가진 수형 원자로 | |
JP2011163829A (ja) | 炉心溶融物冷却構造 | |
JP3263402B2 (ja) | 原子炉容器用間隙構造物 | |
CN108538411B (zh) | 一种堆坑直接滞留的反应堆堆芯熔融物捕集装置 | |
JP4746911B2 (ja) | 高速炉および高速炉施設の建設方法 | |
WO2019049305A1 (ja) | 原子炉格納容器内のドレン水溜め及びそのドレン水溜めの施工方法 | |
SE443471B (sv) | Lagringstank samt sett att framstella denna | |
JP2014106041A (ja) | 原子炉格納容器及びその施工方法 | |
RU2165108C2 (ru) | Система защиты защитной оболочки реакторной установки водо-водяного типа | |
JP7182504B2 (ja) | コリウムシールド | |
JP6462501B2 (ja) | ドレンサンプ保護用構造物及び格納容器 | |
JP6126817B2 (ja) | コアキャッチャ | |
KR101967581B1 (ko) | 노심용융물의 노외냉각장치 | |
WO2015146218A1 (ja) | 原子炉格納容器内ドレンサンプ | |
JP2013050395A (ja) | 制御棒が発熱している原子炉の処理方法と処理構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17924024 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17924024 Country of ref document: EP Kind code of ref document: A1 |