WO2019049283A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2019049283A1
WO2019049283A1 PCT/JP2017/032326 JP2017032326W WO2019049283A1 WO 2019049283 A1 WO2019049283 A1 WO 2019049283A1 JP 2017032326 W JP2017032326 W JP 2017032326W WO 2019049283 A1 WO2019049283 A1 WO 2019049283A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
transmission
user terminal
unit
Prior art date
Application number
PCT/JP2017/032326
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201780094724.9A priority Critical patent/CN111066255B/zh
Priority to EP17924417.3A priority patent/EP3681116B1/en
Priority to JP2019540218A priority patent/JP7107948B2/ja
Priority to RU2020111910A priority patent/RU2740073C1/ru
Priority to BR112020004507-1A priority patent/BR112020004507A2/pt
Priority to US16/644,778 priority patent/US11159199B2/en
Priority to NZ762622A priority patent/NZ762622A/en
Priority to PCT/JP2017/032326 priority patent/WO2019049283A1/ja
Priority to KR1020207008475A priority patent/KR102495043B1/ko
Publication of WO2019049283A1 publication Critical patent/WO2019049283A1/ja
Priority to PH12020500456A priority patent/PH12020500456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-Advanced
  • FRA Full Radio Access
  • 4G 5G
  • 5G + plus
  • NR New RAT
  • LTE Rel. 14, 15, and so on are also considered.
  • DFT DFT-Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • cyclic prefix OFDM (CP-OFDM: Cyclic which is a multicarrier waveform) It is considered to support Prefix-Orthogonal Frequency Division Multiplexing) waveforms.
  • DFT spreading OFDM waveform can be reworded as UL signal or the like to which DFT spreading (also referred to as DFT precoding or the like) is applied (with DFT-spreading), etc. DFT spreading is not applied to CP-OFDM waveform (without DFT-spreading) It can be rephrased as UL signal etc.
  • UL signals eg, UL data and / or uplink
  • UL data channel UL shared channel, eg, PUSCH: Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the present invention has been made in view of the foregoing, and an object thereof is to provide a user terminal and a wireless communication method for appropriately transmitting a UL signal having a multicarrier waveform.
  • One aspect of a user terminal includes: a transmission unit that transmits an uplink signal having a multicarrier waveform across continuous frequency resources using an uplink shared channel; and a control unit that controls frequency hopping of the uplink signal. It is characterized by having.
  • 1A and 1B illustrate an example of a PUSCH transmitter in a future wireless communication system. It is a figure which shows an example of the frequency hopping in a slot. It is a figure which shows an example of time first / frequency second mapping. 4A and 4B illustrate an example of frequency hopping over multiple TTIs. It is a figure which shows an example of the determination method of the 2nd frequency resource based on a hopping offset. 6A and 6B illustrate an example of a method of determining a second frequency resource based on UL BWP configuration information. It is a figure which shows an example of schematic structure of the radio
  • DFT spread OFDM waveform (UL signal to which DFT spread is applied) which is a single carrier waveform
  • CP-OFDM cyclic prefix OFDM
  • UE is assumed to be configured or specified.
  • FIG. 1 is a diagram illustrating an example of a PUSCH transmitter in a future wireless communication system.
  • FIG. 1A an example of a transmitter using a DFT spread OFDM waveform is shown.
  • a sequence of UL data after encoding and modulation is input to a discrete Fourier transform (DFT) (or fast Fourier transform (FFT)) of M points, and a first time It is converted from the domain to the frequency domain.
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • the output from the DFT is mapped to M subcarriers and input to an N-point Inverse Discrete Fourier Transform (IDFT) (or Inverse Fast Fourier Transform (IFFT)), The frequency domain is converted to a second time domain.
  • IDFT Inverse Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the input information to IDFT (or IFFT) where N> M and not used is set to zero.
  • the output of the IDFT becomes a signal whose instantaneous power fluctuation is small and whose bandwidth depends on M.
  • the output from the IDFT is parallel / serial (P / S) converted, and a guard interval (GI) (also called cyclic prefix (CP) or the like) is added.
  • GI guard interval
  • CP cyclic prefix
  • FIG. 1B an example of a transmitter using a CP-OFDM waveform is shown.
  • a sequence of UL data after coding and modulation and / or a reference signal (RS) is mapped to a number of subcarriers equal to the transmission bandwidth and input to IDFT (or IFFT) .
  • IDFT or IFFT
  • Input information to IDFTs not used is set to zero.
  • the output from IDFT is P / S converted and GI is inserted.
  • RS and UL data sequences can be frequency division multiplexed.
  • allocation of 1 or continuous resource units for example, resource blocks (RBs)
  • continuous RB allocation continuous for PUSCH transmission to which DFT spread OFDM waveform is applied
  • frequency resource allocation for example, the user terminal allocates UL signals (for example, PUSCH signals) to one or a plurality of consecutive RBs, and applies (or does not apply) frequency hopping to transmit.
  • UL signals are arranged in different frequency regions within predetermined time units (for example, slots, minislots, etc.) of UL transmission. For example, as shown in FIG. 2, when one slot consists of 14 symbols, UL signals are allocated to different frequency regions in some symbols (eg, the first 7 symbols) and other symbols (eg, the last 7 symbols) I do.
  • CP-OFDM waveform can obtain non-contiguous RB allocation (non-contiguous RB allocation, non-consecutive frequency resource allocation) and can obtain frequency diversity gain by dispersing in the frequency domain.
  • the effect of frequency hopping using is considered suspicious.
  • non-consecutive RB allocation causes high intermodulation distortion (IMD), so power backoff needs to be very high.
  • IMD intermodulation distortion
  • non-consecutive RB allocation needs to reduce transmission power, which reduces coverage. Therefore, it is conceivable that non-consecutive RB allocation is not actually used even in the CP-OFDM waveform. If non-consecutive RB allocation is not utilized, coverage can not be expanded because frequency diversity gain can not be obtained.
  • the inventors conceived of using CP-OFDM waveform for UL data transmission and using continuous RB allocation and frequency hopping.
  • a CP-OFDM waveform is illustrated as an example of a multicarrier waveform
  • a DFT spread OFDM waveform is illustrated as an example of a single carrier waveform, but this embodiment is not limited to multicarrier waveforms other than CP-OFDM waveforms and DFT spread OFDM waveforms.
  • the present invention is also applicable to single carrier waveforms of
  • the single carrier waveform can be reworded as DFT spreading is applied, and the multicarrier waveform can be reworded as DFT spreading is not applied.
  • the PUSCH UL signal has a CP-OFDM waveform that spans continuous frequency resources.
  • At least intra-slot frequency hopping may be supported for the case of 14 symbol slots.
  • the UE transmits the PUSCH using the first frequency resource (the first band, the first frequency hop) in the first half 7 symbols in the slot using the first band, and differs from the first frequency resource in the second half 7 symbols
  • the PUSCH is transmitted using the second frequency resource (second band, second frequency hop).
  • the time length (number of symbols) using the first frequency resource and the time length (number of symbols) using the second frequency resource may be different from each other.
  • DMRS Demodulation Reference Signal
  • the radio base station notifies the UE of an instruction to enable or disable frequency hopping independently of information indicating which of the DFT spread OFDM waveform and the CP-OFDM waveform is used for PUSCH transmission. For example, regardless of whether the waveform of UL transmission is a DFT spread OFDM waveform or a CP-OFDM waveform, the UE may enable or disable frequency hopping via higher layer signaling (eg, RRC signaling) Receive instructions.
  • higher layer signaling eg, RRC signaling
  • the information on enabling or disabling frequency hopping may be determined by the UE based on physical layer signaling. For example, it may be determined based on the value of a specific field composed of one or more bits included in PDCCH (UL grant) for scheduling NR-PUSCH, or the DCI (Downlink Control Information) format of the UL grant ( It may be determined from the payload or transmission mode), or may be determined from setting information of a control channel (search space or CORESET (Control Resource Set)) in which the UL grant is received.
  • CORESET is a frame (or a box, a set, a group, or a group) of time resources and / or frequency resources for storing resources to which DL control information is mapped or NR-PDCCH.
  • the position and number of DMRSs to be multiplexed on the NR-PUSCH may be different depending on whether frequency hopping is enabled or disabled.
  • the UE can prevent the increase of IMD and the reduction of coverage by using CP-OFDM waveform and continuous RB allocation in PUSCH transmission. Furthermore, in CP-OFDM based NR-PUSCH transmission, frequency hopping gain can be used to obtain frequency diversity gain and expand coverage.
  • the data mapping order in both the DFT spread OFDM waveform and the CP-OFDM waveform is frequency first / time second (frequency), as opposed to using intra-TTI frequency hopping for PUSCH transmission.
  • the frequency first / time second mapping is to map the frequency direction first and then the time direction in the time / frequency resource allocated to the PUSCH.
  • transport blocks which are scheduling units of DL data, are divided into one or more code blocks (CBs), and each CB is encoded independently. Code block segmentation is applied.
  • the coded bits of each CB are concatenated (eg, concatenated as a codeword (CW: Cord Word)) and modulated, and in the PDSCH, the frequency direction is first, then the time direction (frequency first / time second), It is mapped to possible radio resources (eg, resource elements (REs)).
  • PUSCH of LTE using DFT spread OFDM waveform interleaving is performed in two dimensions of time and frequency before mapping to radio resources after processing similar to that of PDSCH. As a result, in the PUSCH, the time direction is mapped first, and the frequency direction is mapped next (time-first / frequency-second).
  • each code block (CB) forming a transport block (TB) may be dispersed beyond one or more frequency hoppings. is important.
  • the data mapping order may be time first / frequency second.
  • the time first / frequency second mapping maps the time direction first and then the frequency direction on the time / frequency resources assigned to the PUSCH.
  • non-consecutive RB allocation is used for the CP-OFDM waveform, frequency diversity gain can be obtained by distributing NR-PUSCHs in different RBs and performing frequency first / time second mapping.
  • non-consecutive RB allocation causes high IMD and needs to reduce transmission power. Therefore, high IMD can be prevented by allocating NR-PDSCH to local RBs using continuous RB allocation not only for DFT-spread OFDM waveforms but also for CP-OFDM waveforms, so that frequency hopping and time-first By using frequency second mapping, frequency diversity gain can be obtained.
  • the intra-TTI frequency hopping may be, for example, intra-slot frequency hopping or intra-mini-slot frequency hopping.
  • the UE maps the first CB in the time direction with respect to the first frequency unit among resources assigned to the PUSCH. Thereafter, the next CB is mapped in the time direction for the next frequency unit.
  • the frequency unit may be one or more REs or one or more RBs.
  • each CB is mapped over a TTI (in this example, a slot) and frequency hopping is applied.
  • the mapping order may be layer (layer-time (time)-frequency (frequency), or time (time)-layer (layer)-frequency (frequency) ) May be used. That is, the UE may perform mapping by prioritizing the time direction at least over the frequency direction.
  • the UE can provide frequency diversity gains to all the CBs by distributing the CBs at a plurality of frequencies.
  • NR may support multiple TTI transmissions.
  • the UE transmits one TB using multiple TTIs (slots or minislots).
  • any of the following options may be used.
  • Option 1 The UE performs frequency hopping in each TTI of multiple TTIs. For certain TTIs, frequency hopping is similar to one TTI transmission.
  • the UE may perform frequency hopping in each TTI of PUSCH transmission of 6 TTIs (slots in this example) to transmit 1 TB.
  • Option 2 The UE performs frequency hopping over multiple TTIs. For certain TTIs, frequency hopping may or may not be applied.
  • the UE divides PUSCH transmission of 6 TTIs (slots in this example) for transmitting 1 TB into the first 3 TTI groups and the second 3 TTI groups, and performs frequency hopping between the groups.
  • TTIs slots in this example
  • the number of groups may be three or more.
  • the number of TTIs in each group may not be the same.
  • the UE may perform inter-TTI frequency hopping.
  • frequency diversity gain can be obtained even when the TTI length is short and / or the TB length is long.
  • a hopping pattern or hopping offset is set in the UE by higher layer signaling (eg, RRC (Radio Resource Control) signaling).
  • RRC Radio Resource Control
  • the hopping offset is, for example, the second frequency resource (the first frequency resource to which the transition is made with respect to the first frequency resource (the first band, the first frequency hop) which is the frequency resource of the transition source by (2 bands, 2nd frequency hop) offset.
  • the hopping pattern may indicate a transition time resource and / or frequency resource.
  • the UE may determine the second frequency resource based on the hopping pattern or hopping offset.
  • UL grant-free in addition to UL grant-based transmission that transmits UL data based on UL grant, UL grant-free that transmits UL data without UL grant to realize low-delay communication It is considered to apply transmission (UL grant-free transmission).
  • a radio base station for example, BS (Base Station), transmission / reception point (TRP: Transmission / Reception Point), eNB (eNodeB), gNB (NR NodeB), etc.
  • TRP Transmission / Reception Point
  • eNB eNodeB
  • gNB NR NodeB
  • UL grant instructing assignment of UL data
  • PUSCH Physical Uplink Shared Channel
  • the UE transmits UL data without receiving a UL grant for data scheduling.
  • L1 Physical layer (L1: Layer 1) signaling (eg, PDCCH (Physical Downlink Control Channel)) for activating UL grant free transmission is also being considered.
  • PDCCH Physical Downlink Control Channel
  • UL grant free transmission control Several types of UL grant free transmission control are considered. For example, in type 1, UL grant free transmission is based on RRC (Radio Resource Control) configuration only and does not use L1 signaling. In type 2, UL grant free transmission is based on both RRC setup and activation / deactivation by L1 signaling.
  • RRC Radio Resource Control
  • the UL grant may indicate the first frequency resource.
  • the UE may determine the first frequency resource based on the UL grant and may determine the second frequency resource based on the hopping pattern or hopping offset set by higher layer signaling.
  • L1 signaling for UL grant free transmission activation may indicate the first frequency resource.
  • the UE may determine the first frequency resource based on this L1 signaling, and may determine the second frequency resource based on the hopping pattern or hopping offset set by the higher layer signaling.
  • RRC signaling may indicate a first frequency resource.
  • the UE may determine the first frequency resource based on this RRC signaling and may determine the second frequency resource based on the hopping pattern or hopping offset set by the higher layer signaling.
  • the hopping pattern or hopping offset may be information on frequency resources of transition destinations by frequency hopping.
  • the UE may determine a plurality of transition destination frequency resources (a second frequency resource, a third frequency resource, etc.) based on the hopping pattern or the hopping offset.
  • UE can control the frequency hopping of PUSCH based on the notification of a hopping pattern or a hopping offset.
  • the hopping pattern or hopping offset is obtained from UL BWP (Bandwidth Part) configuration.
  • a carrier for example, NR, 5G or 5G +
  • a carrier component carrier (CC: Component: Carrier) with a wider bandwidth (for example, 100 to 400 MHz) than an existing LTE system (for example, LTE Rel. 8-13) It is considered to allocate a carrier) or a system band etc.). If the user terminal always uses the entire carrier, power consumption may be enormous. For this reason, in the future wireless communication systems, it is considered to configure one or more frequency bands in the carrier in a quasi-static manner for the user terminal. Each frequency band in the carrier is also called BWP.
  • BWP setting information is information indicating a neurology (eg, subcarrier spacing), information indicating a frequency position (eg, center frequency, center PRB or PRB index of lowest frequency), bandwidth (eg, resource block (RB (RB Information indicating the number of Resource Blocks), PRBs (Physical RBs), etc., Information indicating time resources (eg slot (minislot) index, period, number of symbols per slot (minislot)), MIMO It may include at least one of information indicating the number of layers and information on Quasi-Co-Location.
  • a neurology eg, subcarrier spacing
  • information indicating a frequency position eg, center frequency, center PRB or PRB index of lowest frequency
  • bandwidth eg, resource block (RB (RB Information indicating the number of Resource Blocks), PRBs (Physical RBs), etc.
  • Information indicating time resources eg slot (minislot) index, period, number of symbols per slot (minislot)
  • MIMO It may
  • the UE performs BWP configuration using higher layer signaling (eg, RRC signaling, broadcast information (such as Master Information Block (MIB), System Information Block (SIB), etc.) and / or MAC signaling).
  • higher layer signaling eg, RRC signaling, broadcast information (such as Master Information Block (MIB), System Information Block (SIB), etc.) and / or MAC signaling.
  • MIB Master Information Block
  • SIB System Information Block
  • BWP for UL may be referred to as UL BWP.
  • the information for configuring UL BWP may be referred to as UL BWP configuration information (UL BWP configuration).
  • the UE determines the first frequency resource of the transition source in frequency hopping of UL grant free transmission based on physical layer signaling or higher layer signaling, and transitions based on UL BWP configuration information.
  • the previous second frequency resource may be determined.
  • the UL BWP setting information may include at least one of a UL BWP center frequency (eg, a PRB index), a UL BWP lowest frequency (eg, a PRB index), and a UL BWP bandwidth (eg, the number of PRBs).
  • the UE may determine the second frequency resource based on the first frequency resource, UL BWP configuration information, and a preset rule.
  • the UE is in a position where the first frequency resource and the second frequency resource are symmetrical with respect to a specific frequency (eg, the center frequency of the carrier) (eg, from the center frequency to the center of the first frequency resource) Of the first frequency and the distance Fa2 from the center frequency to the center of the second frequency resource are equal, and the second frequency resource is located on the opposite side of the first frequency resource with respect to the center frequency)
  • the second frequency resource may be determined from the resources.
  • the UE uses the lowest frequency and bandwidth of UL BWP, and the distance Fb1 from the lowest frequency of UL BWP to the center of the first frequency resource and the highest frequency to second frequency of UL BWP.
  • the second frequency resource may be determined from the first frequency resource according to the rule that the distances Fb2 to the resources are equal.
  • the UL grant may indicate the first frequency resource.
  • the UE may determine the first frequency resource based on the UL grant and may determine the second frequency resource based on the UL BWP configuration information.
  • L1 (Layer 1, physical layer) signaling for UL grant free transmission activation may indicate the first frequency resource.
  • the UE may determine the first frequency resource based on this L1 signaling and may determine the second frequency resource based on the UL BWP configuration information.
  • RRC signaling may indicate a first frequency resource.
  • the UE may determine the first frequency resource based on this RRC signaling and may determine the second frequency resource based on the UL BWP configuration information.
  • the UE may also determine multiple transition destination frequency resources by multiple frequency hopping based on the first frequency resource of UL grant free transmission frequency hopping, UL BWP configuration information, and a preset rule. Good.
  • the UE may perform frequency hopping according to the fourth aspect when not configured with UL BWP.
  • the UE may perform frequency hopping according to the fifth aspect when configured with UL BWP.
  • the UE can control the frequency hopping of the PUSCH based on the UL BWP information. Also, since there is no need to notify the hopping pattern or hopping offset from the radio base station to the UE, the overhead of notification from the radio base station to the UE can be suppressed.
  • wireless communication system Wireless communication system
  • the wireless communication method according to each of the above aspects is applied.
  • the wireless communication methods according to the above aspects may be applied singly or in combination.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • the wireless communication system 1 may be called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New RAT), or the like.
  • the wireless communication system 1 shown in this figure includes a wireless base station 11 forming a macrocell C1, and wireless base stations 12a to 12c disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. .
  • the user terminal 20 is arrange
  • the configuration may be such that different mermorologies are applied between cells.
  • the term "neurology” refers to a design of a signal in a certain RAT and / or a set of communication parameters characterizing the design of the RAT.
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12.
  • the user terminal 20 is assumed to simultaneously use the macro cell C1 and the small cell C2 using different frequencies by CA or DC.
  • the user terminal 20 can apply CA or DC using a plurality of cells (CCs) (for example, two or more CCs).
  • the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
  • the user terminal 20 can perform communication using time division duplex (TDD) or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • the TDD cell and the FDD cell may be referred to as a TDD carrier (frame configuration type 2), an FDD carrier (frame configuration type 1) and the like, respectively.
  • a subframe having a relatively long time length for example, 1 ms
  • TTI normal TTI
  • long TTI normal subframe
  • long subframe long subframe
  • slot etc.
  • Either one of subframes also referred to as a short TTI, a short subframe, a slot, etc.
  • subframes of two or more time lengths may be applied.
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that for the base station 11 may be used.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • a wired connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • a wireless connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • CPRI Common Public Radio Interface
  • X2 interface X2 interface
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals but also fixed communication terminals. Also, the user terminal 20 can perform inter-terminal communication (D2D) with another user terminal 20.
  • D2D inter-terminal communication
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission scheme in which system bandwidth is divided into bands having one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in UL.
  • SC-FDMA can be applied to a side link (SL) used for communication between terminals.
  • SL side link
  • DL data channels DL data channels (PDSCH: also referred to as Physical Downlink Shared Channel, DL shared channel etc.) shared by each user terminal 20, broadcast channel (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used.
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • the L1 / L2 control channel may be a DL control channel (for example, physical downlink control channel (PDCCH) and / or enhanced physical downlink control channel (EPDCCH), physical control format indicator channel (PCFICH), physical hybrid-ARQ indicator channel (PHICH). And so on.
  • Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH and / or EPDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the EPDCCH is frequency division multiplexed with the PDSCH, and is used for transmission such as DCI as the PDCCH.
  • the PUSCH delivery acknowledgment information (A / N, HARQ-ACK) can be transmitted by at least one of PHICH, PDCCH, and EPDCCH.
  • a UL data channel shared by each user terminal 20 (PUSCH: also referred to as Physical Uplink Shared Channel, UL shared channel, etc.), UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by PUSCH.
  • Uplink control information (UCI: Uplink Control Information) including at least one of PDSCH delivery confirmation information (A / N, HARQ-ACK) and channel state information (CSI) is transmitted by PUSCH or PUCCH.
  • the PRACH can transmit a random access preamble for establishing a connection with a cell.
  • FIG. 8 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • Each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Retransmission control (for example, processing of HARQ (Hybrid Automatic Repeat reQuest)), scheduling, transmission format selection, channel coding, rate matching, scrambling, Inverse Fast Fourier Transform (IFFT) processing and precoding Transmission processing such as at least one of the processing is performed and transferred to the transmission / reception unit 103.
  • HARQ Hybrid Automatic Repeat reQuest
  • IFFT Inverse Fast Fourier Transform
  • Transmission processing such as at least one of the processing is performed and transferred to the transmission / reception unit 103.
  • transmission processing such as channel coding and / or inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmitter / receiver, the transmitting / receiving circuit or the transmitting / receiving device described based on the common recognition in the technical field according to the present invention can be constituted.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmitting and receiving antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on UL data included in the input UL signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs at least one of setting of a communication channel, call processing such as release, status management of the radio base station 10, and management of radio resources.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the adjacent wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). It is also good.
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • the transmission / reception unit 103 may receive an uplink signal having a multicarrier (eg, CP-OFDM) waveform across continuous frequency resources (eg, continuous RBs) using the uplink shared channel (PUSCH).
  • the transmitting and receiving unit 103 may receive an uplink signal having a single carrier (for example, DFT spread OFDM) waveform over continuous frequency resources (for example, continuous RB) using the uplink shared channel.
  • the transmitting / receiving unit 103 may transmit the notification of the enabling or disabling of the frequency hopping independently of the information indicating which of the single carrier waveform and the multi carrier waveform is used for the uplink signal.
  • the transmitting / receiving unit 103 may transmit upper layer signaling (for example, hopping pattern or hopping offset) and / or setting information of an uplink partial band (for example, UL BWP).
  • FIG. 9 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment. Note that this figure mainly shows the functional blocks of the characteristic part in the present embodiment, and it is assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire wireless base station 10.
  • the control unit 301 may, for example, generate a DL signal by the transmission signal generation unit 302, map the DL signal by the mapping unit 303, receive processing (for example, demodulation) of the UL signal by the reception signal processing unit 304, and measure it by the measurement unit 305. Control at least one of
  • control unit 301 performs scheduling of the user terminal 20.
  • the control unit 301 may perform scheduling and / or retransmission control of DL data and / or UL data channel based on UCI (for example, CSI) from the user terminal 20.
  • UCI for example, CSI
  • control unit 301 may control the notification of the PUSCH waveform information and / or the notification of whether or not frequency hopping is applied to the UL signal.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including a DL data signal, a DL control signal, and a DL reference signal) based on an instruction from the control unit 301, and outputs the DL signal to the mapping unit 303.
  • the transmission signal generation unit 302 may be a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 on a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on a UL signal (for example, including UL data signal, UL control signal, UL reference signal) transmitted from the user terminal 20. I do. Specifically, the reception signal processing unit 304 may output the reception signal and / or the signal after reception processing to the measurement unit 305. Further, the reception signal processing unit 304 performs UCI reception processing based on the UL control channel configuration instructed by the control unit 301.
  • reception processing for example, demapping, demodulation, decoding, etc.
  • the measurement unit 305 performs measurement on the received signal.
  • the measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 305 measures the channel quality of UL based on, for example, received power (for example, RSRP (Reference Signal Received Power)) and / or received quality (for example, RSRQ (Reference Signal Received Quality)) of the UL reference signal. You may The measurement result may be output to the control unit 301.
  • received power for example, RSRP (Reference Signal Received Power)
  • RSRQ Reference Signal Received Quality
  • FIG. 10 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the radio frequency signals received by the plurality of transmitting and receiving antennas 201 are amplified by the amplifier unit 202, respectively.
  • Each transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs at least one of FFT processing, error correction decoding, reception processing of retransmission control, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer.
  • UL data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs at least one of retransmission control processing (for example, processing of HARQ), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to each transmission / reception unit 203.
  • UCI eg, A / N of DL signal, channel state information (CSI), scheduling request (SR), etc.
  • CSI channel state information
  • SR scheduling request
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmitting / receiving unit 203 may transmit an uplink signal having a multicarrier (for example, CP-OFDM) waveform over continuous frequency resources (for example, continuous RB) using the uplink shared channel (PUSCH).
  • the transmitting / receiving unit 203 may transmit an uplink signal having a single carrier (for example, DFT spread OFDM) waveform over continuous frequency resources (for example, continuous RB) using the uplink shared channel.
  • the transmitting / receiving unit 203 may receive the notification of the enabling or disabling of the frequency hopping independently of the information indicating which of the single carrier waveform and the multicarrier waveform is used for the uplink signal.
  • the transmitting / receiving unit 203 may receive upper layer signaling (for example, hopping pattern or hopping offset) and / or setting information of an uplink partial band (for example, UL BWP).
  • the transmission / reception unit 203 may be a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 11 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment.
  • the functional block of the characteristic part in this Embodiment is mainly shown, and it is assumed that the user terminal 20 also has another functional block required for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Have.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 controls, for example, at least one of UL signal generation by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405. Do.
  • control part 401 may control the frequency hopping of an uplink signal.
  • control unit 401 may control the frequency hopping based on the notification of the enabling or disabling of the frequency hopping.
  • control unit 401 may map uplink signals in the time direction (for example, time first / frequency second mapping) earlier than the frequency direction with respect to resources of the uplink shared channel.
  • control unit 401 may control frequency hopping over a plurality of transmission time intervals (eg, TTI, slot, minislot).
  • control unit 401 may determine the frequency resource of the transition destination in frequency hopping based on higher layer signaling or configuration information of the uplink partial band.
  • the control unit 401 can be configured of a controller, a control circuit or a control device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal (including a UL data signal, a UL control signal, a UL reference signal, and UCI) based on an instruction from the control unit 401 (for example, coding, rate matching, puncturing, modulation) Etc., and output to the mapping unit 403.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the UL signal to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (DL data signal, scheduling information, DL control signal, DL reference signal).
  • the received signal processing unit 404 outputs the information received from the radio base station 10 to the control unit 401.
  • the received signal processing unit 404 outputs, for example, broadcast information, system information, upper layer control information by upper layer signaling such as RRC signaling, physical layer control information (L1 / L2 control information), and the like to the control unit 401.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • Measuring section 405 measures a channel state based on a reference signal (for example, CSI-RS) from radio base station 10, and outputs the measurement result to control section 401.
  • the channel state measurement may be performed for each CC.
  • the measuring unit 405 can be configured of a signal processor, a signal processing circuit or a signal processing device, and a measuring instrument, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • each functional block may be realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
  • the wireless base station, the user terminal, and the like in the present embodiment may function as a computer that performs the process of the wireless communication method of the present invention.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • Hardware may be included, and part or all of each functional block may be realized using the hardware.
  • processor 1001 may be implemented using at least one of these hardware.
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.).
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units.
  • radio resources frequency bandwidth usable in each user terminal, transmission power, etc.
  • the TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
  • a long TTI for example, a normal TTI, a subframe, etc.
  • a short TTI eg, a shortened TTI, etc.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be configured by one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB
  • the number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
  • the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented.
  • radio resources may be indicated by a predetermined index.
  • the names used for parameters and the like in the present specification are not limited names in any respect.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable names, various assignments are made to these various channels and information elements.
  • the name is not limited in any way.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein are used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gigad Generation
  • cell cell
  • cell group cell group
  • carrier carrier
  • carrier may be used interchangeably.
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head).
  • RRH Communication service can also be provided by Remote Radio Head.
  • the terms "cell” or “sector” refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • Node station Node station
  • NodeB NodeB
  • eNodeB eNodeB
  • access point access point
  • transmission point reception point
  • femtocell small cell, and so on.
  • the mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • the wordings such as "up” and “down” may be read as "side".
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the operation supposed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • any reference to an element using the designation "first”, “second” and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • connection refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof. For example, “connection” may be read as "access”.
  • the radio frequency domain It can be considered as “connected” or “coupled” with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
  • a and B are different may mean “A and B are different from each other”.
  • the terms “leave”, “combined” and the like may be interpreted similarly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

マルチキャリア波形を有するUL信号を適切に送信するために、ユーザ端末は、連続する周波数リソースにわたるマルチキャリア波形を有する上り信号を、上り共有チャネルを用いて送信する送信部と、前記上り信号の周波数ホッピングを制御する制御部と、を有する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15以降、などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)の上りリンク(UL)では、DFT拡散OFDM(DFT-s-OFDM:Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形がサポートされている。DFT拡散OFDM波形は、シングルキャリア波形であるので、ピーク対平均電力比(PAPR:Peak to Average Power Ratio)の増大を防止できる。
 将来の無線通信システム(例えば、LTE 5G、NRなど)のUL(上りリンク)では、シングルキャリア波形であるDFT拡散OFDM波形に加えて、マルチキャリア波形であるサイクリックプリフィクスOFDM(CP-OFDM:Cyclic Prefix-Orthogonal Frequency Division Multiplexing)波形をサポートすることが検討されている。なお、DFT拡散OFDM波形は、DFT拡散(DFTプリコーディング等ともいう)が適用される(with DFT-spreading)UL信号等と言い換えることができ、CP-OFDM波形は、DFT拡散が適用されない(without DFT-spreading)UL信号等と言い換えることもできる。
 このように、CP-OFDM波形がサポートされる将来の無線通信システムのULにおいて、ULデータチャネル(UL共有チャネル、例えば、PUSCH:Physical Uplink Shared Channel)におけるUL信号(例えば、ULデータ及び/又は上り制御情報)の送信を制御する場合、UL信号を適切に送信できないおそれがある。例えば、相互変調歪が発生する場合、周波数ダイバーシチの効果が得られない場合などに、通信品質が劣化するおそれがある。
 本発明はかかる点に鑑みてなされたものであり、マルチキャリア波形を有するUL信号を適切に送信するユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本発明のユーザ端末の一態様は、連続する周波数リソースにわたるマルチキャリア波形を有する上り信号を、上り共有チャネルを用いて送信する送信部と、前記上り信号の周波数ホッピングを制御する制御部と、を有することを特徴とする。
 本発明によれば、マルチキャリア波形を有するUL信号を適切に送信できる。
図1A及び図1Bは、将来の無線通信システムにおけるPUSCHの送信機の一例を示す図である。 スロット内周波数ホッピングの一例を示す図である。 時間ファースト/周波数セカンドマッピングの一例を示す図である。 図4A及び図4Bは、複数TTIにわたる周波数ホッピングの一例を示す図である。 ホッピングオフセットに基づく第2周波数リソースの決定方法の一例を示す図である。 図6A及び図6Bは、UL BWP設定情報に基づく第2周波数リソースの決定方法の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システムのULでは、シングルキャリア波形であるDFT拡散OFDM波形(DFT拡散が適用されるUL信号)に加えて、マルチキャリア波形であるサイクリックプリフィクスOFDM(CP-OFDM)波形(DFT拡散が適用されないUL信号)をサポートすることが検討されている。
 PUSCH(NR-PUSCH)に対して、DFT拡散を適用するか否か(DFT拡散OFDM波形又はCP-OFDM波形のいずれを用いるか)は、ネットワーク(例えば、無線基地局)によりユーザ端末(User Equipment:UE)に設定(configure)又は指定(indicate)されることが想定される。
 図1は、将来の無線通信システムにおけるPUSCHの送信機の一例を示す図である。図1Aでは、DFT拡散OFDM波形を用いた送信機の一例が示される。図1Aに示すように、符号化及び変調後のULデータの系列は、Mポイントの離散フーリエ変換(DFT)(又は、高速フーリエ変換(FFT:Fast Fourier Transform))に入力され、第1の時間領域から周波数領域に変換される。DFTからの出力は、M個のサブキャリアにマッピングされ、Nポイントの逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)(又は、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform))に入力され、周波数領域から第2の時間領域に変換される。
 ここで、N>Mであり、使用されないIDFT(又は、IFFT)への入力情報は、ゼロに設定される。これにより、IDFTの出力は、瞬時電力変動が小さく帯域幅がMに依存する信号となる。IDFTからの出力は、パラレル/シリアル(P/S)変換され、ガードインターバル(GI)(サイクリックプリフィクス(CP)等ともいう)が付加される。このように、DFT拡散OFDM送信機では、シングルキャリアの特性を有する信号が生成され、1シンボルで送信される。
 図1Bでは、CP-OFDM波形を用いた送信機の一例が示される。図1Bに示すように、符号化及び変調後のULデータの系列及び/又は参照信号(RS)は、送信帯域幅と等しい数のサブキャリアにマッピングされ、IDFT(又は、IFFT)に入力される。使用されないIDFTへの入力情報は、ゼロに設定される。IDFTからの出力は、P/S変換され、GIが挿入される。このように、CP-OFDM送信機では、マルチキャリアが用いられるので、RSとULデータ系列を周波数分割多重できる。
 また、将来の無線通信システムでは、DFT拡散OFDM波形を適用するPUSCH送信に対して、1又は連続するリソース単位(例えば、リソースブロック(RB))の割当て(連続RB割り当て(contiguous RB allocation)、連続周波数リソース割り当て)、及び/又は周波数ホッピングの適用がサポートされることが想定される。例えば、ユーザ端末は、1又は連続する複数のRBにUL信号(例えば、PUSCH信号)を割当てて、周波数ホッピングを適用して(又は適用せずに)送信を行う。
 周波数ホッピングを適用する場合、UL送信の所定時間単位(例えば、スロット、ミニスロット等)内の異なる周波数領域にUL信号を配置することが想定される。例えば、図2に示すように1スロットが14シンボルで構成される場合、一部のシンボル(例えば、前半7シンボル)と他のシンボル(例えば、後半7シンボル)において異なる周波数領域にUL信号の割当てを行う。
 DFT拡散OFDMベースNR-PUSCH送信に対して、周波数ホッピングを伴う又は周波数ホッピングを伴わない連続RB割り当てがサポートされることが検討されている。また、14シンボルスロットに対し、少なくともスロット内(intra-slot)周波数ホッピングがサポートされることが検討されている。周波数ホッピングは、周波数ダイバーシチゲインを得ることができ、カバレッジを拡大することができる。
 一方、CP-OFDM波形は、非連続RB割り当て(non-contiguous RB allocation、非連続周波数リソース割り当て)を可能にし、周波数領域に分散させることにより周波数ダイバーシチゲインを得ることができるため、CP-OFDM波形を用いる周波数ホッピングの効果は疑わしいと考えられている。しかしながら、非連続RB割り当ては、高い相互変調歪(IMD)を引き起こすため、パワーバックオフを非常に高くする必要がある。その結果、非連続RB割り当ては、送信電力を低下させる必要があり、カバレッジが縮小する。したがって、実際には、CP-OFDM波形においても、非連続RB割り当てが利用されないことが考えられる。非連続RB割り当てが利用されない場合、周波数ダイバーシチゲインが得られないため、カバレッジを拡大することができない。
 そこで、本発明者らは、ULデータの送信にCP-OFDM波形を用いると共に、連続RB割り当て及び周波数ホッピングを用いることを着想した。
 以下、本実施の形態について説明する。以下では、マルチキャリア波形の一例としてCP-OFDM波形、シングルキャリア波形の一例としてDFT拡散OFDM波形を例示するが、本実施の形態は、CP-OFDM波形以外のマルチキャリア波形、DFT拡散OFDM波形以外のシングルキャリア波形にも適宜適用可能である。また、シングルキャリア波形は、DFT拡散が適用されると言い換えることができ、マルチキャリア波形は、DFT拡散が適用されないと言い換えることもできる。
(第1の態様)
 第1の態様においては、CP-OFDMベースNR-PUSCH送信に対し、周波数ホッピングを伴う又は伴わない連続RB割り当てがサポートされる。すなわち、PUSCHのUL信号は、連続する周波数リソースにわたるCP-OFDM波形を有する。
 図2に示すように、14シンボルスロットの場合に対して、少なくともスロット内周波数ホッピングがサポートされてもよい。例えば、UEは、第1帯域を用いてスロット内の前半7シンボルにおいて第1周波数リソース(第1帯域、第1周波数ホップ)を用いてPUSCHを送信し、後半7シンボルにおいて第1周波数リソースと異なる第2周波数リソース(第2帯域、第2周波数ホップ)を用いてPUSCHを送信する。第1周波数リソースを用いる時間長(シンボル数)と、第2周波数リソースを用いる時間長(シンボル数)が互いに異なっていてもよい。また、それぞれの周波数ホップにおいて、先頭またはそれ以外のシンボルにDMRS(Demodulation Reference Signal)が多重(時間分割多重)されていてもよい。
 無線基地局は、DFT拡散OFDM波形及びCP-OFDM波形のいずれがPUSCH送信に用いられるかを示す情報と独立して、周波数ホッピングの有効化又は無効化の指示をUEに通知する。例えば、UL送信の波形がDFT拡散OFDM波形であるかCP-OFDM波形であるかに関わらず、UEは、上位レイヤシグナリング(例えば、RRCシグナリング)を介して、周波数ホッピングの有効化又は無効化の指示を受信する。
 周波数ホッピングの有効化又は無効化の情報は、物理レイヤシグナリングに基づいてUEが判断するものとしてもよい。例えば、NR-PUSCHをスケジューリングするPDCCH(ULグラント)に含まれる1以上のビットからなる特定のフィールドの値に基づいて判断するものとしてもよいし、当該ULグラントのDCI(Downlink Control Information)フォーマット(ペイロードや送信モード)から判断してもよいし、当該ULグラントが受信された制御チャネル(サーチスペース又はCORESET(Control Resource Set))の設定情報から判断してもよい。CORESETは、DL制御情報がマッピングされるリソース又はNR-PDCCHを収める時間リソース及び/又は周波数リソースの枠(または箱、セット、かたまり、ともいう)である。
 NR-PUSCHに多重するDMRSの位置や数は、周波数ホッピングが有効か無効かに応じて異なるものとしてもよい。
 UEがPUSCH送信においてCP-OFDM波形及び連続RB割り当てを用いることにより、IMDの増大及びカバレッジの縮小を防ぐことができる。更にCP-OFDMベースNR-PUSCH送信において、周波数ホッピングを用いることにより、周波数ダイバーシチゲインを得て、カバレッジを拡大できる。
(第2の態様)
 第2の態様においては、PUSCH送信にTTI内(intra-TTI)周波数ホッピングを用いる場合に対して、DFT拡散OFDM波形及びCP-OFDM波形の両方におけるデータマッピング順序は、周波数ファースト/時間セカンド(frequency-first/time-second)ではないマッピングを適用する。なお、周波数ファースト/時間セカンドマッピングとは、PUSCHに割り当てられた時間/周波数リソースにおいて、周波数方向を先に時間方向を次にマッピングすることである。
 既存のLTEシステム(例えば、LTE Rel.13以前)では、DLデータのスケジューリング単位であるトランスポートブロック(TB)を一以上のコードブロック(CB)に分割し、各CBを独立して符号化するコードブロック分割(Code block segmentation)が適用される。各CBの符号化ビットは連結され(例えば、コードワード(CW:Cord Word)として連結され)、変調され、PDSCHでは、周波数方向を先に時間方向を次に(周波数ファースト/時間セカンド)、利用可能な無線リソース(例えば、リソース要素(RE))にマッピングされる。DFT拡散OFDM波形を用いるLTEのPUSCHでは、PDSCHと同様の処理ののち、無線リソースへのマッピングの前に、時間・周波数の2次元でインターリーブが行われる。これにより、PUSCHでは時間方向を先に周波数方向を次に(時間ファースト/周波数セカンド(time-first/frequency-second))マッピングされる。
 NRのPUSCHにおいても、TTI内周波数ホッピングで適切な周波数ダイバーシチ利得を得るためには、トランスポートブロック(TB)を成す各コードブロック(CB)が1以上の周波数ホッピングを超えて分散されることが重要である。
 そこで、NR-PUSCHにおいては、例えば、データマッピング順序は、時間ファースト/周波数セカンドであってもよい。時間ファースト/周波数セカンドマッピングは、PUSCHに割り当てられた時間/周波数リソースにおいて、時間方向を先に周波数方向を次にマッピングする。
 もし、CP-OFDM波形に非連続RB割り当てを用いる場合、NR-PUSCHを異なるRBに分散して配置し、周波数ファースト/時間セカンドマッピングを行うことにより、周波数ダイバーシチゲインを得ることができる。しかし、前述のように、非連続RB割り当ては、高いIMDを引き起こし、送信電力を低下させる必要がある。そこで、DFT拡散OFDM波形だけでなくCP-OFDM波形においても、連続RB割り当てを用いてNR-PDSCHを局所的なRBに配置することにより、高いIMDを防ぐことができ、周波数ホッピング及び時間ファースト/周波数セカンドマッピングを用いることにより、周波数ダイバーシチゲインを得ることができる。
 なお、TTI内周波数ホッピングは、例えばスロット内(Intra-slot)周波数ホッピングであってもよいし、ミニスロット内(Intra-mini-slot)周波数ホッピングであってもよい。
 図3に示すように、UEは、PUSCHに割り当てられたリソースのうち、最初の周波数単位に対し、最初のCBを時間方向へマッピングする。以後、次の周波数単位に対し、次のCBを時間方向へマッピングする。周波数単位は、1以上のREであってもよいし、1以上のRBであってもよい。この動作により、各CBがTTI(この例ではスロット)にわたってマッピングされ、周波数ホッピングが適用される。
 また、複数レイヤを利用してUL送信を行う場合、マッピング順序は、レイヤ(layer)-時間(time)-周波数(frequency)としてもよいし、時間(time)-レイヤ(layer)-周波数(frequency)としてもよい。つまり、UEは、少なくとも周波数方向より時間方向を優先してマッピングを実施すればよい。
 以上の第2の態様によれば、UEは、各CBを複数の周波数に分散して配置することにより、全てのCBに周波数ダイバーシチゲインを与えることができる。
(第3の態様)
 第3の態様において、NRは、複数TTI送信をサポートしてもよい。例えば、UEは、1つのTBを、複数のTTI(スロット又はミニスロット)を用いて送信する。
 複数TTI送信に対して、次の選択肢のいずれかが用いられてもよい。
 選択肢1:UEは、複数TTIの各TTIにおいて周波数ホッピングを行う。或るTTIに対し、周波数ホッピングは、1TTI送信と同様である。
 例えば、図4Aに示すように、UEは、1TBを送信するための6TTI(この例ではスロット)のPUSCH送信の各TTIにおいて周波数ホッピングを行ってもよい。
 選択肢2:UEは、複数TTIにわたる周波数ホッピングを行う。或るTTIに対し、周波数ホッピングは、適用されてもよいし、適用されなくてもよい。
 例えば、図4Bに示すように、UEは、1TBを送信するための6TTI(この例ではスロット)のPUSCH送信を、前半3TTIのグループと後半3TTIのグループとに分け、グループ間で周波数ホッピングを行ってもよい。グループ数は3以上であってもよい。各グループ内のTTI数は同一でなくてもよい。
 また、UEは、TTI間周波数ホッピングを行ってもよい。
 以上の第3の態様によれば、TTI長が短い場合及び/又はTB長が長い場合であっても、周波数ダイバーシチゲインを得ることができる。
(第4の態様)
 第4の態様において、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング)によって、ホッピングパターン又はホッピングオフセットがUEに設定される。
 図5に示すように、ホッピングオフセットは例えば、周波数ホッピングによる遷移元の周波数リソースである第1周波数リソース(第1帯域、第1周波数ホップ)に対する遷移先の周波数リソースである第2周波数リソース(第2帯域、第2周波数ホップ)のオフセットを示す。ホッピングパターンは、遷移先の時間リソース及び/又は周波数リソースを示してもよい。UEは、ホッピングパターン又はホッピングオフセットに基づいて、第2周波数リソースを決定してもよい。
 NRにおいては、低遅延の通信を実現するため、ULグラントに基づいてULデータを送信するULグラントベース送信(UL grant-based transmission)に加えて、ULグラントなしにULデータを送信するULグラントフリー送信(UL grant-free transmission)を適用することが検討されている。
 ULグラントベース送信においては、無線基地局(例えば、BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNodeB)、gNB(NR NodeB)などと呼ばれてもよい)が、ULデータ(PUSCH:Physical Uplink Shared Channel)の割り当てを指示する下り制御チャネル(ULグラント)を送信し、UEがULグラントにしたがってULデータを送信する。
 一方、ULグラントフリー送信においては、UEは、データのスケジューリングのためのULグラントを受信することなくULデータを送信する。
 ULグラントフリー送信をアクティベートするための物理レイヤ(L1:Layer 1)シグナリング(例えばPDCCH(Physical Downlink Control Channel))も検討されている。
 ULグラントフリー送信の制御について、いくつかのタイプが検討されている。例えば、タイプ1において、ULグラントフリー送信はRRC(Radio Resource Control)設定のみに基づき、L1シグナリングを利用しない。タイプ2において、ULグラントフリー送信はRRC設定及びL1シグナリングによるアクティベーション/ディアクティベーションの両方に基づく。
 ULグラントベース送信に対し、ULグラントが、第1周波数リソースを示してもよい。UEは、ULグラントに基づいて第1周波数リソースを決定し、上位レイヤシグナリングにより設定されたホッピングパターン又はホッピングオフセットに基づいて、第2周波数リソースを決定してもよい。
 タイプ2ULグラントフリー送信に対し、ULグラントフリー送信のアクティベート(活性化)のためのL1シグナリングが、第1周波数リソースを示してもよい。UEは、このL1シグナリングに基づいて、第1周波数リソースを決定し、上位レイヤシグナリングにより設定されたホッピングパターン又はホッピングオフセットに基づいて、第2周波数リソースを決定してもよい。
 タイプ1ULグラントフリー送信に対し、RRCシグナリングが、第1周波数リソースを示してもよい。UEは、このRRCシグナリングに基づいて、第1周波数リソースを決定し、上位レイヤシグナリングにより設定されたホッピングパターン又はホッピングオフセットに基づいて、第2周波数リソースを決定してもよい。
 ホッピングパターン又はホッピングオフセットは、複数の周波数ホッピングによる複数の遷移先の周波数リソースに関する情報であってもよい。UEは、ホッピングパターン又はホッピングオフセットに基づいて、複数の遷移先の周波数リソース(第2周波数リソース、第3周波数リソース等)を決定してもよい。
 以上の第4の態様によれば、UEは、ホッピングパターン又はホッピングオフセットの通知に基づいて、PUSCHの周波数ホッピングを制御することができる。
(第5の態様)
 第5の態様において、ホッピングパターン又はホッピングオフセットは、UL BWP(Bandwidth Part、部分帯域)設定情報(configuration)から得られる。
 将来の無線通信システム(例えば、NR、5G又は5G+)では、既存のLTEシステム(例えば、LTE Rel.8-13)より広い帯域幅(例えば、100~400MHz)のキャリア(コンポーネントキャリア(CC:Component Carrier)又はシステム帯域等ともいう)を割り当てることが検討されている。ユーザ端末は、常に当該キャリア全体を利用すると、消費電力が膨大になるおそれがある。このため、将来の無線通信システムは、当該キャリア内の一以上の周波数帯域をユーザ端末に準静的に設定(configure)することが検討されている。当該キャリア内の各周波数帯域は、BWPとも呼ばれる。
 BWP設定情報は、ニューメロロジー(例えば、サブキャリア間隔)を示す情報、周波数位置(例えば、中心周波数、中心PRB又は最低周波数のPRBインデックス)を示す情報、帯域幅(例えば、リソースブロック(RB(Resource Block)、PRB(Physical RB)などとも呼ばれる)の数)を示す情報、時間リソース(例えば、スロット(ミニスロット)インデックス、周期、スロット(ミニスロット)あたりのシンボル数)を示す情報、MIMOのレイヤ数を示す情報、Quasi-Co-Locationに関する情報の少なくとも一つを含んでもよい。
 UEは、上位レイヤシグナリング(例えば、RRCシグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)及び/又はMACシグナリング)を用いて、BWP設定情報を受信してもよい。
 ULのためのBWPは、UL BWPと呼ばれてもよい。UL BWPを設定するための情報は、UL BWP設定情報(UL BWP configuration)と呼ばれてもよい。
 UL BWPを設定される場合、UEは、物理レイヤシグナリング又は上位レイヤシグナリングに基づいて、ULグラントフリー送信の周波数ホッピングにおける遷移元の第1周波数リソースを決定し、UL BWP設定情報に基づいて、遷移先の第2周波数リソースを決定してもよい。
 UL BWP設定情報は、UL BWPの中心周波数(例えば、PRBインデックス)、UL BWPの最低周波数(例えば、PRBインデックス)、UL BWPの帯域幅(例えば、PRB数)の少なくともいずれかを含んでもよい。UEは、第1周波数リソースと、UL BWP設定情報と、予め設定されたルールとに基づいて、第2周波数リソースを決定してもよい。
 図6Aに示すように、UEは、第1周波数リソースと第2周波数リソースが特定の周波数(例えば、キャリアの中心周波数)について対称の位置にある(例えば、中心周波数から第1周波数リソースの中心までの距離Fa1と、中心周波数から第2周波数リソースの中心までの距離Fa2とが等しく、第2周波数リソースは中心周波数に対し、第1周波数リソースの反対側に位置する)というルールに従って、第1周波数リソースから第2周波数リソースを決定してもよい。また、図6Bに示すように、UEは、UL BWPの最低周波数及び帯域幅を用い、UL BWPの最低周波数から第1周波数リソースの中心までの距離Fb1と、UL BWPの最高周波数から第2周波数リソースまでの距離Fb2とが等しいというルールに従って、第1周波数リソースから第2周波数リソースを決定してもよい。
 ULグラントベース送信に対し、ULグラントが、第1周波数リソースを示してもよい。UEは、ULグラントに基づいて第1周波数リソースを決定し、UL BWP設定情報に基づいて、第2周波数リソースを決定してもよい。
 タイプ2ULグラントフリー送信に対し、ULグラントフリー送信の活性化(activate)のためのL1(Layer 1、物理レイヤ)シグナリングが、第1周波数リソースを示してもよい。UEは、このL1シグナリングに基づいて、第1周波数リソースを決定し、UL BWP設定情報に基づいて、第2周波数リソースを決定してもよい。
 タイプ1ULグラントフリー送信に対し、RRCシグナリングが、第1周波数リソースを示してもよい。UEは、このRRCシグナリングに基づいて、第1周波数リソースを決定し、UL BWP設定情報に基づいて、第2周波数リソースを決定してもよい。
 UEは、ULグラントフリー送信の周波数ホッピングの最初の周波数リソースと、UL BWP設定情報と、予め設定されたルールとに基づいて、複数の周波数ホッピングによる複数の遷移先の周波数リソースを決定してもよい。
 UEは、UL BWPを設定されない場合、第4の態様に従って周波数ホッピングを行ってもよい。UEは、UL BWPを設定される場合、第5の態様に従って周波数ホッピングを行ってもよい。
 以上の第5の態様によれば、UEは、UL BWP情報に基づいて、PUSCHの周波数ホッピングを制御することができる。また、無線基地局からUEへホッピングパターン又はホッピングオフセットを通知する必要がないため、無線基地局からUEへの通知のオーバーヘッドを抑えることができる。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図7は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New RAT)などと呼ばれても良い。
 この図に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、あるRATにおける信号のデザイン、及び/又は、RATのデザインを特徴付ける通信パラメータのセットのことをいう。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。TDDのセル、FDDのセルは、それぞれ、TDDキャリア(フレーム構成タイプ2)、FDDキャリア(フレーム構成タイプ1)等と呼ばれてもよい。
 また、各セル(キャリア)では、相対的に長い時間長(例えば、1ms)を有するサブフレーム(TTI、通常TTI、ロングTTI、通常サブフレーム、ロングサブフレーム、スロット等ともいう)、又は、相対的に短い時間長を有するサブフレーム(ショートTTI、ショートサブフレーム、スロット等ともいう)のいずれか一方が適用されてもよいし、ロングサブフレーム及びショートサブフレームの双方が適用されてもよい。また、各セルで、2以上の時間長のサブフレームが適用されてもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成であってもよい。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。また、ユーザ端末20は、他のユーザ端末20との間で端末間通信(D2D)を行うことができる。
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックを有する帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。また、端末間通信に用いられるサイドリンク(SL)にSC-FDMAを適用できる。
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)の少なくとも一つなどが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 L1/L2制御チャネルは、DL制御チャネル(例えば、PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCH及び/又はEPDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PHICH、PDCCH、EPDCCHの少なくとも一つにより、PUSCHの送達確認情報(A/N、HARQ-ACK)を伝送できる。
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。PDSCHの送達確認情報(A/N、HARQ-ACK)、チャネル状態情報(CSI)の少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルを伝送できる。
<無線基地局>
 図8は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、レートマッチング、スクランブリング、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理及びプリコーディング処理の少なくとも一つなどの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化及び/又は逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるULデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定、解放などの呼処理、無線基地局10の状態管理、無線リソースの管理の少なくとも一つを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 また、送受信部103は、連続する周波数リソース(例えば、連続RB)にわたるマルチキャリア(例えば、CP-OFDM)波形を有する上り信号を、上り共有チャネル(PUSCH)を用いて受信してもよい。また、送受信部103は、連続する周波数リソース(例えば、連続RB)にわたるシングルキャリア(例えば、DFT拡散OFDM)波形を有する上り信号を、上り共有チャネルを用いて受信してもよい。
 また、送受信部103は、周波数ホッピングの有効化又は無効化の通知を、シングルキャリア波形及びマルチキャリア波形のいずれが上り信号に用いられるかを示す情報と独立して送信してもよい。また、送受信部103は、上位レイヤシグナリング(例えば、ホッピングパターン又はホッピングオフセット)及び/又は上り部分帯域(例えば、UL BWP)の設定情報を送信してもよい。
 図9は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、この図は、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているとする。この図に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305とを備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302によるDL信号の生成、マッピング部303によるDL信号のマッピング、受信信号処理部304によるUL信号の受信処理(例えば、復調など)及び測定部305による測定の少なくとも一つを制御する。
 具体的には、制御部301は、ユーザ端末20のスケジューリングを行う。例えば、制御部301は、ユーザ端末20からのUCI(例えば、CSI)に基づいて、DLデータ及び/又はULデータチャネルのスケジューリング及び/又は再送制御を行ってもよい。また、制御部301は、上記PUSCH波形情報の通知及び/又はUL信号に対する周波数ホッピングの適用有無の通知を制御してもよい。
 制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DLデータ信号、DL制御信号、DL参照信号を含む)を生成して、マッピング部303に出力する。
 送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置であってもよい。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置であってもよい。
 受信信号処理部304は、ユーザ端末20から送信されるUL信号(例えば、ULデータ信号、UL制御信号、UL参照信号を含む)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。具体的には、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力してもよい。また、受信信号処理部304は、制御部301から指示されるUL制御チャネル構成に基づいて、UCIの受信処理を行う。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、UL参照信号の受信電力(例えば、RSRP(Reference Signal Received Power))及び/又は受信品質(例えば、RSRQ(Reference Signal Received Quality))に基づいて、ULのチャネル品質を測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図10は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などの少なくとも一つを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。
 一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御処理(例えば、HARQの処理)、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などの少なくとも一つが行われて各送受信部203に転送される。UCI(例えば、DL信号のA/N、チャネル状態情報(CSI)、スケジューリング要求(SR)の少なくとも一つなど)についても、チャネル符号化、レートマッチング、パンクチャ、DFT処理及びIFFT処理などの少なくとも一つが行われて各送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、連続する周波数リソース(例えば、連続RB)にわたるマルチキャリア(例えば、CP-OFDM)波形を有する上り信号を、上り共有チャネル(PUSCH)を用いて送信してもよい。また、送受信部203は、連続する周波数リソース(例えば、連続RB)にわたるシングルキャリア(例えば、DFT拡散OFDM)波形を有する上り信号を、上り共有チャネルを用いて送信してもよい。
 また、送受信部203は、周波数ホッピングの有効化又は無効化の通知を、シングルキャリア波形及びマルチキャリア波形のいずれが上り信号に用いられるかを示す情報と独立して受信してもよい。また、送受信部203は、上位レイヤシグナリング(例えば、ホッピングパターン又はホッピングオフセット)及び/又は上り部分帯域(例えば、UL BWP)の設定情報を受信してもよい。
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置であってもよい。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 図11は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、この図においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているとする。この図に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402によるUL信号の生成、マッピング部403によるUL信号のマッピング、受信信号処理部404によるDL信号の受信処理及び測定部405による測定の少なくとも一つを制御する。
 また、制御部401は、上り信号の周波数ホッピングを制御してもよい。
 また、制御部401は、前記周波数ホッピングの有効化又は無効化の通知に基づいて、前記周波数ホッピングを制御してもよい。
 また、制御部401は、上り共有チャネルのリソースに対し、周波数方向よりも先に時間方向へ上り信号をマッピング(例えば、時間ファースト/周波数セカンドマッピング)してもよい。
 また、制御部401は、複数の送信時間間隔(例えば、TTI、スロット、ミニスロット)にわたる周波数ホッピングを制御してもよい。
 また、制御部401は、上位レイヤシグナリング又は上り部分帯域の設定情報に基づいて、周波数ホッピングにおける遷移先の周波数リソースを決定してもよい。
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号(ULデータ信号、UL制御信号、UL参照信号、UCIを含む)を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置であってもよい。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置であってもよい。
 受信信号処理部404は、DL信号(DLデータ信号、スケジューリング情報、DL制御信号、DL参照信号)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリングなどの上位レイヤシグナリングによる上位レイヤ制御情報、物理レイヤ制御情報(L1/L2制御情報)などを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。
 測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ハードウェア構成>
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
 例えば、本実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  連続する周波数リソースにわたるマルチキャリア波形を有する上り信号を、上り共有チャネルを用いて送信する送信部と、
     前記上り信号の周波数ホッピングを制御する制御部と、を有することを特徴とするユーザ端末。
  2.  前記制御部は、前記周波数ホッピングの有効化又は無効化を示す指示に基づいて、前記周波数ホッピングを制御し、
     前記指示は、シングルキャリア波形及びマルチキャリア波形のいずれが前記上り信号に用いられるかを示す情報と独立して通知されることを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記上り共有チャネルのリソースに対し、周波数方向よりも先に時間方向へ前記上り信号をマッピングすることを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、複数の送信時間間隔を用いる1つのトランスポートブロックの送信において、前記周波数ホッピングを制御することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、上位レイヤシグナリング又は上り部分帯域の設定情報に基づいて、前記周波数ホッピングにおける遷移先の周波数リソースを決定することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  ユーザ端末の無線通信方法であって、
     連続する周波数リソースにわたるマルチキャリア波形を有する上り信号を、上り共有チャネルを用いて送信する工程と、
     前記上り信号の周波数ホッピングを制御する工程と、を有することを特徴とする無線通信方法。
PCT/JP2017/032326 2017-09-07 2017-09-07 ユーザ端末及び無線通信方法 WO2019049283A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201780094724.9A CN111066255B (zh) 2017-09-07 2017-09-07 用户终端以及无线通信方法
EP17924417.3A EP3681116B1 (en) 2017-09-07 2017-09-07 User terminal and radio communication method
JP2019540218A JP7107948B2 (ja) 2017-09-07 2017-09-07 端末、無線通信方法及びシステム
RU2020111910A RU2740073C1 (ru) 2017-09-07 2017-09-07 Пользовательский терминал и способ радиосвязи
BR112020004507-1A BR112020004507A2 (pt) 2017-09-07 2017-09-07 terminal, estação base e método de radiocomunicação
US16/644,778 US11159199B2 (en) 2017-09-07 2017-09-07 User terminal and radio communication method
NZ762622A NZ762622A (en) 2017-09-07 2017-09-07 User terminal and radio communication method
PCT/JP2017/032326 WO2019049283A1 (ja) 2017-09-07 2017-09-07 ユーザ端末及び無線通信方法
KR1020207008475A KR102495043B1 (ko) 2017-09-07 2017-09-07 유저단말 및 무선 통신 방법
PH12020500456A PH12020500456A1 (en) 2017-09-07 2020-03-06 User terminal and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032326 WO2019049283A1 (ja) 2017-09-07 2017-09-07 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2019049283A1 true WO2019049283A1 (ja) 2019-03-14

Family

ID=65633812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032326 WO2019049283A1 (ja) 2017-09-07 2017-09-07 ユーザ端末及び無線通信方法

Country Status (10)

Country Link
US (1) US11159199B2 (ja)
EP (1) EP3681116B1 (ja)
JP (1) JP7107948B2 (ja)
KR (1) KR102495043B1 (ja)
CN (1) CN111066255B (ja)
BR (1) BR112020004507A2 (ja)
NZ (1) NZ762622A (ja)
PH (1) PH12020500456A1 (ja)
RU (1) RU2740073C1 (ja)
WO (1) WO2019049283A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021004172A1 (en) 2019-07-08 2021-01-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods, terminal device and base station for random access procedure
CN112449419A (zh) * 2019-08-15 2021-03-05 大唐移动通信设备有限公司 一种跳频方法、装置及设备
CN113615231A (zh) * 2019-03-28 2021-11-05 株式会社Ntt都科摩 用户装置以及基站装置
US20220116855A1 (en) * 2017-09-08 2022-04-14 Samsung Electronics Co., Ltd. Method and system for handling radio link monitoring (rlm) using bandwidth part (bwp) configurations
JP2022527747A (ja) * 2019-03-29 2022-06-06 エルジー エレクトロニクス インコーポレイティド 多重送信ブロックスケジューリングのための信号の送受信方法及びそのための装置
CN114616909A (zh) * 2019-11-07 2022-06-10 株式会社Ntt都科摩 终端
CN114946127A (zh) * 2020-01-21 2022-08-26 高通股份有限公司 虚拟带宽部分内的跳频

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542403B1 (ko) * 2017-09-29 2023-06-12 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 자원 설정과 데이터 송수신 방법 및 장치
CN109842432B (zh) * 2017-11-17 2021-02-12 华为技术有限公司 跳频处理方法及设备
CN111771338B (zh) * 2018-02-16 2022-08-26 瑞典爱立信有限公司 用于物理上行链路共享信道跳频分配的方法和装置
EP3531566A1 (en) 2018-02-23 2019-08-28 Panasonic Intellectual Property Corporation of America Bandwidth part hopping to improve the reliability in new radio (nr)
US11197179B2 (en) * 2018-03-26 2021-12-07 Acer Incorporated Device and method for handling radio link monitoring and bandwidth part switching
CN114071728A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 通信方法及装置
CN112583538B (zh) * 2020-12-04 2024-03-19 上海擎昆信息科技有限公司 解资源映射的控制方法和装置、以及解资源映射方法和装置
WO2022126576A1 (zh) * 2020-12-18 2022-06-23 北京小米移动软件有限公司 无线通信方法及装置、通信设备及存储介质
US11626936B2 (en) * 2021-03-05 2023-04-11 Qualcomm Incorporated Grid allocations for single carrier waveforms
CN113630360B (zh) * 2021-08-10 2022-05-24 中国科学院计算技术研究所 一种无线通信的跳频方法与装置
WO2024035330A1 (en) * 2022-08-12 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Physical uplink shared channel (pusch) for subband full duplex operation
WO2024065220A1 (zh) * 2022-09-27 2024-04-04 北京小米移动软件有限公司 跳频处理方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151059A (ja) * 2005-03-31 2007-06-14 Ntt Docomo Inc 送信装置、受信装置および移動通信システム並びに送信制御方法
WO2009128285A1 (ja) * 2008-04-17 2009-10-22 シャープ株式会社 移動局装置および通信システム
JP2010074798A (ja) * 2008-09-22 2010-04-02 Ntt Docomo Inc 移動端末装置、基地局装置及び共有チャネル信号送信方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE027901T2 (en) 2007-08-08 2016-10-28 ERICSSON TELEFON AB L M (publ) A multichannel communication system that uses open frequency hopping
JP4915590B2 (ja) 2007-11-27 2012-04-11 パナソニック株式会社 電気量検出センサ
JP2010178129A (ja) 2009-01-30 2010-08-12 Sharp Corp 基地局装置、移動局装置、無線通信システム、およびその参照信号送信方法
RU2531386C2 (ru) * 2009-05-29 2014-10-20 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Устройство беспроводной связи и способ скачкообразной перестройки частоты
WO2011013971A2 (ko) * 2009-07-26 2011-02-03 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송 방법 및 장치
KR101710206B1 (ko) * 2009-07-26 2017-02-27 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송 방법 및 장치
JP6452048B2 (ja) * 2013-08-23 2019-01-16 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
US11431464B2 (en) * 2017-05-05 2022-08-30 Samsung Electronics Co., Ltd. Method and apparatus for uplink transmission in wireless communication system
CN109309558B (zh) * 2017-07-28 2021-10-08 株式会社Kt 用于发送和接收上行链路信道的设备和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007151059A (ja) * 2005-03-31 2007-06-14 Ntt Docomo Inc 送信装置、受信装置および移動通信システム並びに送信制御方法
WO2009128285A1 (ja) * 2008-04-17 2009-10-22 シャープ株式会社 移動局装置および通信システム
JP2010074798A (ja) * 2008-09-22 2010-04-02 Ntt Docomo Inc 移動端末装置、基地局装置及び共有チャネル信号送信方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
3GPP: "UCI on PUSCH", 3GPP TSG RAN WG1 NR AD-HOC#2 R1-1711104, 30 June 2017 (2017-06-30), XP051300304 *
QUALCOMM INCORPORATED: "User Multiplexing of DFTs-OFDM and OFDM in uplink[ online", 3GPP TSG- RAN WG1#86B R1-1610114, 14 October 2016 (2016-10-14), XP051150138 *
See also references of EP3681116A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11665623B2 (en) * 2017-09-08 2023-05-30 Samsung Electronics Co., Ltd. Method and system for handling radio link monitoring (RLM) using bandwidth part (BWP) configurations
US20220116855A1 (en) * 2017-09-08 2022-04-14 Samsung Electronics Co., Ltd. Method and system for handling radio link monitoring (rlm) using bandwidth part (bwp) configurations
CN113615231B (zh) * 2019-03-28 2024-03-08 株式会社Ntt都科摩 终端、基站、通信方法以及系统
CN113615231A (zh) * 2019-03-28 2021-11-05 株式会社Ntt都科摩 用户装置以及基站装置
JP2022527747A (ja) * 2019-03-29 2022-06-06 エルジー エレクトロニクス インコーポレイティド 多重送信ブロックスケジューリングのための信号の送受信方法及びそのための装置
US12069642B2 (en) 2019-03-29 2024-08-20 Lg Electronics Inc. Method and device for transmission or reception of signal for multiple transport block scheduling
JP7504909B2 (ja) 2019-03-29 2024-06-24 エルジー エレクトロニクス インコーポレイティド 多重送信ブロックスケジューリングのための信号の送受信方法及びそのための装置
CN113545153A (zh) * 2019-07-08 2021-10-22 瑞典爱立信有限公司 用于随机接入过程的方法、终端设备和基站
WO2021004172A1 (en) 2019-07-08 2021-01-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods, terminal device and base station for random access procedure
EP3997938A4 (en) * 2019-07-08 2023-05-31 Telefonaktiebolaget Lm Ericsson (Publ) METHOD, TERMINAL AND BASE STATION FOR RANDOM ACCESS METHOD
CN112449419B (zh) * 2019-08-15 2023-12-29 大唐移动通信设备有限公司 一种跳频方法、装置及设备
CN112449419A (zh) * 2019-08-15 2021-03-05 大唐移动通信设备有限公司 一种跳频方法、装置及设备
CN114616909A (zh) * 2019-11-07 2022-06-10 株式会社Ntt都科摩 终端
CN114946127A (zh) * 2020-01-21 2022-08-26 高通股份有限公司 虚拟带宽部分内的跳频
CN114946127B (zh) * 2020-01-21 2024-04-05 高通股份有限公司 虚拟带宽部分内的跳频
US12068775B2 (en) 2020-01-21 2024-08-20 Qualcomm Incorporated Frequency hopping within a virtual bandwidth part

Also Published As

Publication number Publication date
EP3681116B1 (en) 2023-12-20
RU2740073C1 (ru) 2021-01-11
CN111066255B (zh) 2022-08-23
NZ762622A (en) 2024-05-31
JP7107948B2 (ja) 2022-07-27
CN111066255A (zh) 2020-04-24
KR20200051659A (ko) 2020-05-13
US20210067194A1 (en) 2021-03-04
PH12020500456A1 (en) 2021-02-15
KR102495043B1 (ko) 2023-02-06
US11159199B2 (en) 2021-10-26
BR112020004507A2 (pt) 2020-09-15
JPWO2019049283A1 (ja) 2020-10-29
EP3681116A4 (en) 2021-04-14
EP3681116A1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP7107948B2 (ja) 端末、無線通信方法及びシステム
WO2019097643A1 (ja) ユーザ端末及び無線通信方法
WO2019138528A1 (ja) ユーザ端末及び無線通信方法
WO2019135285A1 (ja) ユーザ端末及び無線通信方法
WO2019138527A1 (ja) ユーザ端末及び無線通信方法
WO2019026157A1 (ja) ユーザ端末及び無線通信方法
WO2018203409A1 (ja) ユーザ端末及び無線通信方法
WO2019012669A1 (ja) 送信装置、受信装置及び無線通信方法
WO2019030925A1 (ja) ユーザ端末及び無線通信方法
WO2019026214A1 (ja) ユーザ端末及び無線通信方法
WO2019038832A1 (ja) ユーザ端末及び無線通信方法
WO2019026215A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2019097654A1 (ja) ユーザ端末及び無線通信方法
JP7007391B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2018012550A1 (ja) ユーザ端末及び無線通信方法
WO2019021486A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018128183A1 (ja) ユーザ端末及び無線通信方法
WO2019102599A1 (ja) ユーザ端末及び無線通信方法
WO2019026216A1 (ja) ユーザ端末及び無線通信方法
WO2018229947A1 (ja) ユーザ端末及び無線通信方法
WO2019021487A1 (ja) ユーザ端末及び無線通信方法
WO2019092823A1 (ja) ユーザ端末及び無線通信方法
JP7227147B2 (ja) 端末、無線通信方法、基地局及びシステム
KR20190123761A (ko) 유저단말 및 무선 통신 방법
WO2018229837A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020004507

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207008475

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017924417

Country of ref document: EP

Effective date: 20200407

ENP Entry into the national phase

Ref document number: 112020004507

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200305