WO2019049248A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2019049248A1
WO2019049248A1 PCT/JP2017/032171 JP2017032171W WO2019049248A1 WO 2019049248 A1 WO2019049248 A1 WO 2019049248A1 JP 2017032171 W JP2017032171 W JP 2017032171W WO 2019049248 A1 WO2019049248 A1 WO 2019049248A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
target surface
volume
excavation
target
Prior art date
Application number
PCT/JP2017/032171
Other languages
English (en)
French (fr)
Inventor
孝昭 千葉
寿身 中野
田中 宏明
枝村 学
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2019510391A priority Critical patent/JP6676825B2/ja
Priority to EP17922068.6A priority patent/EP3680395B1/en
Priority to CN201780050290.2A priority patent/CN109757113B/zh
Priority to KR1020197003988A priority patent/KR102125282B1/ko
Priority to PCT/JP2017/032171 priority patent/WO2019049248A1/ja
Priority to US16/328,895 priority patent/US20200217050A1/en
Publication of WO2019049248A1 publication Critical patent/WO2019049248A1/ja
Priority to US17/734,252 priority patent/US11851854B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller

Definitions

  • the present invention relates to a work machine on which machine control can be performed.
  • the hydraulic shovel may be provided with a control system that assists the operator in the digging operation.
  • the digging operation for example, an instruction of an arm cloud
  • the working machine front is selected based on the positional relationship between the target surface and the tip of the working machine (for example, the tip of the bucket).
  • the boom cylinder, the arm cylinder, and the bucket cylinder that drives the work machine so that the position of the tip of the work machine is held in the region above and on the target surface
  • control system that performs control (for example, extending a boom cylinder and forcibly performing a boom raising operation).
  • the target velocity vector of the bucket tip is calculated based on the signal from the operation device (operation lever), and the vector component in the direction approaching the target surface in the target velocity vector approaches the target surface. It is disclosed that the front working machine is held in a deceleration area (setting area) set above the target surface (boundary of the setting area) by controlling the boom cylinder so as to reduce it.
  • this type of control may be referred to as “machine control (MC: Machine Control)", “region limit control” or "intervention control (for operator operation)”.
  • Patent Document 2 in a scene where excavation is performed by a so-called bench cut method, an excavation amount (expected excavation amount) to be stored in a bucket in one excavation operation of a working machine is set, and one excavation is performed
  • a control device that determines an area where the estimated amount of excavation can be obtained from the excavating target by the operation as the excavation area S, and calculates the work position Pw of the work machine when performing the next excavation operation based on the excavation area S;
  • a work support system for a work machine comprising: a display device for displaying the information of the work position of the work machine calculated by the control device.
  • a display device for displaying the information of the work position of the work machine calculated by the control device.
  • Patent Document 2 Although the technique of Patent Document 2 is premised on excavation by the bench cut method, the same indication can be made also in the case of generating a target surface (plane) by the excavation operation as in Patent Document 1.
  • the distance (digging distance) for moving the bucket in one digging operation is determined, and the target in one digging operation Set a target plane at a predetermined depth (drilling depth) from the current topography so that drilling will be carried out for the drilling amount (target drilling amount (equivalent to the expected drilling amount of Patent Document 1)) It is conceivable to dig along the surface.
  • the drilling depth (target plane) is determined from a predetermined drilling distance, so the same applies when the drilling distance changes (for example, when drilling can not be started from a predetermined drilling start point)
  • Excavation based on the target surface may result in excess or deficiency of the excavation amount relative to the target excavation amount.
  • An object of the present invention is to provide a working machine capable of suppressing the occurrence of excess or deficiency of the amount of digging with respect to the target digging amount (restricted volume) regardless of the digging distance while reducing the burden on the operator at the time of digging operation generating the target surface. It is to do.
  • the present application includes a plurality of means for solving the above problems, and an example thereof is a work machine having a bucket, an arm and a boom, a plurality of hydraulic actuators for driving the work machines, and an operation of the hydraulic actuators
  • a work machine comprising: an operating device for instructing the operation device; and a control device for controlling the hydraulic actuator such that the operating range of the working machine is limited to a predetermined first target surface and above when the operating device is operated.
  • the control device includes a storage unit in which position information of the present topography is stored, a bucket position calculation unit that calculates the position of the tip of the bucket, and the bucket calculated by the bucket position calculation unit at the start of excavation.
  • the first position which is the position of the toe
  • the second position which is the position of the toe of the bucket at the end of the preset digging, the present topography
  • the first A predicted drilling volume computing unit for computing a predicted drilling volume defined by the plane and the width of the bucket, and, if the predicted drilling volume exceeds a preset limited volume, a second above the first target surface
  • a target surface generation unit configured to generate a target surface, the target surface generation unit being defined by the first position, the second position, the current topography, the second target surface, and the width of the bucket
  • the target surface is set so that the target excavation amount is maintained even if the excavation distance changes for each excavation operation, so the occurrence of excess or deficiency of the excavation amount with respect to the target excavation amount (limit volume) It can be suppressed and the efficiency of the drilling operation can be improved.
  • FIG. 3 is a detailed view of a front control hydraulic unit 160 in FIG. 2; The figure which shows the coordinate system and target surface (1st target surface) in the hydraulic shovel of FIG.
  • FIG. 7 is a functional block diagram of an MG / MC control unit 43 in FIG. 6; The side view showing the relationship between the present condition topography 800, the target surface (1st target surface) 700, and the hydraulic shovel 1.
  • FIG. 7 is a side view showing the relationship between the correction amount d, the first target surface 700, the second target surface 700A, and the hydraulic excavator 1.
  • the figure showing speed vector V0 of a bucket tip. 10 is a flowchart of target surface setting by the MG / MC control unit 43.
  • 16 is a flowchart of MC by the MG / MC control unit 43.
  • FIG. 1 is a block diagram of a hydraulic shovel according to an embodiment of the present invention
  • FIG. 2 is a view showing a controller of the hydraulic shovel according to the embodiment of the present invention together with a hydraulic drive
  • FIG. It is a detail view of hydraulic control unit 160 for front control.
  • the hydraulic shovel 1 is configured of an articulated work machine 1 ⁇ / b> A and a vehicle body 1 ⁇ / b> B.
  • the vehicle body 1B is mounted on the lower traveling body 11 traveling by the left and right traveling hydraulic motors 3a and 3b (the hydraulic motor 3a is shown in FIG. 2) and the lower traveling body 11. It consists of 12 bodies.
  • the front work implement 1A is configured by connecting a plurality of driven members (the boom 8, the arm 9, and the bucket 10) which rotate in the vertical direction.
  • the proximal end of the boom 8 is rotatably supported at the front of the upper swing body 12 via a boom pin.
  • An arm 9 is rotatably connected to the tip of the boom 8 via an arm pin, and a bucket 10 is rotatably connected to the tip of the arm 9 via a bucket pin.
  • the boom 8 is driven by the boom cylinder 5, the arm 9 is driven by the arm cylinder 6, and the bucket 10 is driven by the bucket cylinder 7.
  • the boom angle sensor 30 is for the boom pin
  • the arm angle sensor 31 is for the arm pin
  • the bucket angle sensor is for the bucket link 13 so that the rotation angles ⁇ , ⁇ and ⁇ (see FIG. 5) of the boom 8, arm 9 and bucket 10 can be measured.
  • 32 is attached, and a vehicle body inclination angle sensor 33 for detecting an inclination angle ⁇ (see FIG. 5) of the upper structure 12 (the vehicle body 1B) with respect to a reference surface (for example, horizontal surface) is attached to the upper structure 12.
  • the angle sensors 30, 31, 32 can be replaced by angle sensors with respect to a reference plane (for example, a horizontal plane).
  • An operating device 47a for operating the traveling right hydraulic motor 3a (lower traveling body 11) having a traveling right lever 23a (FIG. 2) in a cab 16 provided in the upper revolving superstructure 12
  • An operating device 47b for operating the traveling left hydraulic motor 3b (lower traveling body 11) having the traveling left lever 23b (FIG. 2) and a boom cylinder sharing the operation right lever 1a (FIG. 2) 5 (boom 8) and operating devices 45a and 46a (FIG. 2) for operating the bucket cylinder 7 (bucket 10), the arm cylinder 6 (arm 9) and the swing hydraulic pressure by sharing the operation left lever 1b (FIG. 2)
  • Operating devices 45 b and 46 b for operating the motor 4 (the upper swing body 12) are provided.
  • the travel right lever 23a, the travel left lever 23b, the operation right lever 1a, and the operation left lever 1b may be collectively referred to as operation levers 1 and 23.
  • the engine 18 mounted on the upper revolving superstructure 12 drives the hydraulic pump 2 and the pilot pump 48.
  • the hydraulic pump 2 is a variable displacement pump whose capacity is controlled by the regulator 2a, and the pilot pump 48 is a fixed displacement pump.
  • a shuttle block 162 is provided in the middle of the pilot lines 144, 145, 146, 147, 148 and 149. Hydraulic pressure signals output from the operating devices 45, 46, 47 are also input to the regulator 2a via the shuttle block 162.
  • a hydraulic pressure signal is input to the regulator 2a via the shuttle block 162, and the discharge flow rate of the hydraulic pump 2 is controlled according to the hydraulic pressure signal.
  • the pump line 170 which is a discharge pipe of the pilot pump 48, passes through the lock valve 39, and then branches into a plurality of parts and is connected to the valves in the operation devices 45, 46, 47 and the hydraulic unit 160 for front control.
  • the lock valve 39 is an electromagnetic switching valve in this example, and the electromagnetic drive unit is electrically connected to a position detector of a gate lock lever (not shown) disposed in the driver's cab 16 of the upper structure 12. The position of the gate lock lever is detected by a position detector, and a signal corresponding to the position of the gate lock lever is input to the lock valve 39 from the position detector.
  • the lock valve 39 When the position of the gate lock lever is in the lock position, the lock valve 39 is closed and the pump line 170 is shut off, and when in the lock release position, the lock valve 39 is opened and the pump line 170 is opened. That is, in the state where the pump line 170 is shut off, the operation by the operating devices 45, 46, 47 is invalidated, and the operation such as turning or digging is prohibited.
  • the operating devices 45, 46 and 47 are hydraulic pilot systems, and based on the pressure oil discharged from the pilot pump 48, the operating amounts (eg, lever strokes) of the operating levers 1 and 23 operated by the operator respectively A pilot pressure (sometimes referred to as operating pressure) corresponding to the operating direction is generated.
  • the pilot pressure thus generated is transmitted to the hydraulic drive units 150a to 155b of the corresponding flow control valves 15a to 15f (see FIG. 2 or FIG. 3) in the control valve unit (not shown). 3) and is used as a control signal for driving the flow control valves 15a to 15f.
  • the pressure oil discharged from the hydraulic pump 2 passes through the flow control valves 15a, 15b, 15c, 15d, 15e and 15f (see FIG. 3), the traveling right hydraulic motor 3a, the traveling left hydraulic motor 3b, the turning hydraulic motor 4, It is supplied to the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7.
  • the boom 8, the arm 9, and the bucket 10 are respectively rotated by the expansion and contraction of the boom cylinder 5, the arm cylinder 6, and the bucket cylinder 7 by the supplied pressure oil, and the position and posture of the bucket 10 are changed.
  • the swing hydraulic motor 4 is rotated by the supplied pressure oil, so that the upper swing body 12 swings relative to the lower traveling body 11.
  • the traveling right hydraulic motor 3a and the traveling left hydraulic motor 3b are rotated by the supplied pressure oil, whereby the lower traveling body 11 travels.
  • the posture of the work implement 1A can be defined based on the shovel coordinate system (local coordinate system) of FIG.
  • the shovel coordinate system in FIG. 4 is the coordinates set for the upper revolving superstructure 12, and the base of the boom 8 is set as the origin PO, and the Z axis is set vertically in the upper revolving superstructure 12 and the X axis in the horizontal direction. Also, the direction defined by the right-handed system by the X axis and the Z axis is taken as the Y axis.
  • the inclination angle of the boom 8 with respect to the X axis is the boom angle ⁇
  • the inclination angle of the arm 9 with respect to the boom is the arm angle ⁇
  • the inclination angle of the bucket tip with respect to the arm is the bucket angle ⁇ .
  • the inclination angle of the vehicle body 1B (upper revolving unit 12) with respect to the horizontal plane (reference plane) is taken as the inclination angle ⁇ .
  • the boom angle ⁇ is detected by the boom angle sensor 30, the arm angle ⁇ is detected by the arm angle sensor 31, the bucket angle ⁇ is detected by the bucket angle sensor 32, and the inclination angle ⁇ is detected by the vehicle body inclination angle sensor 33.
  • the boom angle ⁇ is minimized when the boom 8 is raised to the maximum (maximum) (when the boom cylinder 5 is in the stroke end in the upward direction, ie, when the boom cylinder length is longest), and the boom 8 is minimized (minimum) It is maximum when lowered (when the boom cylinder 5 is at the stroke end in the downward direction, that is, when the boom cylinder length is the shortest).
  • the arm angle ⁇ is minimum when the arm cylinder length is the shortest, and is maximum when the arm cylinder length is the longest.
  • the bucket angle ⁇ is minimum when the bucket cylinder length is the shortest (in the case of FIG. 4) and is maximum when the bucket cylinder length is the longest.
  • the tip position of the bucket 10 in the shovel coordinate system is expressed by the following equation (1) with X bk as the X direction position and Z bk as the Z direction position. Can be represented by (2).
  • the hydraulic shovel 1 is provided with a pair of GNSS (Global Navigation Satellite System) antennas 14A and 14B on the upper swing body 12.
  • GNSS Global Navigation Satellite System
  • the position of the hydraulic shovel 1 in the global coordinate system and the position of the bucket 10 can be calculated based on the information from the GNSS antenna 14.
  • FIG. 5 is a configuration diagram of a machine guidance (MG) and a machine control (MC) system provided in the hydraulic shovel according to the present embodiment.
  • the MC of the front work machine 1A in this system is a predetermined closed area set above the target surface 700 (see FIG. 4) in which the operation devices 45a, 45b and 46a are operated and set arbitrarily.
  • control for operating the work machine 1A according to predetermined conditions is executed. Specifically, in the decelerating region 600, the vector component in the direction of approaching the target surface 700 in the speed vector of the tip of the work implement 1A as the tip of the work implement 1A (for example, the tip of the bucket 10) approaches the target surface 700.
  • the control of at least one of the plurality of hydraulic actuators 5, 6, 7 is performed as an MC so as to reduce the (described later in detail).
  • the control of the hydraulic actuators 5, 6, 7 is performed by forcibly outputting a control signal (for example, extending the boom cylinder 5 and forcibly performing a boom raising operation) to the corresponding flow control valves 15a, 15b, 15c.
  • a control signal for example, extending the boom cylinder 5 and forcibly performing a boom raising operation
  • this MC prevents the tip of the bucket 10 from invading below the target surface 700, excavation along the target surface 700 becomes possible regardless of the degree of the skill of the operator.
  • work implement 1A is positioned in the non-deceleration area (second area) 620 set above deceleration area 600 and adjacent to deceleration area 600, MC is not executed and the work machine is operated according to the operator's operation. 1A works.
  • a dotted line 650 in FIG. 4 is a boundary between the deceleration region 600 and the non-deceleration region 620.
  • the control point of the front work machine 1A at the time of MC is set to the toe of the bucket 10 of the hydraulic shovel (the tip of the work machine 1A), but the control point is the tip of the work machine 1A. If it is a point, it is changeable besides a bucket toe. For example, the bottom of the bucket 10 or the outermost part of the bucket link 13 can also be selected, and a point on the bucket 10 closest to the target surface 700 may be used as a control point.
  • the operation of the work machine 1A is controlled by the controller (control device) 40 when the operation device 45, 46 is not operated, whereas the operation is performed only when the operation device 45, 46 is operated.
  • the operation of the machine 1A may be referred to as "semi-automatic control" which is controlled by the controller 40.
  • MG of the front work machine 1A in this system for example, as shown in FIG. 15, there is a process of displaying the positional relationship between the target surface 700 and the work machine 1A (eg, the bucket 10) on the display device 53a. To be done.
  • the work machine 1A eg, the bucket
  • the system shown in FIG. 5 is a display capable of displaying the positional relationship between the target plane 700 and the work machine 1A, which is installed in the cab 16 and has the work machine posture detection device 50, the target surface setting device 51, the operator operation detection device 52a. It comprises an apparatus 53a, a present topography acquisition apparatus 96 for acquiring position information of the present topography 800 to be a work target of the work machine 1A, and a controller (control apparatus) 40 which controls MG and MC.
  • the work implement attitude detection device 50 is configured of a boom angle sensor 30, an arm angle sensor 31, a bucket angle sensor 32, and a vehicle body inclination angle sensor 33. These angle sensors 30, 31, 32, 33 function as posture sensors of the work machine 1A.
  • the target surface setting device 51 is an interface capable of inputting information on the target surface 700 (including position information and tilt angle information of each target surface).
  • the target surface setting device 51 is connected to an external terminal (not shown) which stores three-dimensional data of the target surface defined on the global coordinate system (absolute coordinate system). The operator may manually input the target surface via the target surface setting device 51.
  • the operator operation detection device 52a is a pressure sensor 70a that acquires the operation pressure (first control signal) generated in the pilot lines 144, 145, 146 by the operation of the operation levers 1a, 1b (operation devices 45a, 45b, 46a) by the operator. 70b, 71a, 71b, 72a, 72b. That is, the operation on the hydraulic cylinders 5, 6, 7 related to the working machine 1A is detected.
  • the present topography acquisition device 96 for example, a stereo camera, a laser scanner, an ultrasonic sensor, or the like provided in the shovel 1 can be used. These devices measure the distance from the shovel 1 to a point on the present topography, and the present topography acquired by the present topography acquisition device 96 is defined by a huge amount of point cloud position data.
  • the present topography acquisition device as an interface for acquiring in advance three-dimensional data of the present topography by a drone or the like equipped with a stereo camera, a laser scanner, an ultrasonic sensor, etc. and importing the three-dimensional data into the controller 40 96 may be configured.
  • the front control hydraulic unit 160 is provided on the pilot lines 144 a and 144 b of the operating device 45 a for the boom 8 and detects a pilot pressure (first control signal) as an operation amount of the operation lever 1 a.
  • Pressure sensors 70a and 70b, an electromagnetic proportional valve 54a connected to the pilot pump 48 via the pump line 170 on the primary port side to reduce and output the pilot pressure from the pilot pump 48, and a pilot of the operating device 45a for the boom 8 Select the high pressure side of the pilot pressure in the pilot line 144a and the control pressure (second control signal) output from the solenoid proportional valve 54a, connected to the line 144a and the secondary port side of the solenoid proportional valve 54a, and select the flow control valve Of a shuttle valve 82a leading to the hydraulic drive unit 150a of 15a and an operating device 45a for the boom 8 B is installed in the lot line 144b, and a pilot pressure proportional solenoid valve 54b (the first control signal) reduces to the outputs of the pilot line 144b based on the control signal from the controller 40.
  • the front control hydraulic unit 160 is installed on the pilot lines 145a and 145b for the arm 9, and detects the pilot pressure (first control signal) as an operation amount of the control lever 1b and outputs it to the controller 40 71a, 71b and a solenoid proportional valve 55b installed in the pilot line 145b and reducing and outputting the pilot pressure (first control signal) based on the control signal from the controller 40, installed in the pilot line 145a and controlled
  • An electromagnetic proportional valve 55a is provided which reduces and outputs the pilot pressure (first control signal) in the pilot line 145a based on the control signal from the controller 40.
  • the front control hydraulic unit 160 also detects a pilot pressure (first control signal) as an operation amount of the control lever 1a on the pilot lines 146a and 146b for the bucket 10 and outputs the pressure sensor 72a to the controller 40. , 72b, and solenoid proportional valves 56a and 56b that reduce and output the pilot pressure (first control signal) based on the control signal from the controller 40, and the primary port side is connected to the pilot pump 48 and the pilot pump 48 Select the high pressure side of the solenoid proportional valves 56c and 56d for reducing and outputting the pilot pressure, the pilot pressure in the pilot lines 146a and 146b, and the control pressure output from the solenoid proportional valves 56c and 56d, and The shuttle valves 83a and 83b leading to the hydraulic drive units 152a and 152b It is provided. In FIG. 3, connecting lines between the pressure sensors 70, 71, 72 and the controller 40 are omitted for convenience of drawing.
  • the electromagnetic proportional valves 54b, 55a, 55b, 56a, 56b have the maximum opening degree when not energized, and the opening degree decreases as the current as the control signal from the controller 40 increases.
  • the electromagnetic proportional valves 54a, 56c, 56d have an opening degree of zero when not energized and an opening degree when energized, and the opening degree increases as the current (control signal) from the controller 40 increases.
  • the degree of opening 54, 55, 56 of each solenoid proportional valve corresponds to the control signal from the controller 40.
  • the solenoid proportional valves 54a, 56c, 56d are driven by outputting a control signal from the controller 40, when there is no operator operation of the corresponding operating device 45a, 46a. Since the pilot pressure (second control signal) can also be generated, the boom raising operation, the bucket cloud operation, and the bucket dump operation can be forcibly generated. Similarly, when the solenoid proportional valves 54b, 55a, 55b, 56a and 56b are driven by the controller 40, the pilot pressure (first control signal) generated by the operator operation of the operating devices 45a, 45b and 46a is reduced. The pilot pressure (second control signal) can be generated, and the speed of the boom lowering operation, the arm cloud / dump operation, and the bucket cloud / dump operation can be forcibly reduced from the value of the operator operation.
  • the pilot pressure generated by the operation of the operation devices 45a, 45b, and 46a is referred to as a "first control signal”.
  • the pilot pressure generated by correcting (reducing) the first control signal by driving the solenoid proportional valves 54b, 55a, 55b, 56a, 56b by the controller 40 The pilot pressure generated by driving the solenoid proportional valves 54a, 56c, 56d by the controller 40 and newly generated separately from the first control signal is referred to as a "second control signal".
  • the second control signal is generated when the velocity vector of the control point of work implement 1A generated by the first control signal violates a predetermined condition, and the velocity vector of the control point of work implement 1A which does not violate the predetermined condition Are generated as control signals for generating
  • the second control signal is prioritized.
  • the first control signal is interrupted by the proportional solenoid valve, and the second control signal is input to the other hydraulic drive. Therefore, of the flow control valves 15a to 15c, one for which the second control signal is calculated is controlled based on the second control signal, and one for which the second control signal is not calculated is based on the first control signal.
  • the MC can also be said to control the flow control valves 15a to 15c based on the second control signal.
  • the controller 40 includes an input interface 91, a central processing unit (CPU) 92 as a processor, a read only memory (ROM) 93 and a random access memory (RAM) 94 as a storage device, and an output interface 95.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the input interface 91 signals from the angle sensors 30 to 32 and the tilt angle sensor 33 which are the working machine posture detection device 50, and a signal from the target surface setting device 51 which is a device for setting the target surface 700;
  • a signal from the present topography acquisition device 96 for acquiring the present topography 800 is input and converted so that the CPU 92 can calculate.
  • the ROM 93 is a recording medium storing control programs for executing MC and MG including processing relating to a flowchart to be described later, and various information and the like necessary for executing the flowchart.
  • the CPU 92 stores the information in the ROM 93 Predetermined arithmetic processing is performed on signals taken in from the input interface 91, the ROM 93, and the RAM 94 in accordance with the control program.
  • the output interface 95 generates a signal for output according to the calculation result in the CPU 92, and can output the signal to the display device 53a so that the display device 53a can be operated.
  • the controller 40 in FIG. 5 includes semiconductor memories such as the ROM 93 and the RAM 94 as storage devices, but any storage device can be substituted in particular.
  • a magnetic storage device such as a hard disk drive may be included.
  • FIG. 6 is a functional block diagram of the controller 40. As shown in FIG.
  • the controller 40 comprises an MG and MC controller (MG / MC controller) 43, an electromagnetic proportional valve controller 44, and a display controller 374a.
  • the MG / MC control unit 43 MC at least one of the plurality of hydraulic actuators 5, 6, 7 in accordance with predetermined conditions when operating the operating devices 45a, 45b, 46a.
  • the MG / MC control unit 43 of the present embodiment controls the position of the target surface 700, the posture of the front work machine 1A, the position of the tip of the bucket 10, and the operation devices 45a and 45b when operating the operation devices 45a, 45b and 46a.
  • 46a at least one of the boom cylinder 5 (boom 8) and the arm cylinder 6 (arm 9) so that the toe (control point) of the bucket 10 is located on or above the target surface 700 based on the operation amount of Execute MC to control the operation.
  • the MG / MC control unit 43 calculates target pilot pressures of the flow rate control valves 15 a, 15 b and 15 c of the hydraulic cylinders 5, 6 and 7, and outputs the calculated target pilot pressure to the solenoid proportional valve control unit 44.
  • FIG. 7 is a functional block diagram of the MG / MC control unit 43 in FIG.
  • the MG / MC control unit 43 includes a present terrain update unit 43a, a present terrain storage unit 43b, a target surface storage unit 43c, a bucket position calculation unit 43d, a target speed calculation unit 43e, and an estimated excavation volume calculation unit 43f.
  • the current landform storage unit 43b stores position information (current landform data) of the current landform around the hydraulic shovel.
  • the present topography data is a point cloud having three-dimensional coordinate data acquired by the present topography acquisition device 96 at an appropriate timing in the global coordinate system.
  • the current terrain updater 43a stores the current terrain memory 43b according to the position information of the current terrain 800 acquired by the current terrain acquisition device 96. Update location information of existing terrain.
  • the target surface storage unit 43 c stores position information (target surface data) of the target surface (first target surface) 700 calculated based on the information from the target surface setting device 51.
  • position information target surface data
  • FIG. 4 a cross-sectional shape obtained by cutting a three-dimensional target surface along a plane (working plane of the working machine) along which the working machine 1A moves is used as a target plane 700 (two-dimensional target plane).
  • one target surface 700 is shown in the example of FIG. 4, there may be a case where a plurality of target surfaces exist.
  • a method of setting the one closest to the work machine 1A as the target surface for example, a method of setting one below the bucket toe as the target surface, or a arbitrarily selected one There is a method to make it a goal surface.
  • the bucket position calculation unit 43d calculates the posture of the front work machine 1A in the local coordinate system (excavator coordinate system) and the position of the tip of the bucket 10 based on the information from the work machine posture detection device 50.
  • the toe position information (X bk , Z bk ) (bucket position data) of the bucket 10 can be calculated by Expression (1) and Expression (2).
  • Expression (1) and Expression (2) are also possible to convert the present topography data and the design surface data into a vehicle coordinate system with the vehicle reference position P0 as the origin. is there.
  • an example will be described as a vehicle body coordinate system.
  • the predicted drilling volume calculation unit 43f calculates a predicted drilling volume Va based on the current topography data, the target surface data, the bucket position data, and the preset drilling end position (a reference position x0 described later).
  • the predicted drilling volume Va is the X coordinate of the bucket toe position (x1 described later), the X coordinate of the bucket toe position at the end of the digging (drilling end position) at the end of the digging (reference position x0 described later) ,
  • FIG. 8 is a side view showing the relationship between the current topography 800, the target surface (first target surface) 700, and the hydraulic shovel 1. As shown in FIG.
  • the volume Va of sediment within the range (the volume of the dotted area in FIG. 8) is calculated.
  • x1 is Xbk which is the X coordinate of the bucket toe position obtained from Formula (1).
  • the reference position x0 is the X coordinate of the bucket toe position at the end of the excavation, and any value near the traveling body 11 can be set.
  • the reference position x0 is set to the X coordinate of the foremost part of the lower traveling body 11 when the upper swing body 12 and the lower traveling body 11 are aligned in the front direction.
  • the sediment volume (expected drilling volume) Va can be obtained by the following equation (3).
  • the reference position x0 (the excavation end position) may be referred to as a "second position" with respect to the first position, which is the bucket toe position (the excavation start position) at the start of the excavation.
  • z in equation (3) is a deviation of Z coordinates of a point on the current topography having the same X, Y coordinates and a point on the target surface.
  • w is the width of the bucket 10.
  • the bucket width w is used to simplify the calculation, but the predicted drilling volume Va is obtained by integrating the point cloud of the present topography within the bucket width also in the Y-axis direction. May be
  • the predicted drilling volume calculation unit 43f outputs the predicted drilling volume Va to the target surface generation unit 43g.
  • the limited volume Vb can be arbitrarily set from a value equal to or less than the maximum volume of the excavable object that can be held by the bucket 10, and is usually a value equal to or less than twice the bucket volume.
  • the limited volume Vb can be rephrased as a target value (target excavation amount) of an excavation volume to be stored in the bucket 10 in a single excavation operation of the working machine 1A from the viewpoint of work efficiency.
  • the volume (referred to as a correction volume) Vc necessary to reduce the predicted drilling volume Va to the limited volume Vb can be calculated by the following equation (4) It is possible.
  • the digging distance L is a deviation of the X coordinate of the bucket tip position and the digging end position, and can be obtained by subtracting the reference position x0 from the bucket position information x1.
  • the correction amount d can be obtained as in equation (6) below.
  • the target surface generation unit 43g has a bucket position calculation unit 43d when the bucket toe position is within a predetermined range from the current topography 800 and the cloud operation (arm pull command) of the arm 6 is input through the operation device 45b.
  • the digging distance L is calculated with the computed position (x1) of the bucket toe as the digging start position (first position), and the digging distance L, the correction volume Vc, the bucket width w and the correction obtained by the above equation (6)
  • the first target surface 700 is offset upward by an amount d to produce a second target surface 700A.
  • the target surface generation unit 43g does not generate the second target surface 700A, and the MG / MC control unit 43 generates an MC based on the first target surface 700. Run.
  • the target surface (MC target target surface) closer to the bucket toe P4 (see FIG. 10) among the first target surface 700 and the second target surface 700A and the bucket toe P4 Calculate the distance D (target surface distance) of That is, when the second target surface 700A is generated by the target surface generation unit 43g, the target surface distance D is the distance between P4 and the second target surface 700A, and the second target surface 700A is generated by the target surface generation unit 43g. If it is not generated, the distance between P4 and the first target surface 700 is obtained.
  • FIG. 10 shows a positional relationship between the bucket toe P4 and the MC target surface 700, 700A. The distance between the foot of the perpendicular from the bucket toe P4 to the MC target surface 700, 700A and the bucket position coordinate is the target surface distance D between the MC target target surface 700, 700A and the bucket tip P4.
  • the target speed calculation unit 43e calculates the amount of operation of the operation devices 45a, 45b, 46a (the operation levers 1a, 1b) based on the input from the operator operation detection device 52a, and the boom cylinder 5 with the amount of operation.
  • the target operating speeds of the arm cylinder 6 and the bucket cylinder 7 are calculated.
  • the operation amounts of the operation devices 45a, 45b, 46a can be calculated from the detection values of the pressure sensors 70, 71, 72.
  • the calculation of the operation amount by the pressure sensors 70, 71, 72 is only an example, and for example, the operation lever is detected by a position sensor (for example, a rotary encoder) that detects the rotational displacement of the operation lever of each operation device 45a, 45b, 46a.
  • the amount of operation of may be detected. Also, instead of calculating the operation speed from the operation amount, a stroke sensor that detects the expansion amount of each hydraulic cylinder 5, 6, 7 is attached, and the operation speed of each cylinder is calculated based on the detected time change of the expansion amount.
  • the configuration to calculate is also applicable.
  • the correction speed calculator 43i calculates the target surface (the MC target surface used for calculating the target surface distance D, ie, the target surface, in the velocity vector V0 of the bucket tip P4).
  • a correction coefficient k of a component (vertical component) V0z perpendicular to 700 or the target surface 700A) is calculated.
  • FIG. 11 shows a graph representing the relationship between the target surface distance D and the velocity correction coefficient k. Assuming that the target surface distance D is positive when the bucket tip P4 is above the target surface, and the velocity in the target surface intrusion direction is positive, as the target surface distance D decreases from the predetermined distance d1, The speed correction coefficient k decreases from one.
  • FIG. 12 shows a diagram showing the velocity vector V0 of the bucket tip.
  • the correction speed calculator 43i calculates the speed vector V0 of the bucket tip P4 based on the actuator speed output from the target speed calculator 43e. Then, the bucket velocity vector V0 is decomposed into a vertical component V0z and a horizontal component V0x of the target surface, and the vertical component V0z is multiplied by the correction coefficient k to obtain a correction velocity V1z.
  • the velocity vector formed by the corrected velocity V1z and the horizontal component V0x of the original velocity vector V0 is the velocity vector V1 after correction of the bucket tip P4.
  • the vertical velocity of the velocity vector approaches zero.
  • the target pilot pressure calculator (control signal calculator) 43j calculates target speeds of the hydraulic cylinders 5, 6, 7 that can output the corrected velocity vector V1 (V1z, V0x) of the bucket tip P4. At this time, if the software is designed to perform MC for converting the tip speed vector V0 into the target speed vector V1 by a combination of the boom raising and the deceleration of the arm cloud, the cylinder speed of the boom cylinder 5 in the extension direction and the arm The cylinder speed in the extension direction of the cylinder 6 is calculated.
  • the target pilot pressure calculation unit 43j calculates the target pilot pressure (control signal) to the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 based on the calculated target speeds of the cylinders 5, 6, 7. Is calculated, and target pilot pressures to the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 are output to the solenoid proportional valve control unit 44.
  • the solenoid proportional valve control unit 44 calculates a command to each of the solenoid proportional valves 54 to 56 based on the target pilot pressure to each of the flow control valves 15a, 15b, 15c output from the target pilot pressure calculation unit 43j.
  • the pilot pressure (first control signal) based on the operator operation matches the target pilot pressure calculated by the actuator control unit 81, the current value (command value) to the corresponding solenoid proportional valves 54 to 56 Becomes zero, and the corresponding solenoid proportional valves 54 to 56 are not operated.
  • the display control unit 374a selects the target plane 700 and the work machine 1A based on the posture information of the front work machine 1A input from the MG / MC control unit 43, the position information of the tip of the bucket 10, and the position information of the target plane 700.
  • a process of displaying the positional relationship with (the toe of the bucket 10) on the display device 53a is executed.
  • the positional relationship between the target surface 700 and the work implement 1A (the toe of the bucket 10) is displayed on the display screen of the display device 53a.
  • FIG. 13 shows a flowchart of target surface setting by the MG / MC control unit 43.
  • the MG / MC control unit 43 starts processing at a predetermined control cycle, and the present topography update section 43a is stored in the present topography storage section 43b according to the position information of the latest present topography acquired by the present topography acquisition apparatus 96.
  • the position information of the present terrain is updated (step S1).
  • the bucket position calculation unit 43d calculates the bucket tip position (X bk , Z bk ) based on the information output from the work implement posture detection device 50 (step S2).
  • the predicted digging volume calculation unit 43f acquires present topography data and first target surface data that are within a predetermined range based on the bucket tip position calculated in step S2 (step S3). Then, the predicted digging volume calculation unit 43f calculates the predicted digging volume Va from the position of the bucket tip, the present topography data, and the first target surface data (step S4).
  • the target surface generation unit 43g determines whether the predicted drilling volume Va exceeds a preset limit volume Vb (step S5). If it is determined in this step S5 that the predicted drilling volume Va does not exceed the limited volume Vb (ie, if the predicted drilling volume Va is equal to or smaller than the limited volume Vb), the target surface generation unit 43g does not generate the second target surface 700A. , And the first target surface 700 becomes the MC target surface (MC target target surface) (step S6).
  • step S5 if it is determined in step S5 that the predicted drilling volume Va exceeds the limit volume Vb, the correction amount d of the target surface generation unit 43g target surface is calculated (step S7), and the process proceeds to the next step S8.
  • step S8 the target surface generation unit 43g determines whether the bucket toe position (X bk , Z bk ) is within a predetermined range from the current topography 800. If it is determined in this determination that the bucket tip is present within the predetermined range, the process proceeds to step S9. If it is determined that the bucket tip is outside the predetermined range, the process proceeds to step S6.
  • step S9 the target surface generation unit 43g determines whether or not an arm pulling command (arm cloud operation) is input via the controller device 45b. If it is determined that the arm pulling command is not input in this determination, the process proceeds to step S6, and if it is determined that the arm pulling command is input, the correction amount d is increased above the first target surface 700
  • the second target surface 700A is generated as the second target surface 700A (step S10), and the process proceeds to step S11.
  • step S10 the second target surface 700A becomes the MC target surface (MC target target surface).
  • step S11 the target surface generation unit 43g determines whether or not the input of the arm pulling command has ended.
  • the use of the second target surface 700A corrected in step S10 by the MC is maintained.
  • the use of the second target surface 700A by the MC is finished.
  • FIG. 14 shows a flowchart of MC by the MG / MC control unit 43.
  • the MG / MC control unit 43 starts the process of FIG. 13 when any one of the operation devices 45a, 45b, 46a is operated by the operator, and the bucket position calculation unit 43d selects a bucket based on the information from the work machine posture detection device 50.
  • the toe position (bucket position data) is calculated (step S12).
  • step S13 the distance calculation unit 43h generates position information (target surface data) of the target surface set as the MC target surface according to the flow of FIG. 13 among the first target surface 700 and the second target surface 700A. Acquired from part 43g. Then, in step S14, the distance calculating unit 43h calculates the target surface distance D based on the bucket position data calculated in step S12 and the target surface data acquired in step S13.
  • step S15 based on the target surface distance D calculated in step S14, the correction speed calculation unit 43i corrects the correction coefficient k of the component V0z perpendicular to the MC target surface in the velocity vector V0 of the bucket tip P4. Calculate k ⁇ 1).
  • step S16 the target speed calculation unit 43e calculates the amount of operation of the operation devices 45a, 45b, 46a (the operation levers 1a, 1b) based on the input from the operator operation detection device 52a, and booms based on the amount of operation.
  • the target operating speeds of the cylinder 5, the arm cylinder 6, and the bucket cylinder 7 are calculated.
  • step S17 the correction speed calculation unit 43i calculates the speed vector V0 of the bucket tip P4 based on each actuator speed calculated in step S16. Then, the bucket velocity vector V0 is decomposed into a vertical component V0z and a horizontal component V0x of the target surface, and the vertical component V0z is multiplied by the correction coefficient k to obtain a correction velocity V1z. The correction speed calculation unit 43i combines the correction speed V1z and the horizontal component V0x of the original speed vector V0 to calculate the speed vector V1 after correction of the bucket tip P4.
  • step S18 the target pilot pressure calculator 43j calculates the target speeds of the hydraulic cylinders 5, 6, 7 based on the corrected velocity vector V1 (V1z, V0x) calculated in step S17. Then, the target pilot pressure calculation unit 43j calculates the target pilot pressure to the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 based on the calculated target speeds of the cylinders 5, 6, 7 The target pilot pressures to the flow control valves 15a, 15b, 15c of the hydraulic cylinders 5, 6, 7 are output to the solenoid proportional valve control unit 44. As a result, MC is executed to control at least one operation of the hydraulic cylinders 5, 6, 7 so that the bucket tip is positioned on or above the target surface 700.
  • the correction amount d is calculated so that the volume defined by the second target surface 700A set back upward by the amount d and the bucket width w becomes the limited volume Vb (step S5-S7).
  • step S9 when the predicted drilling volume Va is larger than the limited volume Vb, the presence or absence of the arm pulling command input is determined in step S9, and when the arm pulling command is input, the bucket toe at that time The position is regarded as the excavation start position (first position) to generate the second target surface 700A (step S10).
  • the predicted drilling volume Va is larger than the limited volume Vb at the start of the drilling (at the start of the arm cloud operation)
  • the predicted drilling volume is at a position where the predicted drilling volume is Vb according to the drilling start position (first position).
  • the second target plane 700A is generated, and the second target plane 700A is set as the MC target plane (processing of the route passing step S10 in FIG. 13 is performed).
  • the first target plane 700 is set as the MC target plane (processing of the route passing step S6 in FIG. 13 is performed).
  • the vertical component of the velocity vector of the tip (vertical to the target surface 700) MC is executed to control at least one of the hydraulic actuators 5, 6, 7 so that the component is reduced.
  • the operator can excavate along the MC target surface simply by inputting the arm cloud operation, and the burden on the operator at the time of excavation work Reduce.
  • the target surface is determined according to the bucket toe position (first position) at the start of digging so that the digging amount always becomes the limited volume Vb or less according to the flowchart of FIG. Even if the digging start position (first position) is different (that is, even if the digging distance L changes each time digging), the actual digging amount can be prevented from exceeding the limit volume Vb.
  • the excavation volume Va is calculated based on the posture of the hydraulic shovel 1 at the start of excavation, and the MC target surface is generated such that the actual excavation amount is always equal to or less than the limit volume Vb. Therefore, even when the digging distance L changes, the MC target surface can be generated at an appropriate position, and the actual digging amount can be prevented from exceeding the limited volume Vb (for example, the bucket maximum capacity).
  • the bucket 10 is prevented from invading below the MC target surface, and the front work machine 1A is controlled to operate the bucket 10 along the MC target surface, so that the operator in the digging operation
  • the operational burden of That is, for example, if the first target surface is set as a design surface indicating the final shape of the work object, and the restricted volume Vb is set to the bucket maximum capacity, the digging amount of the single digging operation is always kept below the bucket maximum capacity Excavating work can be performed without damaging the design surface in a state.
  • the present topography information is acquired from a drone equipped with a laser scanner as the present topography acquisition apparatus
  • the present topography acquisition device independent of the hydraulic shovel 1 may be prepared, and the present topography information acquired by the present topography acquisition apparatus may be input and used.
  • FIG. 16 is a functional block diagram of the MG / MC control unit 43A of this embodiment.
  • the MG / MC control unit 43A of the present embodiment differs from the MG / MC control unit 43 of the previous embodiment in that the MG / MC control unit 43A of the present embodiment is provided with the current terrain update unit 43aa.
  • the present landform update unit 43aa receives position information of the present landform stored in the present landform storage unit 43b and position information of the bucket tip calculated by the bucket position calculator 43d, and calculates the position data of the bucket tip calculator 43d.
  • the position information of the bucket toe calculated by the bucket position calculation unit 43d is stored in the present topography storage unit 43b Update location information of existing terrain.
  • the present topography stored in the present topography storage unit 43b when the position of the bucket toe calculated by the bucket position calculation unit 43d is above the position of the present topography stored in the present topography storage unit 43b, the present topography stored in the present topography storage unit 43b.
  • Location information is not updated. That is, in the present embodiment, the current topography data is updated by regarding the trajectory of the bucket toe when digging the current topography as the current topography after the excavation.
  • FIG. 17 is a schematic view showing the update of the present topography by the present topography update unit 43aa based on the position information of the bucket toe. Comparing the coordinate z1 in the bucket height direction at a horizontal coordinate x 'with the coordinate z0 in the height direction of the existing terrain, if z1 is lower than z0, update z1 as new existing topography data Do.
  • the present topography acquisition device 96 does not need to acquire the present topography data for each excavation, and the time required for acquiring the present topography data may be shortened. It is possible.
  • the present topography data is sequentially updated by the updating function of the present topography update unit 43 aa after that, and therefore the installation of the present topography acquisition apparatus 96 on the hydraulic shovel 1 is omitted. It also becomes possible.
  • the first target surface 700 in the above description may be considered as a design surface that defines the final construction shape.
  • FIG. 18 is a schematic view showing a method of generating the second target surface 700A when the first target surface 700 is inclined with respect to the shovel coordinates.
  • the digging distance L ′ in the first target surface direction is expressed by the following equation (7) using the horizontal distance L in the shovel coordinates Required.
  • the correction amount d of the first target surface 700 is calculated as in the case where the first target surface 700 is not inclined. Is possible.
  • FIG. 19 is a schematic view showing a method of generating the second target surface 700A in the case where the first target surface 700 is constituted by a plurality of surfaces having different inclinations.
  • the horizontal coordinate of the point at which the inclination of the first target surface 700 switches is x2
  • the first target surface 700 is predicted to be excavated in the horizontal range
  • the correction amount d can be calculated by using the sum (L2 + L1 ′) of the digging distances L1 ′ of L as L in the equation (6).
  • the hydraulic shovel may be configured to set the target surface directly at a position where the expected drilling volume to be excavated in one excavation operation matches the limit volume Vb or a position approaching the limit volume Vb .
  • the first position which is the bucket tip position calculated by the bucket position calculation unit 43d at the start of excavation
  • the second position which is the bucket tip position at the end of excavation, which is preset, the current topography 800, the target surface
  • the controller 43 further includes a target surface generation unit 43g that generates a surface, and the controller 43 controls the hydraulic pressure so that the operation range of the work implement 1A is limited to the target surface and above when the operation devices 45a
  • the correction coefficient k is not limited to the one defined in FIG. 11, and any other value may be used as long as the vertical component V0z of the velocity vector is corrected so as to approach zero as the target surface distance D approaches zero in the positive range. I don't care.
  • the present invention is not limited to the above-described embodiment, and includes various modifications within the scope of the present invention.
  • the present invention is not limited to the one provided with all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted.
  • part of the configuration according to one embodiment can be added to or replaced with the configuration according to another embodiment.
  • Target pilot pressure calculation unit 44
  • Electromagnetic proportional valve control unit 45 ... operating device (boom, arm), 46 ... operating device (bucket, turning), 50 ... working device posture detection device, 51 ... target surface setting device, 53a Display device, 54, 55, 56 ... proportional solenoid valve, 96 ... Status terrain acquisition device 374a ... display controller, 700 ... first target surface, 700A ... second target surface, 800 ... Status terrain

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

目標面を生成するオペレータの負担を軽減しながら,掘削距離によらず制限体積に対する掘削量の過不足の発生を抑制すること。 油圧ショベル1の制御装置40に,掘削開始時のバケット爪先位置(第1位置),予め設定された掘削終了時のバケット爪先位置(第2位置),現況地形800,第1目標面700,及び,バケット幅wによって規定される掘削予想体積Vaを演算する掘削予想体積演算部43fと,掘削予想体積Vaが制限体積Vbを越える場合,第1目標面の上方に第2目標面700Aを生成する目標面生成部43gとを備える。目標面生成部は,第1位置,第2位置,現況地形,第2目標面,及び,バケット幅によって規定される掘削体積が制限体積Vbに近づく位置に第2目標面を生成する。制御装置は,作業機1Aの動作範囲が第2目標面上及びその上方に制限されるように油圧アクチュエータ5,6,7を制御する

Description

作業機械
 本発明はマシンコントロールが実行可能な作業機械に関する。
 油圧ショベルには,オペレータの掘削操作を補助する制御システムが備えられることがある。具体的には,操作装置を介して掘削操作(例えば,アームクラウドの指示)が入力された場合,目標面と作業機の先端(例えばバケットの爪先)の位置関係を基に,作業機(フロント作業機とも言う)の先端の位置が目標面上及びその上方の領域内に保持されるように,作業機を駆動するブームシリンダ,アームシリンダ及びバケットシリンダのうち少なくとも1つを強制的に動作させる制御(例えば,ブームシリンダを伸ばして強制的にブーム上げ動作を行う)を実行する制御システムがある。このような作業機先端の動き得る領域を制限すると,掘削面の仕上げ作業や法面の成形作業が容易になる。
 例えば,特許文献1には,操作装置(操作レバー)からの信号を基にバケット先端の目標速度ベクトルを演算し,当該目標速度ベクトルにおける目標面に接近する方向のベクトル成分が目標面に近づくにつれて低減するようにブームシリンダを制御することで,目標面(設定領域の境界)の上方に設定した減速領域(設定領域)内にフロント作業機を保持するものが開示されている。以下では,この種の制御を「マシンコントロール(MC:Machine Control)」,「領域制限制御」または「(オペレータ操作に対する)介入制御」と称することがある。 
 ところで作業機械による掘削作業効率を向上する観点からは掘削動作ごとの掘削量を継続して最大化することが好ましい。特許文献2には,いわゆるベンチカット法による掘削をする場面において,作業機の1回の掘削動作でバケット内に収納されるべき掘削量(想定掘削量)を設定しておき,1回の掘削動作により掘削対象から当該想定掘削量が得られる領域を掘削領域Sとして決定し,当該掘削領域Sに基づいて次回の掘削動作を行う際の前記作業機械の作業位置Pwを算出する制御装置と,この制御装置が算出した前記作業機械の作業位置の情報を表示する表示装置とを備える作業機械の作業支援システムが開示されている。この技術では,次回の作業位置を表示装置に表示することで,作業機械が載っている掘削対象物の高さ(ベンチ高さ)Hが変化しても掘削動作ごとの掘削量を保持することを狙っている。
国際公開第1995/030059号パンフレット
特開2017-14726号公報
 引用文献2では,次回の掘削動作で掘削対象物が掘削される掘削領域Sの断面積sbとベンチ高さHとに基づいて掘削領域Sを決定している。そして,掘削領域Sは平行四辺形であると仮定し,sb=H・Lsが成立することを利用して算出した距離(掘削量設定距離)Lsから次回の作業位置Pwを算出している。つまりベンチ高さHが規定の値であることを前提として作業位置Pwを算出しているが,次回の掘削動作に際して所定のベンチ高さHよりも作業機械に近い位置から掘削を開始してしまった場合には,制御装置が算出した作業位置Pwに作業機械が位置していてもその掘削量は想定掘削量(目標掘削量)に不足してしまい作業効率が低下するおそれがある。
 この特許文献2の技術はベンチカット法による掘削を前提とするものであるが,特許文献1のように掘削動作によって目標面(平面)を生成する場合にも同様の指摘ができる。例えば,フロント作業機の前後方向において掘削開始点と掘削終了点を予め定めることで1回の掘削動作でバケットが移動する距離(掘削距離)を決定しておき,その1回の掘削動作で目標とする掘削量(目標掘削量(特許文献1の想定掘削量に相当))の掘削がなされるように現況地形から所定の深さ(掘削深さ)のところに目標面を設定し,その目標面に沿って掘削を行うことが考えられる。しかし,この方法では予め定めた掘削距離から掘削深さ(目標面)を決定しているため,掘削距離が変化した場合(例えば予め定めた掘削開始点から掘削が開始できなかった場合)に同じ目標面に基づいて掘削すると,目標掘削量に対して掘削量が過不足するおそれがある。
 本発明の目的は,目標面を生成する掘削作業時のオペレータの負担を軽減しながら,掘削距離によらず目標掘削量(制限体積)に対する掘削量の過不足の発生を抑制できる作業機械を提供することにある。
 本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,バケット,アーム及びブームを有する作業機と,前記作業機を駆動する複数の油圧アクチュエータと,前記油圧アクチュエータの動作を指示する操作装置と,前記操作装置の操作時に,前記作業機の動作範囲が所定の第1目標面上及びその上方に制限されるように前記油圧アクチュエータを制御する制御装置とを備える作業機械において,前記制御装置は,現況地形の位置情報が記憶された記憶部と,前記バケットの爪先の位置を演算するバケット位置演算部と,掘削開始時に前記バケット位置演算部で演算された前記バケットの爪先の位置である第1位置,予め設定された掘削終了時の前記バケットの爪先の位置である第2位置,前記現況地形,前記第1目標面,及び,前記バケットの幅によって規定される掘削予想体積を演算する掘削予想体積演算部と,前記掘削予想体積が予め設定された制限体積を越える場合,前記第1目標面の上方に第2目標面を生成する目標面生成部とを備え,前記目標面生成部は,前記第1位置,前記第2位置,前記現況地形,前記第2目標面,及び,前記バケットの幅によって規定される掘削体積が前記制限体積に近づく位置に前記第2目標面を生成し,前記制御装置は,前記第2目標面が生成された場合,前記作業機の動作範囲が前記第2目標面上及びその上方に制限されるように前記油圧アクチュエータを制御することとする。 
 本発明によれば,掘削動作ごとに掘削距離が変化しても目標掘削量が保持されるように目標面が設定されるので,目標掘削量(制限体積)に対する掘削量の過不足の発生を抑制でき掘削作業の効率を向上できる。
油圧ショベルの構成図。 油圧ショベルの制御コントローラを油圧駆動装置と共に示す図。 図2中のフロント制御用油圧ユニット160の詳細図。 図1の油圧ショベルにおける座標系および目標面(第1目標面)を示す図。 油圧ショベルの制御コントローラ40のハードウェア構成図。 油圧ショベルの制御コントローラ40の機能ブロック図。 図6中のMG・MC制御部43の機能ブロック図。 現況地形800と,目標面(第1目標面)700と,油圧ショベル1の関係を表す側面図。 補正量dと第1目標面700と第2目標面700Aと油圧ショベル1との関係を表す側面図。 バケット爪先P4と目標面700,700Aとの位置関係を示す図。 目標面距離Dと速度補正係数kとの関係を表すグラフ。 バケット先端の速度ベクトルV0を表す図。 MG/MC制御部43による目標面設定のフローチャート。 MG/MC制御部43によるMCのフローチャート。 表示装置53aの構成図の一例を示す図。 他の実施形態のMG/MC制御部43Aの機能ブロック図。 バケット爪先の位置情報に基づく現況地形更新部43aaによる現況地形の更新を表す模式図。 第1目標面700がショベル座標に対して傾斜している場合の第2目標面700Aの生成方法を表す模式図。 第1目標面700が傾斜の異なる複数面によって構成されている場合の第2目標面700Aの生成方法を表す模式図。
 以下,本発明の実施形態について図面を用いて説明する。なお,以下では,作業機の先端の作業具(アタッチメント)としてバケット10を備える油圧ショベルを例示するが,バケット以外のアタッチメントを備える作業機械で本発明を適用しても構わない。さらに,複数のリンク部材(アタッチメント,アーム,ブーム等)を連結して構成される多関節型の作業機を有するものであれば油圧ショベル以外の作業機械への適用も可能である。
 また,本稿では,或る形状を示す用語(例えば,目標面,設計面等)とともに用いられる「上」,「上方」又は「下方」という語の意味に関し,「上」は当該或る形状の「表面」を意味し,「上方」は当該或る形状の「表面より高い位置」を意味し,「下方」は当該或る形状の「表面より低い位置」を意味することとする。また,以下の説明では,同一の構成要素が複数存在する場合,符号(数字)の末尾にアルファベットを付すことがあるが,当該アルファベットを省略して当該複数の構成要素をまとめて表記することがある。例えば,3つのポンプ300a,300b,300cが存在するとき,これらをまとめてポンプ300と表記することがある。
 <油圧ショベルの全体構成>
 図1は本発明の実施形態に係る油圧ショベルの構成図であり,図2は本発明の実施形態に係る油圧ショベルの制御コントローラを油圧駆動装置と共に示す図であり,図3は図2中のフロント制御用油圧ユニット160の詳細図である。
 図1において,油圧ショベル1は,多関節型のフロント作業機1Aと,車体1Bで構成されている。車体1Bは,左右の走行油圧モータ3a,3b(油圧モータ3aは図2を参照)により走行する下部走行体11と,下部走行体11の上に取り付けられ,旋回油圧モータ4により旋回する上部旋回体12とからなる。
 フロント作業機1Aは,垂直方向にそれぞれ回動する複数の被駆動部材(ブーム8,アーム9及びバケット10)を連結して構成されている。ブーム8の基端は上部旋回体12の前部においてブームピンを介して回動可能に支持されている。ブーム8の先端にはアームピンを介してアーム9が回動可能に連結されており,アーム9の先端にはバケットピンを介してバケット10が回動可能に連結されている。ブーム8はブームシリンダ5によって駆動され,アーム9はアームシリンダ6によって駆動され,バケット10はバケットシリンダ7によって駆動される。
 ブーム8,アーム9,バケット10の回動角度α,β,γ(図5参照)を測定可能なように,ブームピンにブーム角度センサ30,アームピンにアーム角度センサ31,バケットリンク13にバケット角度センサ32が取付けられ,上部旋回体12には基準面(例えば水平面)に対する上部旋回体12(車体1B)の傾斜角θ(図5参照)を検出する車体傾斜角センサ33が取付けられている。なお,角度センサ30,31,32はそれぞれ基準面(例えば水平面)に対する角度センサに代替可能である。
 上部旋回体12に設けられた運転室16内には,走行右レバー23a(図2)を有し走行右油圧モータ3a(下部走行体11)を操作するための操作装置47a(図2)と,走行左レバー23b(図2)を有し走行左油圧モータ3b(下部走行体11)を操作するための操作装置47b(図2)と,操作右レバー1a(図2)を共有しブームシリンダ5(ブーム8)及びバケットシリンダ7(バケット10)を操作するための操作装置45a,46a(図2)と,操作左レバー1b(図2)を共有しアームシリンダ6(アーム9)及び旋回油圧モータ4(上部旋回体12)を操作するための操作装置45b,46b(図2)が設置されている。以下では,走行右レバー23a,走行左レバー23b,操作右レバー1aおよび操作左レバー1bを操作レバー1,23と総称することがある。
 上部旋回体12に搭載された原動機であるエンジン18は,油圧ポンプ2とパイロットポンプ48を駆動する。油圧ポンプ2はレギュレータ2aによって容量が制御される可変容量型ポンプであり,パイロットポンプ48は固定容量型ポンプである。本実施形態においては,図2に示すように,パイロットライン144,145,146,147,148,149の途中にシャトルブロック162が設けられている。操作装置45,46,47から出力された油圧信号が,このシャトルブロック162を介してレギュレータ2aにも入力される。シャトルブロック162の詳細構成は省略するが,油圧信号がシャトルブロック162を介してレギュレータ2aに入力されており,油圧ポンプ2の吐出流量が当該油圧信号に応じて制御される。
 パイロットポンプ48の吐出配管であるポンプライン170はロック弁39を通った後,複数に分岐して操作装置45,46,47,フロント制御用油圧ユニット160内の各弁に接続している。ロック弁39は本例では電磁切換弁であり,その電磁駆動部は上部旋回体12の運転室16に配置されたゲートロックレバー(不図示)の位置検出器と電気的に接続している。ゲートロックレバーのポジションは位置検出器で検出され,その位置検出器からロック弁39に対してゲートロックレバーのポジションに応じた信号が入力される。ゲートロックレバーのポジションがロック位置にあればロック弁39が閉じてポンプライン170が遮断され,ロック解除位置にあればロック弁39が開いてポンプライン170が開通する。つまり,ポンプライン170が遮断された状態では操作装置45,46,47による操作が無効化され,旋回,掘削等の動作が禁止される。
 操作装置45,46,47は,油圧パイロット方式であり,パイロットポンプ48から吐出される圧油をもとに,それぞれオペレータにより操作される操作レバー1,23の操作量(例えば,レバーストローク)と操作方向に応じたパイロット圧(操作圧と称することがある)を発生する。このように発生したパイロット圧は,コントロールバルブユニット(図示せず)内の対応する流量制御弁15a~15f(図2または図3参照)の油圧駆動部150a~155bにパイロットライン144a~149b(図3参照)を介して供給され,これら流量制御弁15a~15fを駆動する制御信号として利用される。
 油圧ポンプ2から吐出された圧油は,流量制御弁15a,15b,15c,15d,15e,15f(図3参照)を介して走行右油圧モータ3a,走行左油圧モータ3b,旋回油圧モータ4,ブームシリンダ5,アームシリンダ6,バケットシリンダ7,に供給される。供給された圧油によってブームシリンダ5,アームシリンダ6,バケットシリンダ7が伸縮することで,ブーム8,アーム9,バケット10がそれぞれ回動し,バケット10の位置及び姿勢が変化する。また,供給された圧油によって旋回油圧モータ4が回転することで,下部走行体11に対して上部旋回体12が旋回する。そして,供給された圧油によって走行右油圧モータ3a,走行左油圧モータ3bが回転することで,下部走行体11が走行する。
 作業機1Aの姿勢は図4のショベル座標系(ローカル座標系)に基づいて定義できる。図4のショベル座標系は,上部旋回体12に設定された座標であり,ブーム8の基底部を原点POとし,上部旋回体12における鉛直方向にZ軸,水平方向にX軸を設定した。また,X軸とZ軸によって右手系で規定される方向をY軸とする。X軸に対するブーム8の傾斜角をブーム角α,ブームに対するアーム9の傾斜角をアーム角β,アームに対するバケット爪先の傾斜角をバケット角γとした。水平面(基準面)に対する車体1B(上部旋回体12)の傾斜角を傾斜角θとした。ブーム角αはブーム角度センサ30により,アーム角βはアーム角度センサ31により,バケット角γはバケット角度センサ32により,傾斜角θは車体傾斜角センサ33により検出される。ブーム角αは,ブーム8を最大(最高)まで上げたとき(ブームシリンダ5が上げ方向のストロークエンドのとき,つまりブームシリンダ長が最長のとき)に最少となり,ブーム8を最小(最低)まで下げたとき(ブームシリンダ5が下げ方向のストロークエンドのとき,つまりブームシリンダ長が最短のとき)に最大となる。アーム角βは,アームシリンダ長が最短のときに最小となり,アームシリンダ長が最長のときに最大となる。バケット角γは,バケットシリンダ長が最短のとき(図4のとき)に最小となり,バケットシリンダ長が最長のときに最大となる。このとき,ブーム8の基底部からアーム9との接続部までの長さをL1,アーム9とブーム8の接続部からアーム9とバケット10の接続部までの長さをL2,アーム9とバケット10の接続部からバケット10の先端部までの長さをL3とすると,ショベル座標系におけるバケット10の先端位置は,XbkをX方向位置,ZbkをZ方向位置として,以下の式(1)(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 また,油圧ショベル1は,図1に示すように,上部旋回体12に一対のGNSS(Global Navigation Sattelite System)アンテナ14A,14Bを備えている。GNSSアンテナ14からの情報に基づき,グローバル座標系における油圧ショベル1の位置,またバケット10の位置を算出することができる。
 図5は本実施形態に係る油圧ショベルが備えるマシンガイダンス(Machine Guidance:MG)ならびにマシンコントロール(Machine Control:MC)システムの構成図である。
 本システムでのフロント作業機1AのMCとしては,操作装置45a,45b,46aが操作され,かつ,任意に設定された目標面700(図4参照)の上方に設定された所定の閉領域である減速領域(第1領域)600に作業機1Aが位置する場合,予め定めた条件に従って作業機1Aを動作させる制御が実行される。具体的には,減速領域600では,作業機1Aの先端部(例えばバケット10の爪先)が目標面700に近づくほど作業機1Aの先端部の速度ベクトルにおける目標面700に接近する方向のベクトル成分が低減するように複数の油圧アクチュエータ5,6,7のうち少なくとも1つを制御することがMCとして行われる(詳細は後述)。油圧アクチュエータ5,6,7の制御は,該当する流量制御弁15a,15b,15cに制御信号(例えば,ブームシリンダ5を伸ばして強制的にブーム上げ動作を行う)を強制的に出力することで行われる。このMCによりバケット10の爪先が目標面700の下方に侵入することが防止されるので,オペレータの技量の程度に関わらず目標面700に沿った掘削が可能となる。一方,減速領域600の上方に減速領域600と隣接して設定された非減速領域(第2領域)620に作業機1Aが位置する場合にはMCは実行されず,オペレータの操作通りに作業機1Aが動作する。図4における点線650は,減速領域600と非減速領域620の境界線である。
 なお,本実施形態では,MC時のフロント作業機1Aの制御点を,油圧ショベルのバケット10の爪先(作業機1Aの先端)に設定しているが,制御点は作業機1Aの先端部分の点であればバケット爪先以外にも変更可能である。例えば,バケット10の底面やバケットリンク13の最外部も選択可能であり,目標面700から最も距離の近いバケット10上の点を適宜制御点とする構成を採用しても良い。また,本稿ではMCを,操作装置45,46の非操作時に作業機1Aの動作を制御コントローラ(制御装置)40により制御する「自動制御」に対して,操作装置45,46の操作時にのみ作業機1Aの動作を制御コントローラ40により制御する「半自動制御」と称することがある。
 また,本システムでのフロント作業機1AのMGとしては,例えば図15に示すように,目標面700と,作業機1A(例えば,バケット10)との位置関係を表示装置53aに表示する処理が行われる。
 図5のシステムは,作業機姿勢検出装置50と,目標面設定装置51と,オペレータ操作検出装置52aと,運転室16内に設置され目標面700と作業機1Aの位置関係を表示可能な表示装置53aと,作業機1Aの作業対象となる現況地形800の位置情報を取得する現況地形取得装置96と,MG及びMCを司る制御コントローラ(制御装置)40とを備えている。
 作業機姿勢検出装置50は,ブーム角度センサ30,アーム角度センサ31,バケット角度センサ32,車体傾斜角センサ33から構成される。これらの角度センサ30,31,32,33は作業機1Aの姿勢センサとして機能している。
 目標面設定装置51は,目標面700に関する情報(各目標面の位置情報や傾斜角度情報を含む)を入力可能なインターフェースである。目標面設定装置51は,グローバル座標系(絶対座標系)上に規定された目標面の3次元データを格納した外部端末(図示せず)と接続されている。なお,目標面設定装置51を介した目標面の入力は,オペレータが手動で行っても良い。
 オペレータ操作検出装置52aは,オペレータによる操作レバー1a,1b(操作装置45a,45b,46a)の操作によってパイロットライン144,145,146に生じる操作圧(第1制御信号)を取得する圧力センサ70a,70b,71a,71b,72a,72bから構成される。すなわち,作業機1Aに係る油圧シリンダ5,6,7に対する操作を検出している。
 現況地形取得装置96としては,例えばショベル1に備えられたステレオカメラ,レーザスキャナ又は超音波センサ等が利用できる。これらの装置はショベル1から現況地形上の点までの距離を計測するものであり,現況地形取得装置96で取得した現況地形は膨大な量の点群の位置データで定義される。なお,現況地形の3次元データをステレオカメラ,レーザスキャナ又は超音波センサ等を搭載したドローン等により予め取得しておき,当該3次元データを制御コントローラ40内に取り込むためのインターフェースとして現況地形取得装置96を構成しても良い。
 <フロント制御用油圧ユニット160>
 図3に示すように,フロント制御用油圧ユニット160は,ブーム8用の操作装置45aのパイロットライン144a,144bに設けられ,操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出する圧力センサ70a,70bと,一次ポート側がポンプライン170を介してパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁54aと,ブーム8用の操作装置45aのパイロットライン144aと電磁比例弁54aの二次ポート側に接続され,パイロットライン144a内のパイロット圧と電磁比例弁54aから出力される制御圧(第2制御信号)の高圧側を選択し,流量制御弁15aの油圧駆動部150aに導くシャトル弁82aと,ブーム8用の操作装置45aのパイロットライン144bに設置され,制御コントローラ40からの制御信号を基にパイロットライン144b内のパイロット圧(第1制御信号)を低減して出力する電磁比例弁54bを備えている。
 また,フロント制御用油圧ユニット160は,アーム9用のパイロットライン145a,145bに設置され,操作レバー1bの操作量としてパイロット圧(第1制御信号)を検出して制御コントローラ40に出力する圧力センサ71a,71bと,パイロットライン145bに設置され,制御コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して出力する電磁比例弁55bと,パイロットライン145aに設置され,制御コントローラ40からの制御信号を基にパイロットライン145a内のパイロット圧(第1制御信号)を低減して出力する電磁比例弁55aが設けられている。
 また,フロント制御用油圧ユニット160は,バケット10用のパイロットライン146a,146bには,操作レバー1aの操作量としてパイロット圧(第1制御信号)を検出して制御コントローラ40に出力する圧力センサ72a,72bと,制御コントローラ40からの制御信号を基にパイロット圧(第1制御信号)を低減して出力する電磁比例弁56a,56bと,一次ポート側がパイロットポンプ48に接続されパイロットポンプ48からのパイロット圧を減圧して出力する電磁比例弁56c,56dと,パイロットライン146a,146b内のパイロット圧と電磁比例弁56c,56dから出力される制御圧の高圧側を選択し,流量制御弁15cの油圧駆動部152a,152bに導くシャトル弁83a,83bとがそれぞれ設けられている。なお,図3では,圧力センサ70,71,72と制御コントローラ40との接続線は紙面の都合上省略している。
 電磁比例弁54b,55a,55b,56a,56bは,非通電時には開度が最大で,制御コントローラ40からの制御信号である電流を増大させるほど開度は小さくなる。一方,電磁比例弁54a,56c,56dは,非通電時には開度をゼロ,通電時に開度を有し,制御コントローラ40からの電流(制御信号)を増大させるほど開度は大きくなる。このように各電磁比例弁の開度54,55,56は制御コントローラ40からの制御信号に応じたものとなる。
 上記のように構成される制御用油圧ユニット160において,制御コントローラ40から制御信号を出力して電磁比例弁54a,56c,56dを駆動すると,対応する操作装置45a,46aのオペレータ操作が無い場合にもパイロット圧(第2制御信号)を発生できるので,ブーム上げ動作,バケットクラウド動作,バケットダンプ動作を強制的に発生できる。また,これと同様に制御コントローラ40により電磁比例弁54b,55a,55b,56a,56bを駆動すると,操作装置45a,45b,46aのオペレータ操作により発生したパイロット圧(第1制御信号)を減じたパイロット圧(第2制御信号)を発生することができ,ブーム下げ動作,アームクラウド/ダンプ動作,バケットクラウド/ダンプ動作の速度をオペレータ操作の値から強制的に低減できる。
 本稿では,流量制御弁15a~15cに対する制御信号のうち,操作装置45a,45b,46aの操作によって発生したパイロット圧を「第1制御信号」と称する。そして,流量制御弁15a~15cに対する制御信号のうち,制御コントローラ40で電磁比例弁54b,55a,55b,56a,56bを駆動して第1制御信号を補正(低減)して生成したパイロット圧と,制御コントローラ40で電磁比例弁54a,56c,56dを駆動して第1制御信号とは別に新たに生成したパイロット圧を「第2制御信号」と称する。
 第2制御信号は,第1制御信号によって発生される作業機1Aの制御点の速度ベクトルが所定の条件に反するときに生成され,当該所定の条件に反しない作業機1Aの制御点の速度ベクトルを発生させる制御信号として生成される。なお,同一の流量制御弁15a~15cにおける一方の油圧駆動部に対して第1制御信号が,他方の油圧駆動部に対して第2制御信号が生成される場合は,第2制御信号を優先的に油圧駆動部に作用させるものとし,第1制御信号を電磁比例弁で遮断し,第2制御信号を当該他方の油圧駆動部に入力する。したがって,流量制御弁15a~15cのうち第2制御信号が演算されたものについては第2制御信号を基に制御され,第2制御信号が演算されなかったものについては第1制御信号を基に制御され,第1及び第2制御信号の双方が発生しなかったものについては制御(駆動)されないことになる。上記のように第1制御信号と第2制御信号を定義すると,MCは,第2制御信号に基づく流量制御弁15a~15cの制御ということもできる。
 <制御コントローラ>
 図5において制御コントローラ40は,入力インターフェース91と,プロセッサである中央処理装置(CPU)92と,記憶装置であるリードオンリーメモリ(ROM)93及びランダムアクセスメモリ(RAM)94と,出力インターフェース95とを有している。入力インターフェース91には,作業機姿勢検出装置50である角度センサ30~32及び傾斜角センサ33からの信号と,目標面700を設定するための装置である目標面設定装置51からの信号と, 現況地形800を取得する現況地形取得装置96からの信号が入力され,CPU92が演算可能なように変換する。ROM93は,後述するフローチャートに係る処理を含めMC及びMGを実行するための制御プログラムと,当該フローチャートの実行に必要な各種情報等が記憶された記録媒体であり,CPU92は,ROM93に記憶された制御プログラムに従って入力インターフェース91及びROM93,RAM94から取り入れた信号に対して所定の演算処理を行う。出力インターフェース95は,CPU92での演算結果に応じた出力用の信号を作成し,その信号を表示装置53aに出力すること表示装置53aを作動させられることができる。
 なお,図5の制御コントローラ40は,記憶装置としてROM93及びRAM94という半導体メモリを備えているが,記憶装置であれば特に代替可能であり,例えばハードディスクドライブ等の磁気記憶装置を備えても良い。
 図6は,制御コントローラ40の機能ブロック図である。制御コントローラ40は,MG及びMC制御部(MG/MC制御部)43と,電磁比例弁制御部44と,表示制御部374aを備えている。
 <MG/MC制御部43>
 MG/MC制御部43は,操作装置45a,45b,46aの操作時に,予め定めた条件に従って複数の油圧アクチュエータ5,6,7の少なくとも1つをMCする。本実施形態のMG/MC制御部43は,操作装置45a,45b,46aの操作時に,目標面700の位置と,フロント作業機1Aの姿勢及びバケット10の爪先の位置と,操作装置45a,45b,46aの操作量とに基づいて,目標面700上またはその上方にバケット10の爪先(制御点)が位置するようにブームシリンダ5(ブーム8)及びアームシリンダ6(アーム9)の少なくとも一方の動作を制御するMCを実行する。MG/MC制御部43は,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cの目標パイロット圧を演算し,その演算した目標パイロット圧を電磁比例弁制御部44に出力する。
 図7は図6中のMG/MC制御部43の機能ブロック図である。MG/MC制御部43は,現況地形更新部43aと,現況地形記憶部43bと,目標面記憶部43cと,バケット位置演算部43dと,目標速度演算部43eと,掘削予想体積演算部43fと,目標面生成部43gと,距離演算部43hと,補正速度演算部43iと,目標パイロット圧演算部43jを備えている。
 現況地形記憶部43bは,油圧ショベル周囲の現況地形の位置情報(現況地形データ)を記憶する。例えば,現況地形データは,グローバル座標系において適宜のタイミングで現況地形取得装置96によって取得された3次元の座標データを有する点群である。
 現況地形更新部43aは,掘削予想体積演算部43fにより掘削予想体積Va(後述)が演算されるとき,現況地形取得装置96によって取得された現況地形800の位置情報によって現況地形記憶部43bに記憶された現況地形の位置情報を更新する。
 目標面記憶部43cは,目標面設定装置51からの情報に基づき演算された目標面(第1目標面)700の位置情報(目標面データ)を記憶する。本実施形態では,図4に示すように,3次元の目標面を作業機1Aが移動する平面(作業機の動作平面)で切断した断面形状を目標面700(2次元の目標面)として利用する。なお,図4の例では目標面700は1つだが,目標面が複数存在する場合もある。目標面が複数存在する場合には,例えば,作業機1Aから最も近いものを目標面と設定する方法や,バケット爪先の下方に位置するものを目標面とする方法や,任意に選択したものを目標面とする方法等がある。
 バケット位置演算部43dは,作業機姿勢検出装置50からの情報に基づき,ローカル座標系(ショベル座標系)におけるフロント作業機1Aの姿勢と,バケット10の爪先の位置を演算する。既述のとおり,バケット10の爪先位置情報(Xbk,Zbk)(バケット位置データ)は,式(1)及び式(2)により演算できる。また,グローバル座標系における,車体基準位置P0の座標と車体傾斜角度θに基づいて,現況地形データと,設計面データとを車体基準位置P0を原点とした車体座標系に変換することが可能である。以下,車体座標系として例を説明する。
 掘削予想体積演算部43fは,現況地形データと,目標面データと,バケット位置データと,予め設定した掘削終了位置(後述の基準位置x0)に基づいて掘削予想体積Vaを演算する。掘削予想体積Vaは,バケット爪先位置のX座標(後述のx1)と,予め設定された掘削終了時のバケット爪先位置(掘削終了位置)のX座標(後述の基準位置x0)と,現況地形800と,目標面700と,バケット10の幅によって規定された閉領域の体積である。図8に現況地形800と,目標面(第1目標面)700と,油圧ショベル1の関係を表す側面図を示す。掘削予想体積演算部43fは,ショベル座標系のX方向において掘削終了位置として予め設定された基準位置x0と,バケット位置演算部43dによって演算されたバケット座標のXの値x1(=Xbk)の範囲内にある土砂の体積Va(図8中でドットを付した領域の体積)を演算する。x1は,式(1)から得られるバケット爪先位置のX座標であるXbkである。基準位置x0は,掘削終了時のバケット爪先位置のX座標であり,走行体11近傍の任意の値を設定できる。本実施形態では,基準位置x0は,上部旋回体12と下部走行体11の前方向を揃えたときの下部走行体11における最前部のX座標に設定されている。このとき,土砂の体積(掘削予想体積)Vaは下記の式(3)によって求めることができる。本稿では,基準位置x0(掘削終了位置)を,掘削開始時のバケット爪先位置(掘削開始位置)である第1位置に対して「第2位置」と称することがある。
Figure JPOXMLDOC01-appb-M000003
 ここで,式(3)中のzは,同一のX,Y座標を有する現況地形上の点と目標面上の点のZ座標の偏差である。また,wはバケット10の幅である。本実施形態では,計算の簡略化のために,バケット幅wを使用しているが,バケット幅内にある現況地形の点群をY軸方向にも積分することにより,掘削予想体積Vaを求めてもよい。掘削予想体積演算部43fは掘削予想体積Vaを目標面生成部43gに出力する。
 目標面生成部43gは,掘削予想体積Vaが予め設定された制限体積Vbを越える場合,第1目標面700を補正量dだけ上方にオフセットした新たな目標面(第2目標面)700Aを生成する。その際,目標面生成部43gは,バケット爪先の位置(x1=Xbk)と,予め設定された掘削終了位置(x0)と,現況地形800と,第2目標面700Aと,バケット幅wによって規定された閉領域の体積が制限体積Vb以下になるように補正量dを設定して第2目標面700Aの高さを決定する。図9に補正量dと第1目標面700と第2目標面700Aと油圧ショベル1との関係を表す側面図を示す。制限体積Vbは,バケット10で保持可能な掘削物の最大体積以下の値から任意に設定することができ,通常はバケット容量の2倍以下の値となる。また,制限体積Vbは,作業効率の観点から作業機1Aの1回の掘削動作でバケット10内に収納されるべき掘削体積の目標値(目標掘削量)と換言できる。
 ところで,掘削予想体積Vaから制限体積Vbを減算することで,掘削予想体積Vaを制限体積Vbに減らすために必要な体積(補正体積と称する)Vcを下記の式(4)により演算することが可能である。
Figure JPOXMLDOC01-appb-M000004
 補正体積Vcと,掘削距離Lと,バケット幅wと,補正量dの関係は下記の式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 ここで,掘削距離Lは,バケット爪先位置と掘削終了位置のX座標の偏差であり,バケット位置情報x1から基準位置x0を減算することで求めることができる。上記の式(5)を変形することで補正量dは下記の式(6)のように求めることができる。
Figure JPOXMLDOC01-appb-M000006
 目標面生成部43gは,バケット爪先位置が現況地形800から所定の範囲内にあり,操作装置45bを介してアーム6のクラウド操作(アーム引き指令)が入力されたときにバケット位置演算部43dが演算したバケット爪先の位置(x1)を掘削開始位置(第1位置)として掘削距離Lを算出し,その掘削距離Lと補正体積Vcとバケット幅wと上記の式(6)により求められた補正量dだけ第1目標面700を上方にオフセットして第2目標面700Aを生成する。また,掘削予想体積Vaが制限体積Vb以下であった場合は,目標面生成部43gは第2目標面700Aを生成せず,MG/MC制御部43は第1目標面700に基づいてMCを実行する。
 距離演算部43h,バケット位置データに基づいて,第1目標面700と第2目標面700Aのうちバケット爪先P4(図10参照)に近い方の目標面(MC対象目標面)とバケット爪先P4との距離(目標面距離)Dを演算する。すなわち,目標面距離Dは,目標面生成部43gによって第2目標面700Aが生成された場合にはP4と第2目標面700Aとの距離となり,目標面生成部43gによって第2目標面700Aが生成されなかった場合にはP4と第1目標面700との距離となる。図10にバケット爪先P4とMC対象目標面700,700Aとの位置関係を示す図を示す。バケット爪先P4からMC対象目標面700,700Aに下した垂線の足と,バケット位置座標との距離がMC対象目標面700,700Aとバケット先端P4との目標面距離Dである。
 目標速度演算部43eは,オペレータ操作検出装置52aからの入力を基に操作装置45a,45b,46a(操作レバー1a,1b)の操作量を算出し,その操作量に基づいてブームシリンダ5と,アームシリンダ6と,バケットシリンダ7の目標動作速度を演算する。操作装置45a,45b,46aの操作量は,圧力センサ70,71,72の検出値から算出できる。なお,圧力センサ70,71,72による操作量の算出は一例に過ぎず,例えば各操作装置45a,45b,46aの操作レバーの回転変位を検出する位置センサ(例えば,ロータリーエンコーダ)で当該操作レバーの操作量を検出しても良い。また,操作量から動作速度を算出する構成に代えて,各油圧シリンダ5,6,7の伸縮量を検出するストロークセンサを取り付け,検出した伸縮量の時間変化を基に各シリンダの動作速度を算出する構成も適用可能である。
 補正速度演算部43iは,距離演算部43hから出力された目標面距離Dに基づいて,バケット先端P4の速度ベクトルV0における目標面(目標面距離Dの算出に利用したMC目標面、すなわち目標面700または目標面700A)に垂直な成分(鉛直成分)V0zの補正係数kを演算する。
 図11に目標面距離Dと速度補正係数kとの関係を表すグラフを示す。バケット先端P4が目標面よりも上方にある場合に目標面距離Dは正であるとし,目標面侵入方向の速度を正とした場合に,目標面距離Dが所定の距離d1から減少するにつれて,速度補正係数kは1から減少する。
 図12にバケット先端の速度ベクトルV0を表す図を示す。補正速度演算部43iは目標速度演算部43eから出力されたアクチュエータ速度に基づいてバケット先端P4の速度ベクトルV0を演算する。そして,そのバケット速度ベクトルV0を目標面の鉛直成分V0zと水平成分V0xに分解し,鉛直成分V0zに補正係数kを乗算することにより補正速度V1zとする。補正速度V1zと元の速度ベクトルV0の水平成分V0xによってつくられる速度ベクトルが,バケット先端P4の補正後の速度ベクトルV1となる。これにより,バケット先端P4が目標面に近づいて距離Dがゼロに近づくほどその速度ベクトルの鉛直方向の速度はゼロに近づく。これにより目標面に沿ってバケット先端P4が動くMCが実行される。また,バケット先端P4が目標面から離れる方向に動作する場合(すなわち,鉛直成分V0zが上向きの場合)には,距離Dにかかわらず速度補正係数kを常に1とする。これによりブーム上げ動作が減速されることはない。
 目標パイロット圧演算部(制御信号演算部)43jは,バケット先端P4の補正後の速度ベクトルV1(V1z,V0x)が出力可能な各油圧シリンダ5,6,7の目標速度を演算する。このとき,ブーム上げとアームクラウドの減速との組合せで先端速度ベクトルV0を目標速度ベクトルV1に変換するMCを行うようにソフトが設計されていると,ブームシリンダ5の伸長方向のシリンダ速度とアームシリンダ6の伸長方向のシリンダ速度が演算される。そして,目標パイロット圧演算部43jは,算出した各シリンダ5,6,7の目標速度を基に各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧(制御信号)を演算し,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧を電磁比例弁制御部44に出力する。
 <電磁比例弁制御部44>
 電磁比例弁制御部44は,目標パイロット圧演算部43jから出力される各流量制御弁15a,15b,15cへの目標パイロット圧を基に,各電磁比例弁54~56への指令を演算する。なお,オペレータ操作に基づくパイロット圧(第1制御信号)と,アクチュエータ制御部81で算出された目標パイロット圧が一致する場合には,該当する電磁比例弁54~56への電流値(指令値)はゼロとなり,該当する電磁比例弁54~56の動作は行われない。
 <表示制御部374a>
 表示制御部374aは,MG/MC制御部43から入力されるフロント作業機1Aの姿勢情報,バケット10の爪先の位置情報,目標面700の位置情報に基づいて,目標面700と,作業機1A(バケット10の爪先)との位置関係を表示装置53aに表示する処理を実行する。これにより図15に示すように表示装置53aの表示画面に,目標面700と作業機1A(バケット10の爪先)の位置関係が表示される。
 <MG/MC制御部43による目標面設定のフローチャート>
 図13にMG/MC制御部43による目標面設定のフローチャートを示す。MG/MC制御部43は所定の制御周期で処理を開始し,現況地形更新部43aは,現況地形取得装置96によって取得された最新の現況地形の位置情報によって現況地形記憶部43bに記憶された現況地形の位置情報を更新する(手順S1)。
 次にバケット位置演算部43dは,作業機姿勢検出装置50から出力される情報を基にバケット爪先位置(Xbk,Zbk)を演算する(手順S2)。
 次に掘削予想体積演算部43fは手順S2で演算されたバケット爪先位置を基準として所定の範囲内にある現況地形データと第1目標面データを取得する(手順S3)。そして掘削予想体積演算部43fはバケット爪先位置と現況地形データと第1目標面データから掘削予想体積Vaを演算する(手順S4)。
 次に目標面生成部43gは掘削予想体積Vaが予め設定された制限体積Vbを越えるか否かを判定する(手順S5)。この手順S5で掘削予想体積Vaが制限体積Vbを越えないと判定された場合(すなわち掘削予想体積Vaが制限体積Vb以下の場合),目標面生成部43gは第2目標面700Aを生成せず,第1目標面700がMCの目標面(MC対象目標面)となる(手順S6)。
 一方,手順S5で掘削予想体積Vaが制限体積Vbを越えると判定された場合は目標面生成部43g目標面の補正量dを演算して(手順S7)次の手順S8に進む。
 手順S8では,目標面生成部43gはバケット爪先位置(Xbk,Zbk)が現況地形800から所定の範囲内に存在するか否かを判定する。この判定で当該所定の範囲内にバケット爪先が存在すると判定された場合は手順S9に進み,当該所定の範囲外に存在すると判定された場合は手順S6に進む。
 手順S9では,目標面生成部43gは操作装置45bを介してアーム引き指令(アームクラウド操作)が入力されたか否かを判定する。この判定でアーム引き指令が入力されていないと判定された場合には手順S6に進み,アーム引き指令が入力されていると判定された場合には第1目標面700の上方に補正量d分だけオフセットした面を第2目標面700Aとして生成し(手順S10),手順S11に進む。手順S10により第2目標面700AがMCの目標面(MC対象目標面)となる。
 手順S11では,目標面生成部43gは,アーム引き指令の入力が終了したか否かの判定を行う。ここでアーム引き指令が継続している間は手順S10で補正した第2目標面700AのMCでの利用を維持する。一方,アーム引き指令が終了した場合は第2目標面700AのMCでの利用を終了する。
 <MG/MC制御部43によるMCのフローチャート>
 図14はMG/MC制御部43によるMCのフローチャートを示す。MG/MC制御部43は操作装置45a,45b,46aのいずれかがオペレータにより操作されると図13の処理を開始し,バケット位置演算部43dは作業機姿勢検出装置50からの情報に基づきバケット爪先位置(バケット位置データ)を演算する(手順S12)。
 手順S13では,距離演算部43hが,第1目標面700と第2目標面700Aのうち図13のフローでMC対象目標面と設定された目標面の位置情報(目標面データ)を目標面生成部43gから取得する。そして,手順S14では,距離演算部43hが,手順S12で演算したバケット位置データと,手順S13で取得した目標面データに基づいて目標面距離Dを演算する。
 手順S15では,補正速度演算部43iが,手順S14で演算された目標面距離Dに基づいて,バケット先端P4の速度ベクトルV0におけるMC対象目標面に垂直な成分V0zの補正係数k(-1≦k≦1)を演算する。
 手順S16では,目標速度演算部43eが,オペレータ操作検出装置52aからの入力を基に操作装置45a,45b,46a(操作レバー1a,1b)の操作量を算出し,その操作量に基づいてブームシリンダ5と,アームシリンダ6と,バケットシリンダ7の目標動作速度を演算する。
 手順S17では,補正速度演算部43iが,手順S16で演算された各アクチュエータ速度に基づいてバケット先端P4の速度ベクトルV0を演算する。そして,そのバケット速度ベクトルV0を目標面の鉛直成分V0zと水平成分V0xに分解し,鉛直成分V0zに補正係数kを乗算することにより補正速度V1zとする。補正速度演算部43iは,補正速度V1zと元の速度ベクトルV0の水平成分V0xを合成してバケット先端P4の補正後の速度ベクトルV1を演算する。
 手順S18では,目標パイロット圧演算部43jが,手順S17で演算された補正後の速度ベクトルV1(V1z,V0x)を基に各油圧シリンダ5,6,7の目標速度を演算する。そして,目標パイロット圧演算部43jは,算出した各シリンダ5,6,7の目標速度を基に各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧を演算し,各油圧シリンダ5,6,7の流量制御弁15a,15b,15cへの目標パイロット圧を電磁比例弁制御部44に出力する。これにより目標面700上またはその上方にバケット爪先が位置するように油圧シリンダ5,6,7の少なくとも1つの動作を制御するMCが実行される。
 <動作・効果>
 上記のように構成される油圧ショベル1では,図13のフローチャートにより,そのときのバケット爪先位置(x1=Xd)と予め定めた掘削終了位置(x0(第2位置))と現況地形800と第1目標面700とバケット幅wによって規定される掘削予想体積Vaが所定の制御周期で演算される(手順S1-S4)。そして,掘削予想体積Vaが制限体積Vbより大きい場合には,そのときのバケット爪先位置(x1)と,予め定めた掘削終了位置(x0)と,現況地形800と,第11目標面700を補正量dだけ上方にセットバックした第2目標面700Aと,バケット幅wとによって規定される体積が制限体積Vbになるように補正量dが演算される(手順S5-S7)。
 ところで,通常,油圧ショベル1で掘削作業を開始する場合には,ブーム5の上げ・下げ操作及びアーム6のダンプ操作により現況地形上で車体1Bから離れた位置にバケット爪先を移動させた状態で操作装置45bを介してアーム引き指令(アーム6のクラウド操作)を入力することで掘削作業を開始する。すなわち,アーム引き指令が入力された時には,バケット爪先位置は現況地形上に在りその位置から掘削作業が開始するとみなすことができる。そこで本実施形態では,掘削予想体積Vaが制限体積Vbより大きい場合に,手順S9でアーム引き指令の入力の有無を判定し,アーム引き指令の入力が有った場合にはそのときのバケット爪先位置を掘削開始位置(第1位置)とみなして第2目標面700Aを生成することとした(手順S10)。
 これにより,掘削開始時(アームクラウド操作の開始時)に掘削予想体積Vaが制限体積Vbより大きい場合には,掘削開始位置(第1位置)に合わせて,掘削予想体積がVbとなる位置に第2目標面700Aが生成され,その第2目標面700AがMC対象目標面に設定される(図13で手順S10を通過するルートの処理が行われる)。一方,掘削予想体積Vaが制限体積Vb以下の場合には,第1目標面700がMC対象目標面に設定される(図13で手順S6を通過するルートの処理が行われる)。
 このように掘削予想体積Vaに応じてMC対象目標面が適宜設定され得る状況下で操作装置45bを介してアームクラウド操作を入力して作業機1Aで掘削作業を実施すると,図14のフローに基づきMG/MC制御部43は,アームクラウド操作によりバケット10の爪先が減速領域600内を移動する間,爪先がMC対象目標面に近づくほど爪先の速度ベクトルの鉛直成分(目標面700に垂直な成分)が低減するように油圧アクチュエータ5,6,7の少なくとも1つを制御するMCを実行する。これによりMC対象目標面上では爪先の速度ベクトルの垂直成分はゼロになるため,オペレータはアームクラウド操作を入力するだけでMC対象目標面に沿った掘削が可能となり,掘削作業時のオペレータの負担が軽減する。そしてこの掘削作業時には,図13のフローチャートにより,常に掘削量が制限体積Vb以下になるように掘削開始時のバケット爪先位置(第1位置)に応じて目標面が決定されるため,各掘削動作で掘削開始位置(第1位置)が異なっていても(すなわち掘削距離Lが掘削の都度変化しても)実際の掘削量が制限体積Vbを超過することを防止できる。
 すなわち,本実施形態によれば,掘削開始時の油圧ショベル1の姿勢に基づいて掘削体積Vaが演算され,実際の掘削量が常に制限体積Vb以下になるようにMC対象目標面が生成されるため,掘削距離Lが変化する場合でも適切な位置にMC対象目標面を生成でき,実際の掘削量が制限体積Vb(例えば、バケット最大容量)を超過することを防止できる。またその際,バケット10がMC対象目標面の下方に侵入することが防止され,当該MC対象目標面に沿ってバケット10が動作するようにフロント作業機1Aが制御されるため,掘削作業におけるオペレータの操作負担も軽減される。すなわち,例えば第1目標面を作業対象物の最終形状を示す設計面として設定し,制限体積Vbをバケット最大容量に設定すれば,1回掘削動作の掘削量を常にバケット最大容量以下に保持した状態で設計面を傷つけることなく掘削作業を実行できる。
 なお,上記の実施形態では,油圧ショベル1に搭載した現況地形取得装置96で現況地形を取得する例を説明したが,例えば,現況地形取得装置としてレーザスキャナを搭載したドローンから現況地形情報を取得する場合のように,油圧ショベル1とは独立した現況地形取得装置を用意しておき,当該現況地形取得装置が取得した現況地形情報を入力して利用しても良い。
 <他の実施形態(現況地形更新部の変形例)>
 次に本発明の他の実施形態について説明する。本実施形態の油圧ショベルは制御コントローラ(具体的には現況地形更新部の処理内容)が先の実施形態と異なっており,他の部分は同じである。そのため,先の実施形態と同じ部分についての説明は省略し,主に異なる部分についてのみ説明する。
 図16は本実施形態のMG/MC制御部43Aの機能ブロック図である。本実施形態のMG/MC制御部43Aは現況地形更新部43aaを備えている点で先の実施形態のMG/MC制御部43と異なる。
 現況地形更新部43aaは,現況地形記憶部43bに記憶された現況地形の位置情報とバケット位置演算部43dで演算されるバケット爪先の位置情報を入力しており,バケット位置演算部43dで演算されたバケット爪先の位置が現況地形記憶部43bに記憶された現況地形の位置よりも下方にある場合,バケット位置演算部43dで演算されたバケット爪先の位置情報によって現況地形記憶部43bに記憶された現況地形の位置情報を更新する。一方,バケット位置演算部43dで演算されたバケット爪先の位置が現況地形記憶部43bに記憶された現況地形の位置よりも上方にある場合には,現況地形記憶部43bに記憶された現況地形の位置情報の更新は行わない。すなわち,本実施形態では,現況地形を掘削した際のバケット爪先の軌跡を掘削後の現況地形としてみなして現況地形データを更新している。
 図17にバケット爪先の位置情報に基づく現況地形更新部43aaによる現況地形の更新を表す模式図を示す。ある水平方向座標x’におけるバケット高さ方向の座標z1と現況地形の高さ方向の座標z0を比較して,z1がz0よりも下方向にあった場合はz1を新たな現況地形データとして更新する。
 このようにバケット爪先位置情報を現況地形の更新に利用することにより,掘削毎に現況地形取得装置96が現況地形データを取得する必要がなくなり,現況地形データの取得に要する時間を短縮することが可能である。また,一旦現況地形データを取得しておけば,以後は現況地形更新部43aaの更新機能で逐次現況地形データが更新されるので,現況地形取得装置96を油圧ショベル1に搭載することを省略することも可能となる。
 <その他>
 なお,上記の説明における第1目標面700は,最終的な施工形状を規定する設計面であると考えても良い。
 また,第1目標面700がショベル座標に対して傾斜している場合には,次のように補正量dを算出して第2目標面700Aを生成することができる。図18に第1目標面700がショベル座標に対して傾斜している場合の第2目標面700Aの生成方法を表す模式図を示す。第1目標面700が水平方向に対してθだけ傾斜している場合,第1目標面方向の掘削距離L’は,ショベル座標における水平方向の距離Lを用いて下記の式(7)のように求められる。
Figure JPOXMLDOC01-appb-M000007
 この第1目標面方向の掘削距離L’を式(6)のLとして用いることで,第1目標面700が傾斜していない場合と同様に第1目標面700の補正量dを計算することが可能である。
 また,第1目標面700が傾斜の異なる複数の面によって構成されている場合には,次のように補正量dを算出して第2目標面700Aを生成することができる。図19に第1目標面700が傾斜の異なる複数面によって構成されている場合の第2目標面700Aの生成方法を表す模式図を示す。この図のように第1目標面700が複数面から構成されている場合,第1目標面700の傾斜が切り替わる点の水平方向座標をx2とし,第1目標面700が水平の範囲の掘削予想体積Va2と第1目標面700が傾斜している範囲の掘削予想体積Va1の和に対して,第1目標面700が水平の範囲の掘削距離L2と第1目標面700が傾斜している範囲の掘削距離L1’の和(L2+L1’)を式(6)のLとして用いることで,補正量dを計算することが可能である。
 また,上記の実施形態では,元々の目標面(第1目標面700)の位置に基づいて演算される掘削予想体積Vaが所望の制限体積Vbを越える場合,当該元々の目標面(第1目標面700)の上方に新たな目標面(第2目標面700A)を生成し,当該新たな目標面の位置に基づいて演算される体積が制限体積Vbに近づくようにすることで課題の解決を図ったが,1回の掘削動作で掘削される掘削予想体積が制限体積Vbに一致する位置または制限体積Vbに近づく位置に直接的に目標面を設定するように油圧ショベルを構成しても良い。
 すなわち,バケット10,アーム9及びブーム8を有する作業機1Aと,作業機1Aを駆動する複数の油圧アクチュエータ5,6,7と,油圧アクチュエータ5,6,7の動作を指示する操作装置45a,45b,46aと,現況地形800の位置情報が記憶された現況地形記憶部43b,及び,バケット10の爪先の位置を演算するバケット位置演算部43dを有する制御コントローラ43とを備える油圧ショベルにおいて,制御コントローラ43に,掘削開始時にバケット位置演算部43dで演算されたバケット爪先位置である第1位置,予め設定された掘削終了時のバケット爪先位置である第2位置,現況地形800,目標面,及び,バケットの幅wによって規定される掘削体積が予め設定された制限体積Vbに近づく位置に前記目標面を生成する目標面生成部43gをさらに備え,制御コントローラ43は,操作装置45a,45b,46aの操作時に,作業機1Aの動作範囲が前記目標面上及びその上方に制限されるように油圧アクチュエータ5,6,7を制御することとしても良い。
 なお,補正係数kは図11に規定したものに限らず,目標面距離Dが正の範囲でゼロに近づくほど速度ベクトルの鉛直成分V0zがゼロに近づくように補正する係数であればその他の値でも構わない。
 なお,本発明は,上記の実施の形態に限定されるものではなく,その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば,本発明は,上記の実施の形態で説明した全ての構成を備えるものに限定されず,その構成の一部を削除したものも含まれる。また,ある実施の形態に係る構成の一部を,他の実施の形態に係る構成に追加又は置換することが可能である。
 1A…フロント作業機,5…ブームシリンダ,6…アームシリンダ,7…バケットシリンダ,8…ブーム,9…アーム,10…バケット,30…ブーム角度センサ,31…アーム角度センサ,32…バケット角度センサ,40…制御コントローラ(制御装置),43…MG・MC制御部,43a…現況地形更新部,43b…現況地形記憶部(記憶部),43c…目標面記憶部,43d…バケット位置演算部,43e…目標速度演算部,43f…掘削予想体積演算部,43g…目標面生成部,43h…距離演算部,43i…補正速度演算部,43j…目標パイロット圧演算部,44…電磁比例弁制御部,45…操作装置(ブーム,アーム),46…操作装置(バケット,旋回),50…作業装置姿勢検出装置,51…目標面設定装置,53a…表示装置,54,55,56…電磁比例弁,96…現況地形取得装置,374a…表示制御部,700…第1目標面,700A…第2目標面,800…現況地形

Claims (5)

  1.  バケット,アーム及びブームを有する作業機と,
     前記作業機を駆動する複数の油圧アクチュエータと,
     前記油圧アクチュエータの動作を指示する操作装置と,
     前記操作装置の操作時に,前記作業機の動作範囲が所定の第1目標面上及びその上方に制限されるように前記油圧アクチュエータを制御する制御装置とを備える作業機械において,
     前記制御装置は,
      現況地形の位置情報が記憶された記憶部と,
      前記バケットの爪先の位置を演算するバケット位置演算部と,
      掘削開始時に前記バケット位置演算部で演算された前記バケットの爪先の位置である第1位置,予め設定された掘削終了時の前記バケットの爪先の位置である第2位置,前記現況地形,前記第1目標面,及び,前記バケットの幅によって規定される掘削予想体積を演算する掘削予想体積演算部と,
      前記掘削予想体積が予め設定された制限体積を越える場合,前記第1目標面の上方に第2目標面を生成する目標面生成部とを備え,
     前記目標面生成部は,前記第1位置,前記第2位置,前記現況地形,前記第2目標面,及び,前記バケットの幅によって規定される掘削体積が前記制限体積に近づく位置に前記第2目標面を生成し,
     前記制御装置は,前記第2目標面が生成された場合,前記作業機の動作範囲が前記第2目標面上及びその上方に制限されるように前記油圧アクチュエータを制御することを特徴とする作業機械。
  2.  請求項1の作業機械において,
     前記第1位置は,前記操作装置を介して前記アームのクラウド操作が入力されたときに前記バケット位置演算部が演算した前記バケットの爪先の位置であることを特徴とする作業機械。
  3.  請求項1の作業機械において,
     前記現況地形の位置情報を取得する現況地形取得装置をさらに備え,
     前記制御装置は,前記掘削予想体積演算部により前記掘削予想体積が演算されるとき,前記現況地形取得装置によって取得された前記現況地形の位置情報によって前記記憶部に記憶された前記現況地形の位置情報を更新する現況地形更新部をさらに備えることを特徴とする作業機械。
  4.  請求項1の作業機械において,
     前記制御装置は,前記バケット位置演算部で演算された前記バケットの爪先の位置が前記記憶部に記憶された前記現況地形の位置よりも下方にある場合,前記バケット位置演算部で演算された前記バケットの爪先の位置情報によって前記記憶部に記憶された前記現況地形の位置情報を更新する現況地形更新部をさらに備えることを特徴とする作業機械。
  5.  請求項1の作業機械において,
     前記制限体積は,前記バケットの容量の2倍以下であることを特徴とする作業機械。
PCT/JP2017/032171 2017-09-06 2017-09-06 作業機械 WO2019049248A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019510391A JP6676825B2 (ja) 2017-09-06 2017-09-06 作業機械
EP17922068.6A EP3680395B1 (en) 2017-09-06 2017-09-06 Work machinery
CN201780050290.2A CN109757113B (zh) 2017-09-06 2017-09-06 作业机械
KR1020197003988A KR102125282B1 (ko) 2017-09-06 2017-09-06 작업 기계
PCT/JP2017/032171 WO2019049248A1 (ja) 2017-09-06 2017-09-06 作業機械
US16/328,895 US20200217050A1 (en) 2017-09-06 2017-09-06 Work machine
US17/734,252 US11851854B2 (en) 2017-09-06 2022-05-02 Work machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032171 WO2019049248A1 (ja) 2017-09-06 2017-09-06 作業機械

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/328,895 A-371-Of-International US20200217050A1 (en) 2017-09-06 2017-09-06 Work machine
US17/734,252 Continuation US11851854B2 (en) 2017-09-06 2022-05-02 Work machine

Publications (1)

Publication Number Publication Date
WO2019049248A1 true WO2019049248A1 (ja) 2019-03-14

Family

ID=65633737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032171 WO2019049248A1 (ja) 2017-09-06 2017-09-06 作業機械

Country Status (6)

Country Link
US (2) US20200217050A1 (ja)
EP (1) EP3680395B1 (ja)
JP (1) JP6676825B2 (ja)
KR (1) KR102125282B1 (ja)
CN (1) CN109757113B (ja)
WO (1) WO2019049248A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110020628A (zh) * 2019-04-10 2019-07-16 刘家祺 基于面部检测的坐姿检测方法、系统、设备及存储介质
WO2020229278A1 (de) * 2019-05-16 2020-11-19 Robert Bosch Gmbh Verfahren zur berechnung eines aushubvolumens
WO2021065813A1 (ja) * 2019-09-30 2021-04-08 日立建機株式会社 作業機械
WO2022230368A1 (ja) * 2021-04-26 2022-11-03 コベルコ建機株式会社 目標軌跡生成システム
WO2024070412A1 (ja) * 2022-09-26 2024-04-04 株式会社小松製作所 作業機械の制御システム、作業機械、及び作業機械の制御方法
US11982131B2 (en) 2020-01-16 2024-05-14 Caterpillar Global Mining Equipment Llc System and method to automatically position a machine in an operating configuration

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902585A (zh) * 2018-03-27 2020-11-06 住友重机械工业株式会社 挖土机
JP6946226B2 (ja) * 2018-03-29 2021-10-06 株式会社小松製作所 作業車両の制御システム、方法、及び作業車両
JP7188940B2 (ja) * 2018-08-31 2022-12-13 株式会社小松製作所 制御装置、積込機械、および制御方法
JP7146701B2 (ja) * 2019-06-27 2022-10-04 日立建機株式会社 油圧ショベル
US11828040B2 (en) * 2019-09-27 2023-11-28 Topcon Positioning Systems, Inc. Method and apparatus for mitigating machine operator command delay
JP7246294B2 (ja) * 2019-11-26 2023-03-27 コベルコ建機株式会社 計測装置、及び建設機械
US11572671B2 (en) * 2020-10-01 2023-02-07 Caterpillar Sarl Virtual boundary system for work machine
EP4269704A1 (en) * 2020-12-23 2023-11-01 Volvo Construction Equipment AB Excavator and method and device for controlling excavator
US20220299318A1 (en) * 2021-03-19 2022-09-22 Topcon Corporation Surveying system, surveying method, and storage medium storing surveying program
US20230097563A1 (en) * 2021-09-28 2023-03-30 Deere & Company System and method for blade control on a utility vehicle
CN114411867B (zh) * 2022-02-18 2023-03-10 北京合众鼎新信息技术有限公司 一种挖掘工程作业结果的三维图形渲染展示方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030059A1 (fr) 1994-04-28 1995-11-09 Hitachi Construction Machinery Co., Ltd. Dispositif de commande d'excavation a limitation de surface de travail pour engin de terrassement
JP2000291076A (ja) * 1999-04-01 2000-10-17 Tokai Rika Co Ltd パワーショベル
JP2017014726A (ja) 2015-06-29 2017-01-19 日立建機株式会社 作業機械の作業支援システム
WO2017115810A1 (ja) * 2015-12-28 2017-07-06 住友建機株式会社 ショベル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609164B2 (ja) * 1995-08-14 2005-01-12 日立建機株式会社 建設機械の領域制限掘削制御の掘削領域設定装置
JP3713120B2 (ja) * 1997-03-11 2005-11-02 新キャタピラー三菱株式会社 建設機械の制御装置
SE526913C2 (sv) * 2003-01-02 2005-11-15 Arnex Navigation Systems Ab Förfarande i form av intelligenta funktioner för fordon och automatiska lastmaskiner gällande kartläggning av terräng och materialvolymer, hinderdetektering och styrning av fordon och arbetsredskap

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030059A1 (fr) 1994-04-28 1995-11-09 Hitachi Construction Machinery Co., Ltd. Dispositif de commande d'excavation a limitation de surface de travail pour engin de terrassement
JP2000291076A (ja) * 1999-04-01 2000-10-17 Tokai Rika Co Ltd パワーショベル
JP2017014726A (ja) 2015-06-29 2017-01-19 日立建機株式会社 作業機械の作業支援システム
WO2017115810A1 (ja) * 2015-12-28 2017-07-06 住友建機株式会社 ショベル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680395A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110020628A (zh) * 2019-04-10 2019-07-16 刘家祺 基于面部检测的坐姿检测方法、系统、设备及存储介质
CN110020628B (zh) * 2019-04-10 2021-01-05 刘家祺 基于面部检测的坐姿检测方法、系统、设备及存储介质
WO2020229278A1 (de) * 2019-05-16 2020-11-19 Robert Bosch Gmbh Verfahren zur berechnung eines aushubvolumens
WO2021065813A1 (ja) * 2019-09-30 2021-04-08 日立建機株式会社 作業機械
JP2021055360A (ja) * 2019-09-30 2021-04-08 日立建機株式会社 作業機械
CN113518843A (zh) * 2019-09-30 2021-10-19 日立建机株式会社 作业机械
JP7245141B2 (ja) 2019-09-30 2023-03-23 日立建機株式会社 油圧ショベル
US11982131B2 (en) 2020-01-16 2024-05-14 Caterpillar Global Mining Equipment Llc System and method to automatically position a machine in an operating configuration
WO2022230368A1 (ja) * 2021-04-26 2022-11-03 コベルコ建機株式会社 目標軌跡生成システム
WO2024070412A1 (ja) * 2022-09-26 2024-04-04 株式会社小松製作所 作業機械の制御システム、作業機械、及び作業機械の制御方法

Also Published As

Publication number Publication date
US20220259834A1 (en) 2022-08-18
US11851854B2 (en) 2023-12-26
JPWO2019049248A1 (ja) 2019-11-07
CN109757113B (zh) 2021-03-16
EP3680395B1 (en) 2022-08-03
CN109757113A (zh) 2019-05-14
EP3680395A1 (en) 2020-07-15
KR102125282B1 (ko) 2020-06-23
US20200217050A1 (en) 2020-07-09
KR20190039710A (ko) 2019-04-15
EP3680395A4 (en) 2021-06-16
JP6676825B2 (ja) 2020-04-08

Similar Documents

Publication Publication Date Title
JP6676825B2 (ja) 作業機械
JP6633464B2 (ja) 作業機械
JP6526321B2 (ja) 作業機械
KR102024701B1 (ko) 작업 기계
JP5654144B1 (ja) 建設機械の制御システム及び制御方法
KR102118386B1 (ko) 작업 기계
JP7141894B2 (ja) 作業機械
WO2019088065A1 (ja) 作業機械
EP3730698B1 (en) Work machine
KR102520408B1 (ko) 작업 기계
CN111771027A (zh) 作业机械
KR20210115007A (ko) 작업 기계
KR102520407B1 (ko) 작업 기계
KR102523024B1 (ko) 작업 기계
WO2022201905A1 (ja) 作業機械
KR102491288B1 (ko) 작업 기계
KR20220086672A (ko) 작업 기계의 제어 시스템, 작업 기계, 및 작업 기계의 제어 방법
JP2020169558A (ja) 作業機械の制御装置及び制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20197003988

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019510391

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017922068

Country of ref document: EP

Effective date: 20200406