WO2019047889A1 - 多联机系统及其控制方法 - Google Patents

多联机系统及其控制方法 Download PDF

Info

Publication number
WO2019047889A1
WO2019047889A1 PCT/CN2018/104344 CN2018104344W WO2019047889A1 WO 2019047889 A1 WO2019047889 A1 WO 2019047889A1 CN 2018104344 W CN2018104344 W CN 2018104344W WO 2019047889 A1 WO2019047889 A1 WO 2019047889A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
control method
fan
line system
oil
Prior art date
Application number
PCT/CN2018/104344
Other languages
English (en)
French (fr)
Inventor
焦华超
张仕强
武连发
熊建国
周冰
黄志光
李冬辉
邱博
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Priority to US16/645,209 priority Critical patent/US11408633B2/en
Priority to EP18855086.7A priority patent/EP3640547B1/en
Publication of WO2019047889A1 publication Critical patent/WO2019047889A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a control method of a multi-line system and a multi-line system controlled by the control method.
  • the refrigerating oil circulates in the system as the refrigerant circulates, causing the refrigerating oil to remain in the indoor heat exchanger or the piping between the indoor unit and the outdoor unit. If the refrigerating oil cannot be returned to the outdoor unit in time, the compressor cannot be effectively lubricated and cooled by the refrigerating oil, which affects the running performance and reliability of the compressor. Therefore, the air conditioning system needs to be returned after a period of operation to bring the refrigerating oil brought out by the compressor to the compressor to ensure the normal operation of the air conditioning system.
  • the electronic expansion valve of the indoor unit in the off state also needs to be opened to facilitate the return of the frozen oil to the outdoor unit.
  • the multi-line system is running in the cooling mode, if the compressor frequently returns oil, condensation problems will occur at the indoor unit in the long-term shutdown state, which will affect the user experience.
  • an object of the present invention is to provide a multi-line system control method capable of effectively solving the problem of condensation and dripping at an indoor unit caused by frequent oil return of a compressor, and a multi-line system for improving user comfort.
  • the present invention adopts the following technical solutions:
  • a multi-line system control method includes a compressor and a plurality of indoor units respectively disposed on a plurality of parallel branches, the indoor unit including a fan, and the control method includes:
  • controlling method further includes:
  • the fan that controls the indoor unit remains in the closed state during the returning of the multi-line system; and/or,
  • the fan that controls the indoor unit is turned on during the returning of the oil in the multi-line system.
  • the indoor unit further includes a throttling device, and the way of controlling the branch of the indoor unit to be opened is to open the throttling device of the indoor unit.
  • the opening of the throttling device is 30% to 60%.
  • the fan that controls the indoor unit operates at a low wind speed during the oil return process of the multiple online system.
  • the condensation condition comprises: the current humidity of the environment in which the indoor unit is located is higher than the humidity threshold.
  • the humidity threshold is 60% to 80%.
  • the indoor unit in the shutdown state reaches the condensation condition according to at least the oil return frequency of the multiple online system.
  • the condensation condition comprises: the oil return frequency of the multi-line system reaches or exceeds a predetermined frequency.
  • the predetermined frequency is oiled once every 0.5 to 2 hours.
  • the condensation condition further includes that the fan of the indoor unit has not been effectively operated during a period between the end of the last oil return and the start of the current oil return.
  • the criteria for determining the effective operation of the fan include: whether the fan has been turned on at least once.
  • the criterion for the effective operation of the fan includes: whether the continuous running time of the fan exceeds a predetermined time.
  • the predetermined time is 5 to 15 minutes.
  • a multi-line system control method includes a compressor and a plurality of indoor units respectively disposed on a plurality of parallel branches, the indoor unit including a fan, and the control method includes:
  • the branch of the indoor unit that controls the shutdown state is opened, and the fan of the indoor unit is turned on.
  • the multi-line system controls the fan to operate at a low wind speed during the oil return process of the multi-line system.
  • the present invention adopts the following technical solutions:
  • a multi-line system that uses the control method described above for control.
  • control method of the multi-line system provided by the present invention, when the compressor needs to return oil, it is first determined whether there is a risk of condensation in the indoor unit in the shutdown state, and different control methods are adopted for the fan for different situations to solve the compression. The problem of condensation and dripping occurs at the indoor unit caused by frequent oil return, and the user's comfort is improved.
  • FIG. 1 is a schematic structural view of a multi-line system provided by the present invention.
  • FIG. 2 is a flow chart showing a control method of a conventional multi-line system for returning oil
  • FIG. 3 is a flow chart showing a control method of an embodiment of a multi-line system provided by the present invention.
  • FIG. 4 is a flow chart showing a control method of another embodiment of the multi-line system provided by the present invention.
  • the multi-line system includes an outdoor unit 1 and a plurality of indoor units 2 arranged in parallel, that is, a plurality of parallel branches are disposed on the refrigerant circulation circuit, and different indoor units 2 are respectively disposed on different branches.
  • the indoor unit 2 is connected in parallel with each other, and the outdoor unit 1 is provided with a compressor.
  • the indoor unit 2 includes a throttle device, an indoor heat exchanger 23 and a fan 22, and the throttle device can be any device capable of throttling the refrigerant.
  • the electronic expansion valve 21 shown in Fig. 1 is employed to facilitate automatic control, and the fan 22 is arranged to drive air flow to promote heat exchange between the air and the indoor heat exchanger 23.
  • the existing control method is shown in Fig. 2.
  • the multi-line system operates in the cooling mode. When the multi-line system needs to return oil, the working state of the indoor unit 2 is judged, and the fan 22 and the electronic expansion of the indoor unit 2 in the working state are determined.
  • the valve 21 is kept in the open state, and the indoor unit 2 in the off state is controlled to open its branch, for example, the electronic expansion valve 21 of the indoor unit 2 may be opened, or may be set on the branch.
  • the solenoid valve is opened by the solenoid valve to open the branch of the indoor unit 2, so that the refrigerant and the refrigerating oil can be circulated, and the fan 22 is always kept closed.
  • the low-temperature low-pressure refrigerant cannot be effectively evaporated in the indoor heat exchanger 23, and the low-temperature low-pressure refrigerant is in the After the oil return is completed, it will remain in the indoor heat exchanger 23, causing the outward transfer or radiation of the cold.
  • the system frequently returns oil it will cause condensation and dripping of the indoor unit 2 that has been in the shutdown state for a long time.
  • the present application proposes a multi-line system control method.
  • the multi-line system is in the cooling mode, when the compressor needs to return oil, it is determined whether the indoor unit 2 in the shutdown state reaches the condensation condition, that is, it is determined to be shut down.
  • the indoor unit 2 in the state has the risk of condensation, and different control methods are adopted for different situations to solve the problem of condensation and dripping at the indoor unit 2 caused by frequent oil return of the compressor, thereby improving user comfort.
  • the indoor unit 2 is subjected to oil return control according to a conventional control method, that is, in the multi-line system. During the oil returning process, the electronic expansion valve 21 that controls the indoor unit 2 is opened until the oil returning process ends, and the fan 22 is always kept closed. If it is determined that the indoor unit 2 in the off state reaches the condensation condition, it indicates that there is a risk of condensation in the indoor unit 2, and the indoor unit 2 needs to be controlled by the improved control method to avoid the condensation of the indoor unit 2.
  • the electronic expansion valve 21 and the fan 22 controlling the indoor unit 2 are both turned on until the oil returning process ends, so that the fan 22 is utilized in the oil returning process.
  • the evaporation of the refrigerant in the indoor heat exchanger 23 of the indoor unit 2 is promoted, thereby achieving the effect of avoiding condensation.
  • the fan 22 controlling the indoor unit 2 is operated at a low speed, the low level described herein.
  • the wind speed can be, for example, the lowest windshield or silent windshield of the indoor unit.
  • the indoor unit 2 is provided with a humidity sensor configured to detect the humidity of the environment in which it is located, according to the indoor unit. 2
  • the humidity of the environment is used to determine whether there is a risk of condensation in the indoor unit 2, that is, the condensation condition includes: the humidity of the environment in which the indoor unit 2 is located is higher than the humidity threshold, and if the humidity of the environment in which the indoor unit 2 is located is low, It means that the air humidity is low and there is no risk of condensation. If the humidity of the indoor unit 2 is high, the air humidity is high. If the fan 22 is not turned on, the water vapor in the air during the oil return process.
  • the humidity detected by the humidity sensor provided in the indoor unit 2 is used as the humidity of the environment in which the indoor unit 2 is located. Specifically, the humidity of the environment in which the indoor unit 2 is located is obtained, and it is determined whether the humidity of the environment in which the indoor unit 2 is located is higher than a humidity threshold. If yes, it is determined that the indoor unit 2 reaches the condensation condition; otherwise, the indoor unit 2 is determined not to be Condensation conditions are reached.
  • a preferred range of humidity thresholds therein is from 60% to 80%.
  • the method for performing the oil return control in the cooling mode by using the above determination method is as follows:
  • Step S001 when the multi-line system needs to perform oil return, determine whether the indoor unit 2 is in the working state, and if so, proceed to step S005, otherwise proceed to step S002;
  • Step S002 obtaining the current humidity of the environment in which the indoor unit 2 is in the shutdown state, determining whether the current humidity is higher than the humidity threshold, and if so, proceeding to step S003, otherwise proceeding to step S004;
  • Step S003 the electronic expansion valve 21 and the fan 22 of the indoor unit 2 are both opened, and the fan 22 is operated at a low speed, until the electronic expansion valve 21 and the fan 22 are closed after the oil return is completed;
  • Step S004 the electronic expansion valve 21 of the indoor unit 2 is opened, and the electronic expansion valve 21 is closed after the oil return is completed, and the fan 22 is always in the closed state;
  • step S005 the operating state of the indoor unit 2 is kept unchanged, and the electronic expansion valve 21 and the fan 22 are maintained in an open state.
  • the condensation condition includes: the oil return frequency of the multi-line system reaches or exceeds the predetermined frequency, and when the oil return frequency of the multi-line system reaches or exceeds the predetermined frequency, the indoor heat exchanger of the indoor unit 2 that is in the off state 23
  • the condensation condition includes: the oil return frequency of the multi-line system reaches or exceeds the predetermined frequency, and when the oil return frequency of the multi-line system reaches or exceeds the predetermined frequency, the indoor heat exchanger of the indoor unit 2 that is in the off state 23
  • the predetermined frequency may be set according to a specific model and an application scenario, and the preferred range is that the predetermined frequency is 1 oil return every 0.5 to 2 hours.
  • the predetermined frequency is 1 oil return every 0.5 hours, 2 oils every 2 hours, and 3 oils every 3 hours. In a preferred embodiment, the predetermined frequency is 4 oil return per 8 hours.
  • the condensation condition may further include: during the period between the end of the last oil return and the start of the oil return, the fan 22 of the indoor unit 2 in the shutdown state has not been effectively operated, ie, In the case where the multi-line system frequently performs oil return, if the indoor unit 2 currently in the shutdown state has been operated before, the low-temperature low-pressure refrigerant accumulated in the indoor heat exchanger 23 of the indoor unit 2 is not too much, so There is a risk of condensation. If the indoor unit 2 in the shutdown state has not been operated before, at this time, a large amount of low-temperature and low-pressure refrigerant is accumulated in the indoor heat exchanger 23 of the indoor unit 2, and thus there is a risk of condensation.
  • the criterion for the effective operation of the fan 22 includes whether the fan 22 is turned on at least once, and if so, it is determined that the fan 22 has been effectively operated, otherwise it is determined that the fan 22 has not been effectively operated. Since the fan 22 has a small opening time, the influence on the refrigerant in the indoor heat exchanger 23 is small. Therefore, in order to improve the accuracy of the judgment, it is further preferred that the criterion for the effective operation of the fan 22 includes whether the fan 22 continues to run. If the predetermined time is exceeded, if it is, it is judged that the fan 22 has been effectively operated, otherwise it is judged that the fan 22 has not been effectively operated.
  • the predetermined time therein may be set according to a specific case. Preferably, the predetermined time ranges from 5 to 15 minutes, for example, may be 5 minutes, 10 minutes, 15 minutes, and further preferably 10 minutes.
  • the method for performing the oil return control in the cooling mode by using the above determination method is as follows:
  • Step S010 when the multi-line system needs to perform oil return, determine whether the indoor unit 2 is in the working state, and if so, proceed to step S060, otherwise proceed to step S020;
  • Step S020 determining whether the oil return frequency of the multi-line system reaches or is higher than the predetermined frequency, and if so, proceeding to step S030, otherwise proceeding to step S040;
  • Step S030 determining that the fan 22 of the indoor unit 2 in the shutdown state has not been effectively operated during the period between the end of the last oil return and the start of the oil return, if yes, proceed to step S040, otherwise proceed to step S050;
  • Step S040 the electronic expansion valve 21 of the indoor unit 2 is opened, and the electronic expansion valve 21 is closed after the oil return is completed, and the fan 22 is always in the closed state;
  • Step S050 the electronic expansion valve 21 and the fan 22 of the indoor unit 2 are both opened, and the fan 22 is operated at a low speed, until the electronic expansion valve 21 and the fan 22 are closed after the oil return is completed;
  • step S060 the operating state of the indoor unit 2 is kept unchanged, and the electronic expansion valve 21 and the fan 22 are maintained in an open state.
  • the opening degree of the electronic expansion valve 21 can be set according to the actual refrigerant condition, for example, the opening degree when the electronic expansion valve 21 is opened is controlled to 30% to 60%. Within the scope.
  • the determination of whether or not the condensation condition is reached may not be performed.
  • the indoor unit is always in a state of high risk of condensation, and at this time, it is not necessary to determine whether the condensation condition is reached. Judging that the multi-line system is in the cooling mode, as long as it performs oil return, that is, the electronic expansion valve 21 and the fan 22 of the indoor unit 2 that is in the off state are controlled to open, preferably, the control fan 22 is operated at the minimum wind speed, and the shutdown can be avoided.
  • the indoor unit 2 in the state has the effect of condensation and dripping.
  • the solution provided by the embodiment of the present invention can be applied to a control process of a multi-line system, and the multi-line system includes a compressor and a plurality of indoor units respectively disposed on the plurality of parallel branches, and the indoor unit includes a fan, and the control method includes: In the cooling mode, when the multi-line system needs to return oil, it is judged whether the indoor unit in the shutdown state reaches the condensation condition, the branch where the indoor unit is located is turned on, and the fan of the indoor unit is performed according to the judgment result. Different controls.
  • control method of the multi-line system provided by the present invention, when the compressor needs to return oil, it is first determined whether there is a risk of condensation in the indoor unit in the shutdown state, and different control methods are adopted for the fan for different situations to solve the compression. The problem of condensation and dripping occurs at the indoor unit caused by frequent oil return, and the user's comfort is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种多联机系统的控制方法,其中多联机系统包括压缩机和分别设置在多个并联支路上的多个室内机(2),室内机(2)包括风机(22),控制方法包括:多联机系统在制冷模式下,当多联机系统需要回油时,判断处于关机状态的室内机(2)是否达到凝露条件,将该室内机(2)所在的支路打开,并根据判断结果对该室内机(2)的风机(22)进行不同的控制。还提供了一种多联机系统。该多联机系统的控制方法及多联机系统能够有效解决压缩机频繁回油引起的室内机处出现凝露滴水现象的问题、提高用户使用舒适度。

Description

多联机系统及其控制方法 技术领域
本发明涉及空调技术领域,特别是一种多联机系统的控制方法以及采用该控制方法进行控制的多联机系统。
背景技术
在空调系统中,压缩机在运行一段时间后,冷冻油会随着制冷剂在系统中循环,造成冷冻油有可能存留在室内换热器中或者室内机到室外机之间的配管中,这些冷冻油若无法及时回到室外机中,则压缩机无法得到有效的冷冻油润滑和冷却,影响压缩机运行性能和可靠性。因此,空调系统在运行一段时间后需要进行回油,以将压缩机排气时带出的冷冻油带回到压缩机内,保证空调系统的正常运行。在包括多台室内机的多联机系统中,当压缩机进行回油时,处于关机状态的室内机的电子膨胀阀也需要打开,以便于冷冻油回到室外机中。多联机系统在运行制冷模式时,若压缩机频繁回油,在处于长期停机状态的室内机处会出现凝露滴水问题,影响用户体验。
发明内容
有鉴于此,本发明的目的之一是提供一种能够有效解决压缩机频繁回油引起的室内机处出现凝露滴水现象的问题、提高用户使用舒适度的多联机系统的控制方法以及采用该控制方法进行控制的多联机系统。
为达上述目的,一方面,本发明采用如下技术方案:
一种多联机系统的控制方法,所述多联机系统包括压缩机和分别设置在多个并联支路上的多个室内机,所述室内机包括风机,所述控制方法包括:
所述多联机系统在制冷模式下,当所述多联机系统需要回油时,判断处于关机状态的室内机是否达到凝露条件,将该室内机所在的支路打 开,并根据判断结果对该室内机的风机进行不同的控制。
可选地,所述控制方法进一步包括:
当判断处于关机状态的室内机未达到所述凝露条件时,在所述多联机系统进行回油的过程中,控制该室内机的风机保持关闭状态;和/或,
当判断处于关机状态的室内机达到所述凝露条件时,在所述多联机系统进行回油的过程中,控制该室内机的风机打开。
可选地,所述室内机还包括节流装置,控制该室内机所在支路打开的方式为将该室内机的节流装置打开。
可选地,将所述节流装置打开的开度为30%至60%。
可选地,当判断处于关机状态的室内机达到所述凝露条件时,在所述多联机系统进行回油的过程中,控制该室内机的风机按低档风速运行。
可选地,所述凝露条件包括:室内机所处环境的当前湿度高于湿度阈值。
可选地,所述湿度阈值为60%至80%。
可选地,至少根据所述多联机系统的回油频率判断处于关机状态的室内机是否达到凝露条件。
可选地,所述凝露条件包括:所述多联机系统的回油频率达到或高于预定频率。
可选地,所述预定频率为每0.5至2小时回油1次。
可选地,所述凝露条件还包括:上次回油结束至本次回油开始之间的时间段内,该室内机的风机没有进行过有效运行。
可选地,风机进行有效运行的判断标准包括:风机是否开启过至少一次。
可选地,风机进行有效运行的判断标准还包括:风机持续运行时间是否超过预定时间。
可选地,所述预定时间为5至15分钟。
另一方面,本发明采用如下技术方案:
一种多联机系统的控制方法,所述多联机系统包括压缩机和分别设置在多个并联支路上的多个室内机,所述室内机包括风机,所述控制方法包括:
所述多联机系统在制冷模式下,在所述多联机系统进行回油的过程中,控制处于关机状态的室内机所在支路打开,该室内机的风机打开。
可选地,所述多联机系统在制冷模式下,在所述多联机系统进行回油的过程中,控制所述风机按低档风速运行。
再一方面,本发明采用如下技术方案:
一种多联机系统,采用如上所述的控制方法进行控制。
本发明提供的多联机系统的控制方法中,当压缩机需要回油时,首先判断处于关机状态的室内机是否存在凝露风险,并针对不同的情况对风机采用不同的控制方法,以解决压缩机频繁回油引起的室内机处出现凝露滴水现象的问题,提高用户的使用舒适度。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1示出本发明提供的多联机系统的结构示意图;
图2示出现有的多联机系统进行回油时的控制方法流程图;
图3示出本发明提供的多联机系统一种实施方式的控制方法流程图;
图4示出本发明提供的多联机系统另一种实施方式的控制方法流程图。
图中,1、室外机;2、室内机;21、电子膨胀阀;22、风机;23、室内换热器。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
针对现有多联机系统存在的压缩机频繁回油会造成处于长期停机状态的室内机会出现凝露滴水的问题,本申请发现是由于现有的回油控制方法不合理造成的,具体地,如图1所示,多联机系统包括室外机1和多个并联设置的室内机2,即,在冷媒循环回路上设置有多个并联支路,不同的室内机2分别设置在不同的支路上,以实现室内机2的相互并联,室外机1内设置有压缩机,室内机2包括节流装置、室内换热器23和风机22,节流装置可以为任意能够对冷媒进行节流处理的装置,优选采用图1中所示的电子膨胀阀21,从而方便实现自动控制,风机22设置为驱动空气流动以促进空气与室内换热器23的热量交换。现有的控制方法如图2所示,多联机系统在制冷模式下运行,当多联机系统需要回油时,判断室内机2的工作状态,处于工作状态的室内机2的风机22和电子膨胀阀21保持开启的状态不变,而处于关机状态的室内机2,则控制将其所在支路打开,例如可以是将该室内机2的电子膨胀阀21打开,或者也可以在该支路上设置电磁阀,通过电磁阀控制将该室内机2所在支路打开,使得制冷剂和冷冻油可以循环起来,而风机22始终保持关闭状态。对于处于关机状态的室内机2而言,在系统进行回油的过程中,由于风机22处于关闭状态,低温低压的制冷剂在其室内换热器23中无法有效的蒸发,低温低压制冷剂在回油结束后会存留在室内换热器23中,导致冷量的向外传递或辐射,当系统进行频繁回油时,就会造成长期处于关机状态的室内机2出现凝露滴水现象。
针对上述问题,本申请提出了一种多联机系统的控制方法,多联机系统在制冷模式下,当压缩机需要回油时,判断处于关机状态的室内机2是否达到冷凝条件,即判断处于关机状态的室内机2是否存在凝露风险,并针对不同的情况采用不同的控制方法,以解决压缩机频繁回油引 起的室内机2处出现凝露滴水现象的问题,提高用户的使用舒适度。
其中,若判断处于关机状态的室内机2未达到凝露条件,说明该室内机2不存在凝露风险,则按常规的控制方法对该室内机2进行回油控制,即,在多联机系统进行回油的过程中,控制该室内机2的电子膨胀阀21打开直至回油过程结束,而风机22始终保持关闭状态。若判断处于关机状态的室内机2达到凝露条件,说明该室内机2存在凝露风险,此时需要利用改进的控制方法对该室内机2进行回油控制,以避免该室内机2出现凝露滴水的问题,具体地,在多联机系统进行回油的过程中,控制该室内机2的电子膨胀阀21和风机22均打开直至回油过程结束,从而在回油过程中,利用风机22促进冷媒在该室内机2的室内换热器23内的蒸发,从而达到避免产生凝露的效果。优选地,为减小风机22的运行对其所在区域的环境造成的影响,在多联机系统进行回油的过程中,控制该室内机2的风机22按低档风速运行,此处所述的低档风速例如可以为室内机的最低风挡或者静音风挡。
判断处于关机状态的室内机2是否达到凝露条件的方法可以有多种,例如,在一个实施例中,在室内机2中设置有设置为检测其所处环境湿度的湿度传感器,根据室内机2所处环境的湿度来判断室内机2是否存在凝露的风险,即,凝露条件包括:室内机2所处环境的湿度高于湿度阈值,若室内机2所处环境的湿度较低,则说明空气湿度较低,不会存在凝露风险,而若室内机2所处环境的湿度较高,则说明空气湿度较高,若不开启风机22则在回油过程中空气中的水蒸气会冷凝而产生凝露。优选地,利用室内机2自带的湿度传感器检测的湿度作为室内机2所处环境的湿度。具体地,获取该室内机2所处环境的湿度,判断该室内机2所处环境的湿度是否高于湿度阈值,若是,则判断该室内机2达到凝露条件,否则判断该室内机2未达到凝露条件。其中的湿度阈值的优选范围为60%至80%。
如图3所示,采用上述判断方式进行制冷模式下的回油控制的方法为:
步骤S001、当多联机系统需要进行回油时,判断室内机2是否处于工作状态,若是,则进行步骤S005,否则进行步骤S002;
步骤S002、获取该处于关机状态的室内机2所处环境的当前湿度,判断当前湿度是否高于湿度阈值,若是,则进行步骤S003,否则进行步骤S004;
步骤S003、将该室内机2的电子膨胀阀21和风机22均打开,风机22按低档风速运行,直至回油结束后将电子膨胀阀21和风机22关闭;
步骤S004、将该室内机2的电子膨胀阀21打开,直至回油结束后将电子膨胀阀21关闭,风机22始终处于关闭状态;
步骤S005、保持室内机2的工作状态不变,电子膨胀阀21和风机22维持开启状态。
在另一个实施例中,由于凝露现象是多联机系统频繁回油造成的,基于此,可根据多联机系统的回油频率来判断处于关机状态的室内机2是否达到凝露条件。即,凝露条件包括:多联机系统的回油频率达到或高于预定频率,当多联机系统的回油频率达到或高于预定频率时,则处于关机状态的室内机2的室内换热器23内存在着累积低温低压制冷剂过多的风险,累积过多的低温低压制冷剂则其散发的冷量也较多,此时存在凝露的风险,而多联机系统的回油频率较低时,则说明处于关机状态的室内机2的室内换热器23内累积的低温低压制冷剂散发的冷量不足以造成凝露现象。其中的预定频率可根据具体机型、应用场景进行设置,优选范围为,预定频率为每0.5至2小时回油1次。例如,预定频率为每0.5小时回油1次,每2小时回油2次,每3小时回油3次。在一个优选的实施例中,预定频率为每8小时回油4次。
在进一步优选的控制方法中,凝露条件还可进一步包括:上次回油结束至本次回油开始之间的时间段内,处于关机状态的室内机2的风机22没有进行过有效运行,即,在多联机系统频繁进行回油的情况下,若当前处于关机状态的室内机2在之前运行过,则室内机2的室内换热器23内累积的低温低压制冷剂不会太多,因此不存在凝露风险,若处于关机状态的室内机2之前没有运行过,则此时该室内机2的室内换热器23内会累积较多的低温低压制冷剂,因此会存在凝露风险。
可选地,风机22进行有效运行的判断标准包括风机22是否开启至少一次,若是,则判断风机22进行过有效运行,否则判断风机22没有 进行过有效运行。由于风机22开启时间较短时对室内换热器23内的冷媒影响较小,因此,为提高判断的准确性,进一步优选地,风机22进行有效运行的判断标准还包括风机22持续运行时间是否超过预定时间,若是,则判断风机22进行过有效运行,否则判断风机22没有进行过有效运行。其中的预定时间可根据具体情况进行设定,优选地,预定时间的范围为5至15分钟,例如可以为5分钟、10分钟、15分钟,进一步优选为10分钟。
如图4所示,采用上述判断方式进行制冷模式下的回油控制的方法为:
步骤S010、当多联机系统需要进行回油时,判断室内机2是否处于工作状态,若是,则进行步骤S060,否则进行步骤S020;
步骤S020、判断多联机系统的回油频率是否达到或高于预定频率,若是,则进行步骤S030,否则进行步骤S040;
步骤S030、判断上次回油结束至本次回油开始之间的时间段内,该处于关机状态的室内机2的风机22没有进行过有效运行,若是,则进行步骤S040,否则进行步骤S050;
步骤S040、将该室内机2的电子膨胀阀21打开,直至回油结束后将电子膨胀阀21关闭,风机22始终处于关闭状态;
步骤S050、将该室内机2的电子膨胀阀21和风机22均打开,风机22按低档风速运行,直至回油结束后将电子膨胀阀21和风机22关闭;
步骤S060、保持室内机2的工作状态不变,电子膨胀阀21和风机22维持开启状态。
可以理解的是,其中,将电子膨胀阀21打开时,电子膨胀阀21的开度可根据实际的冷媒状况进行设置,例如,将电子膨胀阀21打开时的开度控制在30%至60%范围内。
在替代的实施例中,也可以不进行是否达到凝露条件的判断,例如,在特定的应用场景中,室内机始终处于凝露风险较大的状态,此时,无需进行是否达到凝露条件的判断,多联机系统在制冷模式下,只要其进行回油,即控制处于关机状态的室内机2的电子膨胀阀21和风机22打开,优选控制风机22按最低风速运行,亦能够达到避免关机状态的室内 机2出现凝露滴水现象的效果。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。
应当理解,上述的实施方式仅是示例性的,而非限制性的,在不偏离本发明的基本原理的情况下,本领域的技术人员可以针对上述细节做出的各种明显的或等同的修改或替换,都将包含于本发明的权利要求范围内。
工业实用性
本发明实施例提供的方案,可应用于多联机系统的控制过程中,多联机系统包括压缩机和分别设置在多个并联支路上的多个室内机,室内机包括风机,控制方法包括:多联机系统在制冷模式下,当多联机系统需要回油时,判断处于关机状态的室内机是否达到凝露条件,将该室内机所在的支路打开,并根据判断结果对该室内机的风机进行不同的控制。本发明提供的多联机系统的控制方法中,当压缩机需要回油时,首先判断处于关机状态的室内机是否存在凝露风险,并针对不同的情况对风机采用不同的控制方法,以解决压缩机频繁回油引起的室内机处出现凝露滴水现象的问题,提高用户的使用舒适度。

Claims (16)

  1. 一种多联机系统的控制方法,所述多联机系统包括压缩机和分别设置在多个并联支路上的多个室内机,所述室内机包括风机,所述控制方法包括:
    所述多联机系统在制冷模式下,当所述多联机系统需要回油时,判断处于关机状态的室内机是否达到凝露条件,将该室内机所在的支路打开,并根据判断结果对该室内机的风机进行不同的控制。
  2. 根据权利要求1所述的控制方法,其中,所述控制方法进一步包括:
    当判断处于关机状态的室内机未达到所述凝露条件时,在所述多联机系统进行回油的过程中,控制该室内机的风机保持关闭状态;和/或,
    当判断处于关机状态的室内机达到所述凝露条件时,在所述多联机系统进行回油的过程中,控制该室内机的风机打开。
  3. 根据权利要求2所述的控制方法,其中,当判断处于关机状态的室内机达到所述凝露条件时,在所述多联机系统进行回油的过程中,控制该室内机的风机按低档风速运行。
  4. 根据权利要求1所述的控制方法,其中,所述室内机还包括节流装置,将该室内机所在的支路打开的方式为将该室内机的节流装置打开。
  5. 根据权利要求4所述的控制方法,其中,将所述节流装置打开的开度为30%至60%。
  6. 根据权利要求1至5之一所述的控制方法,其中,所述凝露条件包括:室内机所处环境的当前湿度高于湿度阈值。
  7. 根据权利要求6所述的控制方法,其中,所述湿度阈值为60%至 80%。
  8. 根据权利要求1至5之一所述的控制方法,其中,至少根据所述多联机系统的回油频率判断处于关机状态的室内机是否达到凝露条件。
  9. 根据权利要求8所述的控制方法,其中,所述凝露条件包括:所述多联机系统的回油频率达到或高于预定频率。
  10. 根据权利要求9所述的控制方法,其中,所述预定频率为每0.5至2小时回油1次。
  11. 根据权利要求9所述的控制方法,其中,所述凝露条件还包括:上次回油结束至本次回油开始之间的时间段内,该室内机的风机没有进行过有效运行,所述风机进行有效运行的判断标准包括:风机是否开启过至少一次。
  12. 根据权利要求11所述的控制方法,其中,风机进行有效运行的判断标准还包括:风机持续运行时间是否超过预定时间。
  13. 根据权利要求12所述的控制方法,其中,所述预定时间为5至15分钟。
  14. 一种多联机系统的控制方法,所述多联机系统包括压缩机和分别设置在多个并联支路上的多个室内机,所述室内机包括风机,所述控制方法包括:
    所述多联机系统在制冷模式下,在所述多联机系统进行回油的过程中,控制处于关机状态的室内机所在的支路打开,并将该室内机的风机打开。
  15. 根据权利要求14所述的控制方法,其中,所述多联机系统在制 冷模式下,在所述多联机系统进行回油的过程中,控制所述风机按低档风速运行。
  16. 一种多联机系统,采用如权利要求1至15之一所述的控制方法进行控制。
PCT/CN2018/104344 2017-09-07 2018-09-06 多联机系统及其控制方法 WO2019047889A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/645,209 US11408633B2 (en) 2017-09-07 2018-09-06 Multi-split air conditioning system and control method therefor
EP18855086.7A EP3640547B1 (en) 2017-09-07 2018-09-06 Multi-split air conditioning system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710800560.9A CN107575939B (zh) 2017-09-07 2017-09-07 多联机系统及其控制方法
CN201710800560.9 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019047889A1 true WO2019047889A1 (zh) 2019-03-14

Family

ID=61031424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104344 WO2019047889A1 (zh) 2017-09-07 2018-09-06 多联机系统及其控制方法

Country Status (4)

Country Link
US (1) US11408633B2 (zh)
EP (1) EP3640547B1 (zh)
CN (1) CN107575939B (zh)
WO (1) WO2019047889A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107575939B (zh) 2017-09-07 2019-10-25 珠海格力电器股份有限公司 多联机系统及其控制方法
CN107726554B (zh) * 2017-09-19 2020-01-17 青岛海尔空调电子有限公司 一种多联机舒适度均衡控制方法及系统
CN108397858A (zh) * 2018-02-14 2018-08-14 青岛海尔空调器有限总公司 用于空调器的防凝露控制方法
CN109631248B (zh) * 2018-11-16 2021-05-25 青岛海尔空调电子有限公司 一种多联机制冷回油降噪控制方法及系统
CN111878892B (zh) * 2020-06-29 2022-02-22 宁波奥克斯电气股份有限公司 多联机系统的回油方法、装置、空调器和存储介质
CN114353276B (zh) * 2020-10-13 2023-03-28 美的集团武汉制冷设备有限公司 多联机及其控制方法、计算机存储介质
CN113915737B (zh) * 2021-11-23 2022-11-04 宁波奥克斯电气股份有限公司 一种空调器低温制热启动控制方法和空调器
CN117889525A (zh) * 2022-10-09 2024-04-16 青岛海尔空调电子有限公司 多联式空调系统及其防凝露控制方法和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187517A (zh) * 2006-11-17 2008-05-28 海尔集团公司 空调除霜方法
CN105987483A (zh) * 2015-02-05 2016-10-05 佛山市禾才科技服务有限公司 一种新型的空调除霜控制系统
CN106403192A (zh) * 2016-10-09 2017-02-15 珠海格力电器股份有限公司 一种防凝露运行控制方法、装置和多联空调系统
CN106642602A (zh) * 2016-10-26 2017-05-10 珠海格力电器股份有限公司 多联空调系统及其检测控制方法、检测控制装置
CN206207681U (zh) * 2016-10-26 2017-05-31 珠海格力电器股份有限公司 多联空调系统的检测控制装置
CN107575939A (zh) * 2017-09-07 2018-01-12 珠海格力电器股份有限公司 多联机系统及其控制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001230541B8 (en) * 2001-01-31 2010-03-11 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle device, air conditioner, choke, and flow rate controller
JP2003166764A (ja) * 2001-09-20 2003-06-13 Denso Corp 冷凍サイクル装置
EP1486740B1 (en) * 2002-03-18 2013-11-06 Daikin Industries, Ltd. Air conditioning system
KR101199382B1 (ko) * 2006-02-17 2012-11-09 엘지전자 주식회사 공기 조화기 및 그 제어방법
CN101216198B (zh) * 2007-12-26 2010-05-19 广汽本田汽车有限公司 一种注塑车间用空调系统及其控制方法
US8839640B2 (en) * 2009-10-27 2014-09-23 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5484930B2 (ja) * 2010-01-25 2014-05-07 三菱重工業株式会社 空気調和機
CN104180563B (zh) 2013-05-27 2017-06-20 珠海格力电器股份有限公司 多联机系统制热时的回油方法
CN104567106A (zh) * 2013-10-24 2015-04-29 广州南洋理工职业学院 变频空调高温回油方法
JP5842970B2 (ja) * 2013-10-29 2016-01-13 ダイキン工業株式会社 空気調和装置
KR20150075895A (ko) * 2013-12-26 2015-07-06 동부대우전자 주식회사 냉장고 이슬 맺힘 방지용 냉장고 및 그 제어 방법
JP6230931B2 (ja) 2014-02-20 2017-11-15 三菱重工サーマルシステムズ株式会社 マルチ形空気調和機
KR101677649B1 (ko) * 2014-12-23 2016-11-18 엘지전자 주식회사 냉장고
JP6028817B2 (ja) * 2015-01-30 2016-11-24 ダイキン工業株式会社 空気調和装置
JP6028816B2 (ja) * 2015-01-30 2016-11-24 ダイキン工業株式会社 空気調和装置
KR102264023B1 (ko) * 2015-02-06 2021-06-11 엘지전자 주식회사 공기조화기
EP3176516B1 (en) 2015-12-01 2018-03-21 Toshiba Carrier Corporation Air-conditioning apparatus
KR101673846B1 (ko) * 2016-04-11 2016-11-09 대성히트펌프 주식회사 히트펌프 시스템의 오일회수 운전제어방법 및 오일회수 운전제어기능을 갖는 히트펌프 시스템
KR102552118B1 (ko) * 2016-07-22 2023-07-10 한온시스템 주식회사 차량용 공조 시스템 및 그 제어방법
KR102600975B1 (ko) * 2016-12-21 2023-11-14 삼성전자주식회사 공기조화기 및 그 제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187517A (zh) * 2006-11-17 2008-05-28 海尔集团公司 空调除霜方法
CN105987483A (zh) * 2015-02-05 2016-10-05 佛山市禾才科技服务有限公司 一种新型的空调除霜控制系统
CN106403192A (zh) * 2016-10-09 2017-02-15 珠海格力电器股份有限公司 一种防凝露运行控制方法、装置和多联空调系统
CN106642602A (zh) * 2016-10-26 2017-05-10 珠海格力电器股份有限公司 多联空调系统及其检测控制方法、检测控制装置
CN206207681U (zh) * 2016-10-26 2017-05-31 珠海格力电器股份有限公司 多联空调系统的检测控制装置
CN107575939A (zh) * 2017-09-07 2018-01-12 珠海格力电器股份有限公司 多联机系统及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3640547A4 *

Also Published As

Publication number Publication date
EP3640547A4 (en) 2020-09-30
EP3640547A1 (en) 2020-04-22
CN107575939B (zh) 2019-10-25
US11408633B2 (en) 2022-08-09
EP3640547B1 (en) 2023-05-03
CN107575939A (zh) 2018-01-12
US20200292199A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2019047889A1 (zh) 多联机系统及其控制方法
CN107525222B (zh) 一种空调防凝露的控制方法及装置
CN110940055B (zh) 一种空调器制热除霜控制方法、装置及空调器
CN111981640B (zh) 一种除霜控制方法、装置、空调器及存储介质
CN106989488B (zh) 空调器和空调器的除霜控制方法及系统
CN105371545B (zh) 空调器及其制冷系统的制冷剂循环量调节方法
CN110425112B (zh) 防压缩机液击的空调及防压缩机液击的控制方法
CN111765606A (zh) 控制空调器低温制热启动的方法以及空调器和存储介质
CN105627496A (zh) 空调器低温制冷控制方法和空调器
CN110006144B (zh) 一种空调清洁控制方法及空调器
CN109405383B (zh) 一种空调器防回液控制方法及空调器
CN112797593A (zh) 自清洁控制方法及单冷型空调器
JP5591214B2 (ja) 空気調和機および空気調和機の運転方法
WO2016120936A1 (ja) 空気調和装置
CN112283993B (zh) 一种制冷控制方法、装置及制冷设备
CN110319541B (zh) 一种大排量变频多联机系统的卸载调节控制方法
CN112902503B (zh) 变频多联机制热回油控制方法
CN103743068B (zh) 一种基于能效优化的中央空调冷却塔风机控制方法及系统
CN111412581B (zh) 空调器除霜控制方法
CN113531783B (zh) 多联式空调系统的制冷防冻结控制方法及装置
CN107024013B (zh) 空调器及其控制方法
CN107642924B (zh) 防止蒸发器结冰霜的方法及空调器
CN112797570B (zh) 除霜控制方法、除霜装置及多联空调系统
CN113776142A (zh) 一种热泵型空调器制冷循环系统及其控制方法
CN109140817B (zh) 一种使用加热装置的空调器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018855086

Country of ref document: EP

Effective date: 20200117

NENP Non-entry into the national phase

Ref country code: DE