WO2019047836A1 - 一种负压液冷系统及其控制方法 - Google Patents

一种负压液冷系统及其控制方法 Download PDF

Info

Publication number
WO2019047836A1
WO2019047836A1 PCT/CN2018/104063 CN2018104063W WO2019047836A1 WO 2019047836 A1 WO2019047836 A1 WO 2019047836A1 CN 2018104063 W CN2018104063 W CN 2018104063W WO 2019047836 A1 WO2019047836 A1 WO 2019047836A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure value
pressure
preset
vacuum pump
value
Prior art date
Application number
PCT/CN2018/104063
Other languages
English (en)
French (fr)
Inventor
丁俊峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18852998.6A priority Critical patent/EP3668291B1/en
Publication of WO2019047836A1 publication Critical patent/WO2019047836A1/zh
Priority to US16/810,516 priority patent/US11419242B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20627Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change

Definitions

  • the invention belongs to the technical field of single board cooling, and particularly relates to a negative pressure liquid cooling system and a control method thereof.
  • Power density is the power consumption per unit area.
  • the high power density means that more heat is accumulated in the same area, which will increase the heat dissipation pressure.
  • the traditional air cooling method can no longer meet the increasing heat dissipation requirements of the chip.
  • Liquid cooling technology is widely used for efficient heat dissipation, such as data centers, servers, and personal PCs.
  • Liquid cooling systems typically include: cold plates, heat exchangers, piping, liquid pumps, and various sensors.
  • the cold plate is attached to the single board to be cooled, and a fluid passage is disposed inside the cold plate to transfer the heat of the single board to the fluid.
  • the fluid in the cold plate is transferred to the heat exchanger through the pipeline and the liquid pump, and the heat exchanger can transfer the heat of the hot fluid to another cold fluid, thereby achieving heat dissipation for the single plate.
  • the liquid pump is used to adjust the flow rate of the coolant in the pipeline to adjust the heat exchange rate of the coolant; the sensor is used to detect the pressure and temperature in the liquid cooling system.
  • the traditional liquid cooling system is usually a positive pressure system, that is, the liquid pressure in the pipeline is greater than the ambient pressure outside the pipeline.
  • the liquid in the pipeline leaks from the perforation to the single
  • the board is damaged, for example, when the coolant is water, the water in the pipeline leaks onto the board, which may cause an accident such as short circuit or burnout of the board.
  • an object of the present invention is to provide a negative pressure liquid cooling system and a control method thereof to solve the technical problem of the conventional liquid cooling system coolant leakage. Its technical solutions are as follows:
  • the present application provides a control method for a negative pressure liquid cooling system, which is applied to a negative pressure liquid cooling system including: a cold plate, a coolant storage tank, a vacuum pump, a solenoid valve, and a liquid a pump and a heat exchanger, wherein the cold plate is used to cool a device to be cooled, the coolant storage tank is connected to an outlet of the cold plate, and the vacuum pump passes through the solenoid valve and the coolant storage tank Connected, the inlet of the liquid pump is connected to the coolant storage tank, the heat exchanger includes a first circuit and a second circuit that are isolated from each other, and the fluid in the first circuit is used to cool the second a fluid in the circuit, an inlet of the second circuit is connected to an outlet of the liquid pump, and an outlet of the second circuit is connected to an inlet of the cold plate; the method comprises:
  • the first aspect provides a negative pressure liquid cooling system control method that separately controls the pressure at the inlet and outlet of the cold plate to maintain the inlet and outlet of the cold plate at a negative pressure. Therefore, when the perforation occurs in the pipeline between the inlet of the cold plate and the outlet, the pressure at the outlet of the cold plate can be separately controlled to be kept at a negative pressure, thereby suppressing the coolant in the pipeline to prevent the occurrence of coolant leakage. Further, the leakage of the conductive medium such as water is prevented, resulting in damage to the electronic equipment to be cooled or a safety hazard.
  • the method further includes: when the second pressure value is within the second preset pressure range, counting a working time ratio of the vacuum pump, the working time The ratio is the ratio of the opening time and the closing time of the vacuum pump; when the vacuum pump continuously exceeds the first set value for a preset number of working times, the liquid pump is turned off, and a leakage alarm signal is output.
  • the negative pressure liquid cooling system control method counts the working time of the vacuum pump after the vacuum pump is turned on.
  • the pressure in the water tank may rise, which may cause the vacuum pump to frequently start in a short time. Stop, therefore, the system leakage accident can be predicted based on the ratio of the working time.
  • the method further The method includes: detecting that the vacuum pump is faulty if the first pressure value in the coolant storage tank is greater than the second preset pressure value after detecting the first preset duration of the vacuum pump; When the vacuum pump is faulty, adjusting the rotation speed of the liquid pump such that a difference between the second pressure value and the first pressure value is equal to a fifth preset pressure value, and the fifth preset pressure value Greater than 0.
  • the negative pressure liquid cooling system control method provided by the implementation mode, after the first preset time period of the vacuum pump is turned on, if the pressure in the coolant storage tank does not reach the first preset pressure range, the vacuum pump is detected to be faulty, and if the vacuum pump is faulty, Then switch to the differential pressure mode, that is, adjust the speed of the liquid pump to keep the pressure difference between the inlet and outlet of the cold plate at a set value. At the same time, there is a risk of leakage.
  • the control method can automatically detect the risk of leakage caused by the failure of the vacuum pump, thereby further reducing the risk of system leakage.
  • the negative pressure liquid cooling system further includes a backup vacuum pump connected to the electromagnetic valve, wherein when the first pressure value is greater than the second preset After the pressure value is turned on, after the vacuum pump and the electromagnetic valve are turned on, the method further includes: after the first preset length of the vacuum pump is turned on, detecting that the first pressure value in the coolant storage tank is greater than The second preset pressure value is used to detect whether the vacuum pump is faulty; if the vacuum pump is detected to be faulty, the standby vacuum pump is turned on.
  • the negative pressure liquid cooling system is provided with a standby vacuum pump, and when the current running vacuum pump failure is detected, the standby vacuum pump is activated to maintain the negative pressure liquid cooling system in a negative pressure state and reduce System leakage risk.
  • the adjusting a rotation speed of the liquid pump such that the second pressure value is within a second preset pressure range includes: when the second pressure value When the fourth preset pressure value is greater than, the rotation speed of the liquid pump is decreased to decrease the second pressure value; when the second pressure value is less than the third preset pressure value, increasing the The rotational speed of the liquid pump to increase the second pressure value.
  • the negative pressure liquid cooling control method adjusts the pressure at the inlet of the cold plate by adjusting the rotation speed of the liquid pump, thereby realizing the adjustment of the pressure at the inlet of the cold plate separately, so that the inlet of the cold plate is maintained at a negative pressure, thereby The coolant is trapped inside the pipeline, reducing the risk of coolant leakage.
  • the present application provides a negative pressure liquid cooling system including a cold plate, a coolant storage tank, a vacuum pump, a solenoid valve, a liquid pump, a heat exchanger, and a controller; the cold plate is attached to the electronic device to be cooled And for cooling the electronic device to be cooled; an inlet of the coolant storage tank is connected to an outlet of the cold plate, and an outlet of the coolant storage tank is connected to an inlet of the liquid pump;
  • the first and second circuits are isolated from each other, the fluid in the first circuit is used to cool the fluid in the second circuit, and the inlet of the second circuit is connected to the outlet of the liquid pump, An outlet of the second circuit is connected to the inlet of the cold plate;
  • the controller is configured to control the first pressure value in the coolant storage tank to be maintained at first by controlling an operating state of the vacuum pump and the solenoid valve a preset pressure range; and controlling a second pressure value of the inlet of the cold plate to be maintained within a second preset pressure range by
  • the negative pressure liquid cooling system can separately control the pressure of the inlet and outlet of the cold plate to be maintained at a negative pressure.
  • the pressure at the outlet of the cold plate can be separately controlled to be kept at a negative pressure, thereby suppressing the coolant in the pipeline to prevent the leakage of the coolant. Further, the leakage of the conductive medium such as water is prevented, resulting in damage to the electronic equipment to be cooled or a safety hazard.
  • the system further includes: a one-way valve; an inlet of the one-way valve is connected to an outlet of the second circuit, and an outlet of the one-way valve is connected to the cold plate Imports.
  • the one-way valve is a passive control component of the negative pressure liquid cooling system.
  • the pressure at the perforation rises, and the pressure at the outlet of the check valve It will be greater than the pressure at its inlet, at which point the check valve is closed and the water flow is quickly blocked. Therefore, it is ensured that the liquid pump has sufficient time for the speed regulation, so that the cold plate inlet is in a negative pressure state in real time, and the water leakage phenomenon caused by the slow response of the liquid pump speed regulation is avoided.
  • the system further includes: a gas liquid filter; an inlet of the gas liquid filter is connected to the electromagnetic valve, and an outlet of the gas liquid filter is connected to the vacuum pump,
  • the gas liquid filter is for filtering water vapor contained in a gas extracted from the coolant storage tank.
  • the controller is configured to control, by controlling an operating state of the vacuum pump and the electromagnetic valve, a first pressure value in the coolant storage tank to remain at a first preset Specifically, when the pressure is within the range, the first pressure value is detected; when the first pressure value is greater than the second preset pressure value, the vacuum pump and the electromagnetic valve are turned on until the first pressure value Down to a first preset pressure range, a minimum value of the first preset pressure range is a first preset pressure value, and a maximum value of the first preset pressure range is a second preset pressure value, and The first preset pressure value and the second preset pressure value are both less than 1 standard atmospheric pressure; when the first pressure value is less than the first preset pressure value, the vacuum pump is turned off and the electromagnetic is turned on a valve until the first pressure value is within the first predetermined pressure range; when the first pressure value is within the first predetermined pressure range, and the second pressure value is not in the first By controlling the liquid pump when the preset pressure range is within
  • the negative pressure liquid cooling system detects the pressure in the coolant storage tank, that is, the pressure of the cold plate outlet, and when the pressure in the coolant storage tank is greater than the maximum value of the first preset pressure range, the vacuum pump is turned on and The solenoid valve extracts the air in the coolant storage tank to reduce the pressure in the coolant storage tank; when the pressure in the coolant storage tank is less than the minimum value of the first preset pressure range, the vacuum pump is turned off and the solenoid valve is opened to Air is introduced into the coolant storage tank through the solenoid valve to increase the pressure in the coolant storage tank. Eventually, the pressure at the exit of the cold plate is maintained within a certain negative pressure range, thereby suppressing the coolant in the pipeline and reducing the risk of coolant leakage.
  • the controller is configured to control the pressure in the coolant storage tank to be maintained within a first preset pressure range by controlling an operating state of the vacuum pump and the solenoid valve
  • the method is further configured to: when the second pressure value is within the second preset pressure range, calculate a working time ratio of the vacuum pump, wherein the working time ratio is an opening time and a closing time of the vacuum pump The ratio of time; when the vacuum pump continuously exceeds the first set value for a preset number of working times, the liquid pump is turned off.
  • the negative pressure liquid cooling system provided by the implementation method counts the working time of the vacuum pump after the vacuum pump is turned on.
  • the pressure in the water tank may rise, which may cause the vacuum pump to start and stop frequently in a short time. Therefore, the system leakage accident can be predicted based on the ratio of the working time.
  • the controller is configured to control the pressure in the coolant storage tank to be maintained within a first preset pressure range by controlling an operating state of the vacuum pump and the solenoid valve And detecting, if the first pressure value in the coolant storage tank is greater than the second preset pressure value after detecting the first preset time period of the vacuum pump, detecting whether the vacuum pump is faulty And if the vacuum pump is detected to be faulty, adjusting a rotation speed of the liquid pump such that a difference between the second pressure value and the first pressure value is equal to a fifth preset pressure value, the fifth The preset pressure value is greater than zero.
  • the control method can automatically detect the risk of leakage caused by the failure of the vacuum pump, thereby further reducing the risk of system leakage.
  • the method further includes: a backup vacuum pump connected to the solenoid valve; the controller is configured to control the coolant storage by controlling an operating state of the vacuum pump and the solenoid valve
  • the method further comprises: after detecting the first preset duration of the vacuum pump, detecting that the first pressure value in the coolant storage tank is greater than the first The preset pressure value is used to detect whether the vacuum pump is faulty; if the vacuum pump is detected to be faulty, the standby vacuum pump is turned on.
  • the negative pressure liquid cooling system provided by the implementation method adds a standby vacuum pump, and when detecting the current vacuum pump failure, the standby vacuum pump is turned on, so that the negative pressure liquid cooling system maintains a negative pressure state, thereby reducing the risk of system leakage.
  • the minimum value of the second preset pressure range is a third preset pressure value
  • the maximum value of the second preset pressure range is a fourth preset pressure value.
  • the third preset pressure value and the fourth preset pressure value are both less than 1 standard atmospheric pressure; the controller is configured to control the second pressure value to remain in the second by controlling the rotational speed of the liquid pump When the preset pressure range is within, when the second pressure value is greater than the fourth preset pressure value, the rotation speed of the liquid pump is decreased, so that the second pressure value is lower than the first a preset pressure value; when the second pressure value is less than the third preset pressure value, increasing a rotation speed of the liquid pump such that the second pressure value is higher than the third preset pressure value.
  • the negative pressure liquid cooling control method adjusts the pressure at the inlet of the cold plate by adjusting the rotation speed of the liquid pump, thereby realizing the adjustment of the pressure at the inlet of the cold plate separately, so that the inlet of the cold plate is maintained at a negative pressure, thereby The coolant is trapped inside the pipeline, reducing the risk of coolant leakage.
  • the present application further provides a processor for running a program, wherein the program runs the negative pressure liquid cooling system control method of the first aspect.
  • FIG. 1 is a schematic view showing the principle of a negative pressure liquid cooling system according to an embodiment of the present application
  • FIG. 2 is a schematic view showing the principle of another negative pressure liquid cooling system according to an embodiment of the present application.
  • FIG. 3 is a schematic view showing the principle of a negative pressure liquid cooling system according to an embodiment of the present application.
  • FIG. 4 is a flow chart of a control method of a negative pressure liquid cooling system according to an embodiment of the present application.
  • FIG. 5 is a flow chart of a control method of another negative pressure liquid cooling system according to an embodiment of the present application.
  • FIG. 6 is a flow chart of a control method of a negative pressure liquid cooling system according to an embodiment of the present application.
  • Fig. 7 is a block diagram of a negative pressure liquid cooling control device according to an embodiment of the present application.
  • the pressure at the inlet of the cold plate will rise synchronously, resulting in the pressure at the inlet of the cold plate being greater than the pressure outside the pipe. That is, it evolved into a positive pressure system, which eventually caused the coolant to leak from the pipe perforations.
  • the negative pressure liquid cooling system control method provided by the present application separately controls the pressure values of the inlet and outlet of the cold plate, and both are maintained at a negative pressure.
  • the pressure at the outlet of the cold plate can be quickly maintained at a negative pressure, thereby suppressing the coolant in the pipe and preventing the coolant from leaking to the electron to be cooled.
  • the leakage of the conductive medium such as water is avoided, which may cause damage to the electronic equipment to be cooled or a safety hazard.
  • FIG. 1 a schematic diagram of a negative pressure liquid cooling system according to an embodiment of the present application is shown.
  • the cooling liquid is taken as an example.
  • the cooling liquid It can also be other liquids.
  • the system may include: a heat exchanger 110, a check valve 120, a water tank 130 (ie, a coolant storage tank), a solenoid valve 140, a vacuum pump 150, a liquid pump 160, a first pressure sensor 170, and a Two pressure sensors 180, a line 190, a cooling plate 200, and a controller (not shown in Figure 1).
  • the heat exchanger 110 includes a first circuit 111 and a second circuit 112 that are isolated from each other.
  • the second coolant in the second circuit is used to cool the electronic device to be cooled, and the first coolant in the first circuit is used to cool the second circuit.
  • the second coolant in the middle is used to cool the electronic device to be cooled.
  • the outlet of the second circuit of the heat exchanger 110 is connected to the inlet of the check valve 120, the outlet of the check valve 120 is connected to the inlet of the cold plate, and the outlet of the cold plate is connected to the inlet of the water tank 130.
  • the cold plate 200 is attached to the single board (ie, the electronic device to be cooled), and the cooling liquid in the cold plate 200 exchanges heat with the heat radiated from the single board to achieve heat dissipation for the single board.
  • the outlet of the water tank 130 is connected to the inlet of the liquid pump 160, and the outlet of the liquid pump 160 is connected to the inlet of the second circuit in the heat exchanger 110.
  • a first pressure sensor 170 is provided at the inlet of the cold plate for detecting the pressure at the inlet of the cold plate.
  • a second pressure sensor 180 is disposed above the liquid of the coolant storage tank for detecting the pressure within the coolant storage tank.
  • the overall working process of the negative pressure liquid cooling system is as follows: the heat generated by the single plate is transferred to the second cooling liquid in the cold plate via the cold plate 200.
  • the second coolant enters the water tank 130 via the line 190 and is pumped by the liquid pump 160 to the heat exchanger 110.
  • the first coolant in the first circuit 111 in the heat exchanger 110 exchanges heat with the second coolant to effect cooling of the second coolant.
  • the second coolant is returned to the cold plate 200 via the check valve 120, and the circulation is continued to achieve cooling of the single plate.
  • the water tank 130 is filled with a certain amount of second coolant and air, and the second pressure sensor 180 is disposed above the liquid level of the second coolant for detecting the pressure in the water tank 130 (ie, the pressure of the cold plate outlet), and The detected pressure value is provided to the controller.
  • the controller controls the vacuum pump 150 and the solenoid valve 140 to be opened, and the vacuum pump 150 withdraws the water tank. Excess air in 130, until the pressure in the water tank returns to the first predetermined pressure range, the controller controls the vacuum pump 150 and the solenoid valve 140 to close, thereby maintaining the cold plate outlet at a negative pressure state.
  • a first pressure sensor 170 is provided at the inlet of the cold plate 200 for detecting the pressure value of the inlet of the cold plate 200 and supplying it to the controller.
  • the controller lowers the rotation speed of the liquid pump 160 to promote the pressure recovery of the cold plate inlet. Up to the second preset pressure range, until the pressure of the cold plate inlet returns to the second preset pressure range, the rotational speed of the control liquid pump 160 is stabilized at the current rotational speed.
  • the values of the second preset pressure range and the first preset pressure range can ensure that the pressure of the cold plate inlet and the pressure of the cold plate outlet always maintain a certain positive pressure difference, that is, the pressure of the cold plate inlet is always greater than the cold plate outlet. pressure.
  • the pressure of the cold plate inlet and the cold plate outlet can be separately controlled within a predetermined negative pressure range, and the pressure difference between the cold plate inlet and the cold plate outlet is maintained at a certain positive pressure difference.
  • the one-way valve 120 is disposed between the second circuit outlet of the heat exchanger 110 and the cold plate inlet.
  • the one-way valve 120 is a passive control component of the negative pressure liquid cooling system, and in combination with the active control of the controller, ensures that the second coolant in the negative pressure liquid cooling system does not leak.
  • the pressure at the perforation rises, and the pressure at the outlet of the check valve 120 will be greater than the pressure at the inlet thereof, at which time the check valve 120 is closed and the water flow is quickly blocked. Therefore, it is ensured that the liquid pump 160 has sufficient time for the speed regulation, so that the cold plate inlet is in a negative pressure state in real time, and the water leakage phenomenon caused by the slow response of the liquid pump 160 is avoided.
  • the inlet of the cold plate 200 is provided with a temperature sensor 210 for detecting the temperature of the second coolant of the cold plate inlet.
  • the controller passes The regulating valve 220 in the first circuit 111 is adjusted to regulate the heat exchange capacity of the flow rate control heat exchanger 110 of the first coolant in the first circuit 111 such that the temperature of the second coolant at the inlet of the cold plate reaches a preset range.
  • the negative pressure liquid cooling system provided in this embodiment realizes separate control of the inlet and outlet of the cold plate through the controller, and ensures that the inlet and the outlet of the cold plate are both negative pressure.
  • the controller can separately control the rotation speed of the liquid pump and the vacuum pump to restore the cold plate inlet and outlet to a negative pressure, thereby cooling
  • the liquid is suppressed in the pipeline to prevent coolant leakage.
  • a check valve is arranged between the second circuit outlet of the heat exchanger and the inlet of the cold plate, and the inlet of the check valve is connected to the heat exchanger, the outlet of the check valve is connected to the cold plate, and the tube connected to the cold plate inlet is connected.
  • FIG. 2 a schematic diagram of another negative pressure liquid cooling system according to an embodiment of the present application is shown.
  • the negative pressure liquid cooling system provided in this embodiment adds a gas liquid filter 300.
  • the gas liquid filter 300 is disposed between the vacuum pump 150 and the electromagnetic valve 140 for filtering water vapor in the gas extracted from the coolant storage tank 130, thereby effectively preventing damage of the vacuum pump 150 by moisture.
  • the other components are connected in the same manner as the negative pressure liquid cooling system shown in Fig. 1, and will not be described again here.
  • FIG. 3 a schematic diagram of another negative pressure liquid cooling system according to an embodiment of the present application is shown.
  • This embodiment adds a standby vacuum pump 400 to the embodiment shown in FIG. 1.
  • a vacuum pump fails, Enable another vacuum pump to ensure that the system maintains a negative pressure.
  • the connection and function of other components are the same as those of the negative pressure liquid cooling system shown in Fig. 1, and will not be described herein.
  • FIG. 4 a flow chart of a control method for a negative pressure liquid cooling system according to an embodiment of the present application is shown.
  • the method is applied to a controller in the negative pressure liquid cooling system shown in FIG. 1 to FIG. 2, as shown in FIG.
  • the method can include the following steps:
  • first pressure value is within the first preset pressure range, executing S140; if the first pressure value is greater than the maximum value of the first preset pressure range (ie, the second preset pressure value), executing S120; If the first pressure value is less than the minimum value of the first preset pressure range (ie, the first preset pressure value), then S130 is performed.
  • the pressure in the coolant storage tank is the pressure at the exit of the cold plate.
  • the first pressure value is acquired by the first pressure sensor and provided to the controller.
  • the minimum value of the first preset pressure range is a first preset pressure value, and the maximum value is a second preset pressure value; wherein the first preset pressure value and the second preset pressure value can be set according to actual system conditions. .
  • the first preset pressure range is [39 kPa, 41 kPa], that is, the first preset pressure value is 39 kPa, the second preset The pressure value is 41 kPa.
  • the pressure of the cold plate inlet is adjusted, that is, after S120 or S130 is performed, S140 is performed.
  • the minimum value of the second preset pressure range is a third preset pressure value, and the maximum value is a fourth preset pressure value, and the second preset pressure range is determined according to actual system conditions.
  • the second preset pressure range and the first preset pressure range maintain a certain positive pressure difference, that is, the minimum pressure value of the second preset pressure range is greater than the maximum pressure value of the first preset pressure range, that is, the cold plate inlet The pressure is always greater than the pressure at the exit of the cold plate.
  • the second preset pressure range is [89 kPa, 91 kPa], that is, the third preset pressure value is 89 kPa, and the fourth preset pressure value is 91kPa.
  • S160 Adjust the rotation speed of the liquid pump to raise the second pressure value to the second preset pressure range.
  • the working time ratio is the ratio of the vacuum pump opening time to the closing time.
  • the proportion of working time is appropriate to avoid the long-term work of the vacuum pump affecting the service life of the vacuum pump; on the other hand, when the system leaks, the pressure in the water tank may rise, which may cause the vacuum pump to start and stop frequently in a short time. Therefore, the system leakage accident can be predicted based on the ratio of the working time.
  • the process returns to S110 to repeatedly monitor the running state of the liquid cooling system.
  • N can be set according to actual needs, for example, 3 times; the first set value can be set by the performance of the vacuum pump, for example, 3:1.
  • the controller When it is detected that the working time of the vacuum pump for N consecutive times is greater than the first set value, it indicates that there may be a leakage phenomenon in the negative pressure liquid cooling system, and the controller issues a control signal for controlling the alarm device to perform an alarm. At the same time, the control fluid pump stops operating and slows down the rate of coolant leakage.
  • the alarm device can be an audible and visual alarm, or an instant messaging message can be sent to inform the staff so that the staff can quickly check the system for leaks after receiving the alarm signal.
  • the negative pressure liquid cooling system control method provided by the embodiment separately detects and controls the pressures of the cold plate inlet and the cold plate outlet respectively, so that when the pipe between the inlet of the cold plate and the outlet is perforated, the controller can separately control The speed of the liquid pump, the vacuum pump, to restore the cold plate inlet and outlet to a negative pressure.
  • the coolant is suppressed in the pipeline to avoid the occurrence of coolant leakage.
  • the leakage of the conductive medium such as water is prevented, resulting in damage to the electronic equipment to be cooled or a safety hazard.
  • FIG. 5 a flow chart of a control method for another negative pressure liquid cooling system according to an embodiment of the present application is shown. This embodiment adds a flow for detecting whether a vacuum pump is faulty, and replaces S120 in FIG. 4 with the following steps:
  • the first preset duration needs to be determined according to the working time when the first pressure in the water tank reaches the first preset pressure range when the vacuum pump is working normally.
  • the first predetermined duration is determined based on the volume of the water tank and the pumping rate of the vacuum pump, or based on test data of the liquid pressure cooling system, for example, 60 s.
  • the differential pressure mode that is, the pressure difference between the cold plate inlet and the cold plate outlet is kept constant for the fifth preset pressure value, the fifth preset pressure value is greater than 0, and the fifth pre- The pressure value may be equal to a difference between the third preset pressure value and the second preset pressure value, or other values.
  • the pressure at the inlet of the cold plate can be adjusted to ensure that the pressure difference between the inlet and outlet of the cold plate is a certain positive pressure value.
  • the system may evolve into a positive pressure system.
  • the cold plate is inserted into the pipe between the outlets, there is a risk of leakage. Therefore, when switching to the differential pressure mode, a leak warning signal may be output. There is a risk of leakage.
  • the control method can automatically detect the risk of leakage caused by the failure of the vacuum pump, thereby further reducing the risk of system leakage.
  • FIG. 6 a flow chart of a control method for a negative pressure liquid cooling system according to another embodiment of the present application is shown.
  • the method is applied to the negative pressure liquid cooling system shown in FIG. 3 when a vacuum pump failure of the current operation is detected. After that, the spare vacuum pump is activated.
  • the method replaces S120 in FIG. 4 with the following steps:
  • the negative pressure liquid cooling system control method provided in this embodiment starts the standby vacuum pump after detecting the fault of the currently operating vacuum pump, so that the negative pressure liquid cooling system maintains the negative pressure state and reduces the risk of system leakage.
  • the memory 720 may include non-persistent memory, random access memory (RAM), and/or non-volatile memory in a computer readable medium, such as read only memory (ROM) or flash memory (flash RAM), the memory including at least A memory chip.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Program instructions are stored in the memory 720, and the processor 710 implements the following functional steps by executing a store instruction in the memory 720:
  • the second preset pressure value is a maximum value of the first preset pressure range
  • the minimum value of the first preset pressure range is a first preset pressure value
  • the first preset pressure value and the first The two preset pressure values are all less than 1 standard atmospheric pressure
  • the vacuum pump When the first pressure value is less than the first preset pressure value, the vacuum pump is turned off and the solenoid valve is turned on until the first pressure value rises to the first preset pressure range;
  • the method further includes:
  • the working time of the vacuum pump is counted, and the working time ratio is a ratio of the opening time and the closing time of the vacuum pump;
  • the method further includes :
  • the vacuum pump After the first preset duration of the vacuum pump is turned on, if it is detected that the first pressure value in the coolant storage tank is greater than the second preset pressure value, detecting whether the vacuum pump is faulty;
  • the fifth pre- Set the pressure value to be greater than zero.
  • the negative pressure liquid cooling system further includes a backup vacuum pump connected to the electromagnetic valve, wherein when the first pressure value is greater than the second preset pressure The value, when the vacuum pump and the solenoid valve are turned on, the method further includes:
  • the vacuum pump After the first preset duration of the vacuum pump is turned on, if it is detected that the first pressure value in the coolant storage tank is greater than the second preset pressure value, detecting whether the vacuum pump is faulty;
  • the backup vacuum pump is turned on.
  • the adjusting the rotation speed of the liquid pump such that the second pressure value is within a second preset pressure range comprises:
  • the negative pressure liquid cooling control device realizes separate control of the inlet and outlet of the cold plate through the controller, and ensures that the inlet and the outlet of the cold plate are both negative pressure.
  • the controller can separately control the rotation speed of the liquid pump and the vacuum pump to restore the cold plate inlet and outlet to a negative pressure, thereby cooling
  • the liquid is suppressed in the pipeline to prevent coolant leakage.
  • a check valve is arranged between the second circuit outlet of the heat exchanger and the inlet of the cold plate, and the inlet of the check valve is connected to the heat exchanger, the outlet of the check valve is connected to the cold plate, and the tube connected to the cold plate inlet is connected.
  • the present application provides a processor for running a program that executes the above-described negative pressure liquid cooling system control method while the program is running.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

一种负压液冷系统及其控制方法,负压液冷系统通过单独控制冷板(200)进口和出口的压力,使冷板(200)的进口和出口保持为负压。因此,当冷板(200)进口到出口之间的管路(190)出现穿孔时,能够单独控制冷板(200)出口处的压力保持为负压,从而将冷却液抑制在管路(190)内,避免冷却液泄漏现象发生。进而,避免了水等导电工质泄漏后导致待冷却电子设备损坏或出现安全隐患。

Description

一种负压液冷系统及其控制方法
本申请要求于2017年09月06日提交中国专利局、申请号为201710796380.8、发明名称为“一种负压液冷系统及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于单板冷却技术领域,尤其涉及一种负压液冷系统及其控制方法。
背景技术
随着电子元器件集成度提高,芯片的功耗密度越来越大。功耗密度是单位面积功耗,功耗密度大意味着更多热量堆积在同面积的地方,会加大散热压力。传统的风冷散热方式已经不能满足芯片日益增长的散热需求。液体冷却技术以高效的散热效率得到广泛应用,例如,数据中心、服务器、个人PC等多个领域。
液冷系统通常包括:冷板、热交换器、管路、液泵、及各种传感器。其中,冷板与待冷却的单板贴合,其内部设置有流体通道,可以将单板的热量传递到流体中。冷板中的流体通过所述管路、液泵传递到热交换器中,所述热交换器可以将热流体的热量传递到另一种冷流体,从而实现为单板散热。液泵用于调节冷却液在管路中的流速,从而调节冷却液的换热速度;传感器用于检测液冷系统中的压力、温度等。
传统的液冷系统通常是正压系统,即,管路内的液体压力大于管路外的环境压力,当管路因腐蚀或其它原因穿孔时,管路内的液体会从穿孔处泄漏到单板上,从而导致单板损坏,例如,冷却液是水时,管路中的水泄漏到单板上,可能引起该单板短路或烧毁等事故。
发明内容
有鉴于此,本发明的目的在于提供一种负压液冷系统及其控制方法,以解决传统的液冷系统冷却液泄漏的技术问题。其技术方案如下:
第一方面,本申请提供一种负压液冷系统的控制方法,应用于负压液冷系统中,所述负压液冷系统包括:冷板,冷却液储存箱,真空泵、电磁阀、液泵和热交换器,其中,所述冷板用于冷却待冷却设备,所述冷却液储存箱与所述冷板的出口相连接,所述真空泵通过所述电磁阀与所述冷却液储存箱相连接,所述液泵的进口与所述冷却液储存箱连接,所述热交换器包括相互隔离的第一回路和第二回路,所述第一回路内的流体用于冷却所述第二回路内的流体,所述第二回路的进口连接所述液泵的出口,所述第二回路的出口连接所述冷板的进口;所述方法包括:
检测所述冷却液储存箱内的第一压力值;当所述第一压力值大于第二预设压力值时,开启所述真空泵和所述电磁阀,直到所述第一压力值降至所述第一预设压力范围内;其中,所述第二预设压力值为所述第一预设压力范围的最大值,所述第一预设压力范围的最小值为第一预设压力值,且所述第一预设压力值和所述第二预设压力值均小于1个标准大气压;当所述第一压力值小于所述第一预设压力值时,关闭所述真空泵并开启所述电磁阀,直到所述第一压力值升至所述第一预设压力范围内;当所述第一压力值在所述第一预设压力范 围内,且所述冷板的进口处的第二压力值不在所述第二预设压力范围内时,调节所述液泵的转速,以使所述第二压力值保持在所述第二预设压力范围内,所述第二预设压力范围的最小值为第三预设压力值,所述第二预设压力范围的最大值为第四预设压力范围,所述第三预设压力值和所述第四预设压力值均小于1个标准大气压,且所述第三预设压力值大于所述第二预设压力值。
第一方面提供的负压液冷系统控制方法,单独控制冷板进口和出口的压力,使冷板的进口和出口保持为负压。因此,当冷板进口到出口之间的管路出现穿孔时,能够单独控制冷板出口处的压力保持为负压,从而将冷却液抑制在管路内,避免冷却液泄漏现象发生。进而,避免了水等导电工质泄漏后导致待冷却电子设备损坏或出现安全隐患。
在第一方面一种可能的实现方式中,上述方法还包括:当所述第二压力值在所述第二预设压力范围内时,统计所述真空泵的工作时间占比,所述工作时间占比为所述真空泵的开启时间与关闭时间的比值;当所述真空泵连续预设数量次的工作时间占比均大于第一设定值时,关闭所述液泵,并输出泄漏报警信号。
本实现方式提供的负压液冷系统控制方法,在真空泵开启后,统计真空泵的工作时间占比,当系统发生泄漏时,水箱内的压力可能会上升,这样可能导致真空泵在短时间内频繁启停,因此,可以根据该工作时间占比预判系统泄漏事故。
在第一方面的另一种可能的实现方式中,在所述当所述第一压力值大于所述第二预设压力值时,开启所述真空泵和所述电磁阀之后,所述方法还包括:在开启所述真空泵第一预设时长后,若检测到所述冷却液储存箱内的第一压力值大于所述第二预设压力值,则检测所述真空泵是否故障;若检测到所述真空泵故障,则调节所述液泵的转速,以使所述第二压力值与所述第一压力值之间的差值等于第五预设压力值,所述第五预设压力值大于0。
本实现方式提供的负压液冷系统控制方法,在开启真空泵第一预设时长后,冷却液储存箱内的压力仍未达到第一预设压力范围,则检测真空泵是否故障,如果真空泵故障,则切换至压差模式,即调节液泵的转速以使冷板进口与出口的压力差保持为设定值。同时,提示存在泄漏风险。该控制方法能够自动检测出真空泵故障可能导致的泄漏风险,从而进一步降低了系统泄漏的风险。
在第一方面的另一种可能的实现方式中,所述负压液冷系统还包括与所述电磁阀连接的备用真空泵,在所述当所述第一压力值大于所述第二预设压力值时,开启所述真空泵和所述电磁阀之后,所述方法还包括:在开启所述真空泵第一预设时长后,若检测到所述冷却液储存箱内的第一压力值大于所述第二预设压力值,则检测所述真空泵是否故障;若检测到所述真空泵故障,则开启所述备用真空泵。
本实现方式提供的负压液冷系统控制方法,负压液冷系统设置有备用真空泵,当检测到当前运行的真空泵故障后,启用备用真空泵,以使负压液冷系统维持负压状态,降低系统泄漏风险。
在第一方面的另一种可能的实现方式中,所述调节所述液泵的转速,以使所述第二压力值在第二预设压力范围内,包括:当所述第二压力值大于所述第四预设压力值时,降低所述液泵的转速,以降低所述第二压力值;当所述第二压力值小于所述第三预设压力值时, 增大所述液泵的转速,以提高所述第二压力值。
本实现方式提供的负压液冷控制方法,通过调节液泵的转速来调节冷板进口处的压力,从而实现单独对冷板进口处压力的调节,使冷板进口保持为负压,从而将冷却液抑制在管路内,降低冷却液泄漏风险。
第二方面,本申请提供了一种负压液冷系统,包括冷板、冷却液储存箱、真空泵、电磁阀、液泵、热交换器和控制器;所述冷板与待冷却电子设备贴合,用于冷却所述待冷却电子设备;所述冷却液储存箱的进口与所述冷板的出口连接,所述冷却液储存箱的出口与所述液泵的进口连接;所述热交换器包括相互隔离的第一回路和第二回路,所述第一回路内的流体用于冷却所述第二回路内的流体,所述第二回路的进口连接所述液泵的出口,所述第二回路的出口连接所述冷板的进口;所述控制器,用于通过控制所述真空泵和所述电磁阀的工作状态控制所述冷却液储存箱内的第一压力值保持在第一预设压力范围内;以及,通过控制所述液泵的转速控制所述冷板的进口的第二压力值保持在第二预设压力范围内;所述第一预设压力范围和所述第二预设压力范围的压力均小于1个标准大气压,且所述第二预设压力范围的最小值大于所述第一预设压力范围的最大值。
第二方面系统的负压液冷系统,能够单独控制冷板进口和出口的压力保持为负压。当冷板进口到出口之间的管路出现穿孔时,能够单独控制冷板出口处的压力保持为负压,从而将冷却液抑制在管路内,避免冷却液泄漏现象发生。进而,避免了水等导电工质泄漏后导致待冷却电子设备损坏或出现安全隐患。
在第二方面一种可能的实现方式中,上述系统还包括:单向阀;所述单向阀的进口与所述第二回路的出口连接,所述单向阀的出口连接所述冷板的进口。
本实现方式提供的负压液冷系统中,单向阀为该负压液冷系统的被动控制部件,当冷板进口处穿孔较大时,穿孔处的压力上升,单向阀出口处的压力将大于其进口处的压力,此时单向阀关闭,水流被迅速阻断。从而确保液泵有足够的时间进行调速,使冷板进口实时处于负压状态,避免了因液泵调速响应慢导致的漏水现象发生。
在第二方面另一种可能的实现方式中,上述系统还包括:气液过滤器;所述气液过滤器的进口连接所述电磁阀,所述气液过滤器的出口连接所述真空泵,所述气液过滤器用于过滤从所述冷却液储存箱抽出的气体中所包含的水汽。从而有效预防水汽对真空泵的损坏。
在第二方面又一种可能的实现方式中,所述控制器用于通过控制所述真空泵和所述电磁阀的工作状态控制所述冷却液储存箱内的第一压力值保持在第一预设压力范围内时,具体用于:检测所述第一压力值;当所述第一压力值大于第二预设压力值时,开启所述真空泵和所述电磁阀,直到所述第一压力值降至第一预设压力范围内,所述第一预设压力范围的最小值为第一预设压力值,所述第一预设压力范围的最大值为第二预设压力值,且所述第一预设压力值和所述第二预设压力值均小于1个标准大气压;当所述第一压力值小于所述第一预设压力值时,关闭所述真空泵并开启所述电磁阀,直到所述第一压力值在所述第一预设压力范围内;当所述第一压力值在所述第一预设压力范围内时,且所述第二压力值不在所述第二预设压力范围内时,通过控制所述液泵的转速控制所述第二压力值保持在第二预设压力范围内。
本实现方式提供的负压液冷系统,通过检测冷却液储存箱内的压力即冷板出口的压力,当冷却液储存箱内的压力大于第一预设压力范围的最大值时,开启真空泵和电磁阀,抽出冷却液储存箱内的空气,使冷却液储存箱内的压力降低;当冷却液储存箱内的压力小于第一预设压力范围的最小值时,关闭真空泵并开启电磁阀,以使空气通过电磁阀进入冷却液储存箱内,增大冷却液储存箱内的压力。最终使冷板出口的压力保持在一定的负压范围内,从而将冷却液抑制在管路内,降低冷却液泄漏风险。
在第二方面又一种可能的实现方式中,所述控制器用于通过控制所述真空泵和所述电磁阀的工作状态控制所述冷却液储存箱内的压力保持在第一预设压力范围内时,还用于:当所述第二压力值在所述第二预设压力范围内时,统计所述真空泵的工作时间占比,所述工作时间占比为所述真空泵的开启时间与关闭时间的比值;当所述真空泵连续预设数量次的工作时间占比均大于第一设定值时,关闭所述液泵。
本实现方式提供的负压液冷系统,在真空泵开启后,统计真空泵的工作时间占比,当系统发生泄漏时,水箱内的压力可能会上升,这样可能导致真空泵在短时间内频繁启停,因此,可以根据该工作时间占比预判系统泄漏事故。
在第二方面另一种可能的实现方式中,所述控制器用于通过控制所述真空泵和所述电磁阀的工作状态控制所述冷却液储存箱内的压力保持在第一预设压力范围内时,还用于:在开启所述真空泵第一预设时长后,若检测到所述冷却液储存箱内的第一压力值大于所述第二预设压力值,则检测所述真空泵是否故障;若检测到所述真空泵故障,则调节所述液泵的转速,以使所述第二压力值与所述第一压力值之间的差值等于第五预设压力值,所述第五预设压力值大于0。
本实现方式提供的负压液冷系统,在开启真空泵第一预设时长后,冷却液储存箱内的压力仍未达到第一预设压力范围,则检测真空泵是否故障,如果真空泵故障,则切换至压差模式,即调节液泵的转速以使冷板进口与出口的压力差保持为设定值。同时,提示存在泄漏风险。该控制方法能够自动检测出真空泵故障可能导致的泄漏风险,从而进一步降低了系统泄漏的风险。
在第二方面另一种可能的实现方式中,还包括:与所述电磁阀连接的备用真空泵;所述控制器用于通过控制所述真空泵和所述电磁阀的工作状态控制所述冷却液储存箱内的压力保持在第一预设压力范围内时,还用于:在开启所述真空泵第一预设时长后,若检测到所述冷却液储存箱内的第一压力值大于所述第二预设压力值,则检测所述真空泵是否故障;若检测到所述真空泵故障,则开启所述备用真空泵。
本实现方式提供的负压液冷系统,增加了备用真空泵,当检测到当前使用的真空泵故障后,开启备用真空泵,以使负压液冷系统维持负压状态,降低系统泄漏风险。
在第二方面另一种可能的实现方式中,所述第二预设压力范围的最小值为第三预设压力值、所述第二预设压力范围的最大值为第四预设压力值,且所述第三预设压力值和所述第四预设压力值均小于1个标准大气压;所述控制器用于通过控制所述液泵的转速控制所述第二压力值保持在第二预设压力范围内时,具体用于:当所述第二压力值大于所述第四预设压力值时,降低所述液泵的转速,以使所述第二压力值低于所述第四预设压力值;当 所述第二压力值小于所述第三预设压力值时,增大所述液泵的转速,以使所述第二压力值高于所述第三预设压力值。
本实现方式提供的负压液冷控制方法,通过调节液泵的转速来调节冷板进口处的压力,从而实现单独对冷板进口处压力的调节,使冷板进口保持为负压,从而将冷却液抑制在管路内,降低冷却液泄漏风险。
第三方面,本申请还提供一种处理器,用于运行程序,其中,所述程序运行时执行第一方面所述的负压液冷系统控制方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一种负压液冷系统的原理示意图;
图2是本申请实施例另一种负压液冷系统的原理示意图;
图3是本申请实施例又一种负压液冷系统的原理示意图;
图4是本申请实施例一种负压液冷系统的控制方法流程图;
图5是本申请实施例另一种负压液冷系统的控制方法流程图;
图6是本申请实施例又一种负压液冷系统的控制方法流程图;
图7是本申请实施例一种负压液冷控制装置的框图。
具体实施方式
传统的液冷系统通常是正压系统,即,系统中管路内的液体压力大于管路外的环境压力。这样,当冷板进口到出口之间的管路穿孔时,管路内的液体会从穿孔处泄漏到待冷却电子设备上,从而导致待冷却电子设备损坏或出现安全隐患。也有一部分采用负压系统,但传统的负压系统采用冷板进口和出口压差恒定来控制系统内的流量,系统正常工作时能保持系统内负压,但是,当冷板进口到出口之间的管路穿孔时,冷板出口的压力上升,如果仍按照冷板进口和出口压差恒定来控制流量,则冷板进口的压力将同步上升,导致冷板进口的压力大于管路外的压力,即,演变成正压系统,最终导致冷却液从管路穿孔处泄漏。本申请提供的负压液冷系统控制方法,分别单独控制冷板进口和出口的压力值,且均保持为负压。这样,当冷板进口到出口之间的管路出现穿孔时,能够快速响应使冷板出口处的压力保持为负压,从而将冷却液抑制在管路内,避免冷却液泄漏至待冷却电子设备中,进而,避免了水等导电工质泄漏后导致待冷却电子设备损坏或出现安全隐患。
请参见图1,示出了本申请实施例一种负压液冷系统的原理示意图,本实施例中以冷却液是水为例进行说明,当然,在本申请的其它实施例中,冷却液还可以是其它液体。
如图1所示,该系统可以包括:热交换器110、单向阀120、水箱130(即,冷却液储存箱)、电磁阀140、真空泵150、液泵160、第一压力传感器170、第二压力传感器180、管路190、冷却板200和控制器(图1中未示出)。
热交换器110包括相互隔离的第一回路111和第二回路112,第二回路中的第二冷却液 用于冷却待冷却电子设备,第一回路中的第一冷却液用于冷却第二回路中的第二冷却液。
热交换器110的第二回路的出口连接单向阀120的进口,单向阀120的出口连接冷板的进口,冷板的出口连接水箱130的进口。
冷板200与单板(即,待冷却电子设备)贴合,冷板200内的冷却液与单板散发的热量进行热交换以实现为单板散热。
水箱130的出口连接液泵160的进口,液泵160的出口连接热交换器110中第二回路的进口。
第一压力传感器170设置在冷板的进口处,用于检测冷板进口处的压力。
第二压力传感器180设置在冷却液储存箱的液体上方,用于检测冷却液储存箱内的压力。
该负压液冷系统的整体工作过程如下:单板产生的热量经由冷板200传递至冷板内的第二冷却液。第二冷却液经由管路190进入水箱130后,被液泵160抽送至热交换器110中。热交换器110中的第一回路111中的第一冷却液与第二冷却液进行热交换,以实现对第二冷却液的冷却。然后,第二冷却液经由单向阀120回到冷板200中,依此循环,实现对单板的冷却。
水箱130内充有一定量的第二冷却液和空气,第二压力传感器180设置在第二冷却液的液位上方,用于检测水箱130内的压力(即,冷板出口的压力),并将检测到的压力值提供给控制器。
当水箱130因空气渗入导致水箱130内的压力超出第一预设压力范围(该第一预设压力范围在负压范围内)时,控制器控制真空泵150和电磁阀140开启,真空泵150抽出水箱130内的多余空气,直到水箱内的压力回到第一预设压力范围后,控制器控制真空泵150和电磁阀140关闭,从而使冷板出口维持负压状态。
冷板200的进口处设置有第一压力传感器170,用于检测冷板200进口的压力值并提供给控制器。
当冷板进口的压力为正压或超出第二预设压力范围(该第二预设压力范围在负压范围内)时,控制器调低液泵160的转速,促使冷板进口的压力恢复至第二预设压力范围内,直到冷板进口的压力回到第二预设压力范围内后,控制液泵160的转速稳定在当前转速。而且,第二预设压力范围和第一预设压力范围的取值能够保证冷板进口的压力和冷板出口的压力始终保持一定的正压差,即冷板进口的压力始终大于冷板出口的压力。
通过上述控制过程能够单独控制冷板进口和冷板出口的压力处于规定的负压范围内,且冷板进口与冷板出口的压力差保持一定的正压差。
单向阀120设置在热交换器110的第二回路出口和冷板进口之间。该单向阀120为该负压液冷系统的被动控制部件,与控制器的主动控制相结合确保负压液冷系统内的第二冷却液不会泄漏。当冷板进口处穿孔较大时,穿孔处的压力上升,单向阀120出口处的压力将大于其进口处的压力,此时单向阀120关闭,水流被迅速阻断。从而确保液泵160有足够的时间进行调速,使冷板进口实时处于负压状态,避免了因液泵160调速响应慢导致的漏水现象发生。
与此同时,冷板200的进口设置有温度传感器210,该温度传感器210用于检测冷板进口的第二冷却液的温度,当第二冷却液的温度不在预设范围内时,控制器通过调节第一回路111中的调节阀220调节第一回路111中第一冷却液的流量控制热交换器110的换热能力,使得冷板进口处第二冷却液的温度达到预设范围。
本实施例提供的负压液冷系统,通过控制器实现对冷板进口和出口单独控制,保证冷板的进口和出口均为负压。这样,当负压液冷系统中冷板进口到出口之间的管路出现穿孔时,控制器能够分别控制液泵的转速、真空泵,以使冷板进口和出口恢复为负压,从而将冷却液抑制在管路中,避免冷却液泄漏现象发生。此外,在热交换器的第二回路出口和冷板进口之间设置有单向阀,且单向阀的进口连接热交换器、单向阀的出口连接冷板,当冷板进口连接的管路出现穿孔时,穿孔处的压力上升,单向阀出口的压力将大于其进口的压力,单向阀关闭,水流被迅速阻断,从而为控制器控制液泵进行调速赢取时间,确保冷板进口的压力恢复至第二预设压力范围。
请参见图2,示出了本申请实施例另一种负压液冷系统的原理示意图,本实施例提供的负压液冷系统增加了气液过滤器300。该气液过滤器300设置在真空泵150和电磁阀140之间,用于过滤从冷却液储存箱130中抽出的气体中的水汽,从而有效预防水汽对真空泵150的损坏。其它部件的连接方式与图1所示的负压液冷系统相同,此处不再赘述。
请参见图3,示出了本申请实施例又一种负压液冷系统的原理示意图,本实施例在图1所示实施例的基础上增加了备用真空泵400,当一个真空泵故障时,可以启用另一个真空泵,从而保证系统维持负压。其它部件的连接方式和作用与图1所示的负压液冷系统相同,此处不再赘述。
请参见图4,示出了本申请实施例一种负压液冷系统的控制方法流程图,该方法应用于图1~图2所示的负压液冷系统内的控制器中,如图4所示,该方法可以包括以下步骤:
S110,检测冷却液储存箱内的压力(即,第一压力值);
如果第一压力值在第一预设压力范围内,则执行S140;如果第一压力值大于第一预设压力范围的最大值(即,第二预设压力值),则执行S120;如果第第一压力值小于第一预设压力范围的最小值(即,第一预设压力值),则执行S130。
冷却液储存箱内的压力即冷板出口的压力。第一压力值通过第一压力传感器采集获得并提供给控制器。
第一预设压力范围的最小值为第一预设压力值,最大值为第二预设压力值;其中,第一预设压力值和第二预设压力值可以根据实际系统情况自行设定。例如,冷却液储存箱内的压力设定为40kPa,允许误差范围为±1kPa,则第一预设压力范围是[39kPa,41kPa],即,第一预设压力值为39kPa,第二预设压力值为41kPa。
S120,开启真空泵和电磁阀,直到检测到当前的第一压力值在第一预设压力范围内关闭真空泵和电磁阀。
例如,如果冷却液储存箱内的压力大于41kPa,则开启真空泵和电磁阀,以使
S130,关闭真空泵并开启电磁阀,直到第一压力值在第一预设压力范围内关闭电磁阀。
S140,检测冷板进口的压力(即,第二压力值);
如果第二压力值在第二预设压力范围内,则执行S170;如果第二压力值大于第四预设压力值,则执行S150;如果第二压力值小于第三预设压力值,则执行S160。
将冷却液储存箱内的压力调整到第一预设压力范围内后,调整冷板进口的压力,即执行完S120或S130后,执行S140。
第二预设压力范围的最小值为第三预设压力值,最大值为第四预设压力值,根据实际系统情况确定第二预设压力范围。其中,第二预设压力范围与第一预设压力范围保持一定的正压差,即第二预设压力范围的最小压力值大于第一预设压力范围的最大压力值,即,冷板进口的压力始终大于冷板出口的压力。
例如,设定冷板进口的压力为90kPa,允许偏差为±1kPa,则第二预设压力范围为[89kPa,91kPa],即,第三预设压力值为89kPa,第四预设压力值为91kPa。
S150,调低液泵的转速,以使第二压力值降低至所述第二预设压力范围内。
S160,调高液泵的转速,以使第二压力值升高至所述第二预设压力范围内。
在本申请一个可能的实现方式中,执行完S150或S160后,返回执行S110,重复监测负压液冷系统的运行状态。
在本申请的另一个可能的实现方式中,执行完S150或S160之后,执行以下步骤:
S170,统计真空泵的工作时间占比。
工作时间占比是真空泵开启时间与关闭时间的比值。一方面,工作时间占比适当能够避免真空泵长时间工作影响真空泵的使用寿命;另一方面,当系统发生泄漏时,水箱内的压力可能会上升,这样可能导致真空泵在短时间内频繁启停,因此,可以根据该工作时间占比预判系统泄漏事故。
S180,当真空泵连续N次的工作时间占比均大于第一设定值时,关闭液泵并输出泄漏报警信号。
当统计时间小于第一设定值时,返回执行S110,重复监测液冷系统运行状态。
N可以根据实际需求自行设定,例如,3次;第一设定值可以真空泵的性能自行设定,例如,3:1。
当检测到真空泵连续N次的工作时间占比均大于第一设定值时,表明负压液冷系统可能存在泄漏现象,控制器发出控制报警装置进行报警的控制信号。与此同时,控制液泵停止运行,减缓冷却液泄漏的速度。
报警装置可以是声光报警器,或者,还可以发送即时通讯消息通知工作人员,以使工作人员收到报警信号后迅速检查系统的泄漏情况。
本实施例提供的负压液冷系统控制方法,分别单独检测并控制冷板进口和冷板出口的压力,这样,当冷板进口到出口之间的管路出现穿孔时,控制器能够分别控制液泵的转速、真空泵,以使冷板进口和出口恢复为负压。从而将冷却液抑制在管路中,避免冷却液泄漏现象发生。进而,避免了水等导电工质泄漏后导致待冷却电子设备损坏或出现安全隐患。
请参见图5,示出了本申请实施例另一种负压液冷系统的控制方法流程图,本实施例增加了检测真空泵是否故障的流程,将图4中的S120替换为如下步骤:
S121,开启真空泵和电磁阀。
S122,在开启真空泵第一预设时长后,检测冷却液储存箱内的当前第一压力值是否大于第二预设压力值;如果是,则执行S123;如果否,则执行S125。
第一预设时长需要根据真空泵正常工作时使水箱内的第一压力达到第一预设压力范围内的工作时长确定。
在本申请的一个实施例中,第一预设时长根据水箱的体积及真空泵的抽气速率确定,或者,根据负压液冷系统的试验数据得到,例如,60s。
S123,检测真空泵是否故障;如果是,则执行S124;如果否,则执行S125。
S124,调节液泵的转速并输出泄漏预警信号,以使第二压力值与所述第一压力值之间的差值等于第五预设压力值。
如果检测到真空泵出现故障,则切换至压差模式,即保证冷板进口与冷板出口的压力差保持恒为第五预设压力值,该第五预设压力值大于0,且第五预设压力值可以等于第三预设压力值与所述第二预设压力值之间的差值,或者,其它数值。
通过调节液泵的转速,可以调节冷板进口的压力,从而保证冷板进口和出口的压力差为某一正压值。
如果真空泵故障,系统可能会演变成正压系统,当冷板进口到出口之间的管路穿孔时,将存在泄漏风险,因此,在切换至压差模式的同时,会输出泄漏预警信号提示可能存在泄漏风险。
S125,检测冷却液储存箱内的当前第一压力值是否小于第一预设压力值;如果是,则执行S130;如果否,则执行S140。
本实施例提供的负压液冷系统控制方法,在开启真空泵第一预设时长后,冷却液储存箱内的压力仍未达到第一预设压力范围,则检测真空泵是否故障,如果真空泵故障,则切换至压差模式,即调节液泵的转速以使冷板进口与出口的压力差保持为设定值。同时,提示存在泄漏风险。该控制方法能够自动检测出真空泵故障可能导致的泄漏风险,从而进一步降低了系统泄漏的风险。
请参见图6,示出了本申请实施例又一种负压液冷系统的控制方法流程图,该方法应用于图3所示的负压液冷系统中,当检测到当前运行的真空泵故障后,启用备用真空泵。如图6所示,该方法将图4中的S120替换为如下步骤:
S1211,开启第一真空泵和电磁阀。
S1212,在开启第一真空泵第一预设时长后,检测冷却液储存箱的当前第一压力值是否大于第二预设压力值;如果是,则执行S1213;如果否,则执行S1215。
S1213,检测第一真空泵是否故障;如果是,则执行S1214;如果否,则执行S1215。
S1214,启动第二真空泵,并在第二真空泵开启第一预设时长后,返回执行S1212。
S1215,检测冷却液储存箱内的当前第一压力值是否小于第一预设压力值;如果是,则执行S130;如果否,则执行S140。
本实施例提供的负压液冷系统控制方法,在检测到当前运行的真空泵故障后,启动备用真空泵,以使负压液冷系统维持负压状态,降低系统泄漏风险。
请参见图7,示出了本申请一种负压液冷系统控制装置的框图,该装置包括处理器710 和存储器720。存储器720可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
所述存储器720中存储有程序指令,所述处理器710通过执行存储器720中的存储指令实现以下功能步骤:
检测冷却液储存箱内的第一压力值;
当所述第一压力值大于第二预设压力值时,开启所述真空泵和所述电磁阀,直到所述第一压力值降至所述第一预设压力范围内;其中,所述第二预设压力值为所述第一预设压力范围的最大值,所述第一预设压力范围的最小值为第一预设压力值,且所述第一预设压力值和所述第二预设压力值均小于1个标准大气压;
当所述第一压力值小于所述第一预设压力值时,关闭所述真空泵并开启所述电磁阀,直到所述第一压力值升至所述第一预设压力范围内;
当所述第一压力值在所述第一预设压力范围内,且所述冷板的进口处的第二压力值不在第二预设压力范围内时,调节所述液泵的转速,以使所述第二压力值保持在所述第二预设压力范围内,所述第二预设压力范围的最小值为第三预设压力值,所述第二预设压力范围的最大值为第四预设压力范围,所述第三预设压力值和所述第四预设压力值均小于1个标准大气压,且所述第三预设压力值大于所述第二预设压力值。
在本申请的一种可能的实现方式中,还包括:
当所述第二压力值在所述第二预设压力范围内时,统计所述真空泵的工作时间占比,所述工作时间占比为所述真空泵的开启时间与关闭时间的比值;
当所述真空泵连续预设数量次的工作时间占比均大于第一设定值时,关闭所述液泵。
在本申请的另一种可能的实现方式中,在所述当所述第一压力值大于所述第二预设压力值时,开启所述真空泵和所述电磁阀之后,所述方法还包括:
在开启所述真空泵第一预设时长后,若检测到所述冷却液储存箱内的第一压力值大于所述第二预设压力值,则检测所述真空泵是否故障;
若检测到所述真空泵故障,则调节所述液泵的转速,以使所述第二压力值与所述第一压力值之间的差值等于第五预设压力值,所述第五预设压力值大于0。
在本申请的另一种可能的实现方式中,所述负压液冷系统还包括与所述电磁阀连接的备用真空泵,在所述当所述第一压力值大于所述第二预设压力值时,开启所述真空泵和所述电磁阀之后,所述方法还包括:
在开启所述真空泵第一预设时长后,若检测到所述冷却液储存箱内的第一压力值大于所述第二预设压力值,则检测所述真空泵是否故障;
若检测到所述真空泵故障,则开启所述备用真空泵。
在本申请的另一种可能的实现方式中,所述调节所述液泵的转速,以使所述第二压力值在第二预设压力范围内,包括:
当所述第二压力值大于所述第四预设压力值时,降低所述液泵的转速,以降低所述第二压力值;
当所述第二压力值小于所述第三预设压力值时,增大所述液泵的转速,以提高所述第二压力值。
本实施例提供的负压液冷控制装置,通过控制器实现对冷板进口和出口单独控制,保证冷板的进口和出口均为负压。这样,当负压液冷系统中冷板进口到出口之间的管路出现穿孔时,控制器能够分别控制液泵的转速、真空泵,以使冷板进口和出口恢复为负压,从而将冷却液抑制在管路中,避免冷却液泄漏现象发生。此外,在热交换器的第二回路出口和冷板进口之间设置有单向阀,且单向阀的进口连接热交换器、单向阀的出口连接冷板,当冷板进口连接的管路出现穿孔时,穿孔处的压力上升,单向阀出口的压力将大于其进口的压力,单向阀关闭,水流被迅速阻断,从而为控制器控制液泵进行调速赢取时间,确保冷板进口的压力恢复至第二预设压力范围。
本申请提供一种处理器,用于运行程序,所述程序运行时执行上述的负压液冷系统控制方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如,同轴电缆、光纤、数字用户线(DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者,半导体介质(例如,固态硬盘Solid State Disk(SSD))等。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品 或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

  1. 一种负压液冷系统控制方法,其特征在于,所述方法应用于负压液冷系统中,所述负压液冷系统包括:冷板,冷却液储存箱,真空泵、电磁阀、液泵和热交换器,其中,所述冷板用于冷却待冷却设备,所述冷却液储存箱与所述冷板的出口相连接,所述真空泵通过所述电磁阀与所述冷却液储存箱相连接,所述液泵的进口与所述冷却液储存箱连接,所述热交换器包括相互隔离的第一回路和第二回路,所述第一回路内的流体用于冷却所述第二回路内的流体,所述第二回路的进口连接所述液泵的出口,所述第二回路的出口连接所述冷板的进口;所述方法包括:
    检测所述冷却液储存箱内的第一压力值;
    当所述第一压力值大于第二预设压力值时,开启所述真空泵和所述电磁阀,直到所述第一压力值降至第一预设压力范围内;其中,所述第二预设压力值为所述第一预设压力范围的最大值,所述第一预设压力范围的最小值为第一预设压力值,且所述第一预设压力值和所述第二预设压力值均小于1个标准大气压;
    当所述第一压力值小于所述第一预设压力值时,关闭所述真空泵并开启所述电磁阀,直到所述第一压力值升至所述第一预设压力范围内;
    当所述第一压力值在所述第一预设压力范围内,且所述冷板的进口处的第二压力值不在第二预设压力范围内时,调节所述液泵的转速,以使所述冷板的进口处的第二压力值保持在所述第二预设压力范围内,所述第二预设压力范围的最小值为第三预设压力值,所述第二预设压力范围的最大值为第四预设压力范围,所述第三预设压力值和所述第四预设压力值均小于1个标准大气压,且所述第三预设压力值大于所述第二预设压力值。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    当所述第二压力值在所述第二预设压力范围内时,统计所述真空泵的工作时间占比,所述工作时间占比为所述真空泵的开启时间与关闭时间的比值;
    当所述真空泵连续预设数量次的工作时间占比均大于第一设定值时,关闭所述液泵。
  3. 根据权利要求1所述的方法,其特征在于,在当所述第一压力值大于所述第二预设压力值时,开启所述真空泵和所述电磁阀之后,所述方法还包括:
    在开启所述真空泵第一预设时长后,若检测到所述冷却液储存箱内的第一压力值大于所述第二预设压力值,则检测所述真空泵是否故障;
    若检测到所述真空泵故障,则调节所述液泵的转速,以使所述第二压力值与所述第一压力值之间的差值等于第五预设压力值,所述第五预设压力值大于0。
  4. 根据权利要求1所述的方法,其特征在于,所述负压液冷系统还包括与所述电磁阀连接的备用真空泵,在所述当所述第一压力值大于所述第二预设压力值时,开启所述真空泵和所述电磁阀之后,所述方法还包括:
    在开启所述真空泵第一预设时长后,若检测到所述冷却液储存箱内的第一压力值大于所述第二预设压力值,则检测所述真空泵是否故障;
    若检测到所述真空泵故障,则开启所述备用真空泵。
  5. 根据1-4任意一项所述的方法,其特征在于,所述调节所述液泵的转速,以使所述 第二压力值在第二预设压力范围内,包括:
    当所述第二压力值大于所述第四预设压力值时,降低所述液泵的转速,以降低所述第二压力值;
    当所述第二压力值小于所述第三预设压力值时,增大所述液泵的转速,以提高所述第二压力值。
  6. 一种负压液冷系统,其特征在于,包括:冷板、冷却液储存箱、真空泵、电磁阀、液泵、热交换器和控制器;
    所述冷板与待冷却电子设备贴合,用于冷却所述待冷却电子设备;
    所述冷却液储存箱的进口与所述冷板的出口连接,所述冷却液储存箱的出口与所述液泵的进口连接;
    所述热交换器包括相互隔离的第一回路和第二回路,所述第一回路内的流体用于冷却所述第二回路内的流体,所述第二回路的进口连接所述液泵的出口,所述第二回路的出口连接所述冷板的进口;
    所述控制器,用于通过控制所述真空泵和所述电磁阀的工作状态控制所述冷却液储存箱内的第一压力值保持在第一预设压力范围内;以及,通过控制所述液泵的转速控制所述冷板的进口的第二压力值保持在第二预设压力范围内;所述第一预设压力范围和所述第二预设压力范围的压力均小于1个标准大气压,且所述第二预设压力范围的最小值大于所述第一预设压力范围的最大值。
  7. 根据权利要求6所述的系统,其特征在于,所述控制器用于通过控制所述真空泵和所述电磁阀的工作状态控制所述冷却液储存箱内的第一压力值保持在第一预设压力范围内时,具体用于:
    检测所述第一压力值;
    当所述第一压力值大于第二预设压力值时,开启所述真空泵和所述电磁阀,直到所述第一压力值降至第一预设压力范围内,其中,所述第二预设压力值为所述第一预设压力范围的最大值,所述第一预设压力范围的最小值为第一预设压力值,且所述第一预设压力值和所述第二预设压力值均小于1个标准大气压;
    当所述第一压力值小于所述第一预设压力值时,关闭所述真空泵并开启所述电磁阀,直到所述第一压力值在所述第一预设压力范围内;
    当所述第一压力值在所述第一预设压力范围内时,且所述第二压力值不在所述第二预设压力范围内时,通过控制所述液泵的转速控制所述第二压力值保持在第二预设压力范围内。
  8. 根据权利要求7所述的系统,其特征在于,所述控制器用于通过控制所述真空泵和所述电磁阀的工作状态控制所述冷却液储存箱内的压力保持在第一预设压力范围内时,还用于:
    当所述第二压力值在所述第二预设压力范围内时,统计所述真空泵的工作时间占比,所述工作时间占比为所述真空泵的开启时间与关闭时间的比值;
    当所述真空泵连续预设数量次的工作时间占比均大于第一设定值时,关闭所述液泵。
  9. 根据权利要求7所述的系统,其特征在于,所述控制器用于通过控制所述真空泵和所述电磁阀的工作状态控制所述冷却液储存箱内的压力保持在第一预设压力范围内时,还用于:
    在开启所述真空泵第一预设时长后,若检测到所述冷却液储存箱内的第一压力值大于所述第二预设压力值,则检测所述真空泵是否故障;
    若检测到所述真空泵故障,则调节所述液泵的转速,以使所述第二压力值与所述第一压力值之间的差值等于第五预设压力值,所述第五预设压力值大于0。
  10. 根据权利要求6或7所述的系统,其特征在于,所述第二预设压力范围的最小值为第三预设压力值、所述第二预设压力范围的最大值为第四预设压力值,且所述第三预设压力值和所述第四预设压力值均小于1个标准大气压;
    所述控制器用于通过控制所述液泵的转速控制所述第二压力值保持在第二预设压力范围内时,具体用于:
    当所述第二压力值大于所述第四预设压力值时,降低所述液泵的转速,以使所述第二压力值低于所述第四预设压力值;
    当所述第二压力值小于所述第三预设压力值时,增大所述液泵的转速,以使所述第二压力值高于所述第三预设压力值。
  11. 一种处理器,用于运行程序,其特征在于,所述程序运行时执行权利要求1-5任一项所述的负压液冷系统控制方法。
  12. 一种负压液冷系统控制设备,其特征在于,包括处理器和存储器,所述存储器内存储有程序指令,所述处理器通过执行所述存储器内存储的程序指令实现权利要求1-6任一项所述的负压液冷系统控制方法。
PCT/CN2018/104063 2017-09-06 2018-09-05 一种负压液冷系统及其控制方法 WO2019047836A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18852998.6A EP3668291B1 (en) 2017-09-06 2018-09-05 Negative pressure liquid cooling system and control method therefor
US16/810,516 US11419242B2 (en) 2017-09-06 2020-03-05 Negative pressure liquid cooling system and control method for controlling negative pressure liquid cooling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710796380.8A CN107608407B (zh) 2017-09-06 2017-09-06 一种负压液冷系统及其控制方法
CN201710796380.8 2017-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/810,516 Continuation US11419242B2 (en) 2017-09-06 2020-03-05 Negative pressure liquid cooling system and control method for controlling negative pressure liquid cooling system

Publications (1)

Publication Number Publication Date
WO2019047836A1 true WO2019047836A1 (zh) 2019-03-14

Family

ID=61057471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104063 WO2019047836A1 (zh) 2017-09-06 2018-09-05 一种负压液冷系统及其控制方法

Country Status (4)

Country Link
US (1) US11419242B2 (zh)
EP (1) EP3668291B1 (zh)
CN (1) CN107608407B (zh)
WO (1) WO2019047836A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284535B2 (en) 2019-08-30 2022-03-22 Hewlett Packard Enterprise Development Lp Leak mitigation in a cooling system for computing devices

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107608407B (zh) 2017-09-06 2022-01-14 华为技术有限公司 一种负压液冷系统及其控制方法
CN108777925B (zh) * 2018-06-15 2020-04-03 比赫电气(太仓)有限公司 一种负压液冷系统
CN112555415A (zh) * 2020-12-14 2021-03-26 宁波奉化明磊弹簧厂 一种带冷却的防泄漏真空机封结构及其系统
CN112566480A (zh) * 2021-01-19 2021-03-26 程嘉俊 液冷散热器及其负压结构
CN113382616A (zh) * 2021-07-20 2021-09-10 程嘉俊 液冷散热器及其负压结构、储液箱、调阈方法
CN115707217A (zh) * 2021-08-12 2023-02-17 富联精密电子(天津)有限公司 一种强化冷凝传热的两相浸没式冷却装置
CN114518794A (zh) * 2022-02-21 2022-05-20 广东海悟科技有限公司 高可靠性的液冷系统及控制方法
CN114501955A (zh) * 2022-02-22 2022-05-13 广东海悟科技有限公司 一种自循环式液冷系统及控制方法
CN217131428U (zh) * 2022-03-16 2022-08-05 广运机械工程股份有限公司 热交换系统
CN114364238B (zh) * 2022-03-18 2022-06-17 苏州浪潮智能科技有限公司 平稳切换负压液冷系统和平稳切换负压液冷控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967832A (en) * 1989-12-27 1990-11-06 Nrc Corporation Cooling method and apparatus for integrated circuit chips
US20110253347A1 (en) * 2010-04-19 2011-10-20 Steve Harrington Vacuum Pumped Liquid Cooling System for Computers
CN104602487A (zh) * 2014-12-24 2015-05-06 杭州华为数字技术有限公司 液冷换热系统
CN104822242A (zh) * 2015-04-08 2015-08-05 华为技术有限公司 一种液体冷却设备控制系统、方法和装置
US20150223367A1 (en) * 2010-04-19 2015-08-06 Steve Harrington Computer Cooling System And Method of Use
CN105652989A (zh) * 2014-11-13 2016-06-08 北京仙络科技发展有限公司 液冷设备
CN107608407A (zh) * 2017-09-06 2018-01-19 杭州华为数字技术有限公司 一种负压液冷系统及其控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1185654A (en) * 1982-09-17 1985-04-16 George E. Murison Liquid cooling system for electrical apparatus
US20090277333A1 (en) * 2006-07-03 2009-11-12 Hideyuki Sakurai Oxygen concentrating device
DE102006033030A1 (de) * 2006-07-14 2008-01-24 Janz Informationssysteme Ag Kühlvorrichtung
ES2363025T3 (es) * 2006-10-27 2011-07-19 Agie Charmilles Sa Unidad de placa de circuito y procedimiento para la producción de la misma.
GB2465140B (en) 2008-10-30 2011-04-13 Aqua Cooling Solutions Ltd An electronic system
DE102009006924B3 (de) * 2009-02-02 2010-08-05 Knürr AG Betriebsverfahren und Anordnung zum Kühlen von elektrischen und elektronischen Bauelementen und Moduleinheiten in Geräteschränken
CN102333433A (zh) * 2011-07-15 2012-01-25 孙晨啸 负压液冷循环系统
US20150136604A1 (en) * 2011-10-21 2015-05-21 Integenx Inc. Sample preparation, processing and analysis systems
TWM440424U (en) * 2012-05-31 2012-11-01 Kuen Jing Machinery Co Ltd Refrigerant recycling system
CN103813688A (zh) * 2012-11-07 2014-05-21 辉达公司 液体冷却系统及防止液体冷却系统泄漏的方法
CN103699195B (zh) * 2013-12-03 2017-09-19 技嘉科技股份有限公司 负压水冷系统、负压监控装置及负压监控方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967832A (en) * 1989-12-27 1990-11-06 Nrc Corporation Cooling method and apparatus for integrated circuit chips
US20110253347A1 (en) * 2010-04-19 2011-10-20 Steve Harrington Vacuum Pumped Liquid Cooling System for Computers
US20150223367A1 (en) * 2010-04-19 2015-08-06 Steve Harrington Computer Cooling System And Method of Use
CN105652989A (zh) * 2014-11-13 2016-06-08 北京仙络科技发展有限公司 液冷设备
CN104602487A (zh) * 2014-12-24 2015-05-06 杭州华为数字技术有限公司 液冷换热系统
CN104822242A (zh) * 2015-04-08 2015-08-05 华为技术有限公司 一种液体冷却设备控制系统、方法和装置
CN107608407A (zh) * 2017-09-06 2018-01-19 杭州华为数字技术有限公司 一种负压液冷系统及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3668291A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284535B2 (en) 2019-08-30 2022-03-22 Hewlett Packard Enterprise Development Lp Leak mitigation in a cooling system for computing devices

Also Published As

Publication number Publication date
CN107608407A (zh) 2018-01-19
US20200205315A1 (en) 2020-06-25
CN107608407B (zh) 2022-01-14
EP3668291B1 (en) 2022-11-30
EP3668291A4 (en) 2020-08-26
EP3668291A1 (en) 2020-06-17
US11419242B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2019047836A1 (zh) 一种负压液冷系统及其控制方法
US7436666B1 (en) Thermal caching for liquid cooled computer systems
JP2005315255A (ja) 複数ポンプを有する電子液体冷却システム
WO2021063088A1 (zh) 变频器的冷却系统、方法及空调设备
CN104390311A (zh) 针对高温服务器的空调制冷方法、系统和装置
CN114138084A (zh) 一种应用于服务器的浸没式负压液冷系统
CN112618997A (zh) 电池储能系统的液冷消防系统及消防方法
TWI482581B (zh) 溫度控制系統及其溫度控制方法
CN215121663U (zh) 一种工作稳定可靠的大型服务器液冷系统
WO2022048547A1 (zh) 一种控温系统、通讯设备及温度控制方法
CN109237711B (zh) 风冷冷水机组制冷系统及其启动控制方法
CN107221356A (zh) 适用于聚变堆高温环境的闭环再循环气水混合冷却系统
CN110440420A (zh) 一种模块水机的电子膨胀阀的控制方法
WO2020186859A1 (zh) 抽屉式cdu
CN112212461A (zh) 中央空调系统及其控制方法
US20220404109A1 (en) Rack cooling distribution system with leak detection
CN217131428U (zh) 热交换系统
JP6559471B2 (ja) 空調システム及びその運転方法
CN113905594B (zh) 变频器功率模块的散热控制方法、装置、介质及空调
CN112269413B (zh) 一种便携式激光散热装置的控制方法
US20230152014A1 (en) Heat exchange system, air conditioning apparatus and control method for air conditioning apparatus
KR102669862B1 (ko) 전해액 중앙공급 시스템 및 그의 전해액 관리 방법
CN117349056A (zh) 服务器漏液保护方法、装置以及存储介质
CN117173863A (zh) 一种液冷管路故障的处理方法及终端
CN112235997A (zh) 一种用于数据中心制冷的冷水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018852998

Country of ref document: EP

Effective date: 20200314