WO2019047583A1 - 一种机柜式服务器噪声监测系统及方法 - Google Patents

一种机柜式服务器噪声监测系统及方法 Download PDF

Info

Publication number
WO2019047583A1
WO2019047583A1 PCT/CN2018/091072 CN2018091072W WO2019047583A1 WO 2019047583 A1 WO2019047583 A1 WO 2019047583A1 CN 2018091072 W CN2018091072 W CN 2018091072W WO 2019047583 A1 WO2019047583 A1 WO 2019047583A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabinet
fan
server
sound pressure
test
Prior art date
Application number
PCT/CN2018/091072
Other languages
English (en)
French (fr)
Inventor
王聪
Original Assignee
郑州云海信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州云海信息技术有限公司 filed Critical 郑州云海信息技术有限公司
Priority to US16/475,092 priority Critical patent/US11181417B2/en
Publication of WO2019047583A1 publication Critical patent/WO2019047583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H3/00Measuring characteristics of vibrations by using a detector in a fluid
    • G01H3/10Amplitude; Power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments

Definitions

  • the invention belongs to the field of server noise monitoring, and particularly relates to a cabinet type server noise monitoring system and method.
  • RMC Rack Management Center
  • rack server management module rack server management module
  • PWM Pulse Width Modulation
  • pulse width modulation server fan application pulse width adjustment technology adjust the pulse duty cycle to control the fan speed, the greater the duty cycle, the faster the fan speed.
  • the object of the present invention is to provide a rack-type server noise monitoring system and method for solving the above-mentioned technical problems in view of the above-mentioned shortcomings of monitoring the real-time noise value of the server.
  • the present invention provides the following technical solutions:
  • a cabinet type server noise monitoring system comprising a sound pressure function acquiring device and a noise monitoring device;
  • the sound pressure function acquiring device comprises a semi-anechoic chamber, the center of the semi-anechoic chamber is provided with a 4U fixture, and a plurality of microphones are arranged above the 4U fixture, and the 4U fixture is located at the center of all the microphones, and the height of each microphone is from the ground.
  • the horizontal distance of each microphone from the 4U fixture is the first horizontal distance, and each microphone is tilted downward by the first angle;
  • the 4U fixture is provided with four test nodes and one test fan unit, and the test fan is tested.
  • the unit includes several test fans and a test fan control board. Each test fan is connected to the test fan control board.
  • the test fan control board is also connected with a PWM input signal setting unit.
  • the 4U test fixture simulates the minimum composition of the rack server. unit;
  • the PWM input signal setting unit is configured to set a PWM input signal that the test fan operates at different duty ratios; the duty ratio is from 5% to 100%, and the interval is incremented by 5%;
  • the microphone is used to measure the sound pressure value of the 4U fixture under the control of the PWM input signals of different duty cycles;
  • the noise monitoring device includes a server cabinet and a cabinet server management module RMC.
  • the server cabinet is provided with a plurality of node middle boards, and each node middle board is connected with a fan control board, and each fan control board is connected with a fan unit, and each fan control board is connected with a fan unit.
  • the fan unit includes a plurality of fans, and each of the nodes is connected to the cabinet server management module RMC; the number of fans of the fan unit is equal to the number of fans of the fan test unit;
  • the Rack Server Management Module RMC is used to obtain the duty cycle of the real-time PWM input signal of the fan, and calculate the real-time sound pressure value according to the duty ratio of the PWM input signal.
  • the server cabinet includes an upper half cabinet and a lower half cabinet
  • the node middle board includes an upper node middle board and a lower node middle board
  • the upper node middle board is connected with an upper fan control board
  • the lower node middle board is connected with a lower fan control board
  • the fan unit connected to the upper node middle board, the upper fan control board, and the upper fan control board is disposed in the upper half cabinet
  • the fan unit connected to the lower node middle board, the lower fan control board, and the lower fan control board is disposed in the lower half cabinet;
  • the fan unit of each half cabinet works under the control of a PWM input signal
  • the cabinet server management module RMC is used to obtain the duty cycle of the PWM input signal of each half cabinet in real time, and calculate the total sound pressure value according to the duty ratio of the PWM input signal of each half cabinet.
  • the number of boards in the upper node is several, and the number of boards in the lower node is several.
  • the first angle is 60 degrees
  • the first height is 1.5 m
  • the first horizontal distance is 1 m.
  • the number of the microphones is four.
  • one test fan unit includes three test fans, and one fan unit includes three fans.
  • a rack-type server noise monitoring method includes the following steps:
  • Step 1 Set up a test environment for the sound pressure function acquisition device
  • Step 2 Measure the sound pressure value of the test fan unit of the 4U fixture under the control of the PWM input signals of different duty ratios through the microphone;
  • Step 4. Monitor the noise value of the rack server in real time through the noise monitoring device.
  • step 4 specifically includes the following steps:
  • Step 4-1 The board in each node acquires the duty ratio of the PWM input signal of the corresponding fan unit
  • the RPC of the cabinet server management module obtains the in-position information of the upper node of the upper half of the upper half of the cabinet and the duty ratio of the PWM input signal of the upper half of the cabinet;
  • the cabinet type server adopts the half-fan fan speed control mode, and the upper half of the cabinet
  • the fan unit operates at the same speed under the duty cycle control of the same PWM input signal;
  • Step 4-3 The RPC of the cabinet server management module acquires the in-position information of the lower node of the lower half of the lower cabinet and the duty ratio of the PWM input signal of the lower half of the cabinet; the cabinet type server adopts the half cabinet fan speed control mode, and the lower half of the cabinet The fan unit operates at the same speed under the duty cycle control of the same PWM input signal;
  • Step 4-4 The cabinet server management module RMC calculates the sound pressure value of the upper half of the fan unit, the sound pressure value of the lower half of the fan unit, and the overall noise value of the cabinet server according to the noise superposition principle.
  • step 4-4 are as follows:
  • n to the number of fan units in the lower half of the cabinet
  • m is the number of fan units in the upper cabinet
  • Lp is the sound pressure value of the lower cabinet
  • Lp is the sound pressure value of the upper cabinet
  • Lp is always the whole Noise value
  • the invention realizes real-time monitoring of the noise value of the cabinet type server, the server noise value is an important index of the stability of the server operation, and the cabinet type server with real-time monitoring function improves the market competitiveness of the product.
  • the design principle of the invention is reliable, the structure is simple, and has a very broad application prospect.
  • Figure 1 is a top view of the sound pressure function acquisition device above the semi-anechoic chamber
  • Figure 2 is a schematic view showing the relative position of the microphone and the 4U fixture
  • FIG. 3 is a schematic diagram of a fan connection in a 4U fixture
  • Figure 4 is a schematic diagram of the connection of the noise monitoring device
  • Figure 5 is a flow chart of the method of the present invention.
  • 1-4U fixture 2-microphone; 2.1-first microphone; 2.2-second microphone; 2.3-third microphone; 2.4-fourth microphone; 3-test fan control board; 4-PWM input signal setting unit ; 5 - test fan unit; 5.1 - first test fan; 5.2 - second test fan; 5.3 - third test fan; 6 - cabinet server management module RMC; 7.1 - first upper node middle board; 7.2 - second upper Node midplane; 7.3-third upper node middle board; 8.1-first lower node middle board; 8.2-second lower node middle board; 9.1-first upper fan control board; 9.2-second upper fan control board; - third upper fan control board; 10.1 - first lower fan control board; 10.2 - second lower fan control board; 11.1 - first fan unit; 11.2 - second fan unit; 11.3 - third fan unit; 11.4 - Four fan unit; 11.5-fifth fan unit; 12.1-first fan; 12.2-second fan; 12.3-third fan; 12.4-fourth fan
  • the invention provides a cabinet type server noise monitoring system, which comprises a sound pressure function acquiring device and a noise monitoring device;
  • the sound pressure function acquiring device comprises a semi-anechoic chamber, and a center of the semi-anechoic chamber is provided with a 4U fixture, and a 4U fixture 1 is provided with four microphones 2, first Microphone 2.1, second microphone 2.2, third microphone 2.3 and fourth microphone 2.4, 4U fixture 1 is located at the center of all microphones 2, the height of the four microphones 2 is 1.5m from the ground, and the four microphones are 4u.
  • the horizontal distance is 1m, the four microphones 2 are all down to 60 degrees; the 4U fixture 1 is provided with four test nodes and one test fan unit 5, and the test fan unit 5 includes the first test fan 5.1, the second test The fan 5.2 and the third test fan 5.3 and one test fan control board 3, the first test fan 5.1, the second test fan 5.2, and the third test fan 5.3 are all connected to the test fan control board 3, and the test fan control board 3 is also connected PWM input signal setting unit 4;
  • the PWM input signal setting unit 4 is configured to set a PWM input signal that the test fan operates at different duty ratios; the duty ratio is from 5% to 100%, and the interval is incremented by 5%;
  • the microphone 2 is used for measuring the sound pressure value of the 4U fixture 1 under the control of the PWM input signals of different duty ratios;
  • the noise monitoring device includes a server cabinet and a cabinet server management module RMC 6, and the server cabinet includes an upper half cabinet and a lower half cabinet.
  • the upper upper cabinet is provided with three upper node middle boards, a first upper node middle board 7.1, a second upper node middle board 7.2, and a third upper node middle board 7.3, and the first upper node middle board 7.1 is connected with a first upper fan control.
  • the first upper fan unit 11.1 is connected to the first fan unit 11.1.
  • the first fan unit 11.1 includes a first fan 12.1, a second fan 12.2 and a third fan 12.3.
  • the second upper node is connected to the second board 7.2.
  • the upper fan control board 9.2, the second upper fan control board 9.2 is connected to the second fan unit 11.2, the second fan unit 11.2 includes a fourth fan 12.4, a fifth fan 12.5 and a sixth fan 12.6;
  • There is a third upper fan control board 9.3, a third upper fan control board 9.3 is connected to the third fan unit 11.3, the third fan unit 11.3 includes a seventh fan 12.7, an eighth fan 12.8 and a ninth fan 12.9;
  • the lower half of the cabinet is provided with two lower node middle boards, the first lower node middle board 8.1 and the second lower node middle board 8.2, and the first lower node middle board 8.1 is connected with the first lower fan control board 10.1, the first lower fan
  • the control panel 10.1 is connected to the fourth fan unit 11.4.
  • the fourth fan unit 11.4 includes a tenth fan 12.10, an eleventh fan 12.11 and a twelfth fan 12.12.
  • the second lower node middle plate 8.2 is connected with a second lower fan control board 10.2.
  • the second lower fan control board 10.2 is connected to the fifth fan unit 11.5, and the fifth fan unit 11.5 includes a thirteenth fan 12.13, a fourteenth fan 12.14 and a fifteenth fan 12.15;
  • the first upper node middle board 7.1, the second upper node middle board 7.2, the third upper node middle board 7.3, the first lower node middle board 8.1, and the second lower node middle board 8.2 are all connected to the rack server management module RMC 6;
  • the first fan unit 11.1, the second fan unit 11.2 and the third fan unit 11.3 of the upper cabinet operate under the control of a PWM input signal;
  • the fourth fan unit 11.4, the fifth fan unit 11.5 and the sixth fan unit 11.6 of the lower half cabinet operate under the control of a PWM input signal;
  • the Rack Server Management Module RMC 6 is used to obtain the duty cycle of the PWM input signals of the upper half and the lower half of the real-time cabinet, and calculate the total sound pressure according to the duty ratio of the PWM input signals of the upper and lower cabinets. value.
  • the present invention further provides a rack server noise monitoring method, including the following steps:
  • Step 1 Set up a test environment of the sound pressure function acquisition device as shown in FIG. 1, FIG. 2 and FIG. 3;
  • Step 2 Measure the sound pressure value of the test fan unit of the 4U fixture under the control of the PWM input signals of different duty ratios through the microphone;
  • Step 4 Real-time monitoring the noise value of the rack server through the noise monitoring device shown in FIG. 4;
  • Step 4-1 The board in each node acquires the duty ratio of the PWM input signal of the corresponding fan unit
  • the cabinet server management module RMC 6 obtains the upper node middle board in which the upper cabinet is in position as the first upper node middle board 7.1, the second upper node middle board 7.2, the third upper node middle 7.3, and the upper half cabinet.
  • the duty ratio of the PWM input signal is 65%;
  • the cabinet type server adopts the half cabinet fan speed control mode, and the fan unit of the upper half cabinet operates at the same speed under the control of 65% duty ratio;
  • Step 4-3 The cabinet server management module RMC 6 obtains the duty ratio of the PWM input signal of the first lower node middle board 8.1, the second lower node middle board 8.2, and the lower half cabinet of the lower half cabinet; 85%;
  • the server adopts a half-panel fan speed control mode, and the fan unit of the lower half cabinet operates at the same speed under the control of 85% duty cycle;
  • Step 4-4 The cabinet server management module RMC 6 calculates the sound pressure value of the upper half of the fan unit, the sound pressure value of the lower half of the fan unit, and the overall noise value of the cabinet server according to the noise superposition principle;
  • the number n of fan units in the lower half of the cabinet is 2, the number m of fan units in the upper half cabinet is 3, the sound pressure value of the lower half cabinet under Lp, the sound pressure value of the upper half cabinet on Lp, and the overall Lp is Lp Noise value

Abstract

公开一种机柜式服务器噪声监测系统,系统包括声压函数获取装置和噪声监测装置;声压函数获取装置包括半消音室,半消音室的中心设置有4U治具(1),4U治具(1)上方设置有若干个传声器(2),4U治具(1)位于所有传声器(2.1-2.4)的中心位置;传声器(2)用于测量4U治具(1)在不同占空比的PWM输入信号控制下的声压值;噪声监测装置包括服务器机柜和机柜服务器管理模块RMC(6),服务器机柜内设置有若干个节点中板(7.1-7.3, 8.1,8.2),每个节点中板(7.1-7.3, 8.1,8.2)连接有一个风扇控制板(3),每个风扇控制板(3)连接有一个风扇单元(5),每个风扇单元(5.1-5.3)包括若干个风扇(12.1-12.15),每个节点中板(7.1-7.3, 8.1,8.2)均与RMC(6)连接;机柜服务器管理模块RMC(6)用于获取实时的PWM输入信号,并根据PWM输入信号计算出实时的声压值。还公开一种机柜式服务器噪声监测方法。

Description

一种机柜式服务器噪声监测系统及方法
本申请要求于2017年09月05号提交中国专利局、申请号为201710791008.8、发明名称为“一种机柜式服务器噪声监测系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于服务器噪声监测领域,具体涉及一种机柜式服务器噪声监测系统及方法。
背景技术
RMC,Rack Management Center,机柜式服务器管理模块。
PWM,Pulse Width Modulation,脉冲宽度调制,服务器风扇应用脉冲宽度调整技术调整脉冲的占空比来控制风扇的转速,占空比越大,风扇转速越快。
近年来,随着CPU、硬盘、内存等元器件散热需求的增长,在服务器设计中更多选用高性能风扇,由此带来的服务器噪声值升高问题也越来越引起人们的重视。服务器的宣称噪声值是在特定温度、特定压力下的实验室条件中测量出来的。而在实际应用中,人们更关注服务器实际运行过程中的噪声值,但显然在机房中不具备噪声测量条件,且服务器噪声值随着服务器风扇转速的变化而变化,目前缺少对服务器实时噪声值进行监测的方法。
此为现有技术的不足,因此,针对现有技术中的上述缺陷,提供一种机柜式服务器噪声监测系统及方法,是非常有必要的。
发明内容
本发明的目的在于,针对上述缺少对服务器实时噪声值进行监测的缺陷,提供一种机柜式服务器噪声监测系统及方法,以解决上述技术问题。
为实现上述目的,本发明给出以下技术方案:
一种机柜式服务器噪声监测系统,包括声压函数获取装置和噪声监测装 置;
所述声压函数获取装置包括半消音室,半消音室的中心设置有4U治具,4U治具上方设置有若干个传声器,4U治具位于所有传声器的中心位置,每个传声器距离地面的高度为第一高度,每个传声器距离4U治具的水平距离为第一水平距离,每个传声器均向下倾斜第一角度;4U治具内设置有四个测试节点和一个测试风扇单元,测试风扇单元包括若干个测试风扇和一个测试风扇控制板,每个测试风扇均与测试风扇控制板连接,测试风扇控制板还连接有PWM输入信号设置单元;4U测试治具模拟了机柜式服务器的最小组成单元;
PWM输入信号设置单元用于设定测试风扇工作在不同占空比的PWM输入信号;所述占空比从5%到100%,每间隔5%递增;
传声器用于测量4U治具在不同占空比的PWM输入信号控制下的声压值;
所述噪声监测装置包括服务器机柜和机柜服务器管理模块RMC,服务器机柜内设置有若干个节点中板,每个节点中板连接有一个风扇控制板,每个风扇控制板连接有一个风扇单元,每个风扇单元包括若干个风扇,每个节点中板均与机柜服务器管理模块RMC连接;风扇单元的风扇数目与风扇测试单元的风扇数目相等;
机柜服务器管理模块RMC用于获取风扇实时的PWM输入信号的占空比,并根据PWM输入信号的占空比计算出实时的声压值。
进一步地,服务器机柜包括上半柜和下半柜,节点中板包括上节点中板和下节点中板,上节点中板连接有上风扇控制板,下节点中板连接有下风扇控制板,上节点中板、上风扇控制板及上风扇控制板连接的风扇单元设置在上半柜,下节点中板、下风扇控制板及下风扇控制板连接的风扇单元设置在下半柜;
每个半柜的风扇单元工作在一个PWM输入信号控制下;
机柜服务器管理模块RMC用于获取实时的每个半柜的PWM输入信号的占空比,并根据每个半柜的PWM输入信号的占空比计算出总的声压值。
进一步地,上节点中板的数量为若干个,下节点中板的数量为若干个。
进一步地,第一角度为60度,第一高度为1.5m,第一水平距离为1m。
进一步地,所述传声器的数量为四个。
进一步地,一个测试风扇单元包括三个测试风扇,一个风扇单元包括三个 风扇。
本发明还提供如下技术方案:
一种机柜式服务器噪声监测方法,包括如下步骤:
步骤1.搭建声压函数获取装置的测试环境;
步骤2.通过传声器测量4U治具的测试风扇单元在不同占空比的PWM输入信号控制下的声压值;
步骤3.拟合出4U治具的测试风扇单元的声压值Lp与风扇PWM输入信号占空比的对应关系Lp=f(占空比);
步骤4.通过噪声监测装置实时监测机柜式服务器的噪声值。
进一步地,步骤4具体包括如下步骤:
步骤4-1.每个节点中板获取对应风扇单元的PWM输入信号的占空比;
步骤4-2.机柜服务器管理模块RMC获取上半柜的上节点中板在位信息及上半柜的PWM输入信号的占空比;机柜式服务器采用半柜风扇调速模式,上半柜的风扇单元在相同的PWM输入信号的占空比控制下以相同转速运行;
步骤4-3.机柜服务器管理模块RMC获取下半柜的下节点中板在位信息及下半柜的PWM输入信号的占空比;机柜式服务器采用半柜风扇调速模式,下半柜的风扇单元在相同的PWM输入信号的占空比控制下以相同转速运行;
步骤4-4.机柜服务器管理模块RMC根据噪声叠加原理分别计算出上半柜风扇单元的声压值、下半柜风扇单元的声压值以及机柜式服务器的整体噪声值。
进一步地,步骤4-4的具体步骤如下:
设定n为下半柜的风扇单元的数量,m为上半柜的风扇单元的数量,Lp下为下半柜的声压值,Lp上为上半柜的声压值,Lp总为整体噪声值;
Lp下=f(下半柜占空比)+10lgn;
Lp上=f(上半柜占空比)+10lgm;
Lp总=10lg(10 Lp下/10+10 Lp上/10)=10lg(10 f(下半柜占空比)/10+10lgn/10+10 f(上半柜占空比)+10lgm /10)
=10lg(10 f(下半柜占空比)/10+lgn+10 f(上半柜占空比)+lgm)。
本发明的有益效果在于:
本发明实现了对机柜式服务器噪声值的实时监控,服务器噪声值是服务器运行稳定性的重要指标,具有实时监控功能的机柜式服务器提高了产品的市场竞争力。
此外,本发明设计原理可靠,结构简单,具有非常广泛的应用前景。
由此可见,本发明与现有技术相比,具有突出的实质性特点和显著的进步,其实施的有益效果也是显而易见的。
附图说明
图1为声压函数获取装置在半消音室上方俯视图;
图2为传声器与4U治具相对位置示意图;
图3为4U治具内风扇连接示意图;
图4为噪声监测装置的连接示意图;
图5为本发明的方法流程图;
其中,1-4U治具;2-传声器;2.1-第一传声器;2.2-第二传声器;2.3-第三传声器;2.4-第四传声器;3-测试风扇控制板;4-PWM输入信号设置单元;5-测试风扇单元;5.1-第一测试风扇;5.2-第二测试风扇;5.3-第三测试风扇;6-机柜服务器管理模块RMC;7.1-第一上节点中板;7.2-第二上节点中板;7.3-第三上节点中板;8.1-第一下节点中板;8.2-第二下节点中板;9.1-第一上风扇控制板;9.2-第二上风扇控制板;9.3-第三上风扇控制板;10.1-第一下风扇控制板;10.2-第二下风扇控制板;11.1-第一风扇单元;11.2-第二风扇单元;11.3-第三风扇单元;11.4-第四风扇单元;11.5-第五风扇单元;12.1-第一风扇;12.2-第二风扇;12.3-第三风扇;12.4-第四风扇;12.5-第五风扇;12.6-第六风扇;12.7-第七风扇;12.8-第八风扇;12.9-第九风扇;12.10-第十风扇;12.11-第十一风扇;12.12-第十二风扇;12.13-第十三风扇;12.14-第十四风扇;12.15-第十五风扇。
具体实施方式
为使得本发明的目的、特征、优点能够更加的明显和易懂,下面将结合本发明具体实施例中的附图,对本发明中的技术方案进行清楚、完整地描述。
本发明提供一种机柜式服务器噪声监测系统,其特征在于,包括声压函数获取装置和噪声监测装置;
如图1、图2和图3所示,所述声压函数获取装置包括半消音室,半消音室的中心设置有4U治具1,4U治具1上方设置有四个传声器2,第一传声器2.1、第二传声器2.2、第三传声器2.3以及第四传声器2.4,4U治具1位于所有传声器2的中心位置,四个传声器2距离地面的高度均为1.5m,四个传声器2距离4U治具的水平距离均为1m,四个传声器2均向下60度;4U治具1内设置有四个测试节点和一个测试风扇单元5,测试风扇单元5包括第一测试风扇5.1、第二测试风扇5.2和第三测试风扇5.3和一个测试风扇控制板3,第一测试风扇5.1、第二测试风扇5.2和第三测试风扇5.3均与测试风扇控制板3连接,测试风扇控制板3还连接有PWM输入信号设置单元4;
PWM输入信号设置单元4用于设定测试风扇工作在不同占空比的PWM输入信号;所述占空比从5%到100%,每间隔5%递增;
传声器2用于测量4U治具1在不同占空比的PWM输入信号控制下的声压值;
如图4所示,所述噪声监测装置包括服务器机柜和机柜服务器管理模块RMC 6,服务器机柜包括上半柜和下半柜,
上半柜内设置有三个上节点中板,第一上节点中板7.1、第二上节点中板7.2以及第三上节点中板7.3,第一上节点中板7.1连接有第一上风扇控制板9.1,第一上风扇控制板9.1连接有第一风扇单元11.1,第一风扇单元11.1包括第一风扇12.1、第二风扇12.2和第三风扇12.3;第二上节点中板7.2连接有第二上风扇控制板9.2,第二上风扇控制板9.2连接有第二风扇单元11.2,第二风扇单元11.2包括第四风扇12.4、第五风扇12.5和第六风扇12.6;第三上节点中板7.3连接有第三上风扇控制板9.3,第三上风扇控制板9.3连接有第三风扇单元11.3,第三风扇单元11.3包括第七风扇12.7、第八风扇12.8和第九风扇12.9;
下半柜内设置有两个下节点中板,第一下节点中板8.1和第二下节点中板8.2,第一下节点中板8.1连接有第一下风扇控制板10.1,第一下风扇控制板10.1连接有第四风扇单元11.4,第四风扇单元11.4包括第十风扇12.10、第十 一风扇12.11和第十二风扇12.12;第二下节点中板8.2连接有第二下风扇控制板10.2,第二下风扇控制板10.2连接有第五风扇单元11.5,第五风扇单元11.5包括第十三风扇12.13、第十四风扇12.14和第十五风扇12.15;
第一上节点中板7.1、第二上节点中板7.2、第三上节点中板7.3、第一下节点中板8.1以及第二下节点中板8.2均与机柜服务器管理模块RMC 6连接;
上半柜的第一风扇单元11.1、第二风扇单元11.2以及第三风扇单元11.3工作在一个PWM输入信号控制下;
下半柜的第四风扇单元11.4、第五风扇单元11.5以及第六风扇单元11.6工作在一个PWM输入信号控制下;
机柜服务器管理模块RMC 6用于获取实时的上半柜和下半柜的PWM输入信号的占空比,并根据上半柜和下半柜的PWM输入信号的占空比计算出总的声压值。
如图5所示,本发明还提供一种机柜式服务器噪声监测方法,包括如下步骤:
步骤1.搭建如图1、图2和图3所示的声压函数获取装置的测试环境;
步骤2.通过传声器测量4U治具的测试风扇单元在不同占空比的PWM输入信号控制下的声压值;
步骤3.拟合出4U治具的测试风扇单元的声压值Lp与风扇PWM输入信号占空比的对应关系Lp=f(占空比);
步骤4.通过如图4所示的噪声监测装置实时监测机柜式服务器的噪声值;
步骤4-1.每个节点中板获取对应风扇单元的PWM输入信号的占空比;
步骤4-2.机柜服务器管理模块RMC 6获取上半柜在位的上节点中板为第一上节点中板7.1、第二上节点中板7.2、第三上节点中7.3及上半柜的PWM输入信号的占空比65%;机柜式服务器采用半柜风扇调速模式,上半柜的风扇单元在65%占空比控制下以相同转速运行;
步骤4-3.机柜服务器管理模块RMC 6获取下半柜在位的第一下节点中板8.1、第二下节点中板8.2以及下半柜的PWM输入信号的占空比85%;机柜式服务器采用半柜风扇调速模式,下半柜的风扇单元在85%的占空比控制下以相同转速运行;
步骤4-4.机柜服务器管理模块RMC 6根据噪声叠加原理分别计算出上半柜风扇单元的声压值、下半柜风扇单元的声压值以及机柜式服务器的整体噪声值;
下半柜的风扇单元的数量n为2,上半柜的风扇单元的数量m为3,Lp下为下半柜的声压值,Lp上为上半柜的声压值,Lp总为整体噪声值;
Lp下=f(85%)+10lg2;
Lp上=f(65%)+10lg3;
Lp总=10lg(10 Lp下/10+10 Lp上/10)=10lg(10 f(85%)/10+10lg2/10+10 f(65%)+10lg3/10)
=10lg(10 f(85%)/10+lg2+10 f(65%)+lg3)。
本发明的实施例是说明性的,而非限定性的,上述实施例只是帮助理解本发明,因此本发明不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他的具体实施方式,同样属于本发明保护的范围。

Claims (9)

  1. 一种机柜式服务器噪声监测系统,其特征在于,包括声压函数获取装置和噪声监测装置;
    所述声压函数获取装置包括半消音室,半消音室的中心设置有4U治具,4U治具上方设置有若干个传声器,4U治具位于所有传声器的中心位置,每个传声器距离地面的高度为第一高度,每个传声器距离4U治具的水平距离为第一水平距离,每个传声器均向下倾斜第一角度;4U治具内设置有四个测试节点和一个测试风扇单元,测试风扇单元包括若干个测试风扇和一个测试风扇控制板,每个测试风扇均与测试风扇控制板连接,测试风扇控制板还连接有PWM输入信号设置单元;
    PWM输入信号设置单元用于设定测试风扇工作在不同占空比的PWM输入信号;
    传声器用于测量4U治具在不同占空比的PWM输入信号控制下的声压值;
    所述噪声监测装置包括服务器机柜和机柜服务器管理模块RMC,服务器机柜内设置有若干个节点中板,每个节点中板连接有一个风扇控制板,每个风扇控制板连接有一个风扇单元,每个风扇单元包括若干个风扇,每个节点中板均与机柜服务器管理模块RMC连接;风扇单元的风扇数目与风扇测试单元的风扇数目相等;
    机柜服务器管理模块RMC用于获取风扇实时的PWM输入信号的占空比,并根据PWM输入信号的占空比计算出实时的声压值。
  2. 如权利要求1所述的一种机柜式服务器噪声监测系统,其特征在于,服务器机柜包括上半柜和下半柜,节点中板包括上节点中板和下节点中板,上节点中板连接有上风扇控制板,下节点中板连接有下风扇控制板,上节点中板、上风扇控制板及上风扇控制板连接的风扇单元设置在上半柜,下节点中板、下风扇控制板及下风扇控制板连接的风扇单元设置在下半柜;
    每个半柜的风扇单元工作在一个PWM输入信号控制下;
    机柜服务器管理模块RMC用于获取实时的每个半柜的PWM输入信号 的占空比,并根据每个半柜的PWM输入信号的占空比计算出总的声压值。
  3. 如权利要求2所述的一种机柜式服务器噪声监测系统,其特征在于,上节点中板的数量为若干个,下节点中板的数量为若干个。
  4. 如权利要求1所述的一种机柜式服务器噪声监测系统,其特征在于,第一角度为60度,第一高度为1.5m,第一水平距离为1m。
  5. 如权利要求1所述的一种机柜式服务器噪声监测系统,其特征在于,所述传声器的数量为四个。
  6. 如权利要求1所述的一种机柜式服务器噪声监测系统,其特征在于,一个测试风扇单元包括三个测试风扇,一个风扇单元包括三个风扇。
  7. 一种机柜式服务器噪声监测方法,其特征在于,包括如下步骤:
    步骤1.搭建声压函数获取装置的测试环境;
    步骤2.通过传声器测量4U治具的测试风扇单元在不同占空比的PWM输入信号控制下的声压值;
    步骤3.拟合出4U治具的测试风扇单元的声压值Lp与风扇PWM输入信号占空比的对应关系Lp=f(占空比);
    步骤4.通过噪声监测装置实时监测机柜式服务器的噪声值。
  8. 如权利要求7所述的一种机柜式服务器噪声监测方法,其特征在于,步骤4具体包括如下步骤:
    步骤4-1.每个节点中板获取对应风扇单元的PWM输入信号的占空比;
    步骤4-2.机柜服务器管理模块RMC获取上半柜的上节点中板在位信息及上半柜的PWM输入信号的占空比;
    步骤4-3.机柜服务器管理模块RMC获取下半柜的下节点中板在位信息及下半柜的PWM输入信号的占空比;
    步骤4-4.机柜服务器管理模块RMC根据噪声叠加原理分别计算出上半柜风扇单元的声压值、下半柜风扇单元的声压值以及机柜式服务器的整体噪声值。
  9. 如权利要求8所述的一种机柜式服务器噪声监测方法,其特征在于,步骤4-4的具体步骤如下:
    设定n为下半柜的风扇单元的数量,m为上半柜的风扇单元的数量, Lp下为下半柜的声压值,Lp上为上半柜的声压值,Lp总为整体噪声值;
    Lp下=f(下半柜占空比)+10lgn;
    Lp上=f(上半柜占空比)+10lgm;
    Lp总=10lg(10 Lp下/10+10 Lp上/10)=10lg(10 f(下半柜占空比)/10+lgn+10 f(上半柜占空比) +lgm)。
PCT/CN2018/091072 2017-09-05 2018-06-13 一种机柜式服务器噪声监测系统及方法 WO2019047583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,092 US11181417B2 (en) 2017-09-05 2018-06-13 Rack server noise monitoring system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710791008.8 2017-09-05
CN201710791008.8A CN107677361B (zh) 2017-09-05 2017-09-05 一种机柜式服务器噪声监测系统及方法

Publications (1)

Publication Number Publication Date
WO2019047583A1 true WO2019047583A1 (zh) 2019-03-14

Family

ID=61135291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091072 WO2019047583A1 (zh) 2017-09-05 2018-06-13 一种机柜式服务器噪声监测系统及方法

Country Status (3)

Country Link
US (1) US11181417B2 (zh)
CN (1) CN107677361B (zh)
WO (1) WO2019047583A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677361B (zh) 2017-09-05 2019-10-18 郑州云海信息技术有限公司 一种机柜式服务器噪声监测系统及方法
CN109490228A (zh) * 2018-11-09 2019-03-19 广东水利电力职业技术学院(广东省水利电力技工学校) 一种服务器机柜控制系统及控制方法
CN109556707A (zh) * 2018-12-10 2019-04-02 山东国金汽车制造有限公司 一种汽车冷却模块风扇单体振动噪声的测试方法
CN113063856B (zh) * 2021-04-28 2022-05-27 安徽蓝格利通新材应用股份有限公司 一种空调外机用减振材料噪音测试装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202420664U (zh) * 2011-12-29 2012-09-05 东北石油大学 环境噪声自动监测仪
WO2015162309A1 (es) * 2014-04-23 2015-10-29 Centro Tecnologico Acustico, S.L. Equipo medidor de ruido ambiental
CN105300706A (zh) * 2015-10-22 2016-02-03 华晨汽车集团控股有限公司 一种汽车声学包装nvh性能的测试方法
CN105527017A (zh) * 2016-01-25 2016-04-27 邯郸美的制冷设备有限公司 空调室外机噪声检测方法及装置
CN105698919A (zh) * 2016-01-25 2016-06-22 邯郸美的制冷设备有限公司 空调室内机异音检测方法及装置
CN106370289A (zh) * 2016-10-21 2017-02-01 什邡市联铭信息技术有限公司 基于WiFi的噪声监测系统
CN107677361A (zh) * 2017-09-05 2018-02-09 郑州云海信息技术有限公司 一种机柜式服务器噪声监测系统及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060208821A1 (en) * 2004-11-09 2006-09-21 Andigilog, Inc. Controller arrangement
US20110123036A1 (en) * 2006-03-02 2011-05-26 Yossi Barath Muffled rack and methods thereof
US7869607B2 (en) * 2006-03-02 2011-01-11 Silentium Ltd. Quiet active fan for servers chassis
US8855329B2 (en) * 2007-01-22 2014-10-07 Silentium Ltd. Quiet fan incorporating active noise control (ANC)
US20080187147A1 (en) * 2007-02-05 2008-08-07 Berner Miranda S Noise reduction systems and methods
US8165311B2 (en) * 2009-04-06 2012-04-24 International Business Machines Corporation Airflow optimization and noise reduction in computer systems
CN101922964A (zh) * 2010-05-27 2010-12-22 合肥工业大学 一种可辨别噪声来源方向的环境噪声监测装置和方法
US20130076286A1 (en) * 2011-09-23 2013-03-28 Apple Inc. Reducing tonal excitations in a computer system
JP5821565B2 (ja) * 2011-11-21 2015-11-24 富士通株式会社 送風機制御装置、送風機制御方法および送風機制御プログラム
US9311909B2 (en) * 2012-09-28 2016-04-12 Microsoft Technology Licensing, Llc Sensed sound level based fan speed adjustment
CN203433434U (zh) * 2013-08-27 2014-02-12 西安高新区西部信息港有限公司 一种低噪音服务器
CN103674223B (zh) * 2013-12-13 2017-02-01 中联重科股份有限公司渭南分公司 噪声源测试装置、系统及方法
US10061332B2 (en) * 2014-07-14 2018-08-28 Dell Products, Lp Active acoustic control of cooling fan and method therefor
CN104102313A (zh) * 2014-08-04 2014-10-15 浪潮电子信息产业股份有限公司 一种节能降噪的服务器风扇调控方法
CN104334000B (zh) * 2014-10-27 2018-03-06 北京百度网讯科技有限公司 整机柜中风扇的配置方法、装置以及整机柜
CN104675737A (zh) * 2014-12-29 2015-06-03 浪潮电子信息产业股份有限公司 一种rack机柜风扇调速方法
CN104675738B (zh) * 2015-02-06 2016-05-25 烽火通信科技股份有限公司 基于机柜统一管理的风扇智能调速系统与方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202420664U (zh) * 2011-12-29 2012-09-05 东北石油大学 环境噪声自动监测仪
WO2015162309A1 (es) * 2014-04-23 2015-10-29 Centro Tecnologico Acustico, S.L. Equipo medidor de ruido ambiental
CN105300706A (zh) * 2015-10-22 2016-02-03 华晨汽车集团控股有限公司 一种汽车声学包装nvh性能的测试方法
CN105527017A (zh) * 2016-01-25 2016-04-27 邯郸美的制冷设备有限公司 空调室外机噪声检测方法及装置
CN105698919A (zh) * 2016-01-25 2016-06-22 邯郸美的制冷设备有限公司 空调室内机异音检测方法及装置
CN106370289A (zh) * 2016-10-21 2017-02-01 什邡市联铭信息技术有限公司 基于WiFi的噪声监测系统
CN107677361A (zh) * 2017-09-05 2018-02-09 郑州云海信息技术有限公司 一种机柜式服务器噪声监测系统及方法

Also Published As

Publication number Publication date
US11181417B2 (en) 2021-11-23
US20190331524A1 (en) 2019-10-31
CN107677361A (zh) 2018-02-09
CN107677361B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2019047583A1 (zh) 一种机柜式服务器噪声监测系统及方法
CN104237635A (zh) 电力系统的谐波定量测量方法
CN104991210B (zh) 一种局部放电检测装置的评价方法及标定装置
CN107894535A (zh) 定量探究平行板电容容量的方法
CN206540960U (zh) 一种脉冲信号参数测量仪
WO2020114140A1 (zh) 一种非入户负荷辨识高效检测方法
Yin et al. Airflow characteristics by air curtain jets in full-scale room
CN202075051U (zh) 可调隔热温差测试装置
CN101188059A (zh) 直流合成电场和离子流密度测量系统
CN204463781U (zh) 显示面板亮度频谱分析装置
CN109580262A (zh) 一种空调测试装置
CN106771752A (zh) 一种适用于高回损阴阳式光固定衰减器的自动测试系统
CN206132852U (zh) 数字频率计
CN203414549U (zh) 一种超低功率测试功率表
CN204989343U (zh) 一种微波器件动态老化试验系统
Mortensen et al. Investigation of airflow patterns in a microclimate by particle image velocimetry (PIV)
CN207797933U (zh) 一种用于测量夏比冲击试样侧膨胀量的装置
CN105142090A (zh) 确定本底噪声测试用供电电源的纹波系数的方法及系统
CN105242203A (zh) 干簧管脉冲信号质量分析方法及其分析系统
CN110751888A (zh) 一种层次化模拟电路实验箱
CN104360291A (zh) 用于led驱动电源测试的电子负载装置及其测试方法
CN111537180A (zh) 一种教学与科研双用的智能风洞实验室及其使用方法
CN204988997U (zh) 一种便携式旋光溶液浓度测量仪
Keska et al. Online analysis of a random signal using computer aided system
CN208921831U (zh) 一种k系数测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853933

Country of ref document: EP

Kind code of ref document: A1