WO2019047397A1 - 动态磁检测探头及电磁控阵方法 - Google Patents

动态磁检测探头及电磁控阵方法 Download PDF

Info

Publication number
WO2019047397A1
WO2019047397A1 PCT/CN2017/114486 CN2017114486W WO2019047397A1 WO 2019047397 A1 WO2019047397 A1 WO 2019047397A1 CN 2017114486 W CN2017114486 W CN 2017114486W WO 2019047397 A1 WO2019047397 A1 WO 2019047397A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
dynamic magnetic
magnetic
magnetic detecting
dynamic
Prior art date
Application number
PCT/CN2017/114486
Other languages
English (en)
French (fr)
Inventor
郭静波
朴冠宇
胡铁华
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to EP17924688.9A priority Critical patent/EP3683492A4/en
Priority to US16/646,139 priority patent/US20200348262A1/en
Publication of WO2019047397A1 publication Critical patent/WO2019047397A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/005Protection or supervision of installations of gas pipelines, e.g. alarm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1103Special, intelligent I-O processor, also plc can only access via processor

Definitions

  • the present application relates to the field of electronic information technology, and in particular, to a dynamic magnetic detecting probe and an electromagnetic array method.
  • Magnetic flux leakage detection is a technology for detecting pipeline defects in the industry at home and abroad.
  • the magnetic flux leakage detection technology is based on the constant magnetic field magnetization detection region wall provided by the permanent magnet, and the magnetic leakage sensing signal generated by the wall defect is measured by a magnetic field sensing component such as a Hall sensor, and the pipeline defect information is identified according to the magnetic leakage signal characteristic.
  • Magnetic flux leakage testing generally only detects defects with large scales such as corrosion, and the detection accuracy of defects with small scales such as cracks is very poor.
  • the dynamic magnetic detecting probe includes:
  • a magnetic and magnetic detection module for collecting magnetic signals
  • a main controller module electrically connected to the dynamic magnetic detecting module for controlling a working sequence of the dynamic magnetic detecting module
  • a communication module is communicatively coupled to the main controller module, and the main controller module transmits the collected data to the communication module.
  • the dynamic magnetic detection module includes:
  • the magnetic field excitation coil conducts a pulse current, and the differential receiving coil receives a magnetic field signal when the pulse current decreases.
  • the moving magnetic excitation coil comprises a plurality of spiral wires wound on a PCB circuit board
  • the differential receiving coil includes a front and rear differential multi-layer spiral wire wound on a PCB circuit board.
  • the dynamic magnetic detecting module further includes: a high frequency pulse current generating device electrically connected to the magnetic field exciting coil to cause the magnetic field exciting coil to conduct a high frequency pulse current.
  • the high frequency pulse current generating device includes a metal oxide semiconductor field effect transistor for generating a high frequency pulse current.
  • the main controller module includes a CPLD programmable logic device, a clock chip, a reset chip, and a JTAG program configuration interface, and the clock chip, the reset chip, and the JTAG program configuration interface are respectively compatible with the CPLD.
  • the programming logic is electrically connected.
  • the CPLD programmable logic device includes: a timing control unit and a data transmission control unit, the timing control unit and the data transmission control unit are electrically connected to the communication module for the communication
  • the module transmits the timing of the collected data and drives the communication module.
  • the dynamic magnetic detecting probe further includes: a Hilbert transform module, the Hilbert transform module including a Hilbert transformer electrically connected to the moving magnetic detecting module, A Hilbert change is made to the magnetic signal.
  • the Hilbert transform module further includes:
  • a first low noise amplifier disposed between the Hilbert transformer and the dynamic magnetic detecting module
  • a low pass filter is disposed between the Hilbert transformer and the second low noise amplifier.
  • the dynamic magnetic detecting probe further includes a magnetic flux leakage detecting device electrically connected to the main controller module, the magnetic flux leakage detecting device being a multi-channel Hall chip array, each channel including X, Y Three vertical direction Hall chips of Z-axis are used to detect spatial magnetic flux leakage signals.
  • the application also provides a method of electromagnetic array, comprising:
  • the dynamic magnetic detecting probe is controlled by a sequential control array by a sequential control method.
  • the dynamic magnetic detecting probe provided by the present application can detect the defect information displayed when the object to be tested has a small scale defect by using the dynamic magnetic detecting module. This application can detect defects with small scale and has high precision.
  • FIG. 1 is a schematic structural view of a magnetic field detecting probe of an embodiment
  • FIG. 2 is a schematic structural view of a magnetic field detecting probe of another embodiment
  • FIG. 3 is a timing chart of acquisition of a magnetic field detecting probe of an embodiment
  • FIG. 4 is a software flow diagram of a magnetic field detecting probe of an embodiment
  • FIG. 5 is a three-dimensional waveform diagram of the measured X-axis magnetic flux leakage signal of the magnetic field detecting probe of one embodiment
  • FIG. 6 is a three-dimensional waveform diagram of a measured Y-axis magnetic flux leakage signal of a magnetic field detecting probe according to an embodiment
  • FIG. 7 is a three-dimensional waveform diagram of a measured Z-axis magnetic flux leakage signal of a magnetic field detecting probe of an embodiment
  • FIG. 8 is a waveform diagram of a measured magnetic field signal of a measured external surface defect of a magnetic field detecting probe according to an embodiment
  • Figure 9 is a waveform diagram of the measured internal surface defect dynamic magnetic signal of the magnetic field detecting probe of one embodiment
  • Figure 10 is a schematic diagram of a sequential control array of an electromagnetic array method of one embodiment.
  • a magnetic field detecting probe 10 includes a dynamic magnetic detecting module 200 , a main controller module 300 , and a communication module 400 .
  • the main controller module 300 is electrically connected to the dynamic magnetic detection module 200.
  • the communication module 400 is in communication with the main controller module 300, and the main controller module 300 transmits the collected data to the communication module 400.
  • the magnetic field detecting probe 10 further includes a housing 100, and the dynamic magnetic detecting module 200, the main controller module 300, and the communication module 400 are disposed in the housing 100.
  • the dynamic magnetic detection module 200 is configured to collect magnetic signals.
  • the magnetic signal is a magnetic field at a position of the magnetic field detecting probe 10 signal.
  • the dynamic magnetic detecting probe 10 of the present embodiment can detect the defect information displayed when the object to be tested has a small scale defect by using the dynamic magnetic detecting module 200.
  • the dynamic magnetic detecting module 200 moves the local sensing to obtain a magnetic field evolution, so the present application can detect defects with small scale and have high precision.
  • the dynamic magnetic detection module 200 includes a magnetic field excitation coil 210 and a differential reception coil 220.
  • the magnetic field excitation coil 210 turns on a pulse current, and the differential receiving coil 220 receives a magnetic field signal at a falling edge of the pulse current to obtain a signal with a higher signal to noise ratio.
  • the moving magnetic excitation coil 210 is a multi-layered spiral wire wound on a PCB circuit board.
  • the differential receiving coil 220 is a front-rear differential multi-layer spiral wire wound on a PCB circuit board. The multi-layer spiral wire can effectively eliminate the interference magnetic signal and improve the signal-to-noise ratio of the magnetic signal.
  • the dynamic magnetic detection module 200 further includes a high frequency pulse current generating device 230.
  • the high frequency pulse current generating device 230 is electrically connected to the magnetic field exciting coil 210 to cause the magnetic field exciting coil 210 to conduct a high frequency pulse current.
  • the high frequency pulse current generating device 230 includes a metal oxide semiconductor field effect transistor for generating a high frequency pulse current.
  • the main controller module 300 can include a CPLD programmable logic device, a clock chip, a reset chip, and a JTAG program configuration interface.
  • the clock chip, the reset chip, and the JTAG program configuration interface are electrically connected to the CPLD programmable logic device, respectively.
  • the CPLD programmable logic device includes a timing control unit and a data transfer control unit.
  • the timing control unit and the data transmission control unit are electrically connected to the communication module, and are configured to send a timing of collecting data to the communication module and drive the communication module.
  • the communication module 400 includes a scramble duplex communication chip.
  • the transmission distance is long and the transmission speed is up to 50Mbps, which can effectively resist external electromagnetic interference.
  • the dynamic magnetic detection probe 10 further includes a Hilbert transform module 500.
  • the Hilbert transform module 500 includes a Hilbert transformer electrically coupled to the dynamic magnetic detection module 200 for performing a Hilbert variation on the magnetic signal.
  • the use of the Hilbert module 400 increases the signal-to-noise ratio of the magnetic signal output by the dynamic magnetic detection module 200, extends the observation time of the magnetic signal, and converts the analog information.
  • the Hilbert transform module 500 further includes:
  • a first low noise amplifier disposed between the Hilbert transformer and the dynamic magnetic detection module 200;
  • a low pass filter is disposed between the Hilbert transformer and the second low noise amplifier.
  • the first low noise amplifier receives the magnetic signal output by the dynamic magnetic detecting module 200, and amplifies the magnetic signal.
  • the amplified magnetic signal is input to the Hilbert transformer for Hilbert transform.
  • the magnetic signal transformed by the Hilbert transformer is input to the low pass filter to cancel high frequency noise in the magnetic signal.
  • the magnetic signal, which eliminates high frequency noise is then amplified by the second low noise amplifier.
  • the dynamic magnetic detection probe further includes a magnetic flux leakage detecting device 600.
  • the magnetic flux leakage detecting device 600 is electrically connected to the main controller module 300.
  • the magnetic flux leakage detecting device 600 is a multi-channel Hall chip array, and each of the multi-channel Hall chip arrays includes three vertical direction Hall chips of X, Y, and Z axes, and is used for Detect spatial magnetic flux leakage signals. As shown in FIG. 2, in one embodiment, the multi-channel Hall chip array is four multi-channel Hall chip arrays.
  • the magnetic flux leakage detecting device 600 and the dynamic magnetic detecting module 200 are combined with the magnetic flux detection after the magnetic flux leakage detection, so that the magnetic field detecting probe 10 can detect the large-scale defects of the pipeline waiting for the measuring object and can detect the small-scale defects and improve The application range and accuracy have expanded the application of the magnetic field detecting probe 10.
  • FIG. 3 is a timing control diagram employed by the main controller module 300 in one embodiment.
  • the main controller module 300 first controls the magnetic flux leakage detecting device 600 to perform the collecting operation, performs the strobing and analog sampling, and transmits the signal to the main controller.
  • the module 300, the main controller module 300 transmits the collected data at this time to the data line device through the communication module 400.
  • the magnetic flux leakage detection data adopts a strict sampling sequence: first sampling the first channel X-axis Hall chip, followed by the second channel X-axis Hall chip, and after the 4-channel X-axis Hall chip sampling is finished, starting the Y-axis The sampling of the Hall chip, the final Z-axis Hall chip is completed.
  • the magnetic flux leakage detection data acquisition, sampling and transmission occupy a total length of T1.
  • the clock operating frequency of the probe 10 may be 20-50 MHz, and the T1 time length may be 80-100 ⁇ s.
  • Obtaining the dynamic magnetic detection data includes the dynamic magnetic detecting module 200 turning on a pulse current in the moving magnetic excitation coil Flowing, and when the pulse current is at a falling edge, the differential receiving coil 220 acquires a moving magnetic signal, and obtains a change signal of the dynamic magnetic signal Hilbert transform through the Hilbert transform module 500, Finally, data is transmitted to the data line device via the communication module 400.
  • the differential receiving coil 220 acquires a moving magnetic signal at a falling edge of the pulse current such that the acquired magnetic signal signal to noise ratio is increased.
  • the dynamic magnetic detection data occupies a length of T3, and the clock operating frequency of the probe may be 50 MHz, and the T3 time length may be 50 ⁇ s.
  • the oil and gas pipeline detection robot can adopt the 2mm pitch mileage trigger mode. When the internal detection robot moves at a speed of 12m/s, an acquisition command with a period of about 166 ⁇ s will be generated.
  • the internal detector probe proposed in the present application has a working timing of about 160 ⁇ s and a sampling period of less than 166 ⁇ s. Therefore, the detector of the oil and gas pipeline detector based on the electromagnetic array technology proposed in the present application can stably detect the metal defects inside and outside the oil and gas pipeline at a moving speed of up to 12 m/s, and the probe is conventionally The detection work cannot be performed stably at high moving speeds.
  • the magnetic field detecting probe 10 is reset.
  • the main controller module 300 starts the magnetic flux leakage detecting device 600 to perform magnetic flux leakage detection after receiving the acquisition instruction.
  • the dynamic magnetic detecting module 200 is activated after the magnetic flux leakage detecting operation ends.
  • the moving magnetic excitation coil 210 turns on a pulse current.
  • the differential receiving coil 220 collects a moving magnetic signal, and extracts a moving magnetic signal Hilbert through the Hilbert transform module 500. The polarity of the transformed waveform.
  • the communication module 400 is responsible for transmitting the magnetic flux leakage signal and the dynamic magnetic signal collected as described above.
  • FIG. 6, and FIG. 7 respectively show X-axis, Y-axis, and Z-axis multi-channel leakage magnetic data graphs when the magnetic field detecting probe 10 of one embodiment is subjected to a defect having a radius of 10 mm and a depth of 5 mm.
  • the X-axis magnetic flux leakage data waveform exhibits a single peak distribution, and the Y-axis and Z-axis data exhibit a bimodal distribution.
  • Figure 8 is the dynamic magnetic response of the defect on the outer surface.
  • Figure 9 shows the dynamic magnetic response of a defect on the inner surface.
  • the embodiment further provides an electromagnetic array method, including:
  • S100' provides a plurality of the aforementioned magnetic field detecting probes
  • S200' controls the magnetic field detecting probe through a sequential control array by a control system using a sequential control method.
  • the module 1 in FIG. 10 corresponds to one of the magnetic field detecting probes 10, that is, a detecting system in which a plurality of the magnetic field detecting probes 10 are integrally formed.
  • the control module is a control system.
  • the control module controls the specific magnetic field detecting probe 10 by a specific acquisition working sequence by a sequential control method.
  • multiple modules can be grouped. Controlled separately by sequential control methods.
  • the sequential control array in the electromagnetic array method refers to adopting a sequential trigger mode, and by sequentially allocating the working timing, sequentially starting the work of each module, reducing the instantaneous working current of the system, and high efficiency in a sufficiently short time window. Complete all module collection work, making the whole detection system high in efficiency, low power consumption and good security.
  • the related apparatus and method disclosed may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the program can be stored in a computer readable storage medium, such as the present application.
  • the program may be stored in a storage medium of the computer system and at least one of the computer systems
  • the processors are executed to implement a flow comprising an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种动态磁检测探头(10)及电磁控阵方法,动态磁检测探头(10)包括动磁检测模块(200)、主控制器模块(300)和通信模块(400);主控制器模块(300)与动磁检测模块(200)电连接;通信模块(400)与主控制器模块(300)通讯连接,主控制器模块(300)将采集到的数据传输给通信模块(400)。动态磁检测探头(10)可以检测尺度较小的缺陷并精度较高。

Description

动态磁检测探头及电磁控阵方法
相关申请
本申请要求2017年9月11日申请的,申请号为2017108141020,名称为“动态磁检测探头及电磁控阵方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电子信息技术领域,尤其涉及一种动态磁检测探头及电磁控阵方法。
背景技术
油气管道缺陷内检测技术与装备的工业化、实用化意义重大。
漏磁检测是目前国内外业已形成的管道缺陷内检测技术。漏磁检测技术是基于永磁铁提供的恒定磁场磁化检测区域管壁,通过霍尔传感器等磁场感测元件测量由管壁缺陷所产生的漏磁信号,根据漏磁信号特征识别管道缺陷信息。
漏磁检测一般只能检测腐蚀等尺度较大的缺陷,而对于裂纹等尺度较小的缺陷检测精度很差。
发明内容
基于此,有必要针对上述技术问题,提供一种对尺度较小的缺陷检测精度高的动态磁检测探头及电磁控阵方法,所述动态磁检测探头包括:
动磁检测模块,用于采集磁信号;
主控制器模块,与所述动磁检测模块电连接,用于控制所述动磁检测模块的工作时序;
通信模块,与所述主控制器模块通讯连接,所述主控制器模块将采集到的数据传输给所述通信模块。
在一个实施例中,所述动磁检测模块包括:
磁场激励线圈和差分接收线圈;
所述磁场激励线圈导通脉冲电流,并在所述脉冲电流的下降时所述差分接收线圈接收磁场信号。
在一个实施例中,所述动磁激励线圈包括绕制在PCB电路板上的多层螺旋导线;
所述差分接收线圈包括绕制在PCB电路板上的前后差分式的多层螺旋导线。
在一个实施例中,所述动磁检测模块还包括:高频脉冲电流发生装置,与所述磁场激励线圈电连接,以使所述磁场激励线圈导通高频脉冲电流。
在一个实施例中,所述高频脉冲电流发生装置包括金属氧化物半导体场效应晶体管,用于产生高频脉冲电流。
在一个实施例中,所述主控制器模块包括CPLD可编程逻辑器件、时钟芯片、复位芯片、和JTAG程序配置接口,所述时钟芯片、复位芯片、和JTAG程序配置接口分别与所述CPLD可编程逻辑器件电连接。
在一个实施例中,所述CPLD可编程逻辑器件包括:时序控制单元和数据传输控制单元,所述时序控制单元和所述数据传输控制单元与所述通信模块电连接,用于给所述通信模块发送采集数据的时序并驱动所述通信模块。
在一个实施例中,所述动态磁检测探头还包括:希尔伯特变换模块,所述希尔伯特变换模块包括与所述动磁检测模块电连接的希尔伯特变换器,用于对所述磁信号进行希尔伯特变化。
在一个实施例中,所述希尔伯特变换模块还包括:
第一低噪声放大器,设置在所述希尔伯特变换器和所述动磁检测模块之间;
第二低噪声放大器,连接于所述希尔伯特变换器信号输出端;
低通滤波器,设置在所述希尔伯特变换器和所述第二低噪声放大器之间。
在一个实施例中,所述动态磁检测探头还包括与所述主控制器模块电连接的漏磁检测装置,所述漏磁检测装置为多通道霍尔芯片阵列,每个通道包括X、Y、Z轴三个垂直方向的霍尔芯片,用于检测空间漏磁信号。
本申请还提供一种电磁控阵方法,包括:
提供多个权利要求任一前述动态磁检测探头;
通过控制系统,采用序贯控制方法通过序贯控制阵对所述动态磁检测探头进行控制。
本申请所提供的动态磁检测探头通过采用动磁检测模块可检测出待测物具有较小尺度缺陷时显示出的缺陷信息。本申请可以检测尺度较小的缺陷并精度较高。
附图说明
图1为一个实施例的磁场检测探头的结构示意图;
图2为另一个实施例的磁场检测探头的结构示意图;
图3为一个实施例的磁场检测探头的采集时序图;
图4为一个实施例的磁场检测探头中的软件流程图;
图5为一个实施例的磁场检测探头的实测X轴漏磁信号三维波形图;
图6为一个实施例的磁场检测探头的实测Y轴漏磁信号三维波形图;
图7为一个实施例的磁场检测探头的实测Z轴漏磁信号三维波形图;
图8为一个实施例的磁场检测探头的实测外表面缺陷动磁信号波形图;
图9为一个实施例的磁场检测探头的实测内表面缺陷动磁信号波形图;
图10为一个实施例的电磁控阵方法的序贯控制阵列示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本申请的技术方案进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请的技术方案,并不用于限定本申请的技术方案。
请参阅图1,为本申请一个实施例提供的一种磁场检测探头10,包括:动磁检测模块200、主控制器模块300和通信模块400。主控制器模块300与所述动磁检测模块200电连接。通信模块400与所述主控制器模块300通讯连接,所述主控制器模块300将采集到的数据传输给所述通信模块400。所述磁场检测探头10还包括壳体100,所述动磁检测模块200、所述主控制器模块300和所述通信模块400设置在所述壳体100内。
当检测输油管道时,本申请的磁场检测探头10在所述输油管道内运动进行磁场检测。所述动磁检测模块200用于采集磁信号。所述磁信号为所述磁场检测探头10所在位置上的磁场 信号。
本实施中的动态磁检测探头10,通过采用动磁检测模块200可检测出待测物具有较小尺度缺陷时显示出的缺陷信息。所述动磁检测模块200探头移动局部感应从而得到磁场演化,因此本申请可以检测尺度较小的缺陷并精度较高。
在一个实施例中,所述动磁检测模块200包括磁场激励线圈210和差分接收线圈220。所述磁场激励线圈210导通脉冲电流,并在所述脉冲电流的下降沿所述差分接收线圈220接收磁场信号,以获得信噪比更高接的收信号。在一个实施例中,所述动磁激励线圈210为绕制在PCB电路板上的多层螺旋导线。所述差分接收线圈220为绕制在PCB电路板上的前后差分式的多层螺旋导线。多层螺旋导线可以有效消除干扰磁信号,提高了磁信号的信噪比。
在一个实施例中,所述动磁检测模块200还包括高频脉冲电流发生装置230。所述高频脉冲电流发生装置230与所述磁场激励线圈210电连接,以使所述磁场激励线圈210导通高频脉冲电流。在一个实施例中,所述高频脉冲电流发生装置230包括金属氧化物半导体场效应晶体管,用于产生高频脉冲电流。
在一个实施例中,所述主控制器模块300可包括CPLD可编程逻辑器件、时钟芯片、复位芯片、和JTAG程序配置接口。所述时钟芯片、所述复位芯片、和所述JTAG程序配置接口分别与所述CPLD可编程逻辑器件电连接。
在一个实施例中,所述CPLD可编程逻辑器件包括时序控制单元和数据传输控制单元。所述时序控制单元和所述数据传输控制单元与所述通信模块电连接,用于给所述通信模块发送采集数据的时序并驱动所述通信模块。
在一个实施例中,所述通信模块400包括查分双工通信芯片。传输距离远,传输速度达50Mbps,可以有效抵抗外界电磁干扰。
请参阅图2,在一个实施例中,所述动态磁检测探头10还包括希尔伯特变换模块500。所述希尔伯特变换模块500包括与所述动磁检测模块200电连接的希尔伯特变换器,用于对所述磁信号进行希尔伯特变化。希尔伯特模块400的采用提高所述动磁检测模块200输出的磁信号的信噪比、延长所述磁信号观测时间、模拟信息转换的作用。
在一个实施例中,所述希尔伯特变换模块500还包括:
第一低噪声放大器,设置在所述希尔伯特变换器和所述动磁检测模块200之间;
第二低噪声放大器,连接于所述希尔伯特变换器信号输出端;
低通滤波器,设置在所述希尔伯特变换器和所述第二低噪声放大器之间。
所述第一低噪声放大器接收所述动磁检测模块200输出的磁信号,对所述磁信号进行放大。放大后的磁信号输入到所述希尔伯特变换器进行希尔伯特变换。经过所述希尔伯特变换器变换过的磁信号,输入到所述低通滤波器消除所述磁信号中的高频噪声。然后消除了高频噪声的所述磁信号再经过所述第二低噪声放大器进行放大。
在一个实施例中,所述动态磁检测探头还包括漏磁检测装置600。所述漏磁检测装置600与所述主控制器模块300电连接。所述漏磁检测装置600为多通道霍尔芯片阵列,所述多通道霍尔芯片阵列中的每个通道霍尔芯片阵列包括X、Y、Z轴三个垂直方向的霍尔芯片,用于检测空间漏磁信号。图2所示,在一个实施例中,所述多通道霍尔芯片阵列为四个多通道霍尔芯片阵列。同时采用漏磁检测装置600和动磁检测模块200即融合漏磁检测后动磁检测,使所述磁场检测探头10即能检测管道等待测物上大尺度的缺陷又能检测小尺度缺陷,提升了应用范围和精度,扩大了所述磁场检测探头10的应用。
图3为在一个实施例中所述主控制器模块300所采用的时序控制图。
请参阅图3,当第N次采集指令的下降沿触发结束后,所述的主控制器模块300首先控制漏磁检测装置600进行采集工作,进行选通和模数采样,传输至主控制器模块300,所述主控制器模块300再通过通信模块400,将此时的采集数据发送至数据集线装置。所述的漏磁检测数据之间采用严格的采样顺序:首先采样第一通道X轴霍尔芯片、其次第二通道X轴霍尔芯片,4通道X轴霍尔芯片采样结束后,开始Y轴霍尔芯片的采样,最后Z轴霍尔芯片完成采样。通过上述方式,在计算机分析软件上,也根据此先后顺序绘制各通道数据曲线图。所述漏磁检测数据采集、采样和发送共占用T1时间长度,所述探头10的时钟工作频率可以为20-50MHz,则T1时间长度可以为80-100μs。
进一步地,在漏磁检测数据与动磁检测数据之间可以存在空闲时间间隙,防止两个模块采集工作之间的干扰,保证采集数据的质量。空闲时间间隙可以为T2=10μs。
所述动磁检测数据的获得包括所述动磁检测模块200在所述动磁激励线圈导通脉冲电 流,并在所述脉冲电流处在下降沿时所述差分接收线圈220采集动磁信号,并通过所述希尔伯特变换模块500得到所述动磁信号希尔伯特变换的变化信号,最后经由所述通信模块400将数据发送至数据集线装置。在所述脉冲电流处在下降沿时所述差分接收线圈220采集动磁信号使得采集到的磁信号信噪比提高。所述动磁检测数据占用T3时间长度,所述探头的时钟工作频率可以为50MHz,则T3时间长度可以为50μs。所述探头工作时序占用总时长为T1+T2+T3=160μs。油气管道内检测机器人可以采用2mm间距的里程触发模式,则当内检测机器人移动速度达到12m/s时,将产生周期约为166μs的采集指令。本申请提出的内检测器探头工作时序为160μs左右,小于166μs的采样周期。因此,本申请提出的基于电磁控阵技术的油气管道内检测器探头能够在高达12m/s的移动速度下,可稳定地完成油气管道金属内、外金属缺陷的检测,而传统上探头在如此高的移动速度下不能稳定开展检测工作。
图4所示,在一个实施例中,所述磁场检测探头10的工作流程图。首先,对所述磁场检测探头10进行复位。所述主控制器模块300接收采集指令后启动所述漏磁检测装置600进行漏磁检测。漏磁检测工作结束后启动所述动磁检测模块200。所述动磁激励线圈210导通脉冲电流,在脉冲电流的下降沿处,所述差分接收线圈220采集动磁信号,并通过所述希尔伯特变换模块500提取动磁信号希尔伯特变换的波形极性。最后,所述通信模块400负责发送上述采集的漏磁信号和动磁信号。
图5、图6和图7分别给出才用一个实施例所述磁场检测探头10经过半径为10mm,深度为5mm缺陷时的X轴、Y轴和Z轴多通道漏磁数据曲线图。X轴漏磁数据波形呈现单峰分布,Y轴和Z轴数据呈现双峰分布。
图8和图9中,标识“ID”表示内表面,标识“OD”表示外表面,标识“ID20-20-6”表示长度为20mm,宽度为20mm,深度为6mm的内表面缺陷。图8为缺陷在外表面时的动磁响应。图9为缺陷在内表面时的动磁响应。当探头经过外表面缺陷啊时,其动磁信号希尔伯特变换的波形极性为先为正、后为负。反之,当探头经过内表面缺陷时,其动磁信号希尔伯特变换的波形极性为先为负、后为正。实际曲线显示结果与上述发明内容中的描述一致,表明本申请提出的基于电磁控阵技术的油气管道内检测器探头能够通过动磁信号的希尔伯特变换波形的极性来分辨金属缺陷的内外壁分布。
请参阅图10,本实施例还提供一种电磁控阵方法,包括:
S100’提供多个任一前述的磁场检测探头;
S200’通过控制系统,采用序贯控制方法通过序贯控制阵列对所述磁场检测探头进行控制。
具体地,图10中的模块1对应一个所述磁场检测探头10,也就是由多个所述磁场检测探头10组成一个整体的检测系统。控制模块为控制系统。所述控制模块通过序贯控制方法分配具体的采集工作时序控制不同的所述磁场检测探头10。在一个实施例中,可将多个模块进行分组。通过序贯控制方法分别控制。所述电磁控阵方法中所述序贯控制阵列是指采用序贯触发模式,通过合理分配工作时序,序贯启动各模块的工作,降低系统瞬时工作电流,在足够短的时间窗口内高效率地完成所有模块采集工作,使得整个检测系统采集效率高、功耗低、安全性好。
在本申请所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述程序可存储于一计算机可读取存储介质中,如本申请实施例中,所述程序可存储于计算机系统的存储介质中,并被所述计算机系统中的至少一 个处理器执行,以实现包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种动态磁检测探头,其特征在于,包括:
    动磁检测模块,用于采集磁信号;
    主控制器模块,与所述动磁检测模块电连接,用于控制所述动磁检测模块的工作时序;
    通信模块,与所述主控制器模块通讯连接,所述主控制器模块将采集到的数据传输给所述通信模块。
  2. 如权利要求1所述的动态磁检测探头,其特征在于,所述动磁检测模块包括:
    磁场激励线圈和差分接收线圈;
    所述磁场激励线圈导通脉冲电流,并在所述脉冲电流的下降时所述差分接收线圈接收磁场信号。
  3. 如权利要求2所述的动态磁检测探头,其特征在于,
    所述动磁激励线圈包括绕制在PCB电路板上的多层螺旋导线;
    所述差分接收线圈包括绕制在PCB电路板上的前后差分式的多层螺旋导线。
  4. 如权利要求2所述的动态磁检测探头,其特征在于,所述动磁检测模块还包括:高频脉冲电流发生装置,与所述磁场激励线圈电连接,以使所述磁场激励线圈导通高频脉冲电流。
  5. 如权利要求4所述的动态磁检测探头,其特征在于,所述高频脉冲电流发生装置包括金属氧化物半导体场效应晶体管,用于产生高频脉冲电流。
  6. 如权利要求1所述的动态磁检测探头,其特征在于,所述主控制器模块包括CPLD可编程逻辑器件、时钟芯片、复位芯片、和JTAG程序配置接口,所述时钟芯片、所述复位芯片、和所述JTAG程序配置接口分别与所述CPLD可编程逻辑器件电连接。
  7. 如权利要求6所述的动态磁检测探头,其特征在于,所述CPLD可编程逻辑器件包括:时序控制单元和数据传输控制单元,所述时序控制单元和所述数据传输控制单元与所述通信模块电连接,用于给所述通信模块发送采集数据的时序并驱动所述通信模块。
  8. 如权利要求1所述的动态磁检测探头,其特征在于,所述动态磁检测探头还包括:希尔伯特变换模块,所述希尔伯特变换模块包括与所述动磁检测模块电连接的希尔伯特变换器,用于对所述磁信号进行希尔伯特变化。
  9. 如权利要求8所述的动态磁检测探头,其特征在于,所述希尔伯特变换模块还包括:
    第一低噪声放大器,设置在所述希尔伯特变换器和所述动磁检测模块之间;
    第二低噪声放大器,连接于所述希尔伯特变换器信号输出端;
    低通滤波器,设置在所述希尔伯特变换器和所述第二低噪声放大器之间。
  10. 如权利要求1所述的动态磁检测探头,其特征在于,所述动态磁检测探头还包括与所述主控制器模块电连接的漏磁检测装置,所述漏磁检测装置为多通道霍尔芯片阵列,每个通道包括X、Y、Z轴三个垂直方向的霍尔芯片,用于检测空间漏磁信号。
  11. 一种电磁控阵方法,其特征在于,包括:
    提供多个权利要求1-10任一所述动态磁检测探头;
    通过控制系统,采用序贯控制方法通过序贯控制阵对所述动态磁检测探头进行控制。
PCT/CN2017/114486 2017-09-11 2017-12-04 动态磁检测探头及电磁控阵方法 WO2019047397A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17924688.9A EP3683492A4 (en) 2017-09-11 2017-12-04 DYNAMIC MAGNETIC DETECTION PROBE AND CONTROL PROCEDURE OF AN ELECTROMAGNETIC ARRAY
US16/646,139 US20200348262A1 (en) 2017-09-11 2017-12-04 Dynamic magnetic field detection probe and array control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710814102.0A CN109491306B (zh) 2017-09-11 2017-09-11 动态磁检测探头及电磁控阵方法
CN201710814102.0 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019047397A1 true WO2019047397A1 (zh) 2019-03-14

Family

ID=65633597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114486 WO2019047397A1 (zh) 2017-09-11 2017-12-04 动态磁检测探头及电磁控阵方法

Country Status (4)

Country Link
US (1) US20200348262A1 (zh)
EP (1) EP3683492A4 (zh)
CN (1) CN109491306B (zh)
WO (1) WO2019047397A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113418980A (zh) * 2021-07-16 2021-09-21 中国特种设备检测研究院 金属构件裂纹的检测方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488010B2 (en) * 2018-12-29 2022-11-01 Northeastern University Intelligent analysis system using magnetic flux leakage data in pipeline inner inspection
CN113805506B (zh) * 2021-08-24 2023-08-18 杭州日光之上科技有限公司 一种磁流体音乐装置及其控制方法
CN114923133A (zh) * 2022-06-06 2022-08-19 国家石油天然气管网集团有限公司 基于弱磁检测的内检测器的定位装置、方法、设备及介质
CN115372458A (zh) * 2022-09-01 2022-11-22 国家石油天然气管网集团有限公司 用于动态检测裂纹的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078412A (ja) * 1996-09-02 1998-03-24 Daido Steel Co Ltd 表面傷の探傷方法および探傷装置
CN101231266A (zh) * 2008-01-31 2008-07-30 华南理工大学 一种电磁无损检测探头的检测系统
CN102192953A (zh) * 2010-08-30 2011-09-21 中机生产力促进中心 低功耗智能三维漏磁检测探头
CN103235036A (zh) * 2013-04-12 2013-08-07 厦门艾帝尔电子科技有限公司 基于电磁检测信号的区分内外壁缺陷的检测装置及方法
CN103499022A (zh) * 2013-09-30 2014-01-08 清华大学 一种区分管道内外表面腐蚀缺陷的传感器
CN104820015A (zh) * 2015-05-08 2015-08-05 北京华航无线电测量研究所 一种金属表面缺陷检测系统及其检测方法
CN104950039A (zh) * 2015-06-23 2015-09-30 西安交通大学 基于非线性磁饱和脉冲涡流的铁磁管道定量无损评价方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648041A (en) * 1985-06-24 1987-03-03 The United States Of America As Represented By The Secretary Of The Navy Method of measuring magnetic effects due to eddy currents
JP2509626B2 (ja) * 1987-07-03 1996-06-26 株式会社東芝 磁気記録再生装置
US6736222B2 (en) * 2001-11-05 2004-05-18 Vector Magnetics, Llc Relative drill bit direction measurement
US6973588B2 (en) * 2002-11-27 2005-12-06 Symbol Technologies, Inc. Disaster recovery port in a portable computer
US6847207B1 (en) * 2004-04-15 2005-01-25 Tdw Delaware, Inc. ID-OD discrimination sensor concept for a magnetic flux leakage inspection tool
CN2742436Y (zh) * 2004-10-13 2005-11-23 林俊明 一种具有曲率探测面的陈列式涡流/漏磁检测探头
US20060221529A1 (en) * 2005-03-31 2006-10-05 Jin-Ha Kim Power supply apparatus
US8175283B2 (en) * 2005-06-16 2012-05-08 University Of Zurich Sound analyzer based on a biomorphic design
US7402999B2 (en) * 2005-11-30 2008-07-22 General Electric Company Pulsed eddy current pipeline inspection system and method
CN101281168B (zh) * 2008-03-13 2010-12-01 林俊明 一种利用改变激励模式来实现不同方式电磁检测的方法
US8704513B2 (en) * 2011-02-16 2014-04-22 Olympus Ndt Inc. Shielded eddy current coils and methods for forming same on printed circuit boards
CN103149272A (zh) * 2013-02-28 2013-06-12 厦门大学 一种半饱和时分多频漏磁检测方法
WO2016007883A1 (en) * 2014-07-11 2016-01-14 Halliburton Energy Services, Inc. Evaluation tool for concentric wellbore casings
US9726640B2 (en) * 2014-11-21 2017-08-08 Olympus Scientific Solutions Americas Inc. Circuit and method of providing a stable display for eddy current instruments
JP6579840B2 (ja) * 2015-07-16 2019-09-25 住友化学株式会社 欠陥測定方法、欠陥測定装置、および検査プローブ
CN105629840A (zh) * 2016-03-15 2016-06-01 华南理工大学 一种集成多传感器的管道爬行智能检测设备
CN207611272U (zh) * 2017-09-11 2018-07-13 清华大学 动态磁检测探头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078412A (ja) * 1996-09-02 1998-03-24 Daido Steel Co Ltd 表面傷の探傷方法および探傷装置
CN101231266A (zh) * 2008-01-31 2008-07-30 华南理工大学 一种电磁无损检测探头的检测系统
CN102192953A (zh) * 2010-08-30 2011-09-21 中机生产力促进中心 低功耗智能三维漏磁检测探头
CN103235036A (zh) * 2013-04-12 2013-08-07 厦门艾帝尔电子科技有限公司 基于电磁检测信号的区分内外壁缺陷的检测装置及方法
CN103499022A (zh) * 2013-09-30 2014-01-08 清华大学 一种区分管道内外表面腐蚀缺陷的传感器
CN104820015A (zh) * 2015-05-08 2015-08-05 北京华航无线电测量研究所 一种金属表面缺陷检测系统及其检测方法
CN104950039A (zh) * 2015-06-23 2015-09-30 西安交通大学 基于非线性磁饱和脉冲涡流的铁磁管道定量无损评价方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113418980A (zh) * 2021-07-16 2021-09-21 中国特种设备检测研究院 金属构件裂纹的检测方法和装置

Also Published As

Publication number Publication date
EP3683492A1 (en) 2020-07-22
EP3683492A4 (en) 2020-12-30
CN109491306B (zh) 2024-01-23
CN109491306A (zh) 2019-03-19
US20200348262A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
WO2019047397A1 (zh) 动态磁检测探头及电磁控阵方法
CN109358110B (zh) 一种用于钢板内部缺陷成像的阵列式电磁多维度检测系统
CN103486960B (zh) 一种超声波、涡流和emat一体化无损测厚仪及其方法
CN106442711B (zh) 基于涡流反射与透射的无损检测方法
CN103412049A (zh) 一种高温注汽管道缺陷监测方法
CN104655714A (zh) 基于宽频磁波反射通路参数辨识的检测与成像方法及装置
CN108152362B (zh) 一种基于伪随机序列的磁致伸缩检测钢结构缺陷的方法
CN102735746B (zh) 金属管道漏磁信号封闭式检测装置及数据高速传输方法
CN215641015U (zh) 磁传感涡流无损探伤检测系统
CN103777152A (zh) 一种交变磁场三维分布测量装置
US20230043106A1 (en) Eddy Current Testing System for Non-destructive Testing of Pipeline
CN112782650B (zh) 一种基于正方体阵列的声发射源定位方法及系统
CN104165923A (zh) 金属线材/管材无损探伤装置
CN102183341B (zh) 核磁共振堤坝渗漏隐患探测仪及探测方法
CN104655656B (zh) 基于宽频磁波透射模型参数辨识的检测成像方法与装置
CN102879462A (zh) 一种金属缺陷涡流检测装置及其探头
CN104155360A (zh) 管道内检测器信号激发与采集装置及管道缺陷检测方法
CN105092691B (zh) 一种管道内氧化皮堆积的定量检测方法及检测仪
CN207488230U (zh) 动态磁检测系统
CN105548349A (zh) 实现缺陷重构技术的矩形探头脉冲涡流检测方法
WO2019047396A1 (zh) 动态磁检测系统、检测方法及电磁控阵方法
CN110220968A (zh) 一种用于铁磁性材料的三轴缺陷漏磁检测装置
CN107356664A (zh) 一种基于低频漏磁的铁磁性材料缺陷检测装置
CN207611272U (zh) 动态磁检测探头
CN205281179U (zh) 一种基于fpga控制的数据采集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017924688

Country of ref document: EP

Effective date: 20200414