WO2019047285A1 - 一种产生负离子蒸汽的直流控制电路及方法 - Google Patents

一种产生负离子蒸汽的直流控制电路及方法 Download PDF

Info

Publication number
WO2019047285A1
WO2019047285A1 PCT/CN2017/102911 CN2017102911W WO2019047285A1 WO 2019047285 A1 WO2019047285 A1 WO 2019047285A1 CN 2017102911 W CN2017102911 W CN 2017102911W WO 2019047285 A1 WO2019047285 A1 WO 2019047285A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
control
negative ion
steam
water pump
Prior art date
Application number
PCT/CN2017/102911
Other languages
English (en)
French (fr)
Inventor
黄伟聪
蔡自光
严嘉明
冯嘉俊
Original Assignee
广东天物新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710804562.5A external-priority patent/CN108050504A/zh
Priority claimed from CN201721146914.4U external-priority patent/CN207539884U/zh
Application filed by 广东天物新材料科技有限公司 filed Critical 广东天物新材料科技有限公司
Publication of WO2019047285A1 publication Critical patent/WO2019047285A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers

Definitions

  • the invention relates to the technical field of electrical design, in particular to a DC control circuit and a method for generating negative ion steam.
  • the existing steam generator generally uses an alloy heating wire or a PTC as a heating element.
  • the alloy heating wire has the disadvantages of slow heat generation and low life.
  • the heating temperature of the PTC electric heating element is generally only about 200 ° C, and the heating temperature is higher than 120 ° C.
  • the use of lead trioxide is considered to be environmentally unfriendly due to the high lead content.
  • the market urgently needs a steam generator which generates a large amount of water vapor in a short time and has a small volume.
  • the safety problem of the steam generator has attracted more and more people's attention.
  • the existing steam generator mostly uses the alternating current power supply method, and there is a safety hazard of leakage.
  • Patent document CN100567617C discloses an ironing system which supplies alternating current power, and, although the ironing device provides negative ions, it is provided by a point steam output device, and the output of the sensor must be used to control the electric steam. Charging, the structure is complicated, and the effect of the negative ions obtained is not satisfactory.
  • a steam ironing apparatus is disclosed in the patent document CN101087912A, which decomposes steam examples into finer particles, which consumes a large amount of electric energy, must be powered by alternating current, and uses an ionizer to charge water molecules, and the effect of negative ions Not ideal.
  • nano-water ion technology is one of the charged ion evolution technologies. It is mainly used for air sterilization.
  • the advantage is that charged ions can be sterilized. Adsorption on the surface of dust can help the filter to absorb fine dust particles and can act as humidified air.
  • the role of long-term use of air-drying cycles, the devices that currently produce nano-water ions are mostly specialized devices with complex structures.
  • a DC control circuit for generating negative ion steam is applied to a steam generator, including a power supply module, a protection module, a steam generation module, a negative ion generation module, a water pump module, and a control module;
  • One end of the protection module is connected to the positive terminal of the output end of the power supply module, and the other end of the protection module is respectively connected with one end of the steam generating module and the detection input end of the control module to protect the circuit and prevent dry burning. ;
  • the positive terminal of the output end of the power supply module is electrically connected to the positive input end of the power input of the control module, one end of the negative ion generating module, and one end of the water pump module;
  • the output terminal negative pole of the power supply module is respectively connected to the other end of the steam generating module, the other end of the negative ion generating module, the other end of the water pump module, and the power input negative end of the control module;
  • the power supply module is configured to provide direct current power to each module connected thereto;
  • the control output end of the control module is connected with the control end of the steam generating module, the control end of the negative ion generating module, and the control end of the water pump module, for controlling the heating of the steam generating module and adjusting the heat generation, controlling the water supply of the water pump module and adjusting the water supply.
  • the amount of water, the negative ion generating module is controlled to generate negative ion gas and atomize water vapor, and the voltage value of the power supply module is detected;
  • the steam generating module is configured to heat water in the steam generator to adjust heat generation
  • the negative ion generating module is configured to generate a negative ion gas and atomize water vapor;
  • the water pump module is used to supply water to the steam generator to adjust the amount of water.
  • the power supply module includes a charging module and a power storage module
  • the input end of the charging module is pluggable and connected to the mains, and the output end of the charging module is pluggable and connected to the input end of the power storage module, and the charging module is used for rectifying and transforming the commercial power. Charging the power storage module;
  • One end of the protection module is connected to the positive terminal of the output end of the power storage module, and the other end of the protection module is respectively connected to one end of the steam generating module and the detecting input end of the control module;
  • the positive terminal of the output end of the power storage module is electrically connected to the positive input end of the power input of the control module, one end of the negative ion generating module, and one end of the water pump module;
  • the negative end of the output end of the power storage module is respectively connected to the other end of the steam generating module, the other end of the negative ion generating module, the other end of the water pump module, and the power input negative end of the control module, for providing direct current to each of the connected terminals.
  • the control module is in turn used to detect the voltage value of the power storage module.
  • the power storage module includes a first battery pack, a second battery pack, and a security sheet;
  • the positive poles of the first battery pack are respectively connected to the output positive terminal of the charging module and the end of the fuse, and the other end of the fuse is respectively connected to one end of the protection module and the power input positive terminal of the control module, the first The negative pole of the battery pack is connected to the positive pole of the second battery pack, and the negative pole of the second battery pack is respectively opposite to the output terminal of the charging module, the other end of the steam generating module, the other end of the negative ion generating module, and the other end of the water pump module, and the control Connect the negative terminal of the power input of the module;
  • the positive poles of the second battery pack are respectively connected to one end of the negative ion generating module and one end of the water pump module;
  • the fuse is used to protect the connection circuit from short circuit.
  • the first battery pack includes at least two first batteries electrically connected in series, and the anode of the first battery at one end of the first battery pack is the anode of the first battery pack, and the first electrode at the other end of the first battery pack
  • the negative electrode of the battery is the negative electrode of the first battery pack
  • the second battery pack includes at least two second batteries electrically connected in series, the positive pole of the second battery at one end of the second battery pack is the positive pole of the second battery pack, and the second battery at the other end of the second battery pack
  • the negative electrode is the negative electrode of the first battery pack.
  • the protection module is a protection module that adopts an automatic reset thermostat.
  • the steam generating module includes a heating body enabling controller and a heating element
  • control output end of the control module is connected to the control end of the heating body enable controller
  • the other end of the protection module is respectively connected to an input end of the heat generating body enable controller
  • the output end of the heating element enabling controller is connected to one end of the heating element, and the other end of the output of the heating element enabling controller is connected to the other end of the heating element;
  • the heating element is a heating element using a high temperature co-fired alumina cermet heating sheet for enabling heating of water to generate water vapor;
  • the heating element enabling controller is used for regulating the output, and controls the heat generation and starting and stopping of the heating element.
  • the negative ion generating module includes a negative ion driving unit, an inverter unit, and an ultraviolet lamp;
  • the negative ion driving unit is respectively connected to the positive end of the output end of the electric storage module, the negative end of the output end of the electric storage module, the control output end of the control module, and the input end of the inverter unit, and is used for the inverter unit according to the instruction of the control module.
  • the output end of the inverter unit is connected to an ultraviolet lamp for inverting a direct current power source into an alternating current power source and using an alternating current electric drive to illuminate the ultraviolet light lamp;
  • the ultraviolet lamp is used to generate a negative ion gas, atomizing water vapor.
  • the water pump module includes a water pump driving unit and a water pump;
  • the water pump driving unit is respectively connected to the positive end of the output end of the electric storage module, the negative end of the output end of the electric storage module, the control output end of the control module, and the water pump, and is used for controlling the water pump according to the instruction of the control module;
  • the water pump is used to supply water to the steam generator to adjust the amount of water.
  • control unit includes a man-machine setting unit, an alarm unit, a CPU unit, an input unit, and an output unit;
  • the input unit includes a power input positive end of the control unit, a power input negative end of the control unit, and a detection input end of the control unit;
  • the output unit includes a control output, the control output includes an output connected to the control end of the negative ion generating module, an output connected to the control end of the water pump module, and an output connected to the output end of the steam generating module;
  • the man-machine setting unit is configured to select a negative ion setting mode, adjust the steam output amount of the water vapor, alarm reset, and timing setting;
  • the alarm unit is configured to perform an alarm when the detection input of the control module detects a low level, indicating that the protection module has been disconnected;
  • the CPU unit is respectively performed with a man-machine setting unit, an alarm unit, an input unit, and an output unit. Connection for performing program control, processing detection information, and issuing control commands.
  • a DC control method for generating negative ion steam includes the following steps:
  • control module determines whether it is in the negative ion setting mode, if yes, execute S2, otherwise execute S3;
  • control module reads the setting parameters, and controls the input voltage of the steam generating module and the water output of the water pump module;
  • control module detects whether the input voltage is lower than the low pressure alarm threshold, if yes, execute S6, otherwise execute S7;
  • S7 The control module detects whether the protection module is open, and if yes, executes S6, otherwise the loop executes S1.
  • the energy consumption of the steam generating module, the negative ion generating module and the water pump module is required to be optimally matched and optimized, so that the control module is respectively connected with the modules, when the current is During the change of the voltage, the amount of generated water vapor and the amount of negative ion gas can be controlled at any time.
  • the above DC control circuit of the present invention solves the problem that when the direct current is supplied to the battery, the current or voltage changes, the speed and the amount of generation of the steam and the negative ion gas can be effectively adjusted, and the user can also adjust the steam according to the battery power.
  • the rate of production and the amount of production, the rate of generation of negative ion gas, and the amount of production, especially the ratio of the amount of steam to the amount of negative ion gas, are met to meet the different needs of the user.
  • the above-mentioned DC control circuit and method for generating negative ion steam makes the generation of negative ions and water vapor more intelligent and safer.
  • the present invention enables the steam generation module through the DC storage battery. It avoids the danger of accidental electric shock when AC power is supplied. It stops and alarms by automatically detecting the disconnection of the thermostat, making the control circuit safer.
  • the effect of the UV lamp on the water vapor makes the steam generator more environmentally friendly and healthy.
  • a DC control method that produces negative ion steam makes the steam generator more intelligent.
  • FIG. 1 is a schematic structural view of a DC control circuit for generating negative ion steam according to the present invention
  • FIG. 2 is a schematic view showing the connection between the charging module and the power storage module of the present invention
  • FIG. 3 is a schematic structural view and a connection diagram of a power storage module according to the present invention.
  • FIG. 4 is a schematic structural diagram and a connection diagram of a negative ion generating module of the present invention.
  • Figure 5 is a schematic structural view and a connection diagram of the water pump module of the present invention.
  • FIG. 6 is a schematic structural diagram and a connection diagram of a control module according to the present invention.
  • Figure 7 is a flow chart showing the operation of a DC control method for generating negative ion steam according to the present invention.
  • a DC control circuit for generating negative ion steam includes a power supply module, a protection module, a steam generation module, a negative ion generation module, a water pump module, and a control module;
  • One end of the protection module is connected to the positive terminal of the output end of the power supply module, and the other end of the protection module is respectively connected with one end of the steam generating module and the detection input end of the control module to protect the circuit and prevent dry burning. ;
  • the positive terminal of the output end of the power supply module is electrically connected to the positive input end of the power input of the control module, one end of the negative ion generating module, and one end of the water pump module;
  • the output terminal negative pole of the power supply module is respectively connected to the other end of the steam generating module, the other end of the negative ion generating module, the other end of the water pump module, and the power input negative end of the control module;
  • the power supply module is configured to provide direct current power to each module connected thereto;
  • the control output end of the control module is connected with the control end of the steam generating module, the control end of the negative ion generating module, and the control end of the water pump module, for controlling the heating of the steam generating module and adjusting the heat generation, controlling the water supply of the water pump module and adjusting the water supply.
  • the amount of water, the negative ion generating module is controlled to generate negative ion gas and atomize water vapor, and the voltage value of the power supply module is detected;
  • the steam generating module is configured to heat water in the steam generator to adjust heat generation
  • the negative ion generating module is configured to generate a negative ion gas and atomize water vapor;
  • the water pump module is used to supply water to the steam generator to adjust the amount of water.
  • the DC control circuit is applied to a steam generator, and the steam generator generally uses alternating current as a direct power source to adapt to the power requirement of the steam generating module, but the disadvantage is that for a module requiring direct current, such as a control module, a negative ion generating module, etc., AC to DC, otherwise the operation of the module is affected, and the safety is relatively low. Therefore, the DC power is used as the power supply of each module to solve this problem.
  • the DC control circuit The positive pole of the output end of the power supply module is connected with the protection module, the control module, the negative ion generating module and the water pump module, and the power supply of the steam generating module is supplied through the protection module, and the control module adds the detection input terminal to detect the output power of the power supply module.
  • the power supply module may be an AC to DC power supply, and a power storage module and a charging module that provides charging for the power storage module may be preferably used as the power supply module.
  • the power supply module includes a charging module and a power storage module
  • the input end of the charging module is pluggable and connected to the mains, and the output end of the charging module is pluggable and connected to the input end of the power storage module, and the charging module is used for rectifying and transforming the commercial power. Charging the power storage module;
  • One end of the protection module is connected to the positive terminal of the output end of the power storage module, and the other end of the protection module is respectively connected to one end of the steam generating module and the detecting input end of the control module;
  • the positive terminal of the output end of the power storage module is electrically connected to the positive input end of the power input of the control module, one end of the negative ion generating module, and one end of the water pump module;
  • the negative end of the output end of the power storage module is respectively connected to the other end of the steam generating module, the other end of the negative ion generating module, the other end of the water pump module, and the power input negative end of the control module, for providing direct current to each of the connected terminals.
  • the control module is further configured to detect a voltage value of the power storage module
  • the power storage module includes a first battery pack, a second battery pack, and a security sheet;
  • the positive poles of the first battery pack are respectively connected to the output positive terminal of the charging module and the end of the fuse, and the other end of the fuse is respectively connected to one end of the protection module and the power input positive terminal of the control module, the first The negative pole of the battery pack is connected to the positive pole of the second battery pack, and the negative pole of the second battery pack is respectively opposite to the output terminal of the charging module, the other end of the steam generating module, the other end of the negative ion generating module, and the other end of the water pump module, and the control Connect the negative terminal of the power input of the module;
  • the positive poles of the second battery pack are respectively connected to one end of the negative ion generating module and one end of the water pump module;
  • the fuse is used to protect the connection circuit, prevent short circuit, and ensure power supply safety of the circuit.
  • the first battery pack includes at least two first batteries electrically connected in series, a positive pole of the first battery at one end of the first battery pack is a positive pole of the first battery pack, and a first battery located at the other end of the first battery pack
  • the negative electrode is the negative electrode of the first battery pack
  • the second battery pack includes at least two second batteries electrically connected in series, the positive pole of the second battery at one end of the second battery pack is the positive pole of the second battery pack, and the second battery at the other end of the second battery pack
  • the negative electrode is the negative electrode of the first battery pack
  • the first battery pack adopts a DC nominal voltage of 6V
  • the second battery pack adopts a DC nominal voltage of 12V
  • the first battery pack comprises 2-10 first batteries electrically connected in series;
  • the number of the first batteries included in the first battery pack is virtually unlimited. When the first battery pack has only one first battery, the power supply of the first battery pack can be used as long as the power supply meets the requirements. In order to increase the steam amount or the steam speed, the number of the first battery pack may be set to 10 or more, and as an individual user, the first battery pack generally selects 2-10 first batteries;
  • the protection module is a protection module using an automatic reset thermostat, and the model of the automatic reset thermostat is KSD301.
  • the steam generating module includes a heating body enabling controller and a heating element
  • control output end of the control module is connected to the control end of the heating body enable controller
  • the other end of the protection module is respectively connected to an input end of the heat generating body enable controller
  • the output end of the heating element enabling controller is connected to one end of the heating element, and the other end of the output of the heating element enabling controller is connected to the other end of the heating element;
  • the heating element is a heating element using a high temperature co-fired alumina cermet heating sheet for enabling heating of water to generate water vapor;
  • the heating body enabling controller is used for regulating the output, controlling the heat generation and starting and stopping of the heating element; the heating body enabling controller controls the heating element through the MOS tube to adjust the heat generation amount of the heating element ;
  • the control module is respectively connected to these modules, and when the current and voltage are changed, Control the amount of water vapor generated and the amount of negative ion gas at any time.
  • the pump frequency and pump water quantity must also be controlled during the process. This connection solves the problem that the current or voltage can be effectively adjusted when the DC power is supplied to the battery.
  • the production rate and amount of steam and negative ion gas can also allow the user to adjust the steam generation rate and production amount, the generation rate and amount of negative ion gas, especially the ratio of the amount of steam and the amount of negative ion gas, according to the amount of electricity in the battery. To meet the different needs of users;
  • the high-temperature co-fired alumina cermet heating sheet adopts a high-efficiency environmentally-friendly and energy-saving ceramic heating element, which mainly replaces the most widely used alloy wire electric heating element and PTC electric heating element and component, and the alloy wire electric heating element has high temperature and easy oxidation and life. Short, open fire is unsafe, low thermal efficiency, uneven heating, etc., while the heating temperature of PTC electric heating elements is generally only about 200 ° C, heating temperature is higher than 120 ° C is generally the use of lead trioxide, due to large lead content Listed as products that need to be phased out;
  • the high-temperature co-fired alumina cermet heating sheet is formed by printing a heating resistor paste on a cast ceramic green body according to the requirements of the design of the heating circuit, and then multi-layering and co-firing the whole to have corrosion resistance and high temperature resistance. It has the advantages of long life, high efficiency and energy saving, uniform temperature, good thermal conductivity and fast thermal compensation. It does not contain harmful substances such as lead, cadmium, mercury, hexavalent chromium, polybrominated biphenyls and polybrominated diphenyl ethers, and meets the requirements of the EU Rohs.
  • the negative ion generating module includes a negative ion driving unit, an inverter unit, and an ultraviolet lamp;
  • the negative ion driving unit is respectively negative with the output terminal of the power storage module and the output terminal of the power storage module
  • the pole, the control output end of the control module, and the input end of the inverter unit are connected, and are used for DC power supply to the inverter unit according to the instruction of the control module;
  • the output end of the inverter unit is connected to an ultraviolet lamp for inverting a direct current power source into an alternating current power source and using an alternating current electric drive to illuminate the ultraviolet light lamp;
  • the inverter unit is an inverter unit using a general-purpose ultraviolet DC inverter
  • the ultraviolet lamp is used to generate a negative ion gas and atomize water vapor
  • the radio frequency of the ultraviolet lamp is good for dispersing the water molecules, so that the steam reaches the level of Nano nanometer.
  • the steam is transparent above 104 °C (the human eye is invisible).
  • the radio frequency of the ultraviolet lamp is used, the water sub-skin is added with the electrostatic clothing ( The jacket) enhances the display function (the human eye can see the white atomized water vapor).
  • the ultraviolet lamp can generate a little ozone, which helps to generate negative ions.
  • the water pump module includes a water pump driving unit and a water pump;
  • the water pump driving unit is respectively connected to the positive end of the output end of the electric storage module, the negative end of the output end of the electric storage module, the control output end of the control module, and the water pump, and is used for controlling the water pump according to the instruction of the control module;
  • the water pump can select a quantitative diaphragm pump or a pressure regulating input pressure pump;
  • the pump drive unit controls the quantitative diaphragm pump by means of a timed on/off output;
  • the pump drive unit outputs an analog adjustment signal and a driving voltage
  • the water pump is used to supply water to the steam generator to adjust the amount of water.
  • control unit includes a man-machine setting unit, an alarm unit, a CPU unit, an input unit, and an output unit;
  • the input unit includes a power input positive end of the control unit, a power input negative end of the control unit, and a detection input end of the control unit;
  • the output unit includes a control output, the control output includes an output connected to the control end of the negative ion generating module, an output connected to the control end of the water pump module, and an output connected to the output end of the steam generating module;
  • the man-machine setting unit is configured to select a negative ion setting mode, adjust the steam output amount of the water vapor, and alarm Reset, timing setting;
  • the man-machine setting unit includes a potentiometer, and the potentiometer inputs a gradual voltage for simulating the output of the steam, that is, using a potentiometer to adjust the heat generation of the steam generator and the water output of the water pump module, or using the gear position Button instead of potentiometer;
  • the alarm unit is configured to perform an alarm when the detection input of the control module detects a low level, indicating that the protection module has been disconnected;
  • the alarm unit may use a buzzer to perform an audible alarm
  • the CPU unit is respectively connected to a man-machine setting unit, an alarm unit, an input unit, and an output unit, for performing program control, processing detection information, and issuing a control instruction;
  • the CPU unit uses a single chip microcomputer.
  • a DC control method for generating negative ion steam includes the following steps:
  • control module determines whether it is in the negative ion setting mode, if yes, execute S2, otherwise execute S3;
  • control module reads the setting parameters, and controls the input voltage of the steam generating module and the water output of the water pump module;
  • control module detects whether the input voltage is lower than the low pressure alarm threshold, if yes, execute S6, otherwise execute S7;
  • S7 The control module detects whether the protection module is open, and if yes, executes S6, otherwise the loop executes S1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Air Humidification (AREA)

Abstract

一种产生负离子蒸汽的直流控制电路,涉及电器设计技术领域,包括供电模块、保护模块、蒸汽产生模块、负离子产生模块、水泵模块、控制模块。一种产生负离子蒸汽的直流控制方法,包括步骤S1,判断是否处于负离子设置模式;S2,运行蒸汽产生模块、水泵模块与负离子产生模块;S3,只运行蒸汽产生模块、水泵模块;S4,控制蒸汽产生模块的输入电压与水泵模块的出水量;S5,检测输入电压是否低于低压报警阈值;S6,停止蒸汽产生模块、水泵模块与负离子产生模块并报警提示;S7,检测保护模块是否断路。从而通过自动控制的直流电路使负离子与水蒸气的产生更智能化、更安全。

Description

一种产生负离子蒸汽的直流控制电路及方法 技术领域
本发明涉及电器设计技术领域,具体涉及一种产生负离子蒸汽的直流控制电路及方法。
背景技术
目前,现有的蒸汽产生器普遍使用合金电热丝或PTC作为加热元件,合金电热丝存在发热慢、寿命低的缺点,PTC电热元件的加热温度一般只有200℃左右,加热温度高于120℃的则普遍采用四氧化三铅,由于含铅量大被认为不环保,随着生活质量与使用要求的提高,市场急切需要一种短时间内产生大量水蒸汽且体积小的蒸汽产生器。
对于蒸汽产生器的安全问题越发引起人们的关注,现有的蒸汽产生器多使用交流供电的方式,存在漏电的安全隐患。
专利文献CN100567617C公开了一种熨烫系统,该系统为交流电供电,而且,虽然所述熨烫设备提供了负离子,但是其是通过带点蒸汽输出装置提供的,而且必须采用传感器的输出控制电蒸汽充电,结构复杂,且其所获得的负离子的效果不理想。
专利文献CN101087912A中公开了蒸汽熨烫设备,所述设备是将蒸汽例子分解成更细微的粒子,其电能消耗大,必须采用交流电进行供电,而且采用电离器对水分子进行充电,其负离子的效果并不理想。
另外,纳米水离子技术是带电离子进化技术中的一种,主要用于空气除菌,优点是带电离子能够除菌,吸附在粉尘表面能够帮助过滤网吸附细微粉尘颗粒,而且能够起到加湿空气、风干循环长效使用的作用,目前产生纳米水离子的装置多为结构复杂的专用装置。
发明内容
有鉴于此,有必要针对上述的问题,提出一种产生负离子蒸汽的直流控制电路及方法。
为实现上述目的,本发明采取以下的技术方案:
一种产生负离子蒸汽的直流控制电路,应用于蒸汽产生器,包括供电模块、保护模块、蒸汽产生模块、负离子产生模块、水泵模块、控制模块;
所述保护模块的一端与供电模块的输出端正极进行连接,所述保护模块的另一端分别与蒸汽产生模块的一端、控制模块的检测输入端进行连接,用于保护电路,防止发生干烧现象;
所述供电模块的输出端正极又与控制模块的电源输入正极端、负离子产生模块的一端、水泵模块的一端进行电连接;
所述供电模块的输出端负极分别与蒸汽产生模块的另一端、负离子产生模块的另一端、水泵模块的另一端、控制模块的电源输入负极端进行连接;
所述供电模块用于提供直流电给各个与其连接的模块;
所述控制模块的控制输出端与蒸汽产生模块的控制端、负离子产生模块的控制端、水泵模块的控制端进行连接,用于控制蒸汽产生模块加热并调节发热量,控制水泵模块供水并调节出水量,控制负离子产生模块产生负离子气体并雾化水蒸汽,检测供电模块的电压值;
所述蒸汽产生模块用于对蒸汽产生器内的水进行加热,调节发热量;
所述负离子产生模块用于产生负离子气体,雾化水蒸汽;
所述水泵模块用于对蒸汽产生器进行供水,调节出水量。
进一步地,所述供电模块包括充电模块、蓄电模块;
所述充电模块的输入端与市电进行可拔插连接,所述充电模块的输出端与蓄电模块的输入端进行可拔插连接,所述充电模块用于对市电进行整流变压,对蓄电模块进行充电;
所述保护模块的一端与蓄电模块的输出端正极进行连接,所述保护模块的另一端分别与蒸汽产生模块的一端、控制模块的检测输入端进行连接;
所述蓄电模块的输出端正极又与控制模块的电源输入正极端、负离子产生模块的一端、水泵模块的一端进行电连接;
所述蓄电模块的输出端负极分别与蒸汽产生模块的另一端、负离子产生模块的另一端、水泵模块的另一端、控制模块的电源输入负极端进行连接,用于提供直流电给各个与其连接的模块;
所述控制模块又用于检测蓄电模块的电压值。
进一步地,所述蓄电模块包括第一电池组、第二电池组、保险片;
所述第一电池组的正极分别与充电模块的输出正极端、保险片的一端进行连接,保险片的另一端分别与保护模块的一端、控制模块的电源输入正极端进行连接,所述第一电池组的负极与第二电池组的正极进行连接,第二电池组的负极分别与充电模块的输出端负极、蒸汽产生模块的另一端、负离子产生模块的另一端、水泵模块的另一端、控制模块的电源输入负极端进行连接;
所述第二电池组的正极又分别与负离子产生模块的一端、水泵模块的一端进行连接;
所述保险片用于保护连接电路,防止短路。
进一步地,第一电池组包括至少两个电性串联连接的第一电池,位于第一电池组一端的第一电池的正极为第一电池组的正极,位于第一电池组另一端的第一电池的负极为第一电池组的负极;
所述第二电池组包括至少两个电性串联连接的第二电池,位于第二电池组一端的第二电池的正极为第二电池组的正极,位于第二电池组另一端的第二电池的负极为第一电池组的负极。
进一步地,所述保护模块为采用自动复位温控器的保护模块。
进一步地,所述蒸汽产生模块包括发热体使能控制器与发热体;
所述控制模块的控制输出端与发热体使能控制器的控制端进行连接;
所述保护模块的另一端分别与发热体使能控制器的输入一端进行连接;
所述供电模块的输出端负极与发热体使能控制器的输入另一端;
所述发热体使能控制器的输出一端与发热体的一端进行连接,发热体使能控制器的输出另一端与发热体的另一端进行连接;
所述发热体为采用高温共烧氧化铝金属陶瓷发热片的发热体,用于使能加热水从而产生水蒸汽;
所述发热体使能控制器用于调压输出,控制发热体的发热量与启停。
进一步地,所述负离子产生模块包括负离子驱动单元、逆变单元、紫外线灯;
所述负离子驱动单元分别与蓄电模块的输出端正极、蓄电模块的输出端负极、控制模块的控制输出端、逆变单元的输入端进行连接,用于根据控制模块的指令对逆变单元进行直流供电;
所述逆变单元的输出端与紫外线灯进行连接,用于将直流电源逆变成交流电源并使用交流电驱使紫外线灯发亮;
所述紫外线灯用于产生负离子气体,雾化水蒸汽。
进一步地,所述水泵模块包括水泵驱动单元、水泵;
所述水泵驱动单元分别与蓄电模块的输出端正极、蓄电模块的输出端负极、控制模块的控制输出端、水泵进行连接,用于根据控制模块的指令对水泵进行控制;
所述水泵用于对所述蒸汽产生器进行供水,调节出水量。
进一步地,所述控制单元包括人机设置单元、报警单元、CPU单元、输入单元、输出单元;
所述输入单元包括控制单元的电源输入正极端、控制单元的电源输入负极端、控制单元的检测输入端;
所述输出单元包括控制输出端,所述控制输出端包括与负离子产生模块的控制端连接的输出端、与水泵模块的控制端连接的输出端、与蒸汽产生模块的输出端连接的输出端;
所述人机设置单元用于选择负离子设置模式,调节水蒸汽的出汽量,报警复位,定时设置;
所述报警单元用于当控制模块的检测输入端检测到低电平时进行报警,提示所述保护模块已断路;
所述CPU单元分别与人机设置单元、报警单元、输入单元、输出单元进行 连接,用于执行程序控制、处理检测信息与发出控制指令。
一种产生负离子蒸汽的直流控制方法,包括以下步骤:
S1,控制模块判断是否处于负离子设置模式,是则执行S2,否则执行S3;
S2,运行蒸汽产生模块、水泵模块与负离子产生模块,然后执行S4;
S3,只运行蒸汽产生模块、水泵模块,然后执行S4;
S4,控制模块读取设置参数,并控制蒸汽产生模块的输入电压与水泵模块的出水量;
S5,控制模块检测输入电压是否低于低压报警阈值,是则执行S6,否则执行S7;
S6,停止蒸汽产生模块、水泵模块与负离子产生模块,并报警提示,然后结束整个工作流程;
S7,控制模块检测保护模块是否断路,是则执行S6,否则循环执行S1。
本发明的有益效果为:
本发明的上述直流控制电路,由于使用直流电作为电源,要求蒸汽产生模块、负离子产生模块、水泵模块的能耗实现最佳配合和优化,因此将控制模块分别与这几个模块连接,当电流和电压发生变化的过程中,能够随时控制产生水蒸汽的量、负离子气体的量。
本发明的上述直流控制电路解决了当直流电为蓄电池供应时,电流或电压发生变化可以进行有效调节蒸汽和负离子气体的产生速度和产生量,同时也可以让使用者根据蓄电池的电量情况来调整蒸汽产生速度和产生量、负离子气体产生速度和产生量,尤其是蒸汽量和负离子气体量的比例,以满足使用者的不同需求。
本发明上述一种产生负离子蒸汽的直流控制电路及方法,通过自动控制的直流电路使负离子与水蒸汽的产生更智能化、更安全,具体地,本发明通过直流蓄电池对蒸汽产生模块进行使能,避免了交流供电时意外触电的危险,通过自动检测温控器的断开进行停机与报警,使控制电路更安全,通过紫外线灯对水蒸汽的作用,使蒸汽产生器更加环保健康,通过一种产生负离子蒸汽的直流控制方法使蒸汽产生器更加智能化。
附图说明
图1为本发明的一种产生负离子蒸汽的直流控制电路的结构示意图;
图2为本发明的充电模块与蓄电模块的连接示意图;
图3为本发明的蓄电模块的结构示意及连接关系图;
图4为本发明的负离子产生模块的结构示意及连接关系图;
图5为本发明的水泵模块的结构示意及连接关系图;
图6为本发明的控制模块的结构示意及连接关系图;
图7为本发明的一种产生负离子蒸汽的直流控制方法的工作流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案作进一步清楚、完整地描述。需要说明的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
如图1所示,一种产生负离子蒸汽的直流控制电路包括供电模块、保护模块、蒸汽产生模块、负离子产生模块、水泵模块、控制模块;
所述保护模块的一端与供电模块的输出端正极进行连接,所述保护模块的另一端分别与蒸汽产生模块的一端、控制模块的检测输入端进行连接,用于保护电路,防止发生干烧现象;
所述供电模块的输出端正极又与控制模块的电源输入正极端、负离子产生模块的一端、水泵模块的一端进行电连接;
所述供电模块的输出端负极分别与蒸汽产生模块的另一端、负离子产生模块的另一端、水泵模块的另一端、控制模块的电源输入负极端进行连接;
所述供电模块用于提供直流电给各个与其连接的模块;
所述控制模块的控制输出端与蒸汽产生模块的控制端、负离子产生模块的控制端、水泵模块的控制端进行连接,用于控制蒸汽产生模块加热并调节发热量,控制水泵模块供水并调节出水量,控制负离子产生模块产生负离子气体并雾化水蒸汽,检测供电模块的电压值;
所述蒸汽产生模块用于对蒸汽产生器内的水进行加热,调节发热量;
所述负离子产生模块用于产生负离子气体,雾化水蒸汽;
所述水泵模块用于对蒸汽产生器进行供水,调节出水量。
该直流控制电路应用于蒸汽产生器,蒸汽产生器一般应用交流电作为直接电源,以适应蒸汽产生模块的功率要求,但是其缺点是对于需要直流电的模块,例如控制模块、负离子产生模块等,需要对交流电转直流电,否则模块的运行受到影响,安全性也比较低,因而通过直流电作为各个模块的供电,解决了此问题,为适应直流电供电实现蒸汽产生器的功能和其他的功能,上述直流控制电路通过供电模块的输出端正极与保护模块、控制模块、负离子产生模块、水泵模块进行连接,而蒸汽产生模块的供电则通过保护模块供给,同时控制模块增加了检测输入端,检测供电模块的输出电的安全性。供电模块可以是交流转直流的电源,也可以优选地使用蓄电模块和为蓄电模块提供充电的充电模块作为供电模块。
如图2所示,所述供电模块包括充电模块、蓄电模块;
所述充电模块的输入端与市电进行可拔插连接,所述充电模块的输出端与蓄电模块的输入端进行可拔插连接,所述充电模块用于对市电进行整流变压,对蓄电模块进行充电;
所述保护模块的一端与蓄电模块的输出端正极进行连接,所述保护模块的另一端分别与蒸汽产生模块的一端、控制模块的检测输入端进行连接;
所述蓄电模块的输出端正极又与控制模块的电源输入正极端、负离子产生模块的一端、水泵模块的一端进行电连接;
所述蓄电模块的输出端负极分别与蒸汽产生模块的另一端、负离子产生模块的另一端、水泵模块的另一端、控制模块的电源输入负极端进行连接,用于提供直流电给各个与其连接的模块;
所述控制模块又用于检测蓄电模块的电压值;
如图3所示,所述蓄电模块包括第一电池组、第二电池组、保险片;
所述第一电池组的正极分别与充电模块的输出正极端、保险片的一端进行连接,保险片的另一端分别与保护模块的一端、控制模块的电源输入正极端进行连接,所述第一电池组的负极与第二电池组的正极进行连接,第二电池组的负极分别与充电模块的输出端负极、蒸汽产生模块的另一端、负离子产生模块的另一端、水泵模块的另一端、控制模块的电源输入负极端进行连接;
所述第二电池组的正极又分别与负离子产生模块的一端、水泵模块的一端进行连接;
所述保险片用于保护连接电路,防止短路,保障电路的供电安全。
所述第一电池组包括至少两个电性串联连接的第一电池,位于第一电池组一端的第一电池的正极为第一电池组的正极,位于第一电池组另一端的第一电池的负极为第一电池组的负极;
所述第二电池组包括至少两个电性串联连接的第二电池,位于第二电池组一端的第二电池的正极为第二电池组的正极,位于第二电池组另一端的第二电池的负极为第一电池组的负极;
优选地,所述第一电池组采用直流标称电压6V,所述第二电池组采用直流标称电压12V;
优选地,所述第一电池组包括2-10个电性串联连接的第一电池;
对于第一电池组所包含的第一电池的个数实际上是不受限制的,当第一电池组只有一个第一电池的时候,只要第一电池组的电量供应满足要求也可以使用,如果为了提高蒸汽量或者蒸汽速度,可以将第一电池组的个数设置到10个或更多,而作为个人使用者来说,第一电池组一般选用2-10个第一电池为佳;
优选地,所述保护模块为采用自动复位温控器的保护模块,自动复位温控器的型号为KSD301。
所述蒸汽产生模块包括发热体使能控制器与发热体;
所述控制模块的控制输出端与发热体使能控制器的控制端进行连接;
所述保护模块的另一端分别与发热体使能控制器的输入一端进行连接;
所述供电模块的输出端负极与发热体使能控制器的输入另一端;
所述发热体使能控制器的输出一端与发热体的一端进行连接,发热体使能控制器的输出另一端与发热体的另一端进行连接;
所述发热体为采用高温共烧氧化铝金属陶瓷发热片的发热体,用于使能加热水从而产生水蒸汽;
所述发热体使能控制器用于调压输出,控制发热体的发热量与启停;所述发热体使能控制器通过MOS管对发热体进行调压控制,使发热体的发热量可调;
由于使用直流电作为电源,要求蒸汽产生模块、负离子产生模块、水泵模块的能耗实现最佳配合和优化,因此将控制模块分别与这几个模块连接,当电流和电压发生变化的过程中,能够随时控制产生水蒸汽的量、负离子气体的量,当然,过程中也必须控制水泵的泵水频率和泵水量,这样的连接解决了当直流电为蓄电池供应时,电流或电压发生变化可以进行有效调节蒸汽和负离子气体的产生速度和产生量,同时也可以让使用者根据蓄电池的电量情况来调整蒸汽产生速度和产生量、负离子气体产生速度和产生量,尤其是蒸汽量和负离子气体量的比例,以满足使用者的不同需求;
所述高温共烧氧化铝金属陶瓷发热片采用一种高效环保节能陶瓷发热体,主要是替代现在使用最广泛的合金丝电热元件和PTC电热元件及组件,合金丝电热元件存在高温容易氧化、寿命短、有明火不安全、热效率低、加热不均匀等缺点,而PTC电热元件的加热温度一般只有200℃左右,加热温度高于120℃的则普遍采用四氧化三铅,由于含铅量大而被列为需要淘汰的产品;
所述高温共烧氧化铝金属陶瓷发热片是按照发热电路设计的要求将发热电阻浆料印刷于流延陶瓷生坯而形成的,然后多层叠合共烧成一体,从而具有耐腐蚀、耐高温、寿命长、高效节能、温度均匀、导热性能良好、热补偿速度快等优点,而且不含铅、镉、汞、六价铬、多溴联苯、多溴二苯醚等有害物质,符合欧盟的Rohs要求。
如图4所示,所述负离子产生模块包括负离子驱动单元、逆变单元、紫外线灯;
所述负离子驱动单元分别与蓄电模块的输出端正极、蓄电模块的输出端负 极、控制模块的控制输出端、逆变单元的输入端进行连接,用于根据控制模块的指令对逆变单元进行直流供电;
所述逆变单元的输出端与紫外线灯进行连接,用于将直流电源逆变成交流电源并使用交流电驱使紫外线灯发亮;
所述逆变单元为采用通用的紫外线直流逆变器的逆变单元;
所述紫外线灯用于产生负离子气体,雾化水蒸汽;
紫外线灯的射频有利于打散水分子团,令蒸汽达到Nano纳米的水平,蒸汽在104℃以上是透明(人眼是看不見),如果利用紫外线灯的射频,令水份子外皮加上静电衣(外套),加强显示作用(人眼能看见白雾化的水蒸汽),此外,紫外线灯还能产生一点臭氧,有助于放负离子的产生。
如图5所示,所述水泵模块包括水泵驱动单元、水泵;
所述水泵驱动单元分别与蓄电模块的输出端正极、蓄电模块的输出端负极、控制模块的控制输出端、水泵进行连接,用于根据控制模块的指令对水泵进行控制;
所述水泵可以选择定量隔膜泵或调压输入的定量水泵;
若采用定量隔膜泵,水泵驱动单元则采用定时通断输出的方式对定量隔膜泵进行控制;
若采用调压输入的定量水泵,水泵驱动单元则输出模拟调节信号与驱动电压;
所述水泵用于对所述蒸汽产生器进行供水,调节出水量。
如图6所示,所述控制单元包括人机设置单元、报警单元、CPU单元、输入单元、输出单元;
所述输入单元包括控制单元的电源输入正极端、控制单元的电源输入负极端、控制单元的检测输入端;
所述输出单元包括控制输出端,所述控制输出端包括与负离子产生模块的控制端连接的输出端、与水泵模块的控制端连接的输出端、与蒸汽产生模块的输出端连接的输出端;
所述人机设置单元用于选择负离子设置模式,调节水蒸汽的出汽量,报警 复位,定时设置;
所述人机设置单元包括电位器,所述电位器输入渐变的电压,用以模拟出汽量的输出,即利用电位器调节蒸汽产生器的发热量与水泵模块的出水量,或者使用档位按键代替电位器;
所述报警单元用于当控制模块的检测输入端检测到低电平时进行报警,提示所述保护模块已断路;
所述报警单元可以采用蜂鸣器进行声音报警;
所述CPU单元分别与人机设置单元、报警单元、输入单元、输出单元进行连接,用于执行程序控制、处理检测信息与发出控制指令;
所述CPU单元采用单片机芯片。
如图7所示,一种产生负离子蒸汽的直流控制方法,包括以下步骤:
S1,控制模块判断是否处于负离子设置模式,是则执行S2,否则执行S3;
S2,运行蒸汽产生模块、水泵模块与负离子产生模块,然后执行S4;
S3,只运行蒸汽产生模块、水泵模块,然后执行S4;
S4,控制模块读取设置参数,并控制蒸汽产生模块的输入电压与水泵模块的出水量;
S5,控制模块检测输入电压是否低于低压报警阈值,是则执行S6,否则执行S7;
S6,停止蒸汽产生模块、水泵模块与负离子产生模块,并报警提示,然后结束整个工作流程;
S7,控制模块检测保护模块是否断路,是则执行S6,否则循环执行S1。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种产生负离子蒸汽的直流控制电路,应用于蒸汽产生器,其特征在于,包括供电模块、保护模块、蒸汽产生模块、负离子产生模块、水泵模块、控制模块;
    所述保护模块的一端与供电模块的输出端正极进行连接,所述保护模块的另一端分别与蒸汽产生模块的一端、控制模块的检测输入端进行连接,用于保护电路,防止发生干烧现象;
    所述供电模块的输出端正极又与控制模块的电源输入正极端、负离子产生模块的一端、水泵模块的一端进行电连接;
    所述供电模块的输出端负极分别与蒸汽产生模块的另一端、负离子产生模块的另一端、水泵模块的另一端、控制模块的电源输入负极端进行连接;
    所述供电模块用于提供直流电给各个与其连接的模块;
    所述控制模块的控制输出端与蒸汽产生模块的控制端、负离子产生模块的控制端、水泵模块的控制端进行连接,用于控制蒸汽产生模块加热并调节发热量,控制水泵模块供水并调节出水量,控制负离子产生模块产生负离子气体并雾化水蒸汽,检测供电模块的电压值;
    所述蒸汽产生模块用于对蒸汽产生器内的水进行加热,调节发热量;
    所述负离子产生模块用于产生负离子气体,雾化水蒸汽;
    所述水泵模块用于对蒸汽产生器进行供水,调节出水量。
  2. 根据权利要求1所述的产生负离子蒸汽的直流控制电路,其特征在于,供电模块包括充电模块、蓄电模块;
    所述充电模块的输入端与市电进行可拔插连接,所述充电模块的输出端与蓄电模块的输入端进行可拔插连接,所述充电模块用于对市电进行整流变压,对蓄电模块进行充电;
    所述保护模块的一端与蓄电模块的输出端正极进行连接,所述保护模块的另一端分别与蒸汽产生模块的一端、控制模块的检测输入端进行连接;
    所述蓄电模块的输出端正极又与控制模块的电源输入正极端、负离子产生模块的一端、水泵模块的一端进行电连接;
    所述蓄电模块的输出端负极分别与蒸汽产生模块的另一端、负离子产生模 块的另一端、水泵模块的另一端、控制模块的电源输入负极端进行连接,用于提供直流电给各个与其连接的模块;
    所述控制模块又用于检测蓄电模块的电压值。
  3. 根据权利要求1所述的产生负离子蒸汽的直流控制电路,其特征在于,所述蓄电模块包括第一电池组、第二电池组、保险片;
    所述第一电池组的正极分别与充电模块的输出正极端、保险片的一端进行连接,保险片的另一端分别与保护模块的一端、控制模块的电源输入正极端进行连接,所述第一电池组的负极与第二电池组的正极进行连接,第二电池组的负极分别与充电模块的输出端负极、蒸汽产生模块的另一端、负离子产生模块的另一端、水泵模块的另一端、控制模块的电源输入负极端进行连接;
    所述第二电池组的正极又分别与负离子产生模块的一端、水泵模块的一端进行连接;
    所述保险片用于保护连接电路,防止短路。
  4. 根据权利要求2所述的产生负离子蒸汽的直流控制电路,其特征在于,所述第一电池组包括至少两个电性串联连接的第一电池,位于第一电池组一端的第一电池的正极为第一电池组的正极,位于第一电池组另一端的第一电池的负极为第一电池组的负极;
    所述第二电池组包括至少两个电性串联连接的第二电池,位于第二电池组一端的第二电池的正极为第二电池组的正极,位于第二电池组另一端的第二电池的负极为第一电池组的负极。
  5. 根据权利要求1所述的产生负离子蒸汽的直流控制电路,其特征在于,所述保护模块为采用自动复位温控器的保护模块。
  6. 根据权利要求1所述的产生负离子蒸汽的直流控制电路,其特征在于,所述蒸汽产生模块包括发热体使能控制器与发热体;
    所述控制模块的控制输出端与发热体使能控制器的控制端进行连接;
    所述保护模块的另一端分别与发热体使能控制器的输入一端进行连接;
    所述供电模块的输出端负极与发热体使能控制器的输入另一端;
    所述发热体使能控制器的输出一端与发热体的一端进行连接,发热体使能 控制器的输出另一端与发热体的另一端进行连接;
    所述发热体为采用高温共烧氧化铝金属陶瓷发热片的发热体,用于使能加热水从而产生水蒸汽;
    所述发热体使能控制器用于调压输出,控制发热体的发热量与启停。
  7. 根据权利要求1所述的产生负离子蒸汽的直流控制电路,其特征在于,负离子产生模块包括负离子驱动单元、逆变单元、紫外线灯;
    所述负离子驱动单元分别与蓄电模块的输出端正极、蓄电模块的输出端负极、控制模块的控制输出端、逆变单元的输入端进行连接,用于根据控制模块的指令对逆变单元进行直流供电;
    所述逆变单元的输出端与紫外线灯进行连接,用于将直流电源逆变成交流电源并使用交流电驱使紫外线灯发亮;
    所述紫外线灯用于产生负离子气体,雾化水蒸汽。
  8. 根据权利要求1所述的产生负离子蒸汽的直流控制电路,其特征在于,所述水泵模块包括水泵驱动单元、水泵;
    所述水泵驱动单元分别与蓄电模块的输出端正极、蓄电模块的输出端负极、控制模块的控制输出端、水泵进行连接,用于根据控制模块的指令对水泵进行控制;
    所述水泵用于对所述蒸汽产生器进行供水,调节出水量。
  9. 根据权利要求1所述的产生负离子蒸汽的直流控制电路,其特征在于,所述控制单元包括人机设置单元、报警单元、CPU单元、输入单元、输出单元;
    所述输入单元包括控制单元的电源输入正极端、控制单元的电源输入负极端、控制单元的检测输入端;
    所述输出单元包括控制输出端,所述控制输出端包括与负离子产生模块的控制端连接的输出端、与水泵模块的控制端连接的输出端、与蒸汽产生模块的输出端连接的输出端;
    所述人机设置单元用于选择负离子设置模式,调节水蒸汽的出汽量,报警复位,定时设置;
    所述报警单元用于当控制模块的检测输入端检测到低电平时进行报警,提 示所述保护模块已断路;
    所述CPU单元分别与人机设置单元、报警单元、输入单元、输出单元进行连接,用于执行程序控制、处理检测信息与发出控制指令。
  10. 一种产生负离子蒸汽的直流控制方法,其特征在于,包括以下步骤:
    S1,控制模块判断是否处于负离子设置模式,是则执行S2,否则执行S3;
    S2,运行蒸汽产生模块、水泵模块与负离子产生模块,然后执行S4;
    S3,只运行蒸汽产生模块、水泵模块,然后执行S4;
    S4,控制模块读取设置参数,并控制蒸汽产生模块的输入电压与水泵模块的出水量;
    S5,控制模块检测输入电压是否低于低压报警阈值,是则执行S6,否则执行S7;
    S6,停止蒸汽产生模块、水泵模块与负离子产生模块,并报警提示,然后结束整个工作流程;
    S7,控制模块检测保护模块是否断路,是则执行S6,否则循环执行S1。
PCT/CN2017/102911 2017-09-07 2017-09-22 一种产生负离子蒸汽的直流控制电路及方法 WO2019047285A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710804562.5A CN108050504A (zh) 2017-09-07 2017-09-07 一种产生负离子蒸汽的直流控制电路及方法
CN201721146914.4 2017-09-07
CN201710804562.5 2017-09-07
CN201721146914.4U CN207539884U (zh) 2017-09-07 2017-09-07 一种产生负离子蒸汽的直流控制电路

Publications (1)

Publication Number Publication Date
WO2019047285A1 true WO2019047285A1 (zh) 2019-03-14

Family

ID=65633466

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/102911 WO2019047285A1 (zh) 2017-09-07 2017-09-22 一种产生负离子蒸汽的直流控制电路及方法
PCT/CN2018/104478 WO2019047903A1 (zh) 2017-09-07 2018-09-07 一种产生纳米水离子蒸汽的控制电路及方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104478 WO2019047903A1 (zh) 2017-09-07 2018-09-07 一种产生纳米水离子蒸汽的控制电路及方法

Country Status (1)

Country Link
WO (2) WO2019047285A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188842A (ja) * 2000-12-19 2002-07-05 Daikin Ind Ltd 温湿度制御装置
CN102175058A (zh) * 2011-03-03 2011-09-07 广州瑞凯安电子科技有限公司 对流循环恒温恒湿净化换气系统
CN203010848U (zh) * 2012-12-11 2013-06-19 威士茂安商住电子科技(珠海)有限公司 加湿器
CN106440270A (zh) * 2016-01-14 2017-02-22 深圳前海诺科兰德有限公司 室内空气监测与净化智能控制系统及监测净化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2906335Y (zh) * 2006-04-19 2007-05-30 杜绍焜 一种全自动蒸汽发生机
CN107120629A (zh) * 2017-06-26 2017-09-01 广东天物新材料科技有限公司 一种新型高效环保的蒸汽产生器
CN108050504A (zh) * 2017-09-07 2018-05-18 广东天物新材料科技有限公司 一种产生负离子蒸汽的直流控制电路及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188842A (ja) * 2000-12-19 2002-07-05 Daikin Ind Ltd 温湿度制御装置
CN102175058A (zh) * 2011-03-03 2011-09-07 广州瑞凯安电子科技有限公司 对流循环恒温恒湿净化换气系统
CN203010848U (zh) * 2012-12-11 2013-06-19 威士茂安商住电子科技(珠海)有限公司 加湿器
CN106440270A (zh) * 2016-01-14 2017-02-22 深圳前海诺科兰德有限公司 室内空气监测与净化智能控制系统及监测净化方法

Also Published As

Publication number Publication date
WO2019047903A1 (zh) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2016062174A1 (zh) 一种智能电器系统及智能电器控制方法
WO2020038183A1 (zh) 具有模拟气压传感器的电子烟及其控制方法
CN104323431A (zh) 一种可温控的电子烟雾化装置
CN207837451U (zh) 一种智能杀菌烘干毛巾架
CN205193381U (zh) 基于电热丝智能加热的自动除雾眼镜
WO2019000489A1 (zh) 一种新型高效环保的蒸汽产生器
CN105714538A (zh) 红外碳晶负离子干衣柜
CN201022454Y (zh) 远红外恒温电吹风器
CN206648329U (zh) 太阳能热水器控制器
CN204169064U (zh) 一种可温控的电子烟雾化装置
WO2019047285A1 (zh) 一种产生负离子蒸汽的直流控制电路及方法
CN206166816U (zh) 智能马桶控制器
CN205481566U (zh) 一种雾化控制系统
CN109185856B (zh) 一种产生纳米水离子蒸汽的控制电路及方法
CN207539884U (zh) 一种产生负离子蒸汽的直流控制电路
CN210695668U (zh) 一种可由网络控制的智能电蚊香
CN105570979A (zh) 便携式供暖器
CN203190550U (zh) 加湿器
CN205649104U (zh) 充电无线电风筒
CN102997437A (zh) 一种电热水器
CN208851210U (zh) 一种玻璃电热水壶
CN203586388U (zh) 超节能安全取暖智能控制器
CN203657149U (zh) 一种自动加湿器
CN207380586U (zh) 一种温度定时控制器
CN205547795U (zh) 一种可充电的无线平板造型器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924546

Country of ref document: EP

Kind code of ref document: A1