WO2019046989A1 - 一种低品质油的改质方法和改质系统 - Google Patents

一种低品质油的改质方法和改质系统 Download PDF

Info

Publication number
WO2019046989A1
WO2019046989A1 PCT/CN2017/000580 CN2017000580W WO2019046989A1 WO 2019046989 A1 WO2019046989 A1 WO 2019046989A1 CN 2017000580 W CN2017000580 W CN 2017000580W WO 2019046989 A1 WO2019046989 A1 WO 2019046989A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
product
mpa
conversion
unit
Prior art date
Application number
PCT/CN2017/000580
Other languages
English (en)
French (fr)
Inventor
龙军
侯焕娣
王子军
申海平
董明
戴立顺
龚剑洪
李吉广
张书红
王翠红
佘玉成
王玉章
陶梦莹
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to EP17924398.5A priority Critical patent/EP3683289B1/en
Priority to JP2020514508A priority patent/JP7048728B2/ja
Priority to CA3074616A priority patent/CA3074616A1/en
Priority to PCT/CN2017/000580 priority patent/WO2019046989A1/zh
Priority to US16/646,070 priority patent/US11078434B2/en
Priority to RU2020113112A priority patent/RU2759287C2/ru
Publication of WO2019046989A1 publication Critical patent/WO2019046989A1/zh
Priority to SA520411508A priority patent/SA520411508B1/ar
Priority to JP2022012236A priority patent/JP2022044810A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/14Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel

Definitions

  • the invention relates to the field of fuel chemical industry, in particular to a method for upgrading low quality oil.
  • the invention also relates to a corresponding upgrading system.
  • low-quality fuel oils such as residual oil, inferior oil, shale oil, oil sand heavy oil and coal-derived oil
  • These low quality oils are characterized by high density, high viscosity, high levels of heteroatoms (sulfur, nitrogen, heavy metals) or high levels of asphaltenes.
  • existing processing technologies such as delayed coking
  • problems such as high coke yield, low energy efficiency, poor economic efficiency, and environmentally unfriendly production processes. Therefore, the further development of such high-efficiency and green upgrading technology for low-quality oil has become one of the development directions and research priorities of the petrochemical industry.
  • Chinese patent ZL200310104918.2 discloses a modification method of inferior mass and residual oil, in which heavy and residual oil are first subjected to hydrocracking through a suspended bed to remove most or all metal impurities from colloid and asphaltenes.
  • the hydrogenation product is adsorbed to remove free metal impurities in the suspended bed hydrocracking oil through a metal adsorption reactor that can be switched or exchanged online; the demetallized product is sent to the residue to be fixed in the hydrogenation of the residue.
  • the treatment device is deeply hydrotreated to remove other impurities, and produces high-quality heavy oil catalytic cracking raw materials.
  • the inventors of the present invention have diligently studied and found a new type of low quality oil upgrading method and upgrading system, and have completed the present invention.
  • the present invention relates to the following aspects.
  • a method for upgrading comprising the steps of:
  • the conversion product such as component formulation or component separation
  • the first treatment product comprises a content of from 20% by weight to 60% by weight (preferably from 25% by weight) % to 55% by weight based on the total of the first treated product
  • the boiling point or boiling range of the weight is between 350 ° C and 524 ° C (preferably between 355 ° C and 500 ° C, such as between 380 ° C and 524 ° C, or between 400 ° C and 500 ° C) a component (particularly at least one hydrocarbon optionally containing a hetero atom), and
  • the upgrading method optionally further comprises the steps of:
  • step (2) comprises one or more of the following steps:
  • the isolated product or any component thereof has a final boiling point of less than or equal to 350 ° C,
  • first pressure is greater than the second pressure, preferably the first pressure is greater than the second pressure from 4 MPa to 24 MPa, and more preferably the first pressure is greater than the second pressure from 7 MPa to 19 MPa. .
  • step (3) comprises one or more of the following steps:
  • the modified oil is hydrotreated to obtain a hydrogenated modified oil
  • the modified oil is hydrocracked to obtain a hydrocracked product,
  • the hydrocracked product is then separated into dry gas, liquefied gas, aviation kerosene, diesel, and hydrogenated tail oil.
  • the post-hydrogenated upgraded oil is subjected to catalytic cracking in combination with the atmospheric gas oil to obtain a second catalytic cracking product, and then the second catalytic cracking product is separated into dry gas. , liquefied gas, gasoline, circulating oil and slurry,
  • the post-hydrogenated upgraded oil is combined with the second separated product for catalytic cracking to obtain a third catalytic cracking product, and then the third catalytic cracking product is separated into dry gas. , liquefied gas, gasoline, circulating oil and slurry,
  • the atmospheric gas oil is hydrotreated to obtain diesel oil
  • the circulating oil obtained by any step of the upgrading method is hydrotreated in combination with the reformed oil alone to obtain a hydrotreated oil
  • the hydrotreating oil is combined with the second separated product for catalytic cracking to obtain a fourth catalytic cracking product, and then the fourth catalytic cracking product is separated into dry gas and liquefied Gas, gasoline, circulating oil and oil slurry,
  • the slurry obtained by any step of the upgrading method and/or the external oil slurry is recycled to the step (1), the step (2) and/or the Step (3), or
  • the liquefied gas obtained by any step of the upgrading method is recycled to the step (3) or the step (3-1).
  • reaction conditions of the conversion reaction comprise: a partial pressure of hydrogen of from 10.0 MPa to 25.0 MPa, preferably from 13.0 MPa to 20.0 MPa, and a reaction temperature of deg.] C from 380 to 470 °C, preferably from 400 deg.] C to 440 °C, the modified feedstock space velocity of from 0.01h -1 to 2.0h -1, preferably from 0.1h -1 to 1.0h -1, and hydrogen
  • the volume ratio of the upgraded feedstock is from 500 to 5,000, preferably from 800 to 2,000, optionally in the presence of a conversion catalyst.
  • the upgrading method is from 10.0 MPa to 25.0 MPa, preferably from 13.0 MPa to 20.0 MPa, and the first temperature is from 380 ° C to 470 ° C, preferably from 400 ° C to 440 ° C, or the second pressure is from 0.1 MPa to 5.0 MPa, preferably from 0.1 MPa to 4.0 MPa, the second temperature is From 150 ° C to 390 ° C, preferably from 200 ° C to 370 ° C.
  • the solvent is one or more of C 3-7 hydrocarbons, preferably selected from the group consisting of C 3-5 alkanes and C 3-5 olefins
  • the solvent is one or more of C 3-7 hydrocarbons, preferably selected from the group consisting of C 3-5 alkanes and C 3-5 olefins
  • the weight of the solvent and the first separated product or the first treated product The ratio is from 1 to 7:1, preferably from 1.5 to 5:1.
  • reaction condition of the step (3-2) or the step (3-8) comprises: a partial pressure of hydrogen of from 5.0 MPa to 20.0 MPa, preferably from 8.0 MPa to 15.0 MPa, reaction temperature from 330 ° C to 450 ° C, preferably from 350 ° C to 420 ° C, the volumetric space velocity of the feedstock oil is from 0.1 h -1 to 3.0 h -1 , preferably from 0.3 h -1 to 1.5h -1 , the volume ratio of hydrogen to feedstock oil is from 300 to 3000, preferably from 800 to 1500, in the presence of a hydrogenation catalyst;
  • the reaction conditions of the step (3-3) include: a partial pressure of hydrogen of from 10.0 MPa to 20.0 MPa, a reaction temperature of from 310 ° C to 420 ° C, and a volumetric space velocity of the modified oil of from 0.3 h - 1 to 1.2h -1 , the volume ratio of hydrogen to the modified oil is from 600 to 1500, in the presence of a hydrocracking catalyst;
  • the reaction conditions of the step (3-4), the step (3-5), the step (3-6) or the step (3-9) include: the reaction temperature is from 450 ° C to 650 °C, preferably from 480 ° C to 560 ° C, the reaction pressure is from 0.15 MPa to 0.4 MPa, the reaction time is from 0.1 second to 10 seconds, preferably from 0.2 seconds to 4 seconds, and the weight ratio of the cracking catalyst to the feedstock oil is from 3 to 30, preferably from 5 to 15, the weight ratio of water vapor to feedstock oil is from 0.05 to 0.6, preferably from 0.05 to 0.4, in the presence of a cracking catalyst;
  • the reaction conditions of the step (3-7) include: a partial pressure of hydrogen of from 7.0 MPa to 15.0 MPa, a reaction pressure of from 8 MPa to 12 MPa, and a reaction temperature of from 340 ° C to 400 ° C; the atmospheric gas oil
  • the volumetric space velocity is from 0.6 h -1 to 1.5 h -1
  • the volume ratio of hydrogen to the atmospheric gas oil is from 500 to 800 in the presence of a hydrogenation catalyst.
  • the low quality oil comprises one or more of asphaltenes, asphaltenes and pre-asphaltenes, in particular comprising asphaltenes
  • it is one or more selected from the group consisting of inferior oil, deoiled bitumen, heavy oil, heavy oil, coal-derived oil, shale oil and petrochemical waste oil.
  • the heavy oil is selected from the group consisting of crude oil, oil sand bitumen.
  • the coal-derived oil being selected from one or more of coal liquefied oil produced by coal liquefaction and coal tar produced by coal pyrolysis
  • the petrochemical waste oil is selected from one or more of a petrochemical waste sludge, a petrochemical oil residue, and a refined product thereof.
  • the upgrading method according to any one of the preceding aspects, wherein the first separation product or the first treatment product has an initial boiling point greater than or equal to 330 ° C, or the first separation product Or the first treated product further comprises a light component having a boiling point or a boiling range of less than or equal to 350 ° C, or the first isolated product or the first treated product further comprises a boiling point or boiling range greater than 500 ° C (preferably greater than The heavy component of 524 ° C), preferably the heavy component comprises one or more of asphaltenes, asphaltenes and pre-asphalnes, in particular comprising asphaltenes.
  • step (2) further obtains one or more second treatment products in addition to the first treatment product,
  • the second treated product or any of its components has a final boiling point of less than or equal to 350 °C.
  • a upgrading system comprising a conversion reaction unit, a conversion product processing unit, a first control unit, an extraction separation unit, and an optional residue treatment unit,
  • the conversion reaction unit is configured to enable a low quality oil to undergo a conversion reaction in the presence of hydrogen and optionally in the presence of a conversion catalyst, and to output the obtained conversion product
  • the conversion product treatment unit is configured to be capable of treating the conversion product (such as component formulation or separation) and outputting the obtained first treatment product,
  • the first control unit is configured to be capable of controlling the operating conditions of the conversion product processing unit (such as operating temperature and/or operating pressure) such that the first treated product comprises a content of from 20% to 60% by weight (preferably from 25% by weight to 55% by weight, based on the total weight of the first treated product), having a boiling point or boiling range between 350 ° C and 524 ° C (preferably between 355 ° C and 500 ° C, such as a component (between 380 ° C and 524 ° C, or between 400 ° C and 500 ° C) (particularly at least one hydrocarbon optionally containing a hetero atom),
  • the operating conditions of the conversion product processing unit such as operating temperature and/or operating pressure
  • the first treated product comprises a content of from 20% to 60% by weight (preferably from 25% by weight to 55% by weight, based on the total weight of the first treated product), having a boiling point or boiling range between 350 ° C and 524 ° C (preferably between 355 ° C and 500 ° C, such as a component (between
  • the extraction separation unit is configured to be capable of extracting and separating the first treated product, and separately outputting the obtained modified oil and residue, and
  • the residue treatment unit is configured to be capable of delivering all or a portion of the residue (such as greater than 80% by weight, preferably greater than 90% by weight, more preferably at least 95% by weight) to the conversion reaction unit.
  • the first conversion product separation unit is configured to be capable of separating the conversion product and separately outputting the obtained gas component and liquid component
  • the second conversion product separation unit is configured to be capable of separating the liquid components and separately outputting the obtained second separation product and the first separation product,
  • the second separated product separation unit is configured to be capable of separating the second separated product, and separately outputting the obtained naphtha and atmospheric gas oil, and
  • the gas component delivery unit is configured to be capable of delivering the gas component to the conversion reaction unit.
  • the upgrading system of any of the preceding aspects 13-14 further comprising a second control unit and a third control unit, wherein the second control unit is configured to be capable of controlling the first conversion product separation unit Operating pressure (preferably the outlet pressure of the gas component), the third control unit being arranged to be able to control the operating pressure of the second conversion product separation unit (preferably the outlet pressure of the second separated product), and to cause said The operating pressure of the first conversion product separation unit is greater than the operating pressure of the second conversion product separation unit,
  • the third control unit is configured to be capable of controlling the operating conditions of the second conversion product separation unit (such as operating temperature and/or operating pressure) such that the first separated product comprises a content of from 20
  • the boiling point or boiling range of from 5% by weight to 60% by weight, preferably from 25% by weight to 55% by weight, based on the total weight of the first isolated product, is between 350 ° C and 524 ° C (preferably between 355 ° C and 500 a component between °C, such as between 380 ° C and 524 ° C, or between 400 ° C and 500 ° C (particularly at least one hydrocarbon optionally containing a hetero atom), and making the second
  • the isolated product or any of its components has a final boiling point of less than or equal to 350 °C.
  • the upgrading system of any of the preceding aspects 13-15 wherein the extraction separation unit is configured to enable contact of the first separation product or the first treatment product with a solvent (preferably countercurrent contact) And outputting the obtained modified oil and the residue separately.
  • a first hydrogenation unit configured to be capable of hydrotreating the modified oil and outputting the obtained hydrogenated modified oil
  • a second hydrogenation unit configured to be capable of hydrocracking the modified oil and separating the obtained hydrocracked product into dry gas, liquefied gas, aviation kerosene, diesel oil, and hydrogenated tail oil,
  • a first catalytic cracking unit configured to be capable of catalytically cracking the hydrogenated modified oil and separating the obtained first catalytic cracking product into dry gas, liquefied gas, gasoline, circulating oil, and slurry.
  • a second catalytic cracking unit configured to be capable of catalytically cracking the hydrogenated modified oil in combination with the atmospheric gas oil, and separating the obtained second catalytic cracking product into dry gas, liquefied gas, gasoline , circulating oil and slurry,
  • a third catalytic cracking unit configured to be capable of catalytically cracking the hydrogenated modified oil and the second separated product, and separating the obtained third catalytic cracking product into dry gas, liquefied gas, gasoline , circulating oil and slurry,
  • a third hydrogenation unit configured to be capable of hydrotreating the atmospheric gas oil and outputting the obtained diesel oil
  • a fourth hydrogenation unit configured to be capable of hydrotreating the cycle oil obtained by any unit of the reforming system in combination with the reformed oil, and outputting the obtained hydrotreated oil
  • a fourth catalytic cracking unit configured to be capable of catalytically cracking the hydrotreated oil and the second separated product, and separating the obtained fourth catalytic cracking product into dry gas, liquefied gas, gasoline, and circulation Oil and slurry,
  • a slurry delivery unit configured to deliver slurry and/or external oil slurry obtained from any unit of the upgrading system to the conversion reaction unit, the conversion product processing unit, and/or the Extraction separation unit, or
  • the liquefied gas delivery unit is configured to be capable of transporting the liquefied gas obtained by any unit of the reforming system to the extraction separation unit.
  • At least one of the following technical effects can be achieved, or in a preferred case, at least the following technical effects can be simultaneously achieved. Two or more.
  • the conversion of the low quality oil is generally more than 90% by weight, preferably more than 95% by weight
  • the content of heavy metals (in terms of Ni+V) in the modified oil is generally less than 10 ⁇ g/ g, preferably less than 1 ⁇ g/g
  • the content of asphaltenes in the modified oil is generally less than 2.0% by weight, preferably less than 0.5% by weight.
  • the yield of the modified oil can be up to 88%.
  • toluene insoluble matter yield can be obtained.
  • the toluene insoluble matter yield can be as low as 0.5%.
  • the modified oil obtained can be further processed to produce high quality aviation kerosene, high octane gasoline or high quality diesel that meets the national VI standard.
  • the yield of the high octane gasoline is generally more than 50% by weight, or the yield of the high quality aviation kerosene is generally more than 35% by weight.
  • Fig. 1 schematically illustrates a method of upgrading a low quality oil according to an embodiment of the present invention.
  • Fig. 2 schematically illustrates a method of upgrading a low quality oil of another embodiment of the present invention.
  • Fig. 3 schematically illustrates a method of upgrading a low quality oil of another embodiment of the present invention.
  • Fig. 4 schematically illustrates a method of upgrading a low quality oil of another embodiment of the present invention.
  • asphaltene In the context of the present invention, the term "asphaltene" must be understood in the ordinary sense of the fuel chemical industry. For example, toluene-soluble, n-hexane insolubles in oil are generally referred to as asphaltenes.
  • pre-asphaltenene tetrahydrofuran-soluble and toluene-insoluble matter in oil is generally referred to as pre-asphaltenene.
  • asphaltene In the context of the invention of the present application, the term "asphaltene" must be understood in the ordinary sense of the fuel chemical industry. For example, a substance which is insoluble in a non-polar small molecule normal paraffin (such as n-pentane or n-heptane) in oil and is soluble in benzene or toluene is generally referred to as asphaltene.
  • a non-polar small molecule normal paraffin such as n-pentane or n-heptane
  • Petroleum Oil generally refers to various oils used in the fuel chemical industry as a raw material or as a product, including fossil fuels, fuel oils, fossil fuel processed products (such as diesel and kerosene). Etc.), waste oil or waste residue, etc.
  • low quality oil refers to any oil in the fuel chemical industry that has been upgraded.
  • the oil include low-quality fossil fuels, low-quality fuel oils, low-quality fossil fuel processing products (such as low-quality gasoline and diesel oil), fossil fuel processing waste oils or waste residues, and the like.
  • a molecular reaction of changing one or more components of the oil by a chemical reaction to obtain fuel chemical products such as gasoline, diesel, kerosene, liquefied gas, and naphtha may be mentioned.
  • the component include an aromatic component, an asphaltene, and the like.
  • the term "inferior oil” must be understood in the ordinary sense of the fuel chemical industry. For example, it will generally satisfy a selection from an API degree of less than 27, Any of sulfur content greater than 1.5% by weight, TAN (total acid number) greater than 1.0 mg KOH/g, distillation range greater than 500 ° C, asphaltene content greater than 10% by weight, and heavy metal (in terms of Ni + V) greater than 100 ⁇ g/g An oil with one or more indicators is called a poor quality oil.
  • the term "residue” must be understood in the ordinary sense of the fuel chemical industry.
  • a bottoms product obtained by subjecting crude oil to atmospheric and vacuum distillation is generally referred to as a residue.
  • the atmospheric bottoms are generally referred to as atmospheric residue (generally a fraction having a boiling point greater than 350 ° C), or the reduced-pressure bottoms are generally referred to as vacuum residue (generally a fraction having a boiling point greater than 500 ° C or 524 ° C).
  • cycle oil must be understood in the ordinary sense of the fuel chemical industry.
  • a fraction obtained by a catalytic cracking process having a distillation range between 205 ° C and 350 ° C also referred to as a diesel fraction
  • a fraction having a distillation range between 343 ° C and 500 ° C also referred to as heavy Circulating oil
  • the bottoms oil obtained from the fractionation step of the cracking process, after separation by a settler is generally referred to as clarified oil from the upper portion of the settler, and the product discharged from the bottom of the settler is generally referred to as oil. Pulp.
  • distillate oil In the context of the present invention, the term "heavy oil” must be understood in the ordinary sense of the fuel chemical industry.
  • distillate or residue having a boiling point above 350 ° C is generally referred to as heavy oil.
  • distillate oil generally refers to a distillate product obtained by conventional rectification and vacuum distillation of crude oil or secondary processing oil, such as heavy diesel oil, heavy gas oil, lubricating oil fraction or cracked raw material.
  • heavy oil In the context of the present invention, the term "heavy oil” must be understood in the ordinary sense of the fuel chemical industry.
  • crude oil with higher asphaltene and colloidal content and higher viscosity is generally referred to as heavy oil.
  • heavy oil a crude oil having a density of 20 ° C on the ground greater than 0.943 and a viscosity of the underground crude oil greater than 50 PCT is generally referred to as heavy oil.
  • the term "deoiled asphalt” must be understood in the ordinary sense of the fuel chemical industry. For example, it generally refers to a feedstock-derived, asphalt-rich, raffinate-rich raffinate obtained by contacting a solvent with a solvent, dissolving and separating, and extracting the bottom of the column. According to the type of solvent, it can be divided into propane deoiled asphalt, butane deoiled asphalt, pentane deoiled asphalt and the like.
  • headed crude oil must be understood in the ordinary sense of the fuel chemical industry.
  • the oil discharged from the bottom of the preliminary distillation column or the bottom of the flash column is called pull-out. hair oil.
  • coal derived oil in the context of the present invention, must be understood in the ordinary sense of the fuel chemical industry.
  • a liquid fuel obtained by chemical processing using coal as a raw material is generally referred to as a coal-derived oil.
  • shale oil must be understood in the ordinary sense of the fuel chemical industry.
  • the brown viscous paste obtained by low-temperature dry distillation of the oil shale is generally referred to as shale oil, which has a pungent odor and a high nitrogen content.
  • separating generally refers to physical separation, such as extraction, liquid separation, distillation, evaporation, flashing, condensation, and the like, unless otherwise specifically stated or not in accordance with routine understanding by those skilled in the art. .
  • boiling point boiling range (sometimes referred to as distillation range), end point and initial boiling point or the like all refer to values at atmospheric pressure (101325 Pa).
  • the upgrading method includes at least step (1), step (2), and step (3).
  • Step (1) a low-quality oil is subjected to a conversion reaction in the presence of hydrogen to obtain a conversion product (this step is hereinafter referred to as a raw material conversion step). At this time, the low-quality oil is used as a raw material for upgrading.
  • the low-quality oil may contain asphaltenes, which may contain asphaltenes, It may contain pre-asphaltenes and may also comprise two or more of asphaltenes, asphaltenes and pre-asphalnes, in particular asphaltenes and/or pre-asphaltenes.
  • These low-quality oils may be used alone or in combination of any ones in any ratio.
  • the present invention is not intended to clarify the specific content of the asphaltenes, the asphaltenes or the pre-asphaltenes in the low-quality oil, as long as it is judged to be "contained” according to the conventional understanding of those skilled in the art. , but for the sake of easy understanding, the content is, for example, at least 0.5 weight. More than %.
  • the low-quality oil specifically, for example, inferior oil, deoiled asphalt, heavy oil, heavy oil, coal-derived oil, shale oil, and petrochemical waste may be mentioned.
  • oil for example, a crude oil, a heavy oil obtained from oil sand bitumen, and a heavy oil having an initial boiling point of more than 350 ° C may be mentioned.
  • the coal-derived oil include coal liquefied oil produced by coal liquefaction and coal tar produced by coal pyrolysis.
  • petrochemical waste oil for example, petrochemical waste sludge, petrochemical oil slag, and refining products thereof can be cited.
  • These low-quality oils may be used alone or in combination of any ones in any ratio.
  • the conversion reaction (also referred to as a hydrothermal conversion reaction) may be carried out in any manner known in the art, and is not particularly limited. Additionally, the conversion reaction can be carried out in any conversion reaction unit known in the art, such as a thermal conversion reactor, and can be reasonably selected by those skilled in the art.
  • the partial pressure of hydrogen in the step (1), can be referred to conventional selection in the art, but is generally from 10.0 MPa to 25.0 MPa, preferably from 13.0 MPa to 20.0 MPa.
  • the reaction temperature in the step (1), can be referred to a conventional selection in the art, but is generally from 380 ° C to 470 ° C, preferably from 400 ° C to 440 ° C.
  • the volumetric space velocity of the modified raw material (such as the low-quality oil) can be referred to a conventional selection in the art, but generally ranges from 0.01 h -1 to 2.0h -1 , preferably from 0.1h -1 to 1.0h -1 .
  • the volume ratio of hydrogen to the reforming raw material can be referred to a conventional selection in the art, but generally ranges from 500 to 5,000. It is preferably from 800 to 2,000.
  • the conversion reaction may be carried out in the presence of a conversion catalyst or may not be carried out in the presence of a conversion catalyst.
  • the conversion catalyst for example, any conversion catalyst conventionally used for this purpose in the art may be mentioned or may be produced according to any production method conventionally known in the art, and is not particularly limited.
  • Specific examples of the conversion catalyst include a bulk type conversion catalyst, and more specifically, for example, a compound of Group VB of the periodic table, a compound of Group VIB of the periodic table, and a periodic table of elements.
  • the amount of the conversion catalyst to be used is generally from 10 ⁇ g / g to 50,000 ⁇ g / g, preferably from 30 ⁇ g / g to 25000 ⁇ g / g, based on the total weight of the modified raw material (such as the low-quality oil). .
  • Step (2) The conversion product is treated to obtain a first treated product (hereinafter referred to as a conversion product treatment step).
  • the treatment in the step (2), may be carried out in any manner known in the art as long as the conversion product can be contained in an amount of from 20 after the treatment.
  • the component having a boiling point or a boiling range of between 350 ° C and 524 ° C (hereinafter referred to as a specific component) of from 60% by weight to 60% by weight (hereinafter referred to as a specific content) may be obtained, thereby obtaining the first treated product .
  • the treatment specifically, for example, a specific amount of the special component added to or reduced from the conversion product may be mentioned, whereby the finally obtained first treated product contains the a method of specifically containing the specific component (hereinafter referred to as a component formulation method), or separating the conversion product into components, thereby causing the finally obtained first treatment product to contain the specific content of the A method of a specific component (hereinafter referred to as a component separation method).
  • a component formulation method separating the conversion product into components, thereby causing the finally obtained first treatment product to contain the specific content of the A method of a specific component
  • At least the upgrading process can be improved by causing the first treatment product to contain the specific content of the special component.
  • Operational stability it is generally from 20% by weight to 60% by weight, preferably from 25% by weight to 55% by weight, based on the total weight of the first treated product.
  • the boiling point or boiling range of the special component may further be between 350 ° C and 524 ° C, such as between 380 ° C and 524 ° C, Or between 400 ° C and 500 ° C.
  • said special component is derived from a petrochemical oil and is generally a hydrocarbon, in particular a mixture of a plurality of hydrocarbons.
  • hydrocarbon refers to a compound consisting essentially of carbon atoms and hydrogen atoms, but may further contain a hetero atom such as O, N, P, Cl or S in its molecular structure.
  • the present invention is not intended to clarify the specific chemical structure of the specific component as long as its content and boiling point (or boiling range) satisfy any of the foregoing respective provisions of the specification.
  • the special component can be commercially available or can be produced by a simple method as long as it belongs to petrochemical oil.
  • the specific component can be directly derived from the conversion product since it is usually contained as a constituent component in the conversion product.
  • the special component may also be derived from the petrochemical oil obtained by the modified raw material or any step of the upgrading method described in the specification, especially from the residue and slurry as described in the specification below. .
  • the petrochemical oil may be subjected to distillation to obtain a fraction having a boiling point (or boiling range) satisfying any of the aforementioned provisions of the specification, that is, the special group is obtained. Minute.
  • distillation of the first treated product may be mentioned, and the boiling point (or boiling range) may be set to satisfy all of the foregoing respective provisions of the specification.
  • the initial boiling point of the first treated product is generally greater than or equal to 300 ° C, such as greater than or equal to 330 ° C, and further such as greater than or equal to 350 ° C.
  • the first treated product in addition to the special component, may further comprise a light component having a boiling point or a boiling range of less than or equal to 350 °C.
  • the present invention is not intended to clarify the specific content of the light component in the first treated product, but for example, the content of the light component may be, for example, from 1% by weight to 10% by weight, based on The total weight of the first treated product is described.
  • the first treatment product in addition to the special component, may further comprise a recombination having a boiling point or a boiling range of more than 500 ° C (preferably greater than 524 ° C). Minute.
  • boiling point or boiling range greater than 500 ° C means that the heavy component exhibits a boiling point or boiling range of more than 500 ° C, but also includes thermal decomposition of the heavy component at a temperature greater than 500 ° C. Does not show the boiling point or boiling range.
  • the heavy component comprises asphaltenes, asphaltenes, pre-asphaltenes or a combination thereof as constituent components, in particular Contains asphaltenes as a constituent.
  • the present invention is not intended to clarify the specific content of the heavy component in the first treated product, but for example, the content of the heavy component may be, for example, a balance based on the total weight of the first treated product. .
  • the first treated product in addition to the special component and the light component, may further comprise a boiling point or a boiling range Heavy components greater than 500 ° C (preferably greater than 524 ° C).
  • boiling point or boiling range greater than 500 ° C means that the heavy component exhibits a boiling point or boiling range of more than 500 ° C, but also includes thermal decomposition of the heavy component at a temperature greater than 500 ° C. Does not show the boiling point or boiling range.
  • the heavy component comprises asphaltenes, asphaltenes, pre-asphaltenes or a combination thereof as constituent components, in particular Contains asphaltenes as a constituent.
  • the present invention is not intended to clarify the specific content of the heavy component in the first treated product, but for example, the content of the heavy component may be, for example, a balance based on the total weight of the first treated product. .
  • the step (2) in addition to the first treated product, it is also possible to obtain one or more second treatment products.
  • the second treated product or any of its components exhibits a final boiling point of less than or equal to 350 °C.
  • the component separation method for example, evaporation, distillation, flash evaporation, or the like can be exemplified.
  • these component separation methods can be carried out in any manner conventionally known in the art as long as it is capable of finally obtaining the first treatment product. More specifically, as the component separation method, for example, a separation method including the step (2-1) and the step (2-2) can be mentioned.
  • the separation in the step (2-1), may be carried out according to any method and any method known in the art, and specific examples thereof include distillation, fractionation, and flash distillation. Especially distillation. Additionally, the separation can be carried out in any separation apparatus known in the art, such as a distillation column, and can be reasonably selected by those skilled in the art.
  • the gas component is generally rich in hydrogen, or the gas component is mainly composed of hydrogen.
  • the present invention is not intended to clarify the specific content of hydrogen in the gas component, but for example, the content of hydrogen is generally at least 85% by weight or more.
  • the gas component may be recycled to the step (1) as hydrogen to participate in the conversion reaction as needed. Further, for example, when the separation is carried out using a pressurized distillation column or the like, the gas component represents an overhead fraction, and the liquid component represents a bottoms fraction.
  • the first pressure one Generally, it is from 10.0 MPa to 25.0 MPa, preferably from 13.0 MPa to 20.0 MPa.
  • the first pressure generally refers to the pressure of the gas component, or in other words, when the separation is performed using a separating device, the first pressure generally refers to The outlet pressure at which the gas component exits the separation device.
  • the first temperature is generally from 380 ° C to 470 ° C, preferably from 400 ° C to 440 ° C.
  • the first temperature generally refers to the temperature of the liquid component, or in other words, when the separation is performed using a separation device, the first temperature generally refers to The outlet temperature at which the liquid component leaves the separation device.
  • the separation in the step (2-2), may be carried out according to any method and any method known in the art, and specific examples thereof include distillation and fractionation, etc., particularly Pressurized or pressurized distillation.
  • the separation can be carried out in any separation apparatus known in the art, such as an atmospheric distillation tank or a pressurized distillation column, which can be reasonably selected by those skilled in the art.
  • the second pressure is generally from 0.1 MPa to 5.0 MPa, preferably from 0.1 MPa to 4.0 MPa.
  • the second pressure generally refers to the pressure of the second separated product, or in other words, when the separation is performed using a separating device, the second pressure generally refers to The outlet pressure of the second separated product as it leaves the separation device.
  • the second temperature is generally from 150 ° C to 390 ° C, preferably from 200 ° C to 370 ° C.
  • the second temperature generally refers to the temperature of the first separated product, or in other words, when the separation is performed using a separating device, the second temperature generally refers to The outlet temperature at which the first separated product leaves the separation device.
  • the first pressure is generally greater than the second pressure, preferably the first pressure is greater than the second
  • the pressure is from 4 MPa to 24 MPa, and more preferably the first pressure is from 7 MPa to 19 MPa greater than the second pressure.
  • the first isolated product obtained contains a component having a boiling point or a boiling range of from 350 ° C to 524 ° C in an amount of from 20% by weight to 60% by weight (hereinafter referred to as a specific content) (hereinafter referred to as a special component)
  • a specific content a component having a boiling point or a boiling range of from 350 ° C to 524 ° C in an amount of from 20% by weight to 60% by weight
  • a special component a component having a boiling point or a boiling range of from 350 ° C to 524 ° C in an amount of from 20% by weight to 60% by weight
  • a specific content hereinafter referred to as a special component
  • the second isolated product or any of its components has a final boiling point of less than or equal to 350 °C.
  • the specific content as the specific component is generally from 20% by weight to 60% by weight, preferably from 25% by weight to 55% by weight. Based on the total weight of the first separated product.
  • the boiling point or boiling range of the special component may further be between 350 ° C and 500 ° C, such as between 380 ° C and 524 ° C. Between, or between 400 ° C and 500 ° C.
  • the special component is generally a hydrocarbon, in particular a mixture of a plurality of hydrocarbons.
  • hydrocarbon refers to a compound consisting essentially of carbon atoms and hydrogen atoms, but may further contain a hetero atom such as O, N, P, Cl or S in its molecular structure.
  • the present invention is not intended to clarify the specific chemical structure of the specific component as long as its content and boiling point (or boiling range) satisfy any of the foregoing respective provisions of the specification. Further, it is known from the manner in which the specific component is originally contained as a constituent component in the conversion product or the liquid component.
  • part (or all) of the special component turns into an essential constituent component of the first separated product.
  • a measurement method of the specific content of the specific component for example, distillation of the first separated product may be mentioned, and the boiling point (or boiling range) may be set to satisfy all of the foregoing respective provisions of the specification.
  • a fraction having the fraction of the total weight of the first separated product as the specific content may be mentioned, and the boiling point (or boiling range) may be set to satisfy all of the foregoing respective provisions of the specification.
  • the initial boiling point of the first separated product is generally greater than or equal to 300 ° C, such as greater than or equal to 330 ° C, and further such as greater than or equal to 350 ° C.
  • the first separated product in addition to the specific component, may further comprise a light component having a boiling point or a boiling range of less than or equal to 350 ° C. .
  • the present invention is not intended to clarify the specific content of the light component in the first separated product, but for example, the content of the light component may be, for example, from 1% by weight to 10% by weight, based on The total weight of the first separated product is described.
  • the first separated product in the step (2-2), in addition to the specific component, may further comprise a boiling point or a boiling range of more than 500 ° C Heavy component (preferably greater than 524 ° C).
  • a boiling point or boiling range greater than 500 ° C means that the heavy component exhibits a boiling point or boiling range of more than 500 ° C, but also includes thermal decomposition of the heavy component at a temperature greater than 500 ° C. Does not show the boiling point or boiling range.
  • the heavy component comprises asphaltenes, asphaltenes, pre-asphaltenes or a combination thereof as constituent components, in particular Contains asphaltenes as a constituent.
  • the present invention is not intended to clarify the specific content of the heavy component in the first separated product, but for example, the content of the heavy component may be, for example, a balance based on the total weight of the first separated product. .
  • the first separated product in the step (2-2), in addition to the special component and the light component, may further comprise a boiling point or a boiling range of more than 500 ° C Heavy component (preferably greater than 524 ° C).
  • the phrase "boiling point or boiling range greater than 500 ° C” means that the heavy component exhibits a boiling point or boiling range of more than 500 ° C, but also includes thermal decomposition of the heavy component at a temperature greater than 500 ° C. Does not show the boiling point or boiling range.
  • the heavy component comprises asphaltenes, asphaltenes, pre-asphaltenes or a combination thereof as constituent components, in particular Contains asphaltenes as a constituent.
  • the present invention is not intended to clarify the specific content of the heavy component in the first separated product, but for example, the content of the heavy component may be, for example, a balance based on the total weight of the first separated product. .
  • the first separated product represents a bottom liquid or The bottom of the tank is condensed while the second separated product represents the overhead light component or the top flashed light component.
  • the conversion product treatment step may optionally further comprise a step (2-3), a step (2-4) or a combination of the two.
  • Step (2-3) separating the second treated product (including the second separated product) to obtain naphtha and atmospheric gas oil.
  • the separation in the step (2-3), may be carried out according to any method and any method known in the art, and specific examples thereof include distillation and fractionation, etc., particularly fractionation. . Additionally, the separation can be carried out in any separation apparatus known in the art, such as a fractionation column, and can be reasonably selected by those skilled in the art.
  • the operating pressure is generally from 0.05 MPa to 2.0 MPa, preferably from 0.10 MPa to 1.0 MPa.
  • the operating temperature is generally from 50 ° C to 350 ° C, preferably from 150 ° C to 330 ° C.
  • the gas component in the step (2-4), may be recycled as hydrogen to any step in the upgrading process that requires hydrogen to participate, such as the step (1).
  • Step (3) extracting and separating the first treated product (including the first separated product) to obtain a modified oil and a residue (hereinafter referred to as an extraction separation step).
  • the softening point of the residue is generally less than 150 °C.
  • the step (3) can be carried out in accordance with the extraction separation method comprising the step (3-1).
  • Step (3-1) contacting the first treated product (including the first separated product) with a solvent at a third pressure and a third temperature to obtain the modified oil and the residue.
  • the contacting in the step (3-1), may be carried out according to any method and any method known in the art as long as the first treatment product can be caused by the solvent.
  • the modified oil and the residue can be obtained by sufficiently extracting, and specific examples thereof include countercurrent contact and the like.
  • the extraction can be carried out in any extraction apparatus known in the art, such as an extraction column, and can be reasonably selected by those skilled in the art.
  • a C 3-7 hydrocarbon for example, a C 3-7 hydrocarbon may be mentioned, and more specifically, for example, a C 3-5 alkane and a C 3-5 olefin may be mentioned. Especially C 3-4 alkanes and C 3-4 olefins.
  • these solvents may be used alone or in combination of any ones in any ratio.
  • a liquefied gas described later in the specification can also be used.
  • the weight ratio of the solvent to the first treated product (including the first separated product) (referred to as a solvent ratio) is generally 1- 7:1, preferably 1.5-5:1.
  • the third pressure one It is generally from 3 MPa to 12 MPa, preferably from 3.5 MPa to 10 MPa.
  • the third temperature is generally from 55 ° C to 300 ° C, preferably from 70 ° C to 220 ° C.
  • the extraction separation step optionally further may further comprise one or more of steps (3-2) to (3-11), as needed.
  • the hydrotreating may be carried out in any manner known in the art, and is not particularly limited. Additionally, the hydrotreating can be carried out in any hydrotreating unit known in the art, such as a fixed bed reactor, a fluidized bed reactor, and can be reasonably selected by those skilled in the art.
  • the partial pressure of hydrogen in the step (3-2), can be referred to a conventional selection in the art, but is generally from 5.0 MPa to 20.0 MPa, preferably from 8.0 MPa to 15.0 MPa.
  • the reaction temperature in the step (3-2), can be referred to a conventional selection in the art, but is generally from 330 ° C to 450 ° C, preferably from 350 ° C to 420 ° C.
  • the volumetric space velocity of the feedstock oil (referred to as the modified oil) can be referred to the conventional selection in the art, but generally from 0.1 h -1 To 3.0 h -1 , preferably from 0.3 h -1 to 1.5 h -1 .
  • the volume ratio of hydrogen to the feedstock oil (referred to as the modified oil) can be referred to the conventional selection in the art, but generally from 300 to 3000. It is preferably from 800 to 1500.
  • the hydrotreating is generally carried out in the presence of a hydrogenation catalyst.
  • the hydrogenation catalyst for example, any hydrogenation catalyst conventionally used for this purpose in the art may be mentioned or may be produced according to any production method conventionally known in the art, and the hydrogenation catalyst is in the same
  • the amount used in the step can be referred to conventional knowledge in the art, and is not particularly limited.
  • the hydrogenation catalyst generally comprises a support and an active metal component. More specifically, as the active metal component, for example, a metal of Group VIB of the periodic table and a non-noble metal of Group VIII of the periodic table, particularly a combination of nickel and tungsten, nickel and tungsten may be mentioned.
  • a combination of nickel and molybdenum, or a combination of cobalt and molybdenum may be used alone or in combination of any ones in any ratio.
  • examples of the carrier include alumina, silica, amorphous silicon aluminum, and the like. These carriers may be used alone or in combination of any ones in any ratio.
  • the content of each of the carrier and the active metal component in the present invention is not particularly limited, and reference can be made to the conventional knowledge in the art.
  • Step (3-3) Optionally, the modified oil is subjected to hydrocracking to obtain a hydrocracked product.
  • the hydrocracking may be carried out in any manner known in the art, and is not particularly limited. Additionally, the hydrocracking can be carried out in any hydrocracking unit known in the art, such as a fixed bed reactor, a fluidized bed reactor, and can be reasonably selected by those skilled in the art.
  • the hydrocracked product is further separated into dry gas, liquefied gas, aviation kerosene, diesel oil and hydrogenated tail oil.
  • the separation it can be carried out according to any method and any method known in the art, and specific examples thereof include distillation and fractionation, and the like, in particular, fractional distillation. Additionally, the separation can be carried out in any separation apparatus known in the art, such as a fractionation column, and can be reasonably selected by those skilled in the art.
  • the partial pressure of hydrogen in the step (3-3), can be referred to a conventional selection in the art, but is generally from 10.0 MPa to 20.0 MPa.
  • the reaction temperature in the step (3-3), can be referred to a conventional selection in the art, but is generally from 310 ° C to 420 ° C.
  • the volumetric space velocity of the modified oil in the step (3-3), can be referred to a conventional selection in the art, but is generally from 0.3 h -1 to 1.2 h -1 .
  • the volume ratio of hydrogen to the modified oil may be referred to a conventional selection in the art, but is generally from 600 to 1,500.
  • the hydrocracking is generally carried out in the presence of a hydrocracking catalyst.
  • a hydrocracking catalyst for example, any hydrocracking catalyst conventionally used for this purpose in the art may be mentioned or may be produced according to any manufacturing method conventionally known in the art, and the hydrocracking is carried out.
  • the amount of the catalyst used in the step can be referred to the conventional knowledge in the art, and there is no special Other restrictions.
  • the hydrocracking catalyst generally comprises a support, an active metal component, and a cracking active component.
  • the active metal component for example, a sulfide of a metal of Group VIB of the periodic table, a sulfide of a metal of Group VIII of the periodic table, or a noble metal of Group VIII of the periodic table may be mentioned.
  • Mo sulfide, W sulfide, Ni sulfide, Co sulfide, Fe sulfide, Cr sulfide, Pt and Pd may be mentioned.
  • These active metal components may be used alone or in combination of any ones in any ratio.
  • examples of the cracking active component include amorphous silica alumina and molecular sieves. These cracking active components may be used alone or in combination of any ones in any ratio.
  • examples of the carrier include alumina, silica, titania, activated carbon, and the like. These carriers may be used alone or in combination of any ones in any ratio.
  • the content of each of the carrier, the active metal component and the cracking active component of the present invention is not particularly limited, and reference can be made to the conventional knowledge in the art.
  • Step (3-4) Optionally, the hydrogenated modified oil is subjected to catalytic cracking (abbreviated as FCC) to obtain a first catalytic cracking product.
  • FCC catalytic cracking
  • the first catalytic cracking product may be further separated into dry gas, liquefied gas, gasoline, circulating oil, and slurry.
  • the separation it can be carried out according to any method and any method known in the art, and specific examples thereof include distillation and fractionation, and the like, in particular, fractional distillation. Additionally, the separation can be carried out in any separation apparatus known in the art, such as a fractionation column, and can be reasonably selected by those skilled in the art.
  • the catalytic cracking may be carried out in any manner known in the art, and is not particularly limited. Additionally, the catalytic cracking can be carried out in any catalytic cracking unit known in the art, such as a fluidized bed reactor, and can be reasonably selected by those skilled in the art.
  • the reaction temperature may be referred to a conventional selection in the art, but is generally from 450 ° C to 650 ° C, preferably from 480 ° C to 560 ° C.
  • the reaction pressure in the step (3-4), can be referred to a conventional selection in the art, but is generally from 0.15 MPa to 0.4 MPa.
  • the reaction time in the step (3-4), can be referred to a conventional selection in the art, but is generally from 0.1 second to 10 seconds, preferably from 0.2 second to 4 seconds. second.
  • the weight ratio of the cracking catalyst to the feedstock oil (referred to as the hydrogenated modified oil) can be referred to the conventional selection in the art, but generally From 3 to 30, preferably from 5 to 15.
  • the weight ratio of water vapor to the feedstock oil (referred to as the hydrogenated post-hydrogenated oil) can be referred to the conventional selection in the art, but generally From 0.05 to 0.6, preferably from 0.05 to 0.4.
  • the catalytic cracking is generally carried out in the presence of a cracking catalyst.
  • a cracking catalyst for example, any cracking catalyst conventionally used for this purpose in the art may be mentioned or may be produced according to any manufacturing method conventionally known in the art, and is not particularly limited.
  • the cracking catalyst is typically a solid acid catalyst, preferably comprising a cracking active component and a carrier. More specifically, as the cracking active component, for example, a zeolite, particularly a Y-type zeolite optionally containing a rare earth element, a HY-type zeolite optionally containing a rare earth element, and optionally a rare earth element may be mentioned.
  • Stabilized Y-type zeolite and ⁇ -type zeolite optionally containing rare earth elements.
  • These cracking active components may be used alone or in combination of any ones in any ratio.
  • the carrier include a refractory inorganic oxide, natural clay, alumina, silica, and amorphous silicon aluminum. These carriers may be used alone or in combination of any ones in any ratio.
  • the content of each of the cracking active component and the carrier of the present invention is not particularly limited, and reference can be made to the conventional knowledge in the art.
  • the hydrogenated modified oil is subjected to catalytic cracking in combination with the atmospheric gas oil to obtain a second catalytic cracking product.
  • the so-called combination means that the hydrogenated modified oil and the atmospheric gas oil together are used as a raw material for the catalytic cracking.
  • the two may be premixed in a predetermined ratio and then subjected to the catalytic cracking, or the catalytic cracking may be simultaneously performed in a predetermined ratio, and is not particularly limited.
  • the second catalytic cracking product in the step (3-5), may be further separated into dry gas, liquefied gas, gasoline, circulating oil, and slurry.
  • the separation it can be carried out according to any method and any method known in the art, and specific examples thereof include distillation and fractionation, and the like, in particular, fractional distillation.
  • the separation can This is done in any separation device known in the art, such as a fractionation column, and can be reasonably selected by those skilled in the art.
  • the catalytic cracking in the step (3-5), can be carried out in any manner known in the art, and is not particularly limited. Additionally, the catalytic cracking can be carried out in any catalytic cracking unit known in the art, such as a fluidized bed reactor, and can be reasonably selected by those skilled in the art.
  • the reaction temperature in the step (3-5), can be referred to a conventional selection in the art, but is generally from 450 ° C to 650 ° C, preferably from 480 ° C to 560 ° C.
  • the reaction pressure in the step (3-5), can be referred to a conventional selection in the art, but is generally from 0.15 MPa to 0.4 MPa.
  • the reaction time in the step (3-5), can be referred to a conventional selection in the art, but is generally from 0.1 second to 10 seconds, preferably from 0.2 second to 4 seconds.
  • the weight ratio of the cracking catalyst to the feedstock oil (referred to as the hydrogenated modified oil and the atmospheric gas oil) can be referred to the field.
  • Conventional choice but generally from 3 to 30, preferably from 5 to 15.
  • the weight ratio of water vapor to the feedstock oil (referred to as the hydrogenated post-modified oil and the atmospheric gas oil) can be referred to the field.
  • a conventional choice but generally from 0.05 to 0.6, preferably from 0.05 to 0.4.
  • the catalytic cracking is generally carried out in the presence of a cracking catalyst.
  • a cracking catalyst for example, any cracking catalyst conventionally used for this purpose in the art may be mentioned or may be produced according to any manufacturing method conventionally known in the art, and is not particularly limited.
  • the cracking catalyst is typically a solid acid catalyst, preferably comprising a cracking active component and a carrier. More specifically, as the cracking active component, for example, a zeolite, particularly a Y-type zeolite optionally containing a rare earth element, a HY-type zeolite optionally containing a rare earth element, and optionally a rare earth element may be mentioned.
  • Stabilized Y-type zeolite and ⁇ -type zeolite optionally containing rare earth elements.
  • These cracking active components may be used alone or in combination of any ones in any ratio.
  • the carrier include a refractory inorganic oxide, natural clay, alumina, silica, and amorphous silicon aluminum. These carriers may be used alone or in combination of any ones in any ratio.
  • the invention is directed to the cracking
  • the content of each of the active component and the carrier is not particularly limited, and reference can be made to the conventional knowledge in the art.
  • the so-called combination means that the hydrogenated modified oil and the second separated product together serve as a raw material for the catalytic cracking.
  • the two may be premixed in a predetermined ratio and then subjected to the catalytic cracking, or the catalytic cracking may be simultaneously performed in a predetermined ratio, and is not particularly limited.
  • the third catalytic cracking product may be further separated into dry gas, liquefied gas, gasoline, circulating oil, and slurry.
  • the separation it can be carried out according to any method and any method known in the art, and specific examples thereof include distillation and fractionation, and the like, in particular, fractional distillation. Additionally, the separation can be carried out in any separation apparatus known in the art, such as a fractionation column, and can be reasonably selected by those skilled in the art.
  • the catalytic cracking in the step (3-6), can be carried out in any manner known in the art, and is not particularly limited. Additionally, the catalytic cracking can be carried out in any catalytic cracking unit known in the art, such as a fluidized bed reactor, and can be reasonably selected by those skilled in the art.
  • the reaction temperature may be referred to a conventional selection in the art, but is generally from 450 ° C to 650 ° C, preferably from 480 ° C to 560 ° C.
  • the reaction pressure in the step (3-6), can be referred to a conventional selection in the art, but is generally from 0.15 MPa to 0.4 MPa.
  • the reaction time in the step (3-6), can be referred to a conventional selection in the art, but is generally from 0.1 second to 10 seconds, preferably from 0.2 second to 4 seconds.
  • the weight ratio of the cracking catalyst to the feedstock oil (referred to as the hydrogenated post-modified oil and the second separated product) can be referred to the art.
  • Conventional choice but generally from 3 to 30, preferably from 5 to 15.
  • the weight ratio of water vapor to the feedstock oil (referred to as the hydrogenated modified oil and the second separated product) can be referred to Conventional choices in the art, but generally from 0.05 to 0.6, preferably from 0.05 to 0.4.
  • the catalytic cracking is generally carried out in the presence of a cracking catalyst.
  • a cracking catalyst for example, any cracking catalyst conventionally used for this purpose in the art may be mentioned or may be produced according to any manufacturing method conventionally known in the art, and is not particularly limited.
  • the cracking catalyst is typically a solid acid catalyst, preferably comprising a cracking active component and a carrier. More specifically, as the cracking active component, for example, a zeolite, particularly a Y-type zeolite optionally containing a rare earth element, a HY-type zeolite optionally containing a rare earth element, and optionally a rare earth element may be mentioned.
  • Stabilized Y-type zeolite and ⁇ -type zeolite optionally containing rare earth elements.
  • These cracking active components may be used alone or in combination of any ones in any ratio.
  • the carrier include a refractory inorganic oxide, natural clay, alumina, silica, and amorphous silicon aluminum. These carriers may be used alone or in combination of any ones in any ratio.
  • the content of each of the cracking active component and the carrier of the present invention is not particularly limited, and reference can be made to the conventional knowledge in the art.
  • Step (3-7) Optionally, the atmospheric gas oil is subjected to hydrotreatment to obtain diesel oil.
  • the hydrotreating may be carried out in any manner known in the art, and is not particularly limited. Additionally, the hydrotreating can be carried out in any hydrotreating unit known in the art, such as a fixed bed reactor, a fluidized bed reactor, and can be reasonably selected by those skilled in the art.
  • the partial pressure of hydrogen in the step (3-7), can be referred to a conventional selection in the art, but is generally from 7.0 MPa to 15.0 MPa.
  • the reaction pressure in the step (3-7), can be referred to a conventional selection in the art, but is generally from 8 MPa to 12 MPa.
  • the reaction temperature in the step (3-7), can be referred to a conventional selection in the art, but is generally from 340 ° C to 400 ° C.
  • the volume space velocity of atmospheric gas oils can be selected with reference to conventional in the art, but is generally from 0.6h -1 to 1.5h -1.
  • the volume ratio of hydrogen to the atmospheric gas oil may be referred to a conventional selection in the art, but is generally from 500 to 800.
  • the hydrotreating one It is generally carried out in the presence of a hydrogenation catalyst.
  • a hydrogenation catalyst for example, any hydrogenation catalyst conventionally used for this purpose in the art may be mentioned or may be produced according to any production method conventionally known in the art, and the hydrogenation catalyst is in the same
  • the amount used in the step can be referred to conventional knowledge in the art, and is not particularly limited.
  • the hydrogenation catalyst generally comprises a support and an active metal component.
  • the active metal component for example, a metal of Group VIB of the periodic table and a non-noble metal of Group VIII of the periodic table, particularly a combination of nickel and tungsten, nickel, tungsten and cobalt may be mentioned. Combination, a combination of nickel and molybdenum, or a combination of cobalt and molybdenum. These active metal components may be used alone or in combination of any ones in any ratio.
  • the carrier include alumina, silica, amorphous silicon aluminum, and the like. These carriers may be used alone or in combination of any ones in any ratio.
  • the content of each of the carrier and the active metal component in the present invention is not particularly limited, and reference can be made to the conventional knowledge in the art.
  • Step (3-8) Optionally, the cycle oil obtained in any step of the upgrading method is subjected to hydrotreatment in combination with the reformed oil to obtain a hydrotreated oil.
  • the so-called combination means that the circulating oil and the reforming oil together serve as a raw material for the hydrotreating.
  • the two may be premixed in a predetermined ratio and then subjected to the hydrotreating, or the hydrotreating may be carried out simultaneously in a predetermined ratio, and is not particularly limited.
  • the hydrotreating may be carried out in any manner known in the art, and is not particularly limited. Additionally, the hydrotreating can be carried out in any hydrotreating unit known in the art, such as a fixed bed reactor, a fluidized bed reactor, and can be reasonably selected by those skilled in the art.
  • the partial pressure of hydrogen may be referred to a conventional selection in the art, but is generally from 5.0 MPa to 20.0 MPa, preferably from 8.0 MPa to 15.0 MPa.
  • the reaction temperature may be referred to a conventional selection in the art, but is generally from 330 ° C to 450 ° C, preferably from 350 ° C to 420 ° C.
  • the volumetric space velocity of the feedstock oil (referring to the circulating oil and the modified oil) can be referred to the conventional selection in the art, but generally from 0.1h -1 to 3.0h -1, preferably from 0.3h -1 to 1.5h -1.
  • the volume ratio of hydrogen to the feedstock oil (referred to as the circulating oil and the modified oil) can be referred to the conventional selection in the art, but generally It is from 300 to 3,000, preferably from 800 to 1,500.
  • the hydrotreating is generally carried out in the presence of a hydrogenation catalyst.
  • the hydrogenation catalyst for example, any hydrogenation catalyst conventionally used for this purpose in the art may be mentioned or may be produced according to any production method conventionally known in the art, and the hydrogenation catalyst is in the same
  • the amount used in the step can be referred to conventional knowledge in the art, and is not particularly limited.
  • the hydrogenation catalyst generally comprises a support and an active metal component. More specifically, as the active metal component, for example, a metal of Group VIB of the periodic table and a non-noble metal of Group VIII of the periodic table, particularly a combination of nickel and tungsten, nickel, tungsten and cobalt may be mentioned.
  • Combination a combination of nickel and molybdenum, or a combination of cobalt and molybdenum.
  • active metal components may be used alone or in combination of any ones in any ratio.
  • examples of the carrier include alumina, silica, amorphous silicon aluminum, and the like. These carriers may be used alone or in combination of any ones in any ratio.
  • the content of each of the carrier and the active metal component in the present invention is not particularly limited, and reference can be made to the conventional knowledge in the art.
  • Step (3-9) Optionally, the hydrotreated oil is subjected to catalytic cracking in combination with the second separated product to obtain a fourth catalytic cracking product.
  • the so-called combination means that the hydrotreated oil and the second separated product together serve as a raw material for the catalytic cracking.
  • the two may be premixed in a predetermined ratio and then subjected to the catalytic cracking, or the catalytic cracking may be simultaneously performed in a predetermined ratio, and is not particularly limited.
  • the fourth catalytic cracking product may be further separated into dry gas, liquefied gas, gasoline, circulating oil, and slurry.
  • the separation it can be carried out according to any method and any method known in the art, and specific examples thereof include distillation and fractionation, and the like, in particular, fractional distillation. Additionally, the separation can be carried out in any separation apparatus known in the art, such as a fractionation column, and can be reasonably selected by those skilled in the art.
  • the catalytic crack in the step (3-9), as the catalytic crack
  • the chemistry can be carried out in any manner known in the art and is not particularly limited. Additionally, the catalytic cracking can be carried out in any catalytic cracking unit known in the art, such as a fluidized bed reactor, and can be reasonably selected by those skilled in the art.
  • the reaction temperature in the step (3-9), can be referred to a conventional selection in the art, but is generally from 450 ° C to 650 ° C, preferably from 480 ° C to 560 ° C.
  • the reaction pressure in the step (3-9), can be referred to a conventional selection in the art, but is generally from 0.15 MPa to 0.4 MPa.
  • the reaction time in the step (3-9), can be referred to a conventional selection in the art, but is generally from 0.1 second to 10 seconds, preferably from 0.2 second to 4 seconds.
  • the weight ratio of the cracking catalyst to the feedstock oil (referred to as the hydrotreated oil and the second separated product) may be referred to the conventional art.
  • Select but generally from 3 to 30, preferably from 5 to 15.
  • the weight ratio of water vapor to the feedstock oil (referred to as the hydrotreated oil and the second separated product) may be referred to the conventional art. Selected, but generally from 0.05 to 0.6, preferably from 0.05 to 0.4.
  • the catalytic cracking is generally carried out in the presence of a cracking catalyst.
  • a cracking catalyst for example, any cracking catalyst conventionally used for this purpose in the art may be mentioned or may be produced according to any manufacturing method conventionally known in the art, and is not particularly limited.
  • the cracking catalyst is typically a solid acid catalyst, preferably comprising a cracking active component and a carrier. More specifically, as the cracking active component, for example, a zeolite, particularly a Y-type zeolite optionally containing a rare earth element, a HY-type zeolite optionally containing a rare earth element, and optionally a rare earth element may be mentioned.
  • Stabilized Y-type zeolite and ⁇ -type zeolite optionally containing rare earth elements.
  • These cracking active components may be used alone or in combination of any ones in any ratio.
  • the carrier include a refractory inorganic oxide, natural clay, alumina, silica, and amorphous silicon aluminum. These carriers may be used alone or in combination of any ones in any ratio.
  • the content of each of the cracking active component and the carrier of the present invention is not particularly limited, and reference can be made to the conventional knowledge in the art.
  • Step (3-10) optionally, the slurry obtained by any step of the upgrading method And/or an external supply slurry is recycled to the step (1), the step (2) and/or the step (3).
  • the so-called external oil slurry refers to a slurry which is not derived from any step of the upgrading method of the present invention, but is derived from other routes (for example Slurry from outside or outsourced).
  • step (3-10) by recycling the oil slurry as a result, at least the operational stability of the upgrading method can be improved, or in a preferred case, At least the yield of the modified oil can be further increased.
  • the slurry in the step (3-10), as a circulation mode of the slurry, specifically, for example, the slurry is circulated to the step (1), and the low The quality oil is continuously used as a reforming raw material to carry out the conversion reaction, or the oil slurry is recycled to the step (2), and the conversion product is mixed in a predetermined ratio, thereby the conversion product
  • the liquefied gas is recycled to the step (3), including the step (3-1), as the solvent or the solvent a part of.
  • the upgrading method optionally further comprises step (4).
  • Step (4) All or a part of the residue is recycled to the step (1) (hereinafter referred to as a residue recycling step).
  • a part of the residue (for example, more than 80% by weight, preferably more than 90% by weight, more preferably at least 95% by weight) may be recycled to the step (1)
  • the conversion reaction is continued as a modified feedstock together with the low quality oil, and the remainder is externally entangled.
  • the ratio of the residue of the outermost portion to the total residue is called the residual ratio of the residue, and the unit is % by weight.
  • the invention also relates to a upgrading system. Since the modifying system is specifically configured for implementing the upgrading method of the present invention, any content, term, feature or definition that is not specifically illustrated or explained in the context of the present specification with respect to the modifying system, You can directly refer to the corresponding statement in the context of this specification for the modification method. Ming or explain. Additionally, one or more aspects (or embodiments) disclosed in the context of the present specification for the modified method and one or more aspects (or embodiments) disclosed in the context of the present specification for the modified system may be The technical solutions (such as methods or systems) formed by any combination of these are arbitrarily part of the original disclosure of the present specification, and also fall within the scope of the present invention.
  • the upgrading system comprises a conversion reaction unit, a conversion product processing unit, a first control unit, and an extraction separation unit.
  • the conversion reaction unit is configured to enable a low quality oil to undergo a conversion reaction in the presence of hydrogen and optionally in the presence of a conversion catalyst, and output the obtained Transformation product.
  • a hydrogen-hydrogen conversion reactor can be mentioned.
  • the conversion product processing unit is configured to be capable of processing the conversion product and outputting the obtained first treatment product.
  • the conversion product treatment unit specifically, for example, a flash tank, a fractionation column, or a distillation column can be mentioned.
  • the first control unit is configured to enable the operation condition (such as operating temperature and/or operating pressure) of the conversion product processing unit to be
  • the first treated product comprises a component having a boiling point from 20% to 60% by weight or a boiling range between 350 ° C and 524 ° C.
  • a temperature control device or a pressure control device can be exemplified.
  • the extraction separation unit is configured to be capable of extracting and separating the first treated product, and separately outputting the obtained modified oil and residue.
  • the extraction separation unit specifically, an extraction column can be mentioned.
  • the upgrading system optionally further comprises a residue processing unit.
  • the residue processing unit is configured to be capable of delivering all or a portion of the residue to the conversion reaction unit.
  • a residue processing unit for example, a pump or a transfer line may be mentioned.
  • the conversion product processing unit may further comprise a first conversion product separation unit, a second conversion product separation unit, an optional second separation product separation unit, and optionally Gas component delivery unit.
  • the first conversion product separation unit is configured to be capable of separating the conversion products and separately outputting the obtained gas component and liquid component.
  • the first conversion product separation unit specifically, for example, a pressurized distillation column can be mentioned.
  • the second conversion product separation unit is configured to be capable of separating the liquid components, and separately outputting the obtained second separation product and the first separation product .
  • the second conversion product separation unit specifically, for example, a flash tank or an atmospheric distillation column can be mentioned.
  • the second separated product separation unit is configured to be capable of separating the second separated product, and separately outputting the obtained naphtha and atmospheric gas oil .
  • the second separation product separation unit specifically, for example, a fractionation column can be mentioned.
  • the gas component delivery unit is configured to be capable of delivering the gas component to the conversion reaction unit.
  • the gas component delivery unit specifically, for example, a gas delivery line can be cited.
  • the upgrading system may further include a second control unit and a third control unit.
  • the second control unit is configured to be capable of controlling an operating pressure of the first conversion product separation unit
  • the third control unit is configured to be capable of controlling the The operating pressure of the second conversion product separation unit is such that the operating pressure of the first conversion product separation unit is greater than the operating pressure of the second conversion product separation unit.
  • the second control unit for example, a pressure control device and a system can be exemplified.
  • the third control unit for example, a pressure control device and a system can be exemplified.
  • the third control unit may be configured to be capable of controlling an operating condition (such as an operating temperature and/or an operating pressure) of the second conversion product separation unit
  • the first isolated product is comprised of a component having a boiling point of from 20% to 60% by weight or a boiling range of between 350 ° C and 524 ° C, and such that the second separated product or any of its components There is a final boiling point of less than or equal to 350 °C.
  • the third control unit for example, a pressure control device and a system or a temperature control device and system can be exemplified.
  • the second control unit is arranged to be capable of controlling the outlet pressure and/or the outlet temperature of the gas component of the first conversion product separation unit, the third control unit being arranged to be controllable The outlet pressure and/or outlet temperature of the second separated product of the second conversion product separation unit.
  • the extraction separation unit is configured to be capable of bringing the first separation product or the first treatment product into contact with a solvent, and outputting the obtained Modifying the oil and the residue.
  • the extraction separation unit specifically, an extraction column can be mentioned.
  • the upgrading system optionally further comprises one or more of the following units.
  • the first hydrogenation unit is configured to be capable of hydrotreating the reformed oil and outputting the obtained hydrogenated modified oil.
  • the first hydrogenation unit specifically, for example, a fixed bed hydrogenation reactor can be mentioned.
  • the second hydrogenation unit is configured to be capable of hydrocracking the modified oil and separating the obtained hydrocracked product into dry gas, liquefied gas, aviation kerosene, diesel oil, and hydrogenated tail oil.
  • a fixed bed hydrocracking reactor can be mentioned.
  • the first catalytic cracking unit is configured to be capable of catalytically cracking the hydrogenated modified oil and separating the obtained first catalytic cracking product into dry gas, liquefied gas, gasoline, circulating oil, and slurry.
  • a fluidized bed catalytic cracking reactor can be mentioned.
  • a second catalytic cracking unit configured to be capable of catalytically cracking the hydrogenated modified oil in combination with the atmospheric gas oil, and separating the obtained second catalytic cracking product into dry gas, liquefied gas, gasoline , circulating oil and oil slurry.
  • the second catalytic cracking unit specifically, for example, a fluidized bed catalytic cracking reactor can be mentioned.
  • a third catalytic cracking unit configured to be capable of catalytically cracking the hydrogenated modified oil and the second separated product, and separating the obtained third catalytic cracking product into dry gas, liquefied gas, gasoline , circulating oil and oil slurry.
  • the third catalytic cracking unit specifically, for example, a fluidized bed catalytic cracking reactor can be mentioned.
  • the third hydrogenation unit is configured to be capable of hydrotreating the atmospheric gas oil and outputting the obtained diesel oil.
  • the third hydrogenation unit specifically, for example, a fixed bed hydrogenation reactor can be mentioned.
  • the fourth hydrogenation unit is configured to be capable of hydrotreating the cycle oil obtained by any unit of the reforming system in combination with the reformed oil, and outputting the obtained hydrotreated oil.
  • the fourth hydrogenation unit specifically, for example, a fixed bed hydrogenation reactor can be mentioned.
  • a fourth catalytic cracking unit configured to be capable of catalytically cracking the hydrotreated oil and the second separated product, and separating the obtained fourth catalytic cracking product into dry gas, liquefied gas, gasoline, and circulation Oil and oil slurry.
  • the fourth catalytic cracking unit specifically, for example, a fluidized bed catalytic cracking reactor can be mentioned.
  • a slurry delivery unit configured to deliver slurry and/or external oil slurry obtained from any unit of the upgrading system to the conversion reaction unit, the conversion product processing unit, and/or the Extraction separation unit.
  • the slurry conveying unit specifically, for example, a conveying line or a pump can be cited.
  • the liquefied gas delivery unit is configured to be capable of transporting the liquefied gas obtained by any unit of the reforming system to the extraction separation unit.
  • a gas delivery line can be cited as the liquefied gas delivery unit.
  • a low-quality oil is used as a reforming feedstock via a pipeline 1, a conversion catalyst via a line 2, a circulating hydrogen gas via a line 3, fresh hydrogen gas via a line 4, and a residue via a line 5 to a conversion reaction unit 7 for conversion reaction.
  • the conversion product is sent to the first conversion product separation unit 9 via line 8 for pressure distillation, separated into a gas component and a liquid component, and then the gas component is transported as a circulating hydrogen through the pipeline 10, the pipeline 3, and the pipeline 6 to the conversion.
  • the reaction unit 7 is taken out of the system via the line 10 and the line 11 in succession.
  • the liquid component is sent via line 12 to a second conversion product separation unit 13 for pressure dip to separate into a second separated product and a first separated product.
  • the second separated product is taken out of the system via line 15, and the first separated product is sent to the extraction separation unit 16 via line 14 in countercurrent contact with the solvent from line 17 for extraction separation to obtain a modified oil and a residue.
  • the modified oil is led out of the system via line 18, and a part of the residue is successively passed through the pipeline 19 and the pipeline 20, and the remaining part is recycled as a reforming raw material through the pipeline 19, the pipeline 5, and the pipeline 6 to the conversion reaction unit 7 and the low-quality oil.
  • the conversion reaction is continued together.
  • all of the residue may be externally passed through line 19 and line 20 without being circulated.
  • the upgraded oil is sent to the first hydrogenation unit 21 via line 18 for further hydrogenation
  • the hydrogenated modified oil 22 is further improved in quality.
  • the second separated product is sent to the second separated product separation unit via line 15, and fractionated to obtain naphtha and atmospheric gas oil (AGO), and naphtha is taken out of the system via line 21, and AGO is passed through line 22
  • AGO atmospheric gas oil
  • the pipeline 23 is sent to the third hydrogenation unit 24, and is hydrotreated to obtain high-quality diesel oil that meets the national V index, and the high-quality diesel oil is led out to the system via the pipeline 25;
  • the modified oil is sent to the second hydrogenation unit 26 via line 18 for hydrocracking reaction to obtain a hydrocracking product, and the hydrocracked product is sent to the fractionation system 28 via line 27, and the dry gas and the liquefied gas are separated.
  • Hydrogenated tail oil can be used as a raw material for steam cracking to produce ethylene.
  • the modified oil is sent to the fourth hydrogenation unit 20 via the pipeline 18 and the circulating oil through the pipeline 26 to be hydrotreated to obtain a hydrotreated oil having further improved quality;
  • Residue ratio of residue external residue quality / quality of modified raw material ⁇ 100%;
  • Modified oil yield quality of modified oil / quality of modified raw materials ⁇ 100%;
  • Toluene insoluble matter yield toluene insoluble matter mass / quality of modified raw material ⁇ 100%;
  • Gasoline yield gasoline quality / catalytic cracking feedstock oil quality ⁇ 100%;
  • Aviation kerosene yield aviation kerosene quality / hydrocracking feedstock oil quality ⁇ 100%;
  • Diesel yield diesel mass / hydrocracked feedstock quality x 100%.
  • the cetane number of diesel is determined according to the standard method of GB T386-2010.
  • the operational stability of the upgrading process was evaluated using the number of stable operating days of the upgrading system. Specifically, if any one of the following conditions occurs in the upgrading system, it is determined that it cannot operate stably: (1) The maximum temperature deviation ⁇ T (absolute value) of different temperature measurement points inside the conversion reactor is greater than 5 ° C; (2) The oil appears black, which under normal conditions appears yellow or yellow-green.
  • the modified raw material A and the modified raw material B are vacuum residue
  • the modified raw material C is Venezuela heavy oil reduced slag
  • the modified raw material D is high-temperature coal tar
  • the modified raw material E is deoiled asphalt. The properties of these five low quality oils are shown in Table 1.
  • a low-quality oil is first subjected to a conversion reaction, and then a conversion product is subjected to treatment to obtain a first separated product and a second separated product.
  • the specific conditions and results of the conversion reaction and the conversion product treatment are shown in Table 2.
  • a low-quality oil is first subjected to a conversion reaction, and then a conversion product is subjected to treatment to obtain a first separated product and a second separated product.
  • the specific conditions and results of the conversion reaction and the conversion product treatment are listed in Table 3.
  • Example 2 The first separated product obtained in Example 2, Example 4, and Example 7 was separately subjected to extraction and separation on a medium-sized apparatus.
  • the specific conditions and results of the extraction separation are shown in Table 4.
  • Example 10 Example 11 First source of isolated product Example 2
  • Example 4 Example 7 Extraction separation Solvent iC 4 H 8 nC 4 H 8 FCC liquefied gas Third temperature / °C 120 130 120 Solvent weight ratio 3 2.5 4 Third pressure / MPa 5.0 4.0 10 Product distribution / weight% Modified oil 42.4 48.4 41.6 Residue 57.6 51.5 58.4 Residue nature Softening point / °C 110 118 101
  • a low-quality oil is used as a reforming feedstock for a conversion reaction, and then a conversion product is subjected to treatment to obtain a first separated product and a second separated product.
  • the first separated product is further subjected to extraction and separation to obtain a modified oil and a residue.
  • a part of the residue is recycled back to the conversion reaction, mixed with low-quality oil, and then converted as a reforming raw material, and the remaining part of the residue is smashed.
  • the conversion product (low quality oil + residue) is treated to obtain a first separated product and a second separated product.
  • the first separated product is further subjected to extraction and separation to obtain a modified oil and a residue.
  • the second separated product is separated to obtain a naphtha fraction and a normal pressure gas oil.
  • Example 12 The modified oil obtained in Example 12 was subjected to hydrotreatment.
  • the specific conditions and results of this hydrotreating are listed in Table 6.
  • Example 14 Raw material oil Modified oil of Example 12 The nature of the feedstock oil Asphaltene content / weight% ⁇ 0.5 Heavy metal (Ni+V)/( ⁇ g/g) ⁇ 2 Hydrotreating Reaction temperature / °C 375 Reaction pressure / MPa 14.0 Hydrogenation catalyst Standard company C-424 Volume airspeed / h -1 1.0 Hydrogen oil volume ratio 600 Hydrogen partial pressure / MPa 13.0 Properties of modified oil after hydrogenation Density (20 ° C) / (kg / m 3 ) 910.3 Viscosity (50 ° C) / (mm 2 / s) 5.4 w (sulfur) / ( ⁇ g / g) 446 w(Ni+V)/( ⁇ /g) ⁇ 1 Carbon residue value /% 0.98 w (ash) /% 0.010
  • the modified oil has an asphaltene content of less than 0.5% and a heavy metal content of less than 2 ⁇ g/g, thereby realizing high asphaltene conversion rate and high metal of the modified raw material. Removal rate. After hydrotreating, the properties of the obtained hydrogenated modified oil satisfy the FCC feed requirements.
  • Example 12 The modified oil obtained in Example 12 was subjected to hydrocracking.
  • the specific conditions and results of this hydrocracking are listed in Table 7-1 and Table 7-2.
  • Example 15 Raw material oil Modified oil of Example 12 Hydrocracking Reaction temperature / °C 380 Reaction pressure / MPa 15.0 Hydrocracking catalyst RIPP RT-5 Volume airspeed / h -1 0.4 Hydrogen oil volume ratio 1000 Hydrogen partial pressure / MPa 13.8 Product distribution / weight% Dry gas + no gas 3.80 Liquefied gas 3.61 Light naphtha 7.15 Heavy naphtha 11.22 Aviation kerosene 38.81 Diesel 23.83 Cracked tail oil 14.48
  • Example 14 The hydrogenated modified oil obtained in Example 14 was subjected to catalytic cracking.
  • the specific conditions and results of this catalytic cracking are listed in Table 8.
  • Example 16 Raw material oil The hydrogenated modified oil of Example 14 catalytic cracking Reaction temperature / °C 520 Reaction pressure / MPa 0.4 Reaction time / second 2 Cracking catalyst CDOS-B1 Catalyst ratio 6.0 Water vapor ratio 0.3 Feedstock conversion rate /% 71.01 Product distribution / weight% Dry gas 1.91 Liquefied gas 12.84 C 5 + gasoline 49.40 Circulating oil 17.33 Slurry 11.66 Coke 6.86 C 5 + gasoline properties RON 92.1
  • high-octane gasoline can be obtained by catalytically cracking the hydrogenated modified oil.
  • the yield of the high octane gasoline was 49.40%, and the research octane number was 92.1.
  • Example 12 The atmospheric gas oil obtained in Example 12 was catalytically cracked together with the hydrogenated modified oil obtained in Example 14. The specific conditions and results of this catalytic cracking are listed in Table 9.
  • the high-octane gasoline having an octane number of more than 92 can be obtained by catalytically cracking the hydrogenated modified oil together with the atmospheric gas oil.
  • the yield of the high octane gasoline was 52.62%.
  • Example 12 The atmospheric gas oil obtained in Example 12 was subjected to hydrotreatment. The specific conditions and results of this hydrotreating are listed in Table 10.
  • Example 18 Raw material oil Normal pressure gas oil of Example 12 Hydrotreating Reaction temperature / °C 360 Reaction pressure / MPa 12.0 Hydrogenation catalyst Standard Company DC-2118 Volume airspeed / h -1 0.8 Hydrogen oil volume ratio 800 Hydrogen partial pressure / MPa 10.8 Product properties Density (20 ° C) / (kg / m 3 ) 845.6 w (sulfur) / ( ⁇ g / g) 8.2 w(N)/( ⁇ g/g) 5.9 Cetane number 51.3 Freezing point / °C -20
  • Example 16 or Example 17 The circulating oil obtained in Example 16 or Example 17 was hydrotreated together with the modified oil obtained in Example 12, and the obtained hydrotreated oil was subjected to catalytic cracking, specific conditions of the hydrotreating and catalytic cracking. The results are shown in Table 11.
  • Example 12 On the medium-sized apparatus, based on Example 12, the slurry obtained in Example 16 was recycled to the conversion reaction, mixed with the low-quality oil and the circulating residue, and then converted as a reforming raw material, and then subjected to conversion product treatment to obtain the first The product and the second isolated product are separated. The first separated product is further subjected to extraction and separation to obtain a modified oil and a residue. Part of the residue circulates and the rest is smashed. The specific conditions and results of each step are listed in Table 12.
  • the reforming raw material B is used as a reforming raw material to carry out a conversion reaction, and then the conversion product is treated to obtain a first separated product and a second separated product.
  • the first separated product was subjected to extraction separation (extraction separation conditions were the same as in Example 12) to obtain a modified oil and a residue. A portion of the residue is recycled back to the conversion unit and the remainder is externally enthalpy.
  • the conversion product of the mixed raw materials is subjected to product treatment in order to obtain a first separated product and a second separated product.
  • the first product was subjected to extraction separation (extraction separation conditions were the same as in Example 12) to obtain a modified oil and a residue.
  • the specific conditions and results of each step are listed in Table 13.
  • Example 21 The same as in Example 21 except that the change was made in accordance with Table 13.
  • relational terms such as first and second, etc. are used merely to distinguish one entity or operation from another entity or operation, without requiring or implying actual There is such a relationship or order.
  • the expression “comprises” or “comprises” or “comprises” or “comprises” is a non-exclusive expression, such that the process, method, article, or device to which these expressions are directed, includes not only one or A plurality of elements, and also other elements or elements not specifically described in this specification, such as one or more elements inherent to the process, method, article, or device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种低品质油的改质方法和改质系统。改质方法包括:(1)使低品质油在氢气的存在下并且任选在转化催化剂的存在下进行转化反应,获得转化产物,(2)将转化产物进行处理,获得第一处理产物,和(3)将第一处理产物进行萃取分离,获得改质油和残渣。改质方法和改质系统具有操作稳定、改质效率高、绿色环保、焦炭产率低或者改质油收率高的优点。

Description

一种低品质油的改质方法和改质系统 技术领域
本发明涉及燃料化工领域,特别是涉及一种低品质油的改质方法。本发明还涉及相应的改质系统。
背景技术
近年来,化石燃料的低品质化趋势逐年加剧。而且,渣油、劣质油、页岩油、油砂重油以及煤衍生油等低品质燃料油的产量也逐年递增。这类低品质油的特点是密度大、粘度大、杂原子(硫、氮、重金属)含量高或者沥青质含量高。另外,针对这类低品质油而开发的现有加工工艺(比如延迟焦化)存在着焦炭产率高、能源有效利用率低、经济效益差、生产过程不环保等问题。因此,进一步开发这类低品质油的高效、绿色改质技术,已经成为石油化工行业的发展方向和研究重点之一。
中国专利ZL200310104918.2公开了一种劣质重、渣油的改质方法,其中将重、渣油先经悬浮床缓和加氢裂解,使绝大部分或全部金属杂质从胶质和沥青质中游离出来;该加氢产物通过可切换操作或可在线置换添料的金属吸附反应器,吸附脱除悬浮床加氢裂解油中游离的金属杂质;脱金属后的产物送入渣油固定床加氢处理装置深度加氢脱除其它杂质,生产优质重油催化裂化原料。
发明内容
本发明的发明人经过刻苦的研究,发现了一种新型的低品质油的改质方法和改质系统,并由此完成了本发明。
具体而言,本发明涉及以下方面的内容。
1.一种改质方法,其特征在于,包括以下步骤:
(1)使低品质油作为改质原料在氢气的存在下并且任选在转化催化剂的存在下进行转化反应,获得转化产物,
(2)将所述转化产物进行处理(比如组分调配或者组分分离),获得第一处理产物,其中所述第一处理产物包含含量为从20重量%至60重量%(优选从25重量%至55重量%,基于所述第一处理产物的总 重量)的沸点或沸程介于350℃至524℃之间(优选介于355℃至500℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间)的组分(特别是任选含有杂原子的至少一种烃),和
(3)将所述第一处理产物进行萃取分离,获得改质油和残渣,
所述改质方法任选进一步包括以下步骤:
(4)将所述残渣的全部或者一部分(比如大于80重量%,优选大于90重量%,更优选至少95重量%)循环至所述步骤(1)。
2.按照前述方面1所述的改质方法,其中所述步骤(2)包括以下步骤中的一个或多个:
(2-1)将所述转化产物在第一压力和第一温度下进行分离,获得气体组分和液体组分,
(2-2)将所述液体组分在第二压力和第二温度下进行分离,获得第二分离产物和第一分离产物,其中所述分离使得所述第一分离产物包含含量为从20重量%至60重量%(优选从25重量%至55重量%,基于所述第一分离产物的总重量)的沸点或沸程介于350℃至524℃之间(优选介于355℃至500℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间)的组分(特别是任选含有杂原子的至少一种烃),并使得所述第二分离产物或其任一组分具有小于或等于350℃的终馏点,
(2-3)任选地,将所述第二分离产物进行分离,获得石脑油和常压瓦斯油,和
(2-4)任选地,将所述气体组分循环至所述步骤(1),
其中,所述第一压力大于所述第二压力,优选所述第一压力比所述第二压力大从4MPa至24MPa,更优选所述第一压力比所述第二压力大从7MPa至19MPa。
3.按照前述方面1-2任一项所述的改质方法,其中所述步骤(3)包括以下步骤中的一个或多个:
(3-1)使所述第一分离产物或者所述第一处理产物与溶剂在第三压力和第三温度下进行接触(优选逆流接触),获得所述改质油和所述残渣,
(3-2)任选地,将所述改质油进行加氢处理,获得加氢后改质油,
(3-3)任选地,将所述改质油进行加氢裂化,获得加氢裂化产物, 然后将所述加氢裂化产物分离为干气、液化气、航空煤油、柴油和加氢尾油,
(3-4)任选地,将所述加氢后改质油进行催化裂化,获得第一催化裂化产物,然后将所述第一催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
(3-5)任选地,将所述加氢后改质油与所述常压瓦斯油联合进行催化裂化,获得第二催化裂化产物,然后将所述第二催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
(3-6)任选地,将所述加氢后改质油与所述第二分离产物联合进行催化裂化,获得第三催化裂化产物,然后将所述第三催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
(3-7)任选地,将所述常压瓦斯油进行加氢处理,获得柴油,
(3-8)任选地,将所述改质方法的任一步骤所获得的循环油单独或与所述改质油联合进行加氢处理,获得加氢处理油,
(3-9)任选地,将所述加氢处理油与所述第二分离产物联合进行催化裂化,获得第四催化裂化产物,然后将所述第四催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
(3-10)任选地,将所述改质方法的任一步骤所获得的油浆和/或外供油浆循环至所述步骤(1)、所述步骤(2)和/或所述步骤(3),或者
(3-11)任选地,将所述改质方法的任一步骤所获得的液化气循环至所述步骤(3)或者所述步骤(3-1)。
4.按照前述方面1-3任一项所述的改质方法,其中所述转化反应的反应条件包括:氢气分压为从10.0MPa至25.0MPa,优选从13.0MPa至20.0MPa,反应温度为从380℃至470℃,优选从400℃至440℃,所述改质原料的体积空速为从0.01h-1至2.0h-1,优选从0.1h-1至1.0h-1,氢气与所述改质原料的体积比为从500至5000,优选从800至2000,任选在转化催化剂的存在下。
5.按照前述方面1-4任一项所述的改质方法,其中所述第一压力为从10.0MPa至25.0MPa,优选从13.0MPa至20.0MPa,所述第一温度为从380℃至470℃,优选从400℃至440℃,或者,所述第二压力为从0.1MPa至5.0MPa,优选从0.1MPa至4.0MPa,所述第二温度为 从150℃至390℃,优选从200℃至370℃。
6.按照前述方面1-5任一项所述的改质方法,其中所述溶剂是C3-7烃中的一种或多种,优选选自C3-5烷烃和C3-5烯烃中的一种或多种,比如选自C3-4烷烃和C3-4烯烃中的一种或多种,并且所述溶剂与所述第一分离产物或者所述第一处理产物的重量比为1-7∶1,优选1.5-5∶1。
7.按照前述方面1-6任一项所述的改质方法,其中所述第三压力为从3MPa至12MPa,优选从3.5MPa至10MPa,并且所述第三温度为从55℃至300℃,优选从70℃至220℃。
8.按照前述方面1-7任一项所述的改质方法,其中所述步骤(3-2)或者所述步骤(3-8)的反应条件包括:氢气分压为从5.0MPa至20.0MPa,优选从8.0MPa至15.0MPa,反应温度为从330℃至450℃,优选从350℃至420℃,原料油的体积空速为从0.1h-1至3.0h-1,优选从0.3h-1至1.5h-1,氢气与原料油的体积比为从300至3000,优选从800至1500,在加氢催化剂的存在下;
或者,所述步骤(3-3)的反应条件包括:氢气分压为从10.0MPa至20.0MPa,反应温度为从310℃至420℃,所述改质油的体积空速为从0.3h-1至1.2h-1,氢气与所述改质油的体积比为从600至1500,在加氢裂化催化剂的存在下;
或者,所述步骤(3-4)、所述步骤(3-5)、所述步骤(3-6)或者所述步骤(3-9)的反应条件包括:反应温度为从450℃至650℃,优选从480℃至560℃,反应压力为从0.15MPa至0.4MPa,反应时间为从0.1秒至10秒,优选从0.2秒至4秒,裂化催化剂与原料油的重量比为从3至30,优选从5至15,水蒸气与原料油的重量比为从0.05至0.6,优选从0.05至0.4,在裂化催化剂的存在下;
或者,所述步骤(3-7)的反应条件包括:氢气分压为从7.0MPa至15.0MPa,反应压力为从8MPa至12MPa,反应温度为从340℃至400℃;所述常压瓦斯油的体积空速为从0.6h-1至1.5h-1,氢气与所述常压瓦斯油的体积比为从500至800,在加氢催化剂的存在下。
9.按照前述方面1-8任一项所述的改质方法,其中所述残渣的软化点小于150℃。
10.按照前述方面1-9任一项所述的改质方法,其中所述低品质油包含沥青质、沥青烯和前沥青烯中的一种或多种,特别是包含沥青质, 优选选自劣质油、脱油沥青、重油、稠油、煤衍生油、页岩油和石化废油中的一种或多种,优选的是,所述重油选自拔头原油、由油砂沥青得到的重油和初馏点大于350℃的重油中的一种或多种,所述煤衍生油选自煤液化产生的煤液化油和煤热解生成的煤焦油中的一种或多种,或者,所述石化废油选自石化废油泥、石化油渣及其炼制产品中的一种或多种。
11.按照前述方面1-10任一项所述的改质方法,其中所述第一分离产物或者所述第一处理产物的初馏点大于或等于330℃,或者,所述第一分离产物或者所述第一处理产物进一步包含沸点或沸程小于或等于350℃的轻组分,或者,所述第一分离产物或者所述第一处理产物进一步包含沸点或沸程大于500℃(优选大于524℃)的重组分,优选所述重组分包含沥青质、沥青烯和前沥青烯中的一种或多种,特别是包含沥青质。
12.按照前述方面1-11任一项所述的改质方法,其中所述步骤(2)在获得所述第一处理产物之外,还获得一种或多种第二处理产物,所述第二处理产物或其任一组分具有小于或等于350℃的终馏点。
13.一种改质系统,其特征在于,包括转化反应单元、转化产物处理单元、第一控制单元、萃取分离单元和任选的残渣处理单元,
其中所述转化反应单元被设置为能够使得低品质油在氢气的存在下并且任选在转化催化剂的存在下进行转化反应,并输出获得的转化产物,
所述转化产物处理单元被设置为能够将所述转化产物进行处理(比如组分调配或者分离),并输出获得的第一处理产物,
所述第一控制单元被设置为能够通过控制所述转化产物处理单元的操作条件(比如操作温度和/或操作压力),使得所述第一处理产物包含含量为从20重量%至60重量%(优选从25重量%至55重量%,基于所述第一处理产物的总重量)的沸点或沸程介于350℃至524℃之间(优选介于355℃至500℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间)的组分(特别是任选含有杂原子的至少一种烃),
所述萃取分离单元被设置为能够将所述第一处理产物进行萃取分离,并分别输出获得的改质油和残渣,和
所述残渣处理单元被设置为能够将所述残渣的全部或者一部分(比如大于80重量%,优选大于90重量%,更优选至少95重量%)输送至所述转化反应单元。
14.根据前述方面13所述的改质系统,其中所述转化产物处理单元包括第一转化产物分离单元、第二转化产物分离单元、任选的第二分离产物分离单元和任选的气体组分输送单元,
所述第一转化产物分离单元被设置为能够将所述转化产物进行分离,并分别输出获得的气体组分和液体组分,
所述第二转化产物分离单元被设置为能够将所述液体组分进行分离,并分别输出获得的第二分离产物和第一分离产物,
所述第二分离产物分离单元被设置为能够将所述第二分离产物进行分离,并分别输出获得的石脑油和常压瓦斯油,和
所述气体组分输送单元被设置为能够将所述气体组分输送至所述转化反应单元。
15.根据前述方面13-14任一项所述的改质系统,进一步包括第二控制单元和第三控制单元,其中所述第二控制单元被设置为能够控制所述第一转化产物分离单元的操作压力(优选气体组分的出口压力),所述第三控制单元被设置为能够控制所述第二转化产物分离单元的操作压力(优选第二分离产物的出口压力),并且使得所述第一转化产物分离单元的操作压力大于所述第二转化产物分离单元的操作压力,
优选的是,所述第三控制单元被设置为能够通过控制所述第二转化产物分离单元的操作条件(比如操作温度和/或操作压力),使得所述第一分离产物包含含量为从20重量%至60重量%(优选从25重量%至55重量%,基于所述第一分离产物的总重量)的沸点或沸程介于350℃至524℃之间(优选介于355℃至500℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间)的组分(特别是任选含有杂原子的至少一种烃),并使得所述第二分离产物或其任一组分具有小于或等于350℃的终馏点。
16.根据前述方面13-15任一项所述的改质系统,其中所述萃取分离单元被设置为能够使所述第一分离产物或者所述第一处理产物与溶剂进行接触(优选逆流接触),并分别输出获得的所述改质油和所述残渣。
17.根据前述方面13-16任一项所述的改质系统,进一步包括以下单元中的一个或多个:
第一加氢单元,被设置为能够将所述改质油进行加氢处理,并输出获得的加氢后改质油,
第二加氢单元,被设置为能够将所述改质油进行加氢裂化,并将所获得的加氢裂化产物分离为干气、液化气、航空煤油、柴油和加氢尾油,
第一催化裂化单元,被设置为能够将所述加氢后改质油进行催化裂化,并将所获得的第一催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
第二催化裂化单元,被设置为能够将所述加氢后改质油与所述常压瓦斯油联合进行催化裂化,并将所获得的第二催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
第三催化裂化单元,被设置为能够将所述加氢后改质油与所述第二分离产物联合进行催化裂化,并将所获得的第三催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
第三加氢单元,被设置为能够将所述常压瓦斯油进行加氢处理,并输出获得的柴油,
第四加氢单元,被设置为能够将所述改质系统的任一单元所获得的循环油与所述改质油联合进行加氢处理,并输出获得的加氢处理油,
第四催化裂化单元,被设置为能够将所述加氢处理油与所述第二分离产物联合进行催化裂化,并将所获得的第四催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
油浆输送单元,被设置为能够将所述改质系统的任一单元所获得的油浆和/或外供油浆输送至所述转化反应单元、所述转化产物处理单元和/或所述萃取分离单元,或者
液化气输送单元,被设置为能够将所述改质系统的任一单元所获得的液化气输送至所述萃取分离单元。
技术效果
根据本发明的改质方法和改质系统,至少能够实现如下技术效果中的一个,或者在优选的情况下,至少能够同时实现如下技术效果中 的两个或更多个。
(1)三废排放较少,几乎不产生固体焦炭,生产过程绿色环保。
(2)能够将低品质油高效率、最大量地改质为富含饱和结构、基本上不含重金属且基本上不含沥青质的改质油。在此,在优选的情况下,所述低品质油的转化率一般大于90重量%,优选大于95重量%,所述改质油中重金属(以Ni+V为计)的含量一般小于10μg/g,优选小于1μg/g,并且所述改质油中沥青质的含量一般小于2.0重量%,优选小于0.5重量%。
(3)能够提高改质过程(特别是萃取分离步骤)的操作稳定性,显著延长所述改质方法或者所述改质系统的运行周期。
(4)能够获得高的改质油收率。在此,在优选的情况下,改质油收率最高可以达到88%。
(5)能够获得低的甲苯不溶物收率。在此,在优选的情况下,甲苯不溶物收率最低可以达到0.5%。
(6)所获得的改质油能够进行进一步加工,以生产满足国标的高品质航空煤油、高辛烷值汽油或者满足国VI指标的高品质柴油。在此,在优选的情况下,高辛烷值汽油的收率一般大于50重量%,或者高品质航空煤油的收率一般大于35重量%等。
附图说明
图1示意性地说明了本发明的一个实施方式的低品质油的改质方法。
图2示意性地说明了本发明的另一个实施方式的低品质油的改质方法。
图3示意性地说明了本发明的另一个实施方式的低品质油的改质方法。
图4示意性地说明了本发明的另一个实施方式的低品质油的改质方法。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权 利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域常规使用”、“本领域常规已知”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用或已知的那些,但也包括目前还不常用或还不普遍知道,却将变成本领域公认为适用于类似目的的那些。
在本申请发明的上下文中,术语“沥青烯”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将油中甲苯可溶、正已烷不溶物称为沥青烯。
在本申请发明的上下文中,术语“前沥青烯”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将油中四氢呋喃可溶、甲苯不溶物称为前沥青烯。
在本申请发明的上下文中,术语“沥青质”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将油中不溶于非极性的小分子正构烷烃(比如正戊烷或者正庚烷)而溶于苯或者甲苯的物质称为沥青质。
在本申请发明的上下文中,术语“石化油”通常指的是燃料化工领域作为原料而使用或者作为产品而制造的各种油,包括化石燃料、燃料油、化石燃料加工产品(比如柴油和煤油等)、废油或废渣等等。
在本申请发明的上下文中,术语“低品质油”指的是燃料化工领域任何有改质需求的油。作为所述油,具体比如可以举出低品质化石燃料、低品质燃料油、低品质化石燃料加工产品(比如低品质汽油和柴油等)、化石燃料加工废油或废渣等等。作为所述改质需求,比如可以举出通过化学反应来改变所述油中一种或多种组分的分子结构,以获得燃料化工产品如汽油、柴油、煤油、液化气和石脑油等。作为所述组分,特别可以举出芳香族组分和沥青质等。
在本申请发明的上下文中,术语“劣质油”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将满足选自API度小于27、 硫含量大于1.5重量%、TAN(总酸值)大于1.0mgKOH/g、馏程大于500℃、沥青质含量大于10重量%和重金属(以Ni+V为计)含量大于100μg/g中的任何一项或多项指标的油称为劣质油。
在本申请发明的上下文中,术语“渣油”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将原油经过常减压蒸馏得到的塔底馏出物称为渣油。进一步举例而言,一般将常压塔底馏出物称为常压渣油(一般为沸点大于350℃的馏分),或者一般将减压塔底馏出物称为减压渣油(一般为沸点大于500℃或524℃的馏分)。
在本申请发明的上下文中,术语“循环油”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将催化裂化工艺获得的馏程介于205℃至350℃之间的馏分(也称为柴油馏分)或者馏程介于343℃至500℃之间的馏分(也称为重循环油)称为循环油。
在本申请发明的上下文中,从裂化工艺的分馏步骤获得的塔底油,经过沉降器分离后,从沉降器上部排出的产品一般称为澄清油,从沉降器底部排出的产品一般称为油浆。
在本申请发明的上下文中,术语“重油”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将沸点在350℃以上的馏分油或者渣油称为重油。进一步举例而言,馏分油一般指的是原油或二次加工油经常压精馏和减压精馏得出的馏分产品,比如重柴油、重瓦斯油、润滑油馏分或者裂化原料等。
在本申请发明的上下文中,术语“稠油”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将沥青质和胶质含量较高、黏度较高的原油称为稠油。进一步举例而言,一般将地面20℃密度大于0.943、地下原油黏度大于50厘没的原油叫稠油。
在本申请发明的上下文中,术语“脱油沥青”必须按照燃料化工领域通常的含义进行理解。举例而言,一般指的是原料油在溶剂脱沥青装置中,通过与溶剂接触、溶解分离、萃取塔塔底得到的富沥青质、富含芳香组分的萃余物。根据溶剂种类的不同,可分为丙烷脱油沥青,丁烷脱油沥青、戊烷脱油沥青等。
在本申请发明的上下文中,术语“拔头原油”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将在常减压蒸馏工艺中对原油进行分馏时,从初馏塔的塔底或者闪蒸塔的塔底排出的油称为拔 头油。
在本申请发明的上下文中,术语“煤衍生油”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将以煤为原料,经过化学加工得到的液体燃料称为煤衍生油。
在本申请发明的上下文中,术语“页岩油”必须按照燃料化工领域通常的含义进行理解。举例而言,一般将油母页岩经低温干馏时获得的褐色黏稠状膏状物称为页岩油,其有刺激性臭味,氮含量较高。
在本申请发明的上下文中,术语“分离”通常指的是物理分离,比如萃取、分液、蒸馏、蒸发、闪蒸、冷凝等,除非另有特别说明或者不符合本领域技术人员的常规理解。
在本申请发明的上下文中,沸点、沸程(有时也称为馏程)、终馏点和初馏点或者类似参数均指的是常压(101325Pa)下的值。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
需要特别说明的是,在本说明书的上下文中公开的两个或多个方面(或实施方式)可以彼此任意组合,由此而形成的技术方案(比如方法或系统)属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围之内。
根据本发明,首先涉及一种改质方法。在此,所述改质方法至少包括步骤(1)、步骤(2)和步骤(3)。
步骤(1):使低品质油在氢气的存在下进行转化反应,获得转化产物(以下将该步骤称为原料转化步骤)。此时,以所述低品质油作为改质原料。
根据本发明的一个方面,在所述步骤(1)中,为了使本发明所述的技术效果中的一个或多个更为显著,所述低品质油可能包含沥青质,可能包含沥青烯,可能包含前沥青烯,也可能包含沥青质、沥青烯和前沥青烯中的两种或更多种,特别是包含沥青质和/或前沥青烯。这些低品质油可以单独使用一种,或者以任意的比例组合使用多种。本发明并不旨在明确所述沥青质、所述沥青烯或者所述前沥青烯在所述低品质油中的具体含量,只要是根据本领域技术人员的常规理解判断为“含有”即可,但为了方便理解起见,所述含量比如一般至少为0.5重 量%以上。
根据本发明的一个方面,在所述步骤(1)中,作为所述低品质油,具体比如可以举出劣质油、脱油沥青、重油、稠油、煤衍生油、页岩油和石化废油。更具体举例而言,作为所述重油,具体比如可以举出拔头原油、由油砂沥青得到的重油和初馏点大于350℃的重油。另外,作为所述煤衍生油,具体比如可以举出煤液化产生的煤液化油和煤热解生成的煤焦油。另外,作为所述石化废油,具体比如可以举出石化废油泥、石化油渣及其炼制产品。这些低品质油可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述步骤(1)中,作为所述转化反应(也称为临氢热转化反应),可以按照本领域已知的任何方式进行,并没有特别的限定。另外,所述转化反应可以在本领域已知的任何转化反应装置(比如热转化反应器)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(1)中,氢气分压可以参照本领域的常规选择,但一般为从10.0MPa至25.0MPa,优选从13.0MPa至20.0MPa。
根据本发明的一个方面,在所述步骤(1)中,反应温度可以参照本领域的常规选择,但一般为从380℃至470℃,优选从400℃至440℃。
根据本发明的一个方面,在所述步骤(1)中,所述改质原料(比如所述低品质油)的体积空速可以参照本领域的常规选择,但一般为从0.01h-1至2.0h-1,优选从0.1h-1至1.0h-1
根据本发明的一个方面,在所述步骤(1)中,氢气与所述改质原料(比如所述低品质油)的体积比可以参照本领域的常规选择,但一般为从500至5000,优选从800至2000。
根据本发明的一个方面,在所述步骤(1)中,所述转化反应可以在转化催化剂的存在下进行,也可以不在转化催化剂的存在下进行。在此,作为所述转化催化剂,比如可以举出本领域为此目的而常规使用的任何转化催化剂或者可以按照本领域常规已知的任何制造方法进行制造,并没有特别的限定。具体举例而言,作为所述转化催化剂,比如可以举出本体型转化催化剂,更具体比如可以举出元素周期表第VB族金属的化合物、元素周期表第VIB族金属的化合物和元素周期表 第VIII族金属的化合物等,特别是Mo化合物、W化合物、Ni化合物、Co化合物、Fe化合物、V化合物和Cr化合物等。这些化合物可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述转化催化剂的用量,以所述改质原料(比如所述低品质油)的总重量为基准,一般为从10μg/g至50000μg/g,优选从30μg/g至25000μg/g。
步骤(2):将所述转化产物进行处理,获得第一处理产物(以下称为转化产物处理步骤)。
根据本发明的一个方面,在所述步骤(2)中,作为所述处理,可以按照本领域已知的任何方式进行,只要能够使得所述转化产物在经过所述处理之后包含含量为从20重量%至60重量%(以下称为特定含量)的沸点或沸程介于350℃至524℃之间的组分(以下称为特别组分)即可,由此获得所述第一处理产物。在此,作为所述处理,具体比如可以举出向所述转化产物中添加或者从所述转化产物中减少预定量的所述特别组分,由此使得最终获得的第一处理产物包含所述特定含量的所述特别组分的方法(以下称为组分调配方法),或者,将所述转化产物进行组分分离,由此使得最终获得的第一处理产物包含所述特定含量的所述特别组分的方法(以下称为组分分离方法)。
根据本发明的一个方面,在所述步骤(2)中,通过使所述第一处理产物包含所述特定含量的所述特别组分,至少能够提高改质过程(特别是萃取分离步骤)的操作稳定性。在此,作为所述特定含量,一般为从20重量%至60重量%,优选从25重量%至55重量%,基于所述第一处理产物的总重量。
根据本发明的一个方面,在所述步骤(2)中,所述特别组分的沸点或沸程进一步可以为介于350℃至524℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间。
根据本发明的一个方面,在所述步骤(2)中,所述特别组分来自于石化油,并且一般是烃,特别是多种烃的混合物。在此,作为所述烃,指的是基本上由碳原子和氢原子构成的化合物,但在其分子结构中有时还可以进一步包含O、N、P、Cl或者S等杂原子。本发明并不旨在明确所述特别组分的具体化学结构,只要其含量和沸点(或沸程)满足本说明书的前述任一相应规定即可。而且,所述特别组分可以从市面上购得,也可以通过简便的方法进行制造,只要其属于石化油(特 别是所述烃或所述烃混合物),并且沸点(或沸程)满足本说明书的前述任一相应规定即可。鉴于此,作为其来源,所述特别组分由于通常作为构成组分包含在所述转化产物中,因此可以直接来源于所述转化产物。或者,所述特别组分也可能来源于所述改质原料或者本说明书所述改质方法的任一步骤所获得的石化油,特别是来源于本说明书在下文所述的残渣和油浆等。而且,作为所述特别组分的制造方法,比如可以举出将所述石化油进行蒸馏,留取沸点(或沸程)满足本说明书的前述任一相应规定的馏分,即获得所述特别组分。另外,作为所述特别组分的所述特定含量的测量方法,比如可以举出对所述第一处理产物进行蒸馏,留取沸点(或沸程)满足本说明书的前述任一相应规定的全部馏分,以所述馏分占所述第一处理产物总重量的百分比作为所述特定含量。
根据本发明的一个方面,在所述步骤(2)中,所述第一处理产物的初馏点一般大于或等于300℃,比如大于或等于330℃,进一步比如大于或等于350℃。
根据本发明的一个方面,在所述步骤(2)中,除了所述特别组分之外,所述第一处理产物还可能进一步包含沸点或沸程小于或等于350℃的轻组分。本发明并不旨在明确所述轻组分在所述第一处理产物中的具体含量,但举例而言,所述轻组分的含量比如可以是从1重量%至10重量%,基于所述第一处理产物的总重量。
根据本发明的一个方面,在所述步骤(2)中,除了所述特别组分之外,所述第一处理产物还可能进一步包含沸点或沸程大于500℃(优选大于524℃)的重组分。在此,所谓“沸点或沸程大于500℃”,指的是所述重组分显示出大于500℃的沸点或沸程,但也包括所述重组分在大于500℃的温度下发生热分解而不显示沸点或沸程的情况。另外,为了使本发明所述的技术效果中的一个或多个更为显著,在优选的情况下,所述重组分包含沥青质、沥青烯、前沥青烯或者其组合作为构成成分,特别是包含沥青质作为构成成分。本发明并不旨在明确所述重组分在所述第一处理产物中的具体含量,但举例而言,所述重组分的含量比如可以是余量,基于所述第一处理产物的总重量。
根据本发明的一个方面,在所述步骤(2)中,除了所述特别组分和所述轻组分之外,所述第一处理产物还可能进一步包含沸点或沸程 大于500℃(优选大于524℃)的重组分。在此,所谓“沸点或沸程大于500℃”,指的是所述重组分显示出大于500℃的沸点或沸程,但也包括所述重组分在大于500℃的温度下发生热分解而不显示沸点或沸程的情况。另外,为了使本发明所述的技术效果中的一个或多个更为显著,在优选的情况下,所述重组分包含沥青质、沥青烯、前沥青烯或者其组合作为构成成分,特别是包含沥青质作为构成成分。本发明并不旨在明确所述重组分在所述第一处理产物中的具体含量,但举例而言,所述重组分的含量比如可以是余量,基于所述第一处理产物的总重量。
根据本发明的一个方面,在所述步骤(2)中,除了所述第一处理产物之外,还可能获得一种或多种第二处理产物。在此,所述第二处理产物或其任一组分显示出小于或等于350℃的终馏点。
根据本发明的一个方面,在所述步骤(2)中,作为所述组分分离方法,具体比如可以举出蒸发、蒸馏和闪蒸等。这些组分分离方法可以按照本领域常规已知的任何方式进行,只要其能够最终获得所述第一处理产物即可。更为具体举例而言,作为所述组分分离方法,比如可以举出包含步骤(2-1)和步骤(2-2)的分离方法。
步骤(2-1):将所述转化产物在第一压力和第一温度下进行分离,获得气体组分和液体组分。
根据本发明的一个方面,在所述步骤(2-1)中,作为所述分离,可以按照本领域已知的任何方法和任何方式进行,具体比如可以举出蒸馏、分馏和闪蒸等,特别是蒸馏。另外,所述分离可以在本领域已知的任何分离装置(比如蒸馏塔)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(2-1)中,所述气体组分一般富含氢气,或者说所述气体组分以氢气为主要成分。在此,本发明并不旨在明确氢气在所述气体组分中的具体含量,但作为举例而言,氢气的含量一般至少为85重量%以上。根据需要,可以将所述气体组分作为氢气循环至所述步骤(1)以参与所述转化反应。另外,举例而言,在使用加压蒸馏塔或类似装置进行所述分离时,所述气体组分代表塔顶馏分,而所述液体组分代表塔底馏分。
根据本发明的一个方面,在所述步骤(2-1)中,所述第一压力一 般为从10.0MPa至25.0MPa,优选从13.0MPa至20.0MPa。在此,为了方便测量起见,所述第一压力一般指的是所述气体组分的压力,或者换句话说,在使用分离装置进行所述分离时,所述第一压力一般指的是所述气体组分离开所述分离装置时的出口压力。
根据本发明的一个方面,在所述步骤(2-1)中,所述第一温度一般为从380℃至470℃,优选从400℃至440℃。在此,为了方便测量起见,所述第一温度一般指的是所述液体组分的温度,或者换句话说,在使用分离装置进行所述分离时,所述第一温度一般指的是所述液体组分离开所述分离装置时的出口温度。
步骤(2-2):将所述液体组分在第二压力和第二温度下进行分离,获得第二分离产物和第一分离产物。
根据本发明的一个方面,在所述步骤(2-2)中,作为所述分离,可以按照本领域已知的任何方法和任何方式进行,具体比如可以举出蒸馏和分馏等,特别是常压或加压蒸馏。另外,所述分离可以在本领域已知的任何分离装置(比如常压蒸馏罐或加压蒸馏塔)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(2-2)中,所述第二压力一般为从0.1MPa至5.0MPa,优选从0.1MPa至4.0MPa。在此,为了方便测量起见,所述第二压力一般指的是所述第二分离产物的压力,或者换句话说,在使用分离装置进行所述分离时,所述第二压力一般指的是所述第二分离产物离开所述分离装置时的出口压力。
根据本发明的一个方面,在所述步骤(2-2)中,所述第二温度一般为从150℃至390℃,优选从200℃至370℃。在此,为了方便测量起见,所述第二温度一般指的是所述第一分离产物的温度,或者换句话说,在使用分离装置进行所述分离时,所述第二温度一般指的是所述第一分离产物离开所述分离装置时的出口温度。
根据本发明的一个方面,为了使本发明所述的技术效果中的一个或多个更为显著,所述第一压力一般大于所述第二压力,优选所述第一压力比所述第二压力大从4MPa至24MPa,更优选所述第一压力比所述第二压力大从7MPa至19MPa。
根据本发明的一个方面,在所述步骤(2-2)中,为了使本发明所述的技术效果中的一个或多个更为显著,在经过所述分离之后,最终 获得的所述第一分离产物包含含量为从20重量%至60重量%(以下称为特定含量)的沸点或沸程介于350℃至524℃之间的组分(以下称为特别组分),同时所述第二分离产物或其任一组分具有小于或等于350℃的终馏点。
根据本发明的一个方面,在所述步骤(2-2)中,作为所述特别组分的所述特定含量,一般为从20重量%至60重量%,优选从25重量%至55重量%,基于所述第一分离产物的总重量。
根据本发明的一个方面,在所述步骤(2-2)中,所述特别组分的沸点或沸程进一步可以为介于350℃至500℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间。
根据本发明的一个方面,在所述步骤(2-2)中,所述特别组分一般是烃,特别是多种烃的混合物。在此,作为所述烃,指的是基本上由碳原子和氢原子构成的化合物,但在其分子结构中有时还可以进一步包含O、N、P、Cl或者S等杂原子。本发明并不旨在明确所述特别组分的具体化学结构,只要其含量和沸点(或沸程)满足本说明书的前述任一相应规定即可。另外,从其获得方式可知,所述特别组分原本作为构成组分包含在所述转化产物或者所述液体组分之中。然后,经过所述分离,所述特别组分(的一部分或者全部)转而成为所述第一分离产物的必要构成组分。另外,作为所述特别组分的所述特定含量的测量方法,比如可以举出对所述第一分离产物进行蒸馏,留取沸点(或沸程)满足本说明书的前述任一相应规定的全部馏分,以所述馏分占所述第一分离产物总重量的百分比作为所述特定含量。
根据本发明的一个方面,在所述步骤(2-2)中,所述第一分离产物的初馏点一般大于或等于300℃,比如大于或等于330℃,进一步比如大于或等于350℃。
根据本发明的一个方面,在所述步骤(2-2)中,除了所述特别组分之外,所述第一分离产物还可能进一步包含沸点或沸程小于或等于350℃的轻组分。本发明并不旨在明确所述轻组分在所述第一分离产物中的具体含量,但举例而言,所述轻组分的含量比如可以是从1重量%至10重量%,基于所述第一分离产物的总重量。
根据本发明的一个方面,在所述步骤(2-2)中,除了所述特别组分之外,所述第一分离产物还可能进一步包含沸点或沸程大于500℃ (优选大于524℃)的重组分。在此,所谓“沸点或沸程大于500℃”,指的是所述重组分显示出大于500℃的沸点或沸程,但也包括所述重组分在大于500℃的温度下发生热分解而不显示沸点或沸程的情况。另外,为了使本发明所述的技术效果中的一个或多个更为显著,在优选的情况下,所述重组分包含沥青质、沥青烯、前沥青烯或者其组合作为构成成分,特别是包含沥青质作为构成成分。本发明并不旨在明确所述重组分在所述第一分离产物中的具体含量,但举例而言,所述重组分的含量比如可以是余量,基于所述第一分离产物的总重量。
根据本发明的一个方面,在所述步骤(2-2)中,除了所述特别组分和所述轻组分之外,所述第一分离产物还可能进一步包含沸点或沸程大于500℃(优选大于524℃)的重组分。在此,所谓“沸点或沸程大于500℃”,指的是所述重组分显示出大于500℃的沸点或沸程,但也包括所述重组分在大于500℃的温度下发生热分解而不显示沸点或沸程的情况。另外,为了使本发明所述的技术效果中的一个或多个更为显著,在优选的情况下,所述重组分包含沥青质、沥青烯、前沥青烯或者其组合作为构成成分,特别是包含沥青质作为构成成分。本发明并不旨在明确所述重组分在所述第一分离产物中的具体含量,但举例而言,所述重组分的含量比如可以是余量,基于所述第一分离产物的总重量。
根据本发明的一个方面,在所述步骤(2-2)中,举例而言,在使用蒸馏塔、闪蒸罐或类似装置进行所述分离时,所述第一分离产物代表塔底液或罐底凝液,而所述第二分离产物代表塔顶轻组分或罐顶闪蒸轻组分。
根据本发明的一个方面,所述转化产物处理步骤任选还可以进一步包括步骤(2-3)、步骤(2-4)或者二者的组合。
步骤(2-3):将所述第二处理产物(包括所述第二分离产物)进行分离,获得石脑油和常压瓦斯油。
根据本发明的一个方面,在所述步骤(2-3)中,作为所述分离,可以按照本领域已知的任何方法和任何方式进行,具体比如可以举出蒸馏和分馏等,特别是分馏。另外,所述分离可以在本领域已知的任何分离装置(比如分馏塔)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(2-3)中,操作压力一般为从0.05MPa至2.0MPa,优选从0.1.0MPa至1.0MPa。
根据本发明的一个方面,在所述步骤(2-3)中,操作温度一般为从50℃至350℃,优选从150℃至330℃。
步骤(2-4):将所述气体组分循环至所述步骤(1)。
根据本发明的一个方面,在所述步骤(2-4)中,可以将所述气体组分作为氢气循环至改质方法中任何需要氢气参与的操作步骤,比如所述步骤(1)。
步骤(3):将所述第一处理产物(包括所述第一分离产物)进行萃取分离,获得改质油和残渣(以下称为萃取分离步骤)。
根据本发明的一个方面,在所述步骤(3)中,为了使本发明所述的技术效果中的一个或多个更为显著,特别是为了进一步提高所述萃取分离步骤的操作稳定性,所述残渣的软化点一般小于150℃。
根据本发明的一个方面,所述步骤(3)可以按照包括步骤(3-1)的萃取分离方法进行。
步骤(3-1):使所述第一处理产物(包括所述第一分离产物)与溶剂在第三压力和第三温度下进行接触,获得所述改质油和所述残渣。
根据本发明的一个方面,在所述步骤(3-1)中,作为所述接触,可以按照本领域已知的任何方法和任何方式进行,只要可以使得所述第一处理产物被所述溶剂充分萃取,由此获得所述改质油和所述残渣即可,具体比如可以举出逆流接触等。另外,所述萃取可以在本领域已知的任何萃取装置(比如萃取塔)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-1)中,作为所述溶剂,比如可以举出C3-7烃,更具体比如可以举出C3-5烷烃和C3-5烯烃,特别是C3-4烷烃和C3-4烯烃。这些溶剂可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述溶剂或其一部分,还可以使用本说明书下文所述的液化气。
根据本发明的一个方面,在所述步骤(3-1)中,所述溶剂与所述第一处理产物(包括所述第一分离产物)的重量比(称为溶剂比)一般为1-7∶1,优选1.5-5∶1。
根据本发明的一个方面,在所述步骤(3-1)中,所述第三压力一 般为从3MPa至12MPa,优选从3.5MPa至10MPa。
根据本发明的一个方面,在所述步骤(3-1)中,所述第三温度一般为从55℃至300℃,优选从70℃至220℃。
根据本发明的一个方面,根据需要,所述萃取分离步骤任选还可以进一步包括步骤(3-2)至步骤(3-11)中的一个或多个。
步骤(3-2):任选地,将所述改质油进行加氢处理,获得加氢后改质油。
根据本发明的一个方面,在所述步骤(3-2)中,作为所述加氢处理,可以按照本领域已知的任何方式进行,并没有特别的限定。另外,所述加氢处理可以在本领域已知的任何加氢处理装置(比如固定床反应器、流化床反应器)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-2)中,氢气分压可以参照本领域的常规选择,但一般为从5.0MPa至20.0MPa,优选从8.0MPa至15.0MPa。
根据本发明的一个方面,在所述步骤(3-2)中,反应温度可以参照本领域的常规选择,但一般为从330℃至450℃,优选从350℃至420℃。
根据本发明的一个方面,在所述步骤(3-2)中,原料油(指的是所述改质油)的体积空速可以参照本领域的常规选择,但一般为从0.1h-1至3.0h-1,优选从0.3h-1至1.5h-1
根据本发明的一个方面,在所述步骤(3-2)中,氢气与原料油(指的是所述改质油)的体积比可以参照本领域的常规选择,但一般为从300至3000,优选从800至1500。
根据本发明的一个方面,在所述步骤(3-2)中,所述加氢处理一般在加氢催化剂的存在下进行。在此,作为所述加氢催化剂,比如可以举出本领域为此目的而常规使用的任何加氢催化剂或者可以按照本领域常规已知的任何制造方法进行制造,而且所述加氢催化剂在所述步骤中的用量可以参照本领域的常规认识,并没有特别的限定。具体举例而言,所述加氢催化剂一般包含载体和活性金属组分。更为具体而言,作为所述活性金属组分,比如可以举出元素周期表第VIB族金属以及元素周期表第VIII族非贵金属等,特别是镍与钨的组合,镍、钨 与钴的组合,镍与钼的组合,或者钴与钼的组合。这些活性金属组分可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述载体,比如可以举出氧化铝、二氧化硅和无定形硅铝等。这些载体可以单独使用一种,或者以任意的比例组合使用多种。本发明对所述载体和所述活性金属组分各自的含量没有特别的限定,可以参照本领域的常规认识。
步骤(3-3):任选地,将所述改质油进行加氢裂化,获得加氢裂化产物。
根据本发明的一个方面,在所述步骤(3-3)中,作为所述加氢裂化,可以按照本领域已知的任何方式进行,并没有特别的限定。另外,所述加氢裂化可以在本领域已知的任何加氢裂化装置(比如固定床反应器、流化床反应器)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-3)中,将所述加氢裂化产物进一步分离为干气、液化气、航空煤油、柴油和加氢尾油。在此,作为所述分离,可以按照本领域已知的任何方法和任何方式进行,具体比如可以举出蒸馏和分馏等,特别是分馏。另外,所述分离可以在本领域已知的任何分离装置(比如分馏塔)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-3)中,氢气分压可以参照本领域的常规选择,但一般为从10.0MPa至20.0MPa。
根据本发明的一个方面,在所述步骤(3-3)中,反应温度可以参照本领域的常规选择,但一般为从310℃至420℃。
根据本发明的一个方面,在所述步骤(3-3)中,所述改质油的体积空速可以参照本领域的常规选择,但一般为从0.3h-1至1.2h-1
根据本发明的一个方面,在所述步骤(3-3)中,氢气与所述改质油的体积比可以参照本领域的常规选择,但一般为从600至1500。
根据本发明的一个方面,在所述步骤(3-3)中,所述加氢裂化一般在加氢裂化催化剂的存在下进行。在此,作为所述加氢裂化催化剂,比如可以举出本领域为此目的而常规使用的任何加氢裂化催化剂或者可以按照本领域常规已知的任何制造方法进行制造,而且所述加氢裂化催化剂在所述步骤中的用量可以参照本领域的常规认识,并没有特 别的限定。具体举例而言,所述加氢裂化催化剂一般包含载体、活性金属组分和裂化活性组元。更为具体举例而言,作为所述活性金属组分,比如可以举出元素周期表第VIB族金属的硫化物、元素周期表第VIII族贱金属的硫化物或者元素周期表第VIII族贵金属等,特别是Mo硫化物、W硫化物、Ni硫化物、Co硫化物、Fe硫化物、Cr硫化物、Pt和Pd等。这些活性金属组分可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述裂化活性组元,比如可以举出无定形硅铝和分子筛等。这些裂化活性组元可以单独使用一种,或者以任意的比例组合使用多种。再者,作为所述载体,比如可以举出氧化铝、氧化硅、氧化钛和活性炭等。这些载体可以单独使用一种,或者以任意的比例组合使用多种。本发明对所述载体、所述活性金属组分和所述裂化活性组元各自的含量没有特别的限定,可以参照本领域的常规认识。
步骤(3-4):任选地,将所述加氢后改质油进行催化裂化(简称FCC),获得第一催化裂化产物。
根据本发明的一个方面,在所述步骤(3-4)中,可以将所述第一催化裂化产物进一步分离为干气、液化气、汽油、循环油和油浆。在此,作为所述分离,可以按照本领域已知的任何方法和任何方式进行,具体比如可以举出蒸馏和分馏等,特别是分馏。另外,所述分离可以在本领域已知的任何分离装置(比如分馏塔)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-4)中,作为所述催化裂化,可以按照本领域已知的任何方式进行,并没有特别的限定。另外,所述催化裂化可以在本领域已知的任何催化裂化装置(比如流化床反应器)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-4)中,反应温度可以参照本领域的常规选择,但一般为从450℃至650℃,优选从480℃至560℃。
根据本发明的一个方面,在所述步骤(3-4)中,反应压力可以参照本领域的常规选择,但一般为从0.15MPa至0.4MPa。
根据本发明的一个方面,在所述步骤(3-4)中,反应时间可以参照本领域的常规选择,但一般为从0.1秒至10秒,优选从0.2秒至4 秒。
根据本发明的一个方面,在所述步骤(3-4)中,裂化催化剂与原料油(指的是所述加氢后改质油)的重量比可以参照本领域的常规选择,但一般为从3至30,优选从5至15。
根据本发明的一个方面,在所述步骤(3-4)中,水蒸气与原料油(指的是所述加氢后改质油)的重量比可以参照本领域的常规选择,但一般为从0.05至0.6,优选从0.05至0.4。
根据本发明的一个方面,在所述步骤(3-4)中,所述催化裂化一般在裂化催化剂的存在下进行。在此,作为所述裂化催化剂,比如可以举出本领域为此目的而常规使用的任何裂化催化剂或者可以按照本领域常规已知的任何制造方法进行制造,并没有特别的限定。具体举例而言,所述裂化催化剂一般是固体酸催化剂,优选包含裂化活性组元和载体。更为具体举例而言,作为所述裂化活性组元,比如可以举出沸石,特别是任选含有稀土元素的Y型沸石、任选含有稀土元素的HY型沸石、任选含有稀土元素的超稳Y型沸石以及任选含有稀土元素的β型沸石等。这些裂化活性组元可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述载体,比如可以举出难熔无机氧化物、天然粘土、氧化铝、二氧化硅和无定形硅铝等。这些载体可以单独使用一种,或者以任意的比例组合使用多种。本发明对所述裂化活性组元和所述载体各自的含量没有特别的限定,可以参照本领域的常规认识。
步骤(3-5):任选地,将所述加氢后改质油与所述常压瓦斯油联合进行催化裂化,获得第二催化裂化产物。
根据本发明的一个方面,在所述步骤(3-5)中,所谓联合,指的是所述加氢后改质油与所述常压瓦斯油共同作为所述催化裂化的原料。为此,二者可以按照预定的比例预先混合然后再进行所述催化裂化,也可以按照预定的比例同时进行所述催化裂化,并没有特别的限定。
根据本发明的一个方面,在所述步骤(3-5)中,可以将所述第二催化裂化产物进一步分离为干气、液化气、汽油、循环油和油浆。在此,作为所述分离,可以按照本领域已知的任何方法和任何方式进行,具体比如可以举出蒸馏和分馏等,特别是分馏。另外,所述分离可以 在本领域已知的任何分离装置(比如分馏塔)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-5)中,作为所述催化裂化,可以按照本领域已知的任何方式进行,并没有特别的限定。另外,所述催化裂化可以在本领域已知的任何催化裂化装置(比如流化床反应器)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-5)中,反应温度可以参照本领域的常规选择,但一般为从450℃至650℃,优选从480℃至560℃。
根据本发明的一个方面,在所述步骤(3-5)中,反应压力可以参照本领域的常规选择,但一般为从0.15MPa至0.4MPa。
根据本发明的一个方面,在所述步骤(3-5)中,反应时间可以参照本领域的常规选择,但一般为从0.1秒至10秒,优选从0.2秒至4秒。
根据本发明的一个方面,在所述步骤(3-5)中,裂化催化剂与原料油(指的是所述加氢后改质油和所述常压瓦斯油)的重量比可以参照本领域的常规选择,但一般为从3至30,优选从5至15。
根据本发明的一个方面,在所述步骤(3-5)中,水蒸气与原料油(指的是所述加氢后改质油和所述常压瓦斯油)的重量比可以参照本领域的常规选择,但一般为从0.05至0.6,优选从0.05至0.4。
根据本发明的一个方面,在所述步骤(3-5)中,所述催化裂化一般在裂化催化剂的存在下进行。在此,作为所述裂化催化剂,比如可以举出本领域为此目的而常规使用的任何裂化催化剂或者可以按照本领域常规已知的任何制造方法进行制造,并没有特别的限定。具体举例而言,所述裂化催化剂一般是固体酸催化剂,优选包含裂化活性组元和载体。更为具体举例而言,作为所述裂化活性组元,比如可以举出沸石,特别是任选含有稀土元素的Y型沸石、任选含有稀土元素的HY型沸石、任选含有稀土元素的超稳Y型沸石以及任选含有稀土元素的β型沸石等。这些裂化活性组元可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述载体,比如可以举出难熔无机氧化物、天然粘土、氧化铝、二氧化硅和无定形硅铝等。这些载体可以单独使用一种,或者以任意的比例组合使用多种。本发明对所述裂化 活性组元和所述载体各自的含量没有特别的限定,可以参照本领域的常规认识。
步骤(3-6):任选地,将所述加氢后改质油与所述第二分离产物联合进行催化裂化,获得第三催化裂化产物。
根据本发明的一个方面,在所述步骤(3-6)中,所谓联合,指的是所述加氢后改质油与所述第二分离产物共同作为所述催化裂化的原料。为此,二者可以按照预定的比例预先混合然后再进行所述催化裂化,也可以按照预定的比例同时进行所述催化裂化,并没有特别的限定。
根据本发明的一个方面,在所述步骤(3-6)中,可以将所述第三催化裂化产物进一步分离为干气、液化气、汽油、循环油和油浆。在此,作为所述分离,可以按照本领域已知的任何方法和任何方式进行,具体比如可以举出蒸馏和分馏等,特别是分馏。另外,所述分离可以在本领域已知的任何分离装置(比如分馏塔)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-6)中,作为所述催化裂化,可以按照本领域已知的任何方式进行,并没有特别的限定。另外,所述催化裂化可以在本领域已知的任何催化裂化装置(比如流化床反应器)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-6)中,反应温度可以参照本领域的常规选择,但一般为从450℃至650℃,优选从480℃至560℃。
根据本发明的一个方面,在所述步骤(3-6)中,反应压力可以参照本领域的常规选择,但一般为从0.15MPa至0.4MPa。
根据本发明的一个方面,在所述步骤(3-6)中,反应时间可以参照本领域的常规选择,但一般为从0.1秒至10秒,优选从0.2秒至4秒。
根据本发明的一个方面,在所述步骤(3-6)中,裂化催化剂与原料油(指的是所述加氢后改质油和所述第二分离产物)的重量比可以参照本领域的常规选择,但一般为从3至30,优选从5至15。
根据本发明的一个方面,在所述步骤(3-6)中,水蒸气与原料油(指的是所述加氢后改质油和所述第二分离产物)的重量比可以参照 本领域的常规选择,但一般为从0.05至0.6,优选从0.05至0.4。
根据本发明的一个方面,在所述步骤(3-6)中,所述催化裂化一般在裂化催化剂的存在下进行。在此,作为所述裂化催化剂,比如可以举出本领域为此目的而常规使用的任何裂化催化剂或者可以按照本领域常规已知的任何制造方法进行制造,并没有特别的限定。具体举例而言,所述裂化催化剂一般是固体酸催化剂,优选包含裂化活性组元和载体。更为具体举例而言,作为所述裂化活性组元,比如可以举出沸石,特别是任选含有稀土元素的Y型沸石、任选含有稀土元素的HY型沸石、任选含有稀土元素的超稳Y型沸石以及任选含有稀土元素的β型沸石等。这些裂化活性组元可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述载体,比如可以举出难熔无机氧化物、天然粘土、氧化铝、二氧化硅和无定形硅铝等。这些载体可以单独使用一种,或者以任意的比例组合使用多种。本发明对所述裂化活性组元和所述载体各自的含量没有特别的限定,可以参照本领域的常规认识。
步骤(3-7):任选地,将所述常压瓦斯油进行加氢处理,获得柴油。
根据本发明的一个方面,在所述步骤(3-7)中,作为所述加氢处理,可以按照本领域已知的任何方式进行,并没有特别的限定。另外,所述加氢处理可以在本领域已知的任何加氢处理装置(比如固定床反应器、流化床反应器)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-7)中,氢气分压可以参照本领域的常规选择,但一般为从7.0MPa至15.0MPa。
根据本发明的一个方面,在所述步骤(3-7)中,反应压力可以参照本领域的常规选择,但一般为从8MPa至12MPa。
根据本发明的一个方面,在所述步骤(3-7)中,反应温度可以参照本领域的常规选择,但一般为从340℃至400℃。
根据本发明的一个方面,在所述步骤(3-7)中,所述常压瓦斯油的体积空速可以参照本领域的常规选择,但一般为从0.6h-1至1.5h-1
根据本发明的一个方面,在所述步骤(3-7)中,氢气与所述常压瓦斯油的体积比可以参照本领域的常规选择,但一般为从500至800。
根据本发明的一个方面,在所述步骤(3-7)中,所述加氢处理一 般在加氢催化剂的存在下进行。在此,作为所述加氢催化剂,比如可以举出本领域为此目的而常规使用的任何加氢催化剂或者可以按照本领域常规已知的任何制造方法进行制造,而且所述加氢催化剂在所述步骤中的用量可以参照本领域的常规认识,并没有特别的限定。具体举例而言,所述加氢催化剂一般包含载体和活性金属组分。更为具体而言,作为所述活性金属组分,比如可以举出元素周期表第VIB族金属以及元素周期表第VIII族非贵金属等,特别是镍与钨的组合,镍、钨与钴的组合,镍与钼的组合,或者钴与钼的组合。这些活性金属组分可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述载体,比如可以举出氧化铝、二氧化硅和无定形硅铝等。这些载体可以单独使用一种,或者以任意的比例组合使用多种。本发明对所述载体和所述活性金属组分各自的含量没有特别的限定,可以参照本领域的常规认识。
步骤(3-8):任选地,将所述改质方法的任一步骤所获得的循环油与所述改质油联合进行加氢处理,获得加氢处理油。
根据本发明的一个方面,在所述步骤(3-8)中,所谓联合,指的是所述循环油与所述改质油共同作为所述加氢处理的原料。为此,二者可以按照预定的比例预先混合然后再进行所述加氢处理,也可以按照预定的比例同时进行所述加氢处理,并没有特别的限定。
根据本发明的一个方面,在所述步骤(3-8)中,作为所述加氢处理,可以按照本领域已知的任何方式进行,并没有特别的限定。另外,所述加氢处理可以在本领域已知的任何加氢处理装置(比如固定床反应器、流化床反应器)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-8)中,氢气分压可以参照本领域的常规选择,但一般为从5.0MPa至20.0MPa,优选从8.0MPa至15.0MPa。
根据本发明的一个方面,在所述步骤(3-8)中,反应温度可以参照本领域的常规选择,但一般为从330℃至450℃,优选从350℃至420℃。
根据本发明的一个方面,在所述步骤(3-8)中,原料油(指的是所述循环油和所述改质油)的体积空速可以参照本领域的常规选择, 但一般为从0.1h-1至3.0h-1,优选从0.3h-1至1.5h-1
根据本发明的一个方面,在所述步骤(3-8)中,氢气与原料油(指的是所述循环油和所述改质油)的体积比可以参照本领域的常规选择,但一般为从300至3000,优选从800至1500。
根据本发明的一个方面,在所述步骤(3-8)中,所述加氢处理一般在加氢催化剂的存在下进行。在此,作为所述加氢催化剂,比如可以举出本领域为此目的而常规使用的任何加氢催化剂或者可以按照本领域常规已知的任何制造方法进行制造,而且所述加氢催化剂在所述步骤中的用量可以参照本领域的常规认识,并没有特别的限定。具体举例而言,所述加氢催化剂一般包含载体和活性金属组分。更为具体而言,作为所述活性金属组分,比如可以举出元素周期表第VIB族金属以及元素周期表第VIII族非贵金属等,特别是镍与钨的组合,镍、钨与钴的组合,镍与钼的组合,或者钴与钼的组合。这些活性金属组分可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述载体,比如可以举出氧化铝、二氧化硅和无定形硅铝等。这些载体可以单独使用一种,或者以任意的比例组合使用多种。本发明对所述载体和所述活性金属组分各自的含量没有特别的限定,可以参照本领域的常规认识。
步骤(3-9):任选地,将所述加氢处理油与所述第二分离产物联合进行催化裂化,获得第四催化裂化产物。
根据本发明的一个方面,在所述步骤(3-9)中,所谓联合,指的是所述加氢处理油与所述第二分离产物共同作为所述催化裂化的原料。为此,二者可以按照预定的比例预先混合然后再进行所述催化裂化,也可以按照预定的比例同时进行所述催化裂化,并没有特别的限定。
根据本发明的一个方面,在所述步骤(3-9)中,可以将所述第四催化裂化产物进一步分离为干气、液化气、汽油、循环油和油浆。在此,作为所述分离,可以按照本领域已知的任何方法和任何方式进行,具体比如可以举出蒸馏和分馏等,特别是分馏。另外,所述分离可以在本领域已知的任何分离装置(比如分馏塔)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-9)中,作为所述催化裂 化,可以按照本领域已知的任何方式进行,并没有特别的限定。另外,所述催化裂化可以在本领域已知的任何催化裂化装置(比如流化床反应器)中进行,本领域技术人员可以对此进行合理选择。
根据本发明的一个方面,在所述步骤(3-9)中,反应温度可以参照本领域的常规选择,但一般为从450℃至650℃,优选从480℃至560℃。
根据本发明的一个方面,在所述步骤(3-9)中,反应压力可以参照本领域的常规选择,但一般为从0.15MPa至0.4MPa。
根据本发明的一个方面,在所述步骤(3-9)中,反应时间可以参照本领域的常规选择,但一般为从0.1秒至10秒,优选从0.2秒至4秒。
根据本发明的一个方面,在所述步骤(3-9)中,裂化催化剂与原料油(指的是所述加氢处理油和所述第二分离产物)的重量比可以参照本领域的常规选择,但一般为从3至30,优选从5至15。
根据本发明的一个方面,在所述步骤(3-9)中,水蒸气与原料油(指的是所述加氢处理油和所述第二分离产物)的重量比可以参照本领域的常规选择,但一般为从0.05至0.6,优选从0.05至0.4。
根据本发明的一个方面,在所述步骤(3-9)中,所述催化裂化一般在裂化催化剂的存在下进行。在此,作为所述裂化催化剂,比如可以举出本领域为此目的而常规使用的任何裂化催化剂或者可以按照本领域常规已知的任何制造方法进行制造,并没有特别的限定。具体举例而言,所述裂化催化剂一般是固体酸催化剂,优选包含裂化活性组元和载体。更为具体举例而言,作为所述裂化活性组元,比如可以举出沸石,特别是任选含有稀土元素的Y型沸石、任选含有稀土元素的HY型沸石、任选含有稀土元素的超稳Y型沸石以及任选含有稀土元素的β型沸石等。这些裂化活性组元可以单独使用一种,或者以任意的比例组合使用多种。另外,作为所述载体,比如可以举出难熔无机氧化物、天然粘土、氧化铝、二氧化硅和无定形硅铝等。这些载体可以单独使用一种,或者以任意的比例组合使用多种。本发明对所述裂化活性组元和所述载体各自的含量没有特别的限定,可以参照本领域的常规认识。
步骤(3-10):任选地,将所述改质方法的任一步骤所获得的油浆 和/或外供油浆循环至所述步骤(1)、所述步骤(2)和/或所述步骤(3)。
根据本发明的一个方面,在所述步骤(3-10)中,所谓外供油浆,指的是非来源于本发明改质方法的任一步骤的油浆,而是来源于其他途径(比如外界输送或外购)的油浆。
根据本发明的一个方面,在所述步骤(3-10)中,通过将所述油浆照此进行循环利用,至少能够提高所述改质方法的操作稳定性,或者在优选的情况下,至少能够进一步提高改质油的收率。
根据本发明的一个方面,在所述步骤(3-10)中,作为所述油浆的循环方式,具体比如可以举出将所述油浆循环至所述步骤(1),与所述低品质油一起作为改质原料继续进行所述转化反应的方式,或者,将所述油浆循环至所述步骤(2),与所述转化产物按照预定比例进行混合,由此对所述转化产物进行组分调配的方式,或者将所述油浆循环至所述步骤(3),由此使得所述萃取分离在所述油浆的存在下进行的方式。这些方式可以单独使用一种,或者任意组合使用多种。
步骤(3-11):任选地,将所述改质方法的任一步骤所获得的液化气循环至所述步骤(3)。
根据本发明的一个方面,在所述步骤(3-11)中,将所述液化气循环至所述步骤(3),包括所述步骤(3-1),作为所述溶剂或者所述溶剂的一部分。
根据本发明的一个方面,所述改质方法任选还可能进一步包括步骤(4)。
步骤(4):将所述残渣的全部或者一部分循环至所述步骤(1)(以下称为残渣循环步骤)。
根据本发明的一个方面,在所述步骤(4)中,可以将所述残渣的一部分(比如大于80重量%,优选大于90重量%,更优选至少95重量%)循环至所述步骤(1),与所述低品质油一起作为改质原料继续进行所述转化反应,其余部分外甩。该外甩部分的残渣占全部残渣的比例称为残渣外甩率,单位是重量%。
根据本发明,还涉及一种改质系统。由于所述改质系统被专门设置以用于实施本发明所述的改质方法,因此本说明书的上下文中针对所述改质系统未具体说明或解释的任何内容、术语、特征或者限定等,均可以直接参照本说明书的上下文中针对所述改质方法所做的相应说 明或解释。另外,本说明书的上下文中针对所述改质方法公开的一个或多个方面(或实施方式)与本说明书的上下文中针对所述改质系统公开的一个或多个方面(或实施方式)可以彼此任意组合,由此而形成的技术方案(比如方法或系统)属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围之内。
根据本发明的一个方面,所述改质系统包括转化反应单元、转化产物处理单元、第一控制单元和萃取分离单元。
根据本发明的一个方面,在所述改质系统中,所述转化反应单元被设置为能够使得低品质油在氢气的存在下并且任选在转化催化剂的存在下进行转化反应,并输出获得的转化产物。在此,作为所述转化反应单元,具体比如可以举出临氢热转化反应器。
根据本发明的一个方面,在所述改质系统中,所述转化产物处理单元被设置为能够将所述转化产物进行处理,并输出获得的第一处理产物。在此,作为所述转化产物处理单元,具体比如可以举出闪蒸罐、分馏塔或者蒸馏塔。
根据本发明的一个方面,在所述改质系统中,所述第一控制单元被设置为能够通过控制所述转化产物处理单元的操作条件(比如操作温度和/或操作压力),使得所述第一处理产物包含含量为从20重量%至60重量%的沸点或沸程介于350℃至524℃之间的组分。在此,作为所述第一控制单元,具体比如可以举出温度控制装置或者压力控制装置。
根据本发明的一个方面,在所述改质系统中,所述萃取分离单元被设置为能够将所述第一处理产物进行萃取分离,并分别输出获得的改质油和残渣。在此,作为所述萃取分离单元,具体比如可以举出萃取塔。
根据本发明的一个方面,所述改质系统任选进一步包括残渣处理单元。所述残渣处理单元被设置为能够将所述残渣的全部或者一部分输送至所述转化反应单元。在此,作为所述残渣处理单元,具体比如可以举出泵或者输送管线。
根据本发明的一个方面,在所述改质系统中,所述转化产物处理单元进一步可以包括第一转化产物分离单元、第二转化产物分离单元、任选的第二分离产物分离单元和任选的气体组分输送单元。
根据本发明的一个方面,在所述改质系统中,所述第一转化产物分离单元被设置为能够将所述转化产物进行分离,并分别输出获得的气体组分和液体组分。在此,作为所述第一转化产物分离单元,具体比如可以举出加压蒸馏塔。
根据本发明的一个方面,在所述改质系统中,所述第二转化产物分离单元被设置为能够将所述液体组分进行分离,并分别输出获得的第二分离产物和第一分离产物。在此,作为所述第二转化产物分离单元,具体比如可以举出闪蒸罐或常压蒸馏塔。
根据本发明的一个方面,在所述改质系统中,所述第二分离产物分离单元被设置为能够将所述第二分离产物进行分离,并分别输出获得的石脑油和常压瓦斯油。在此,作为所述第二分离产物分离单元,具体比如可以举出分馏塔。
根据本发明的一个方面,在所述改质系统中,所述气体组分输送单元被设置为能够将所述气体组分输送至所述转化反应单元。在此,作为所述气体组分输送单元,具体比如可以举出气体输送管线。
根据本发明的一个方面,所述改质系统还可以进一步包括第二控制单元和第三控制单元。
根据本发明的一个方面,在所述改质系统中,所述第二控制单元被设置为能够控制所述第一转化产物分离单元的操作压力,所述第三控制单元被设置为能够控制所述第二转化产物分离单元的操作压力,并且使得所述第一转化产物分离单元的操作压力大于所述第二转化产物分离单元的操作压力。在此,作为所述第二控制单元,具体比如可以举出压力控制装置和系统。另外,作为所述第三控制单元,具体比如可以举出压力控制装置和系统。
根据本发明的一个方面,在所述改质系统中,所述第三控制单元可以被设置为能够通过控制所述第二转化产物分离单元的操作条件(比如操作温度和/或操作压力),使得所述第一分离产物包含含量为从20重量%至60重量%的沸点或沸程介于350℃至524℃之间的组分,并使得所述第二分离产物或其任一组分具有小于或等于350℃的终馏点。在此,作为所述第三控制单元,具体比如可以举出压力控制装置和系统或者温度控制装置和系统。
根据本发明的一个方面,在所述改质系统中,为了方便操作和测 量起见,优选的是,所述第二控制单元被设置为能够控制所述第一转化产物分离单元的气体组分的出口压力和/或出口温度,所述第三控制单元被设置为能够控制所述第二转化产物分离单元的第二分离产物的出口压力和/或出口温度。
根据本发明的一个方面,在所述改质系统中,所述萃取分离单元被设置为能够使所述第一分离产物或者所述第一处理产物与溶剂进行接触,并分别输出获得的所述改质油和所述残渣。在此,作为所述萃取分离单元,具体比如可以举出萃取塔。
根据本发明的一个方面,所述改质系统任选进一步包括以下单元中的一个或多个。
第一加氢单元,被设置为能够将所述改质油进行加氢处理,并输出获得的加氢后改质油。在此,作为所述第一加氢单元,具体比如可以举出固定床加氢反应器。
第二加氢单元,被设置为能够将所述改质油进行加氢裂化,并将所获得的加氢裂化产物分离为干气、液化气、航空煤油、柴油和加氢尾油。在此,作为所述第二加氢单元,具体比如可以举出固定床加氢裂化反应器。
第一催化裂化单元,被设置为能够将所述加氢后改质油进行催化裂化,并将所获得的第一催化裂化产物分离为干气、液化气、汽油、循环油和油浆。在此,作为所述第一催化裂化单元,具体比如可以举出流化床催化裂化反应器。
第二催化裂化单元,被设置为能够将所述加氢后改质油与所述常压瓦斯油联合进行催化裂化,并将所获得的第二催化裂化产物分离为干气、液化气、汽油、循环油和油浆。在此,作为所述第二催化裂化单元,具体比如可以举出流化床催化裂化反应器。
第三催化裂化单元,被设置为能够将所述加氢后改质油与所述第二分离产物联合进行催化裂化,并将所获得的第三催化裂化产物分离为干气、液化气、汽油、循环油和油浆。在此,作为所述第三催化裂化单元,具体比如可以举出流化床催化裂化反应器。
第三加氢单元,被设置为能够将所述常压瓦斯油进行加氢处理,并输出获得的柴油。在此,作为所述第三加氢单元,具体比如可以举出固定床加氢反应器。
第四加氢单元,被设置为能够将所述改质系统的任一单元所获得的循环油与所述改质油联合进行加氢处理,并输出获得的加氢处理油。在此,作为所述第四加氢单元,具体比如可以举出固定床加氢反应器。
第四催化裂化单元,被设置为能够将所述加氢处理油与所述第二分离产物联合进行催化裂化,并将所获得的第四催化裂化产物分离为干气、液化气、汽油、循环油和油浆。在此,作为所述第四催化裂化单元,具体比如可以举出流化床催化裂化反应器。
油浆输送单元,被设置为能够将所述改质系统的任一单元所获得的油浆和/或外供油浆输送至所述转化反应单元、所述转化产物处理单元和/或所述萃取分离单元。在此,作为所述油浆输送单元,具体比如可以举出输送管线或者泵。
液化气输送单元,被设置为能够将所述改质系统的任一单元所获得的液化气输送至所述萃取分离单元。在此,作为所述液化气输送单元,具体比如可以举出气体输送管线。
本说明书在下文中将结合附图,对本发明的改质方法和改质系统进行进一步的例示性解释和说明,但本发明并不限于此。
根据图1,低品质油作为改质原料经管线1、转化催化剂经管线2、循环氢气经管线3、新鲜氢气经管线4以及残渣经管线5输送至转化反应单元7进行转化反应。转化产物经管线8输送至第一转化产物分离单元9进行加压蒸馏,分离为气体组分和液体组分,然后将气体组分作为循环氢气先后经管线10、管线3、管线6输送至转化反应单元7,或先后经管线10、管线11向体系外引出。液体组分经管线12输送至第二转化产物分离单元13进行压力骤降,分离为第二分离产物和第一分离产物。第二分离产物经管线15向体系外引出,第一分离产物经管线14输送至萃取分离单元16与来自管线17的溶剂逆流接触而进行萃取分离,得到改质油和残渣。改质油经管线18向体系外引出,残渣的一部分先后经管线19、管线20外甩,其余部分作为改质原料先后经管线19、管线5、管线6循环至转化反应单元7与低品质油一起继续进行转化反应。或者,也可以将全部残渣先后经管线19、管线20外甩而不进行循环。
根据图2,在图1的基础上,
(1)改质油经管线18输送至第一加氢单元21进一步进行加氢处 理,得到品质进一步改善的加氢后改质油22。
根据图3,在图1的基础上,
(1)第二分离产物经管线15输送至第二分离产物分离单元,经分馏而得到石脑油和常压瓦斯油(AGO),石脑油经管线21向体系外引出,AGO经管线22、管线23输送至第三加氢单元24,经加氢处理得到满足国V指标的高品质柴油,高品质柴油经管线25向体系外引出;
(2)改质油经管线18输送至第二加氢单元26进行加氢裂化反应,得到加氢裂化产物,加氢裂化产物经管线27输送至分馏系统28,经分离得到干气、液化气、满足国标的航空煤油、高品质柴油和加氢尾油。干气、液化气、满足国标的航空煤油、高品质柴油以及加氢尾油分别经管线29、管线30、管线31、管线32和管线33向体系外引出;和
(3)加氢尾油可作为蒸汽裂解制乙烯的原料。
根据图4,在图1的基础上,
(1)改质油经管线18以及循环油经管线26,输送至第四加氢单元20联合进行加氢处理,得到品质进一步改善的加氢处理油;
(2)加氢处理油经管线21、管线22,第二分离产物经管线15、管线22,输送至第四催化裂化单元23联合进行催化裂化反应,催化裂化产物经分离得到干气、液化气、高辛烷值汽油、循环油和油浆;
(3)干气经管线24向体系外引出,液化气的一部分经管线28、管线17作为溶剂循环至萃取分离单元16,液化气的另一部分经管线28、管线29向体系外引出,高辛烷值汽油作为产品经管线25向体系外引出;
(4)油浆作为改质原料经管线27、管线6循环至转化反应单元7与低品质油一起继续进行转化反应。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
在本申请发明的上下文中,包括在以下的实施例和对比例中,
重金属(以Ni+V为计)含量的测定方法按照ASTM D5708;
沥青质含量的测定方法按照SH/T 0266-92(1998);
低品质油转化率=(1-残渣外甩率)×100%;
残渣外甩率=外甩残渣质量/改质原料质量×100%;
改质油收率=改质油质量/改质原料质量×100%;
甲苯不溶物收率=甲苯不溶物质量/改质原料质量×100%;
汽油收率=汽油质量/催化裂化原料油质量×100%;
航空煤油收率=航空煤油质量/加氢裂化原料油质量×100%;
柴油收率=柴油质量/加氢裂化原料油质量×100%。
柴油的十六烷值测定按照GB T386-2010标准方法。
改质过程的操作稳定性用改质系统的稳定运行天数来进行评价。具体而言,改质系统出现以下状况中的任何一个,则判定其不能稳定运行:(1)转化反应器内部不同温度测量点的最大温度偏差ΔT(绝对值)大于5℃;(2)改质油呈现为黑色,其在正常情况下呈现为黄色或黄绿色。
以下的实施例和对比例,按照与附图类似的实施方式进行。
在以下的实施例和对比例中,作为低品质油,改质原料A和改质原料B是减压渣油,改质原料C是委内瑞拉稠油减渣,改质原料D是高温煤焦油,改质原料E是脱油沥青。这五种低品质油的性质见表1。
表1
Figure PCTCN2017000580-appb-000001
实施例1至实施例5
在中型装置上,首先使低品质油进行转化反应,然后进行转化产物处理,得到第一分离产物和第二分离产物。所述转化反应和所述转化产物处理的具体条件和结果列于表2。
表2
Figure PCTCN2017000580-appb-000002
实施例6至实施例8
在中型装置上,首先使低品质油进行转化反应,然后进行转化产物处理,得到第一分离产物和第二分离产物。所述转化反应和所述转化产物处理的具体条件和结果列于表3。
表3
Figure PCTCN2017000580-appb-000003
实施例9至实施例11
在中型装置上,分别将实施例2、实施例4以及实施例7得到的第一分离产物进行萃取分离。萃取分离的具体条件和结果列于表4。
表4
项目 实施例9 实施例10 实施例11
第一分离产物来源 实施例2 实施例4 实施例7
萃取分离      
溶剂 i-C4H8 n-C4H8 FCC液化气
第三温度/℃ 120 130 120
溶剂重量比 3 2.5 4
第三压力/MPa 5.0 4.0 10
产物分布/重量%      
改质油 42.4 48.4 41.6
残渣 57.6 51.5 58.4
残渣性质      
软化点/℃ 110 118 101
实施例12至实施例13
在中型装置上,低品质油作为改质原料进行转化反应,然后进行转化产物处理,得到第一分离产物和第二分离产物。第一分离产物再进行萃取分离,得到改质油和残渣。残渣的一部分循环回转化反应,与低品质油混合后作为改质原料一起进行转化反应,其余部分残渣外甩。(低品质油+残渣)的转化产物进行处理,得到第一分离产物和第二分离产物。第一分离产物再进行萃取分离,得到改质油和残渣。将第二分离产物进行分离,得到石脑油馏分和常压瓦斯油。各步骤的具体条件和结果列于表5。
表5
Figure PCTCN2017000580-appb-000004
Figure PCTCN2017000580-appb-000005
对比表4和表5的结果可知,将残渣进行循环,有利于提高低品质油转化率和改质油收率。
实施例14
将实施例12得到的改质油进行加氢处理。该加氢处理的具体条件和结果列于表6。
表6
项目 实施例14
原料油 实施例12的改质油
原料油的性质  
沥青质含量/重量% <0.5
重金属(Ni+V)/(μg/g) <2
加氢处理  
反应温度/℃ 375
反应压力/MPa 14.0
加氢催化剂 标准公司C-424
体积空速/h-1 1.0
氢油体积比 600
氢气分压/MPa 13.0
加氢后改质油的性质  
密度(20℃)/(kg/m3) 910.3
黏度(50℃)/(mm2/s) 5.4
w(硫)/(μg/g) 446
w(Ni+V)/(μ/g) <1
残炭值/% 0.98
w(灰分)/% 0.010
由表6原料油的性质可知,所述改质油的沥青质含量低于0.5%,重金属含量小于2μg/g,实现了改质原料的高沥青质转化率和高金属 脱除率。经加氢处理后,获得的加氢后改质油的性质满足FCC进料要求。
实施例15
将实施例12得到的改质油进行加氢裂化。该加氢裂化的具体条件和结果列于表7-1和表7-2。
表7-1
项目 实施例15
原料油 实施例12的改质油
加氢裂化  
反应温度/℃ 380
反应压力/MPa 15.0
加氢裂化催化剂 RIPP RT-5
体积空速/h-1 0.4
氢油体积比 1000
氢气分压/MPa 13.8
产物分布/重量%  
干气+不凝气 3.80
液化气 3.61
轻石脑油 7.15
重石脑油 11.22
航空煤油 38.81
柴油 23.83
裂化尾油 14.48
所述航空煤油的性质如下表所示。
表7-2
项目 测量值
名称 航空煤油
密度(20℃)/(kg/m3) 797.2
w(硫)/(μg/g) <0.5
w(氮)/(μg/g) <0.5
闭口闪点/℃ 42
烟点/mm 29
冰点/℃ <-50
名称 柴油
密度(20℃)/(kg/m3) 843.1
w(硫)/(μg/g) 7.1
w(氮)/(μg/g) <0.5
十六烷值 52.6
凝固点/℃ -20
由这些表的结果可知,将改质油进行加氢裂化,可以得到高品质航空煤油和高品质柴油,且航空煤油的收率大于38%。
实施例16
将实施例14得到的加氢后改质油进行催化裂化。该催化裂化的具体条件和结果列于表8。
表8
项目 实施例16
原料油 实施例14的加氢后改质油
催化裂化  
反应温度/℃ 520
反应压力/MPa 0.4
反应时间/秒 2
裂化催化剂 CDOS-B1
催化剂油比 6.0
水蒸气油比 0.3
原料油转化率/% 71.01
产物分布/重量%  
干气 1.91
液化气 12.84
C5+汽油 49.40
循环油 17.33
油浆 11.66
焦炭 6.86
C5+汽油性质  
RON 92.1
由表8结果可知,将加氢后改质油进行催化裂化,可以得到高辛烷值汽油。该高辛烷值汽油的收率为49.40%,其研究法辛烷值为92.1。
实施例17
将实施例12得到的常压瓦斯油与实施例14得到的加氢后改质油一同进行催化裂化。该催化裂化的具体条件和结果列于表9。
表9
Figure PCTCN2017000580-appb-000006
由表9结果可知,将加氢后改质油与常压瓦斯油一同进行催化裂化,可以得到辛烷值大于92的高辛烷值汽油。该高辛烷值汽油的收率为52.62%。
实施例18
将实施例12得到的常压瓦斯油进行加氢处理。该加氢处理的具体条件和结果列于表10。
表10
项目 实施例18
原料油 实施例12的常压瓦斯油
加氢处理  
反应温度/℃ 360
反应压力/MPa 12.0
加氢催化剂 标准公司DC-2118
体积空速/h-1 0.8
氢油体积比 800
氢气分压/MPa 10.8
产物性质  
密度(20℃)/(kg/m3) 845.6
w(硫)/(μg/g) 8.2
w(N)/(μg/g) 5.9
十六烷值 51.3
凝固点/℃ -20
由表10结果可知,常压瓦斯油经加氢处理,可得到高品质柴油,其十六烷值大于51。
实施例19
将实施例16或者实施例17得到的循环油与实施例12得到的改质油一同进行加氢处理,得到的加氢处理油再进行催化裂化,所述加氢处理和催化裂化的具体条件和结果列于表11。
表11
项目 实施例19
原料油 循环油+改质油
原料比例(循环油/改质油) 0.42
加氢处理  
反应温度/℃ 375
反应压力/MPa 16.0
氢气分压/MPa 15.2
加氢催化剂 Axens公司LD746
体积空速/h-1 0.6
氢油体积比 1000
催化裂化  
反应温度/℃ 500
反应时间/s 2
反应压力/MPa 0.2
裂化催化剂 LDR-100
体积空速/h-1 4.0
催化剂油比 8.0
水蒸气油比 0.2
催化裂化产物分布/重量%  
干气 2.02
液化气 14.16
C5+汽油 56.47
循环油 12.65
油浆 8.48
焦炭 6.22
C5+汽油性质  
RON 93.1
由表11结果可知,循环油与改质油一同加氢处理后进行催化裂化,可获得辛烷值大于93的高辛烷值汽油组分,该高辛烷值汽油组分的收率可达56.47%。
实施例20
在中型装置上,基于实施例12,将实施例16得到的油浆循环回转化反应,与低品质油和循环残渣混合后作为改质原料一起进行转化反应,然后进行转化产物处理,得到第一分离产物和第二分离产物。第一分离产物再进行萃取分离,得到改质油和残渣。残渣的一部分循环,其余部分外甩。各步骤的具体条件和结果列于表12。
表12
Figure PCTCN2017000580-appb-000007
Figure PCTCN2017000580-appb-000008
表12结果显示,通过油浆循环,有利于提高低品质油转化率、改质油收率分别提高了2.0个百分点和1.5个百分点,甲苯不溶物收率下降了25%,稳定运行天数超过30天,有利于改质系统的长周期稳定运行。
实施例21
在中型装置上,以改质原料B作为改质原料进行转化反应,然后进行转化产物处理,得到第一分离产物和第二分离产物。第一分离产物再进行萃取分离(萃取分离条件同实施例12),得到改质油和残渣。残渣的一部分循环回转化单元,其余部分外甩。混合原料的转化产物进行依次进行产物处理得到第一分离产物和第二分离产物。第一产物再进行萃取分离(萃取分离条件同实施例12),得到改质油和残渣。各步骤的具体条件和结果列于表13。
对比例1至对比例4
与实施例21相同,只不过按照表13进行改变。
表13
Figure PCTCN2017000580-appb-000009
Figure PCTCN2017000580-appb-000010
表13结果显示,特别组分不满足本发明的相应规定时,将会使得低品质油转化率降低6~10个百分点,改质油收率下降5~8个百分点,甲苯不溶物收率提高1~2.5个百分点,并且由于ΔT>5℃或改质油呈现为黑色,改质系统的稳定运行天数大幅下降。
在本申请发明的说明书中,描述了大量的具体技术信息。然而,本领域技术人员能够理解的是,本申请发明也可以在没有这些具体技术信息的情况下得以实施。在本申请发明的一些方面或实施方式中,并未详细解释或者描述公知的方法、结构和技术,但这并不影响本领域技术人员对本申请发明的理解。
类似地,应当理解的是,为了精简本申请发明的说明书并有助于本领域技术人员理解本申请发明的精神,本说明书的上下文中针对本申请发明的改质方法或改质系统进行例示性描述或者说明时,多个不同的方面(或者实施方式)有时会以组合的方式出现在具体的实施例或者附图中。然而,并不应将这种描述或者说明解释成反映如下意图:本申请发明所要求保护的技术方案与权利要求书字面记载的技术方案相比,前者的特征数目更多。更具体说,如权利要求书所反映的那样,本申请发明所要求保护的技术方案与本说明书在上下文中所描述或者说明的具体实施例或者附图相比,前者包含的技术特征更少。
在本申请发明的上下文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而没有要求或者暗示这些实体或操作之间实际存在这种关系或者顺序。而且,表述“包括”、“包含”或者其类似表述是一种非排他性的表达方式,从而使得这些表述所针对的过程、方法、物品或者设备,不仅包括在本说明书中已经明确描述的一个或者多个要素,而且还可以包括在本说明书中没有明确描述的其他一个或者多个要素,比如所述过程、方法、物品或者设备所固有的一个或者多个要素。
本说明书公开的实施例仅用以例示性说明本申请发明的具体实施,而非对其进行限制。本说明书尽管参照这些实施例对本申请发明进行了详细的解释或者说明,但是应当理解的是,本领域技术人员依然可以对这些实施例所记载的技术方案进行修改或者改变,或者对其中的部分技术特征进行等同替换。通过这类修改、改变或者替换而获 得的技术方案,由于并未脱离本申请发明的精神实质,因此仍然属于本申请发明的保护范围。

Claims (17)

  1. 一种改质方法,其特征在于,包括以下步骤:
    (1)使低品质油作为改质原料在氢气的存在下并且任选在转化催化剂的存在下进行转化反应,获得转化产物,
    (2)将所述转化产物进行处理(比如组分调配或者组分分离),获得第一处理产物,其中所述第一处理产物包含含量为从20重量%至60重量%(优选从25重量%至55重量%,基于所述第一处理产物的总重量)的沸点或沸程介于350℃至524℃之间(优选介于355℃至500℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间)的组分(特别是任选含有杂原子的至少一种烃),和
    (3)将所述第一处理产物进行萃取分离,获得改质油和残渣,
    所述改质方法任选进一步包括以下步骤:
    (4)将所述残渣的全部或者一部分(比如大于80重量%,优选大于90重量%,更优选至少95重量%)循环至所述步骤(1)。
  2. 按照权利要求1所述的改质方法,其中所述步骤(2)包括以下步骤中的一个或多个:
    (2-1)将所述转化产物在第一压力和第一温度下进行分离,获得气体组分和液体组分,
    (2-2)将所述液体组分在第二压力和第二温度下进行分离,获得第二分离产物和第一分离产物,其中所述分离使得所述第一分离产物包含含量为从20重量%至60重量%(优选从25重量%至55重量%,基于所述第一分离产物的总重量)的沸点或沸程介于350℃至524℃之间(优选介于355℃至500℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间)的组分(特别是任选含有杂原子的至少一种烃),并使得所述第二分离产物或其任一组分具有小于或等于350℃的终馏点,
    (2-3)任选地,将所述第二分离产物进行分离,获得石脑油和常压瓦斯油,和
    (2-4)任选地,将所述气体组分循环至所述步骤(1),
    其中,所述第一压力大于所述第二压力,优选所述第一压力比所述第二压力大从4MPa至24MPa,更优选所述第一压力比所述第二压 力大从7MPa至19MPa。
  3. 按照权利要求1或2所述的改质方法,其中所述步骤(3)包括以下步骤中的一个或多个:
    (3-1)使所述第一分离产物或者所述第一处理产物与溶剂在第三压力和第三温度下进行接触(优选逆流接触),获得所述改质油和所述残渣,
    (3-2)任选地,将所述改质油进行加氢处理,获得加氢后改质油,
    (3-3)任选地,将所述改质油进行加氢裂化,获得加氢裂化产物,然后将所述加氢裂化产物分离为干气、液化气、航空煤油、柴油和加氢尾油,
    (3-4)任选地,将所述加氢后改质油进行催化裂化,获得第一催化裂化产物,然后将所述第一催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
    (3-5)任选地,将所述加氢后改质油与所述常压瓦斯油联合进行催化裂化,获得第二催化裂化产物,然后将所述第二催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
    (3-6)任选地,将所述加氢后改质油与所述第二分离产物联合进行催化裂化,获得第三催化裂化产物,然后将所述第三催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
    (3-7)任选地,将所述常压瓦斯油进行加氢处理,获得柴油,
    (3-8)任选地,将所述改质方法的任一步骤所获得的循环油单独或与所述改质油联合进行加氢处理,获得加氢处理油,
    (3-9)任选地,将所述加氢处理油与所述第二分离产物联合进行催化裂化,获得第四催化裂化产物,然后将所述第四催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
    (3-10)任选地,将所述改质方法的任一步骤所获得的油浆和/或外供油浆循环至所述步骤(1)、所述步骤(2)和/或所述步骤(3),或者
    (3-11)任选地,将所述改质方法的任一步骤所获得的液化气循环至所述步骤(3)或者所述步骤(3-1)。
  4. 按照权利要求1所述的改质方法,其中所述转化反应的反应条件包括:氢气分压为从10.0MPa至25.0MPa,优选从13.0MPa至 20.0MPa,反应温度为从380°G至470℃,优选从400℃至440℃,所述改质原料的体积空速为从0.01h-1至2.0h-1,优选从0.1h-1至1.0h-1,氢气与所述改质原料的体积比为从500至5000,优选从800至2000,任选在转化催化剂的存在下。
  5. 按照权利要求2所述的改质方法,其中所述第一压力为从10.0MPa至25.0MPa,优选从13.0MPa至20.0MPa,所述第一温度为从380℃至470℃,优选从400℃至440℃,或者,所述第二压力为从0.1MPa至5.0MPa,优选从0.1MPa至4.0MPa,所述第二温度为从150℃至390℃,优选从200℃至370℃。
  6. 按照权利要求3所述的改质方法,其中所述溶剂是C3-7烃中的一种或多种,优选选自C3-5烷烃和C3-5烯烃中的一种或多种,比如选自C3-4烷烃和C3-4烯烃中的一种或多种,并且所述溶剂与所述第一分离产物或者所述第一处理产物的重量比为1-7∶1,优选1.5-5∶1。
  7. 按照权利要求3所述的改质方法,其中所述第三压力为从3MPa至12MPa,优选从3.5MPa至10MPa,并且所述第三温度为从55℃至300℃,优选从70℃至220℃。
  8. 按照权利要求3所述的改质方法,其中所述步骤(3-2)或者所述步骤(3-8)的反应条件包括:氢气分压为从5.0MPa至20.0MPa,优选从8.0MPa至15.0MPa,反应温度为从330℃至450℃,优选从350℃至420℃,原料油的体积空速为从0.1h-1至3.0h-1,优选从0.3h-1至1.5h-1,氢气与原料油的体积比为从300至3000,优选从800至1500,在加氢催化剂的存在下;
    或者,所述步骤(3-3)的反应条件包括:氢气分压为从10.0MPa至20.0MPa,反应温度为从310℃至420℃,所述改质油的体积空速为从0.3h-1至1.2h-1,氢气与所述改质油的体积比为从600至1500,在加氢裂化催化剂的存在下;
    或者,所述步骤(3-4)、所述步骤(3-5)、所述步骤(3-6)或者所述步骤(3-9)的反应条件包括:反应温度为从450℃至650℃,优选从480℃至560℃,反应压力为从0.15MPa至0.4MPa,反应时间为从0.1秒至10秒,优选从0.2秒至4秒,裂化催化剂与原料油的重量比为从3至30,优选从5至15,水蒸气与原料油的重量比为从0.05至0.6,优选从0.05至0.4,在裂化催化剂的存在下;
    或者,所述步骤(3-7)的反应条件包括:氢气分压为从7.0MPa至15.0MPa,反应压力为从8MPa至12MPa,反应温度为从340℃至400℃;所述常压瓦斯油的体积空速为从0.6h-1至1.5h-1,氢气与所述常压瓦斯油的体积比为从500至800,在加氢催化剂的存在下。
  9. 按照权利要求1所述的改质方法,其中所述残渣的软化点小于150℃。
  10. 按照权利要求1所述的改质方法,其中所述低品质油包含沥青质、沥青烯和前沥青烯中的一种或多种,特别是包含沥青质,优选选自劣质油、脱油沥青、重油、稠油、煤衍生油、页岩油和石化废油中的一种或多种,优选的是,所述重油选自拔头原油、由油砂沥青得到的重油和初馏点大于350℃的重油中的一种或多种,所述煤衍生油选自煤液化产生的煤液化油和煤热解生成的煤焦油中的一种或多种,或者,所述石化废油选自石化废油泥、石化油渣及其炼制产品中的一种或多种。
  11. 按照权利要求1或2所述的改质方法,其中所述第一分离产物或者所述第一处理产物的初馏点大于或等于330℃,或者,所述第一分离产物或者所述第一处理产物进一步包含沸点或沸程小于或等于350℃的轻组分,或者,所述第一分离产物或者所述第一处理产物进一步包含沸点或沸程大于500℃(优选大于524℃)的重组分,优选所述重组分包含沥青质、沥青烯和前沥青烯中的一种或多种,特别是包含沥青质。
  12. 按照权利要求1所述的改质方法,其中所述步骤(2)在获得所述第一处理产物之外,还获得一种或多种第二处理产物,所述第二处理产物或其任一组分具有小于或等于350℃的终馏点。
  13. 一种改质系统,其特征在于,包括转化反应单元、转化产物处理单元、第一控制单元、萃取分离单元和任选的残渣处理单元,
    其中所述转化反应单元被设置为能够使得低品质油在氢气的存在下并且任选在转化催化剂的存在下进行转化反应,并输出获得的转化产物,
    所述转化产物处理单元被设置为能够将所述转化产物进行处理(比如组分调配或者分离),并输出获得的第一处理产物,
    所述第一控制单元被设置为能够通过控制所述转化产物处理单元 的操作条件(比如操作温度和/或操作压力),使得所述第一处理产物包含含量为从20重量%至60重量%(优选从30重量%至50重量%,基于所述第一处理产物的总重量)的沸点或沸程介于350℃至524℃之间(优选介于355℃至500℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间)的组分(特别是任选含有杂原子的至少一种烃),
    所述萃取分离单元被设置为能够将所述第一处理产物进行萃取分离,并分别输出获得的改质油和残渣,和
    所述残渣处理单元被设置为能够将所述残渣的全部或者一部分(比如大于80重量%,优选大于90重量%,更优选至少95重量%)输送至所述转化反应单元。
  14. 根据权利要求13所述的改质系统,其中所述转化产物处理单元包括第一转化产物分离单元、第二转化产物分离单元、任选的第二分离产物分离单元和任选的气体组分输送单元,
    所述第一转化产物分离单元被设置为能够将所述转化产物进行分离,并分别输出获得的气体组分和液体组分,
    所述第二转化产物分离单元被设置为能够将所述液体组分进行分离,并分别输出获得的第二分离产物和第一分离产物,
    所述第二分离产物分离单元被设置为能够将所述第二分离产物进行分离,并分别输出获得的石脑油和常压瓦斯油,和
    所述气体组分输送单元被设置为能够将所述气体组分输送至所述转化反应单元。
  15. 根据权利要求14所述的改质系统,进一步包括第二控制单元和第三控制单元,其中所述第二控制单元被设置为能够控制所述第一转化产物分离单元的操作压力(优选气体组分的出口压力),所述第三控制单元被设置为能够控制所述第二转化产物分离单元的操作压力(优选第二分离产物的出口压力),并且使得所述第一转化产物分离单元的操作压力大于所述第二转化产物分离单元的操作压力,
    优选的是,所述第三控制单元被设置为能够通过控制所述第二转化产物分离单元的操作条件(比如操作温度和/或操作压力),使得所述第一分离产物包含含量为从20重量%至60重量%(优选从25重量%至55重量%,基于所述第一分离产物的总重量)的沸点或沸程介于 350℃至524℃之间(优选介于355℃至500℃之间,比如介于380℃至524℃之间,或者介于400℃至500℃之间)的组分(特别是任选含有杂原子的至少一种烃),并使得所述第二分离产物或其任一组分具有小于或等于350℃的终馏点。
  16. 根据权利要求13或14所述的改质系统,其中所述萃取分离单元被设置为能够使所述第一分离产物或者所述第一处理产物与溶剂进行接触(优选逆流接触),并分别输出获得的所述改质油和所述残渣。
  17. 根据权利要求13或16所述的改质系统,进一步包括以下单元中的一个或多个:
    第一加氢单元,被设置为能够将所述改质油进行加氢处理,并输出获得的加氢后改质油,
    第二加氢单元,被设置为能够将所述改质油进行加氢裂化,并将所获得的加氢裂化产物分离为干气、液化气、航空煤油、柴油和加氢尾油,
    第一催化裂化单元,被设置为能够将所述加氢后改质油进行催化裂化,并将所获得的第一催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
    第二催化裂化单元,被设置为能够将所述加氢后改质油与所述常压瓦斯油联合进行催化裂化,并将所获得的第二催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
    第三催化裂化单元,被设置为能够将所述加氢后改质油与所述第二分离产物联合进行催化裂化,并将所获得的第三催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
    第三加氢单元,被设置为能够将所述常压瓦斯油进行加氢处理,并输出获得的柴油,
    第四加氢单元,被设置为能够将所述改质系统的任一单元所获得的循环油与所述改质油联合进行加氢处理,并输出获得的加氢处理油,
    第四催化裂化单元,被设置为能够将所述加氢处理油与所述第二分离产物联合进行催化裂化,并将所获得的第四催化裂化产物分离为干气、液化气、汽油、循环油和油浆,
    油浆输送单元,被设置为能够将所述改质系统的任一单元所获得的油浆和/或外供油浆输送至所述转化反应单元、所述转化产物处理单 元和/或所述萃取分离单元,或者
    液化气输送单元,被设置为能够将所述改质系统的任一单元所获得的液化气输送至所述萃取分离单元。
PCT/CN2017/000580 2017-09-11 2017-09-11 一种低品质油的改质方法和改质系统 WO2019046989A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17924398.5A EP3683289B1 (en) 2017-09-11 2017-09-11 Reforming method for low quality oil
JP2020514508A JP7048728B2 (ja) 2017-09-11 2017-09-11 低品質油の改質方法および改質システム
CA3074616A CA3074616A1 (en) 2017-09-11 2017-09-11 Process and system for upgrading low-quality oils
PCT/CN2017/000580 WO2019046989A1 (zh) 2017-09-11 2017-09-11 一种低品质油的改质方法和改质系统
US16/646,070 US11078434B2 (en) 2017-09-11 2017-09-11 Process and system for upgrading low-quality oils
RU2020113112A RU2759287C2 (ru) 2017-09-11 2017-09-11 Способ и система для повышения качества низкокачественной нефти
SA520411508A SA520411508B1 (ar) 2017-09-11 2020-03-11 عملية ونظام لتحسين زيوت منخفضة الجودة
JP2022012236A JP2022044810A (ja) 2017-09-11 2022-01-28 低品質油の改質方法および改質システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/000580 WO2019046989A1 (zh) 2017-09-11 2017-09-11 一种低品质油的改质方法和改质系统

Publications (1)

Publication Number Publication Date
WO2019046989A1 true WO2019046989A1 (zh) 2019-03-14

Family

ID=65633350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000580 WO2019046989A1 (zh) 2017-09-11 2017-09-11 一种低品质油的改质方法和改质系统

Country Status (7)

Country Link
US (1) US11078434B2 (zh)
EP (1) EP3683289B1 (zh)
JP (2) JP7048728B2 (zh)
CA (1) CA3074616A1 (zh)
RU (1) RU2759287C2 (zh)
SA (1) SA520411508B1 (zh)
WO (1) WO2019046989A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534351A (zh) * 2020-05-14 2020-08-14 太原理工大学 一种废油脂煮煤的装置及其使用方法
CN112574778A (zh) * 2019-09-27 2021-03-30 中国石油化工股份有限公司 一种劣质油临氢改质方法和系统
CN112625781A (zh) * 2020-12-21 2021-04-09 山东恒利热载体工程技术有限公司 一种油品光稳定剂
EP3936589A4 (en) * 2019-03-04 2022-03-30 China Petroleum & Chemical Corporation PROCESS AND SYSTEM FOR PRODUCTION OF LIGHT OLEFINS FROM POOR OIL

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045882A1 (en) * 2019-09-05 2021-03-11 Exxonmobil Research And Engineering Company Apparatus and process for upgrading heavy hydrocarbons
WO2021045884A1 (en) * 2019-09-05 2021-03-11 Exxonmobil Research And Engineering Company Synthetic crude composition
US20220315844A1 (en) * 2019-09-05 2022-10-06 ExxonMobil Technology and Engineering Company Slurry hydroconversion with pitch recycle
US20230002687A1 (en) * 2019-09-05 2023-01-05 ExxonMobil Technology and Engineering Company Hydroconverted compositions
CA3144997A1 (en) * 2019-09-05 2021-03-11 Exxonmobil Research And Engineering Company Apparatus and process for upgrading heavy hydrocarbons
WO2021045883A1 (en) * 2019-09-05 2021-03-11 Exxonmobil Research And Engineering Company Slurry hydroconversion process for upgrading heavy hydrocarbons
US11072751B1 (en) * 2020-04-17 2021-07-27 Saudi Arabian Oil Company Integrated hydrotreating and deep hydrogenation of heavy oils including demetallized oil as feed for olefin production
US11505754B2 (en) * 2020-09-01 2022-11-22 Saudi Arabian Oil Company Processes for producing petrochemical products from atmospheric residues

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066911A1 (en) * 2004-12-22 2006-06-29 Eni S.P.A. Process for the conversion of heavy charges such as heavy crude oils and distillation residues
CN103789036A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种劣质重油组合加工方法
CN104995284A (zh) * 2012-12-18 2015-10-21 Ifp新能源公司 将选择性脱沥青与脱沥青油再循环整合以转化重质烃进料的方法
US20160177203A1 (en) * 2014-12-18 2016-06-23 Axens Process for the intense conversion of residues, maximizing the gasoline yield

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686028A (en) * 1985-04-05 1987-08-11 Driesen Roger P Van Upgrading of high boiling hydrocarbons
CN1243083C (zh) 2003-10-24 2006-02-22 中国石油化工股份有限公司 一种劣质重、渣油的改质方法
US7279090B2 (en) 2004-12-06 2007-10-09 Institut Francais Du Pe'trole Integrated SDA and ebullated-bed process
US7618530B2 (en) 2006-01-12 2009-11-17 The Boc Group, Inc. Heavy oil hydroconversion process
CN101007966A (zh) 2006-01-12 2007-08-01 波克股份有限公司 重油加氢转化工艺
US20090129998A1 (en) * 2007-11-19 2009-05-21 Robert S Haizmann Apparatus for Integrated Heavy Oil Upgrading
FR2958658B1 (fr) * 2010-04-13 2012-03-30 Inst Francais Du Petrole Procede d'hydroconversion de charges petrolieres via une technologie en slurry permettant la recuperation des metaux du catalyseur et de la charge mettant en oeuvre une etape de lixiviation.
FR3014110B1 (fr) * 2013-12-03 2015-12-18 Ifp Energies Now Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif en cascade avec recyclage d'une coupe desasphaltee
US9891011B2 (en) * 2014-03-27 2018-02-13 Uop Llc Post treat reactor inlet temperature control process and temperature control device
US10106748B2 (en) * 2017-01-03 2018-10-23 Saudi Arabian Oil Company Method to remove sulfur and metals from petroleum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066911A1 (en) * 2004-12-22 2006-06-29 Eni S.P.A. Process for the conversion of heavy charges such as heavy crude oils and distillation residues
CN103789036A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种劣质重油组合加工方法
CN104995284A (zh) * 2012-12-18 2015-10-21 Ifp新能源公司 将选择性脱沥青与脱沥青油再循环整合以转化重质烃进料的方法
US20160177203A1 (en) * 2014-12-18 2016-06-23 Axens Process for the intense conversion of residues, maximizing the gasoline yield

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3936589A4 (en) * 2019-03-04 2022-03-30 China Petroleum & Chemical Corporation PROCESS AND SYSTEM FOR PRODUCTION OF LIGHT OLEFINS FROM POOR OIL
US12054682B2 (en) 2019-03-04 2024-08-06 China Petroleum & Chemical Corporation Process and system for producing light olefins from inferior oils
CN112574778A (zh) * 2019-09-27 2021-03-30 中国石油化工股份有限公司 一种劣质油临氢改质方法和系统
CN112574778B (zh) * 2019-09-27 2022-07-15 中国石油化工股份有限公司 一种劣质油临氢改质方法和系统
CN111534351A (zh) * 2020-05-14 2020-08-14 太原理工大学 一种废油脂煮煤的装置及其使用方法
CN112625781A (zh) * 2020-12-21 2021-04-09 山东恒利热载体工程技术有限公司 一种油品光稳定剂

Also Published As

Publication number Publication date
JP2020533453A (ja) 2020-11-19
RU2020113112A3 (zh) 2021-10-08
JP2022044810A (ja) 2022-03-17
RU2759287C2 (ru) 2021-11-11
RU2020113112A (ru) 2021-10-08
SA520411508B1 (ar) 2024-02-25
US20200283688A1 (en) 2020-09-10
EP3683289A1 (en) 2020-07-22
CA3074616A1 (en) 2019-03-14
EP3683289B1 (en) 2024-07-03
JP7048728B2 (ja) 2022-04-05
US11078434B2 (en) 2021-08-03
EP3683289A4 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2019046989A1 (zh) 一种低品质油的改质方法和改质系统
US9074139B2 (en) Process for coal conversion comprising at least one step of liquefaction for the manufacture of aromatics
KR102325584B1 (ko) 정제소 중질 잔사유를 석유화학물질로 업그레이드하는 방법
TW201930574A (zh) 轉化重質燃料油為化學品之技術
RU2673803C1 (ru) Способ облагораживания частично подвергнутого конверсии вакуумного остатка
CN102216429B (zh) 综合的於浆加氢裂化和焦化方法
EA034700B1 (ru) Способ и установка для конверсии сырой нефти в нефтехимические продукты с повышенным выходом этилена
CN102216432A (zh) 综合的溶剂脱沥青和淤浆加氢裂化方法
US20110198265A1 (en) Innovative heavy crude conversion/upgrading process configuration
CN111117701A (zh) 一种最大量生产重石脑油和喷气燃料组分的加氢方法
TW201538707A (zh) 實施選擇性串聯脫瀝青之用於精製包含重烴進料的方法
CN106103663A (zh) 用于将炼油厂重质烃改质成石油化学产品的方法
JP2018526492A (ja) 水素化処理された留出物および石油生コークスへの全原油変換のための統合された沸騰床水素化加工、固定床水素化加工およびコーキングプロセス
CN110655952B (zh) 一种多产低碳烯烃和芳烃的方法和系统
CN109722306B (zh) 劣质重油的加工方法
WO2020177652A1 (zh) 一种由劣质油生产低碳烯烃的方法和系统
CN106999914B (zh) 馏出物燃料和润滑油基料的交替制备
CN109486519A (zh) 一种由低品质油生产高辛烷值汽油的改质方法和系统
CN110776953B (zh) 包括固定床加氢处理、两次脱沥青操作和沥青的加氢裂化的用于处理重质烃原料的方法
TWI757337B (zh) 一種低品質油的改質方法和改質系統
CN109988620B (zh) 生产润滑油基础油的灵活加氢裂化工艺
CN109988642B (zh) 生产润滑油基础油的灵活加氢裂化方法
Hsu et al. Petroleum processing and refineries
RU2803815C2 (ru) Способ и система для получения легких олефинов из низкокачественных нефтепродуктов
US11884888B2 (en) Processes and systems for producing aromatic products and hydrogen carriers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3074616

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020514508

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017924398

Country of ref document: EP

Effective date: 20200414

WWE Wipo information: entry into national phase

Ref document number: 520411508

Country of ref document: SA