WO2019045314A1 - 와류실식 디젤 엔진 - Google Patents

와류실식 디젤 엔진 Download PDF

Info

Publication number
WO2019045314A1
WO2019045314A1 PCT/KR2018/009235 KR2018009235W WO2019045314A1 WO 2019045314 A1 WO2019045314 A1 WO 2019045314A1 KR 2018009235 W KR2018009235 W KR 2018009235W WO 2019045314 A1 WO2019045314 A1 WO 2019045314A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide groove
combustion chamber
diesel engine
combustion gas
guide
Prior art date
Application number
PCT/KR2018/009235
Other languages
English (en)
French (fr)
Inventor
정재영
이창규
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170110082A external-priority patent/KR102282335B1/ko
Priority claimed from KR1020170122005A external-priority patent/KR102227508B1/ko
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to US16/636,851 priority Critical patent/US11085359B2/en
Publication of WO2019045314A1 publication Critical patent/WO2019045314A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/08Engines characterised by precombustion chambers the chamber being of air-swirl type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • F02B19/18Transfer passages between chamber and cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/10Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/24Pistons  having means for guiding gases in cylinders, e.g. for guiding scavenging charge in two-stroke engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a vortex type diesel engine, and more particularly, to a vortex type diesel engine which guides a combustion gas blown from the subordinate combustion chamber to the main combustion chamber into three parts in a connection passage connecting the subordinate combustion chamber and the main combustion chamber Which is capable of promoting diffusion combustion in a diesel engine and suppressing generation of harmful gas such as smog.
  • Diesel engines are essentially no different from gasoline engines in the structure of the major parts (cylinder heads, cylinder blocks, piston connecting assemblies, crankshafts, camshafts, valve mechanisms) that convert thermal energy into mechanical energy.
  • the gasoline engine compresses a mixture of air and fuel and ignites it with an electrical flame
  • the diesel engine sucks in air only and causes the temperature to exceed 500 to 600 ° C
  • the fuel is injected into the cylinder by the injection nozzle while being pressurized by the injection pump to self-ignite (compression ignition).
  • the combustion chamber of the diesel engine should satisfy the following conditions. That is, the injected fuel must be completely burned in the shortest possible time, the average effective pressure must be high, and the fuel consumption rate must be low. Further, the combustion state at high speed rotation should be good, the start-up must be easy, and the diesel knock must be small.
  • An injection nozzle installed in the cylinder head is provided above the combustion chamber.
  • the injection nozzle is a device for injecting high-pressure fuel sent from the injection pump into the combustion chamber in the form of fine smoke.
  • the fuel spray injected by such an injection nozzle must have good atomization characteristics, large penetration force, uniform spraying, proper jetting rate and injection rate, and accurate nozzle flowmeter.
  • the combustion chamber type of the diesel engine is a single-chamber type, direct-injection type, a complex type, a pre-combustion chamber, and a vortex type.
  • the direct injection type is a structure in which the combustion chamber is formed by the irregularities provided on the cylinder head and the piston head, and the fuel is injected directly into the combustion chamber.
  • the combustion chamber is composed of only the main combustion chamber and is referred to as a single- I have.
  • a combustion chamber is placed above the main combustion chamber formed between the piston and the cylinder head, and a part of the injected fuel is combusted in the precombustion chamber to generate high temperature and high pressure gas, whereby the remaining fuel is injected into the main combustion chamber And has a structure for completely burning.
  • the vortex chamber has a vortex chamber in the cylinder or cylinder head, and a vortex is generated in the vortex chamber during the compression stroke.
  • the fuel is injected from the swirling chamber, the injected fuel mixes with the swirling air and is ejected into the main combustion chamber while being ignited and burnt, and the unburned fuel is burned while meeting the fresh air in the main combustion chamber .
  • FIG. 1 is a view showing the internal structure of a conventional vortex type diesel engine combustion chamber.
  • Fig. 1 the structure of the secondary combustion chamber (swirl chamber) 2a is mainly shown.
  • a sub-combustion chamber assembly 2 is separately assembled to a cylinder head 1 to provide a sub-combustion chamber 2a, and a main combustion chamber 3a is formed on an upper surface of the piston 3.
  • the injection nozzle 4 is installed in the upper central cylinder head 1 of the sub combustion chamber 2a so as to inject fuel into the sub combustion chamber 2a in a deflected manner and a preheating plug 2a 5 are mounted.
  • the preheating plug 5 is installed because the temperature of the combustion chamber is low at startup or at low speed.
  • a connecting passage 2b through which the air flows from the main combustion chamber 3a is inclined.
  • the connection passage 2b is mainly provided in the tangential direction of the sub-combustion chamber 2a.
  • a cooling water passage 1a is formed around the sub-combustion chamber 2a.
  • the conventional vortex chamber type combustion chamber is a Comet Vb type of Ricardo, and in particular, the shape of the sub-combustion chamber assembly 2 is such that the fuel injected from the injection nozzle 4 collides with a straight line
  • the connecting passage 2b is formed in a structure tangential to the vortex inducing portion 2d, and in particular, the vortex inducing portion 2b is formed in a tangential manner with the vortex inducing portion 2d, As can be seen from FIG. 2, the shape of the connection passage 2b is a single-piece cross-sectional shape composed of two circles and tangent arcs.
  • connection passage 2b having such a structure is such that the diffusion is concentrated in the straight- And the diffusion combustion is lowered, thereby increasing the emission of harmful components of the exhaust gas, especially smog.
  • the present invention has been conceived to solve the above problems. It is an object of the present invention to solve the above-mentioned problems, and it is an object of the present invention to provide a gas- Which is capable of effectively suppressing the generation of harmful components such as smog contained in the exhaust gas.
  • the vortex type diesel engine includes a vortex induction portion 2d having a curved inner wall surface and a connection passage 2b formed at a lower end of the vortex induction portion 2d
  • a sub-combustion chamber assembly (2) coupled to the cylinder head (1) to form a sub-combustion chamber (2a);
  • a piston 3 constituting a main combustion chamber 3a including a trench portion 3c communicating with the connection passage 2b and a clover portion 3b formed on both sides of the trench portion 3c
  • the guide passage 2b is provided with a guide structure 2e for guiding the combustion gas sprayed into the main combustion chamber 3a from the auxiliary combustion chamber 2b into three parts.
  • the combustion gases guided by the guide structure 2e and divided into three parts are respectively introduced in the trench portion 3c in the straight direction or in the direction of the clubber portion 3b on both sides of the trench portion 3c Can be guided in.
  • the guide structure 2e may have three curved shapes that are connected to each other on the upper surface of the connection passage 2b.
  • connection passage 2b the three curved shapes provided on the upper surface of the connection passage 2b can maintain the same shape throughout the connection passage 2b.
  • the three curved surfaces provided on the upper surface of the connection passage 2b may have a curved surface shape having the same radius.
  • the guide structure 2e includes a first guide groove 21e positioned at the center and a second guide groove 22e and a third guide groove 23e located on both sides of the first guide groove 21e And the center of the first guide groove 21e may be positioned higher than a straight line connecting the centers of the second guide groove 22e and the third guide groove 23e.
  • the guide structure 2e includes a first guide groove 21e located at the center and a second guide groove 22e and a third guide groove 23e located on both sides of the first guide groove 21e And the first guide groove 21e may be positioned higher than the second guide groove 22e and the third guide groove 23e.
  • the first guide groove 21e, the second guide groove 22e, and the third guide groove 23e can guide the combustion gas by dividing the combustion gas substantially uniformly.
  • the first guide groove 21e, the second guide groove 22e, and the third guide groove 23e may have the same cross-sectional area.
  • the bottom surface of the clover portion 3b may have a predetermined distance from the first region in accordance with the flow of the combustion gas, rather than the height of the bottom surface of the first region into which the combustion gas is introduced from the trench portion 3c And a height of the bottom surface in the advanced second region is higher.
  • the bottom surface of the clover part 3b may have a three-dimensional structure in which the height of the bottom surface gradually increases in accordance with the flow of the combustion gas so that the drawn combustion gas gradually flows upward have.
  • the closure part 3b has a cylindrical structure which is connected to the trench part 3c and disposed on both sides of the trench part 3c and includes a spiral structure in which the height of the bottom surface gradually increases according to the flow of the combustion gas .
  • the clover portion 3b may include a structure in which the height of the bottom surface gradually increases toward the outer periphery.
  • the bottom surface of the trench portion 3c may have a predetermined inclination so that the combustion gas introduced into the closure portion 3b can be drawn in while being raised.
  • the vortex chamber diesel engine has a guide structure for guiding the combustion gas into three parts in a connecting passage connecting the sub-combustion chamber and the main combustion chamber, The combustion gas ejected to the main combustion chamber is divided and guided and ejected, thereby promoting diffusion combustion in the diesel engine and suppressing generation of harmful gas such as smog.
  • the bottom surface of the clover portion located in the periphery of the trench portion in the main combustion chamber of the vortex type diesel engine is realized as a spiral three-dimensional structure, It is possible to effectively suppress the generation of harmful components such as particulate matter (PM) contained in the exhaust gas.
  • PM particulate matter
  • FIG. 1 is an exemplary view of a combustion chamber structure of a conventional swirl-type diesel engine.
  • FIG. 2 is an exemplary view of a sub-combustion chamber assembly 2 constituting a sub-combustion chamber 2a in a conventional swirl type diesel engine.
  • FIG 3 is a view for explaining a combustion chamber structure of a swirl type diesel engine according to an embodiment of the present invention.
  • FIG. 4 is a view illustrating a swirl-type diesel engine having a connection passage 2b of a general structure.
  • FIG. 5 is a diagram illustrating a feature of a swirl-type diesel engine having a connecting passage 2b according to an embodiment of the present invention.
  • connection passage 2b is views for explaining the connection passage 2b according to an embodiment of the present invention.
  • connection passage 2b is a view for explaining an improvement of the combustion gas flow according to the connection passage 2b in the vortex type diesel engine according to the embodiment of the present invention.
  • Fig. 9 is a view illustrating the structure of the main combustion chamber of a conventional vortex type diesel engine.
  • FIG. 10 is a diagram illustrating the structure of the main combustion chamber of a vortex type diesel engine according to an embodiment of the present invention.
  • 11 is a view for explaining the characteristics of the main combustion chamber of a general vortex type diesel engine.
  • FIG. 12 is a view for explaining a feature of a main combustion chamber of a vortex type diesel engine according to an embodiment of the present invention.
  • FIG. 13 is a view for explaining the improvement of the combustion gas flow in the main combustion chamber structure of the vortex type diesel engine according to the embodiment of the present invention.
  • a vortex type diesel engine has a structure in which fuel is injected into a vortex generated in a sub-combustion chamber 2a by a compression stroke.
  • the vortex type diesel engine can generally be configured to include the main combustion chamber 3a and the sub combustion chamber 2a.
  • the sub-combustion chamber 2a may be formed with the sub-combustion chamber assembly 2 in the cylinder head 1.
  • main combustion chamber 3a may be formed on the upper surface of the piston 3.
  • a spray nozzle 4 is provided at the upper center of the sub combustion chamber 2a to inject the fuel into the fuel collision portion 2c having a straight cross section formed on one side wall of the sub combustion chamber 2a.
  • the other side wall surface of the sub combustion chamber 2a has a curved vortex induction portion 2d so that the compressed air flowing from the main combustion chamber 3a flows into the sub combustion chamber 2a through the connection passage 2b. So that it forms a vortex.
  • the lower combustion chamber 2a is connected to the sub combustion chamber 2a and the main combustion chamber 3a to provide a passage through which the air flows from the main combustion chamber 3a to the sub combustion chamber 2a
  • the connecting passage 2b may be inclined and the connecting passage 2b is preferably installed in a tangential direction with the vortex inducing portion 2d of the secondary combustion chamber 2a.
  • auxiliary combustion chamber 2a is provided with a preheating plug 5 to prevent the temperature of the combustion chamber from being lowered at startup or at low-speed driving.
  • a cooling water passage 1a may be formed around the secondary combustion chamber 2a.
  • the sub-combustion chamber 2a may be formed with the sub-combustion chamber assembly 2 in the cylinder head 1,
  • the auxiliary combustion chamber 2a is connected to the main combustion chamber 3a through the connection passage 2b to blow out the combustion gas generated in the auxiliary combustion chamber 2a to the main combustion chamber 3a.
  • FIG. 4 (b) is a sectional view showing the shapes of the sub-combustion chamber assembly 2 and the connection passage 2b constituting the sub-combustion chamber 2a. More specifically, FIG. 4 (b) b3), the cross-sectional shape of the connecting passage 2b is shown in detail.
  • the connecting passage 2b connecting the main combustion chamber 3a and the sub-combustion chamber 2a of the conventional vortex type diesel engine has two circles and a tangent (3c in Fig. 3 (b)) when the mixed gas burned in the sub-combustion chamber 2a is ejected into the main combustion chamber 3a while forming the integral cross-
  • the diffusion is concentrated in the straight direction of the gas so that the eddy current is not appropriately formed in the clover portion (3b in Fig. 3 (b)) located on both sides of the trench portion 3c,
  • FIG. 5 specifically illustrates the characteristics of a swirl-type diesel engine having a connecting passage 2b according to an embodiment of the present invention.
  • FIG. 5A shows a swirl type diesel engine having a connecting passage 2b according to an embodiment of the present invention.
  • the shape of the sub-combustion chamber assembly 2 and the connecting passage 2b constituting the sub- Are shown in the directions of the upper surface a1, the lower surface a2 and the side surface a3.
  • FIG. 5 (b) shows the cross-sectional shape of the connection passage 2b in detail.
  • the main combustion chamber 3a and the sub combustion chamber 2a may be provided with a guide structure 2e for guiding the combustion gas ejected from the sub combustion chamber 2b into the main combustion chamber 3a in three parts.
  • connection passage 2b is a cross-sectional view of a guide structure 2e formed in the connection passage 2b to explain the connection passage 2b according to an embodiment of the present invention.
  • the guide structure 2e may include three curved shapes provided on the upper surface of the connection passage 2b. According to the shape of the guide structure 2e, the combustion gas can be guided into three parts.
  • the guide structure 2e may have three curved shapes having the same radius on the upper surface of the connection passage 2b.
  • the combustion gas guided in three parts by the guide structure 2e is introduced into the trench portion 3c in the straight direction, or the combustion gas introduced into the trench portion 3c, which is located on both sides of the trench portion 3c, 3b. Accordingly, in the present invention, by using the guide structure 2e capable of guiding the combustion gas into three parts in the connection passage 2b connecting the sub combustion chamber 2a and the main combustion chamber 3a, The combustion gas injected into the main combustion chamber 3a in the sub combustion chamber 2a can be divided into three parts and the combustion gas can be ejected in the third combustion chamber 2a.
  • the combustion gas is concentrated in the trench portion 3c in the straight-
  • the ratio of the combustion gas ejected to the trench portion 3b and the clover portion 3b is adjusted by using the guide structure 2e while the vortex in the diesel engine 3b is not properly formed, And it is possible to effectively suppress generation of harmful gas such as smog.
  • the guide structure 2e having three curved surfaces connected to each other on the upper surface of the connection passage 2b has a first guide groove 21e located at the center, a first guide groove 21d located at the center of the first guide groove 21e, And a second guide groove 22e and a third guide groove 23e located on both sides.
  • the center of the first guide groove 21e may be positioned higher than a straight line connecting the centers of the second guide groove 22e and the third guide groove 23e.
  • the first guide groove 21e is formed in the second guide groove 22e with reference to the center line (C in FIG. 5 (b)) of the connection passage 2b, And the third guide groove 23e. 5B, the first guide groove 21e is located closest to the center line of the connecting passage 2b (refer to (C) in FIG. 5B) So that it can be seen that it is located at a height.
  • the first guide groove 21e is located at the center of the second guide groove 22e and the third guide groove 23e and the first guide groove 21e is located at the second guide groove 22e
  • the first guide groove 21e, the second guide groove 22e and the third guide groove 23e can divide and guide the combustion gas so that the first guide groove 21e, the second guide groove 22e and the third guide groove 23e have the same sectional area as the first guide groove 23e and the third guide groove 23e. .
  • first guide groove 21e, the second guide groove 22e, and the third guide groove 23e are guided by dividing the combustion gas substantially uniformly through a structure having the same radius or the same cross sectional area
  • the combustion gas concentrated in the trench portion 3c can be uniformly sprayed to the trench portion 3c and the clover portion 3b located at both ends of the trench portion 3c.
  • the guide grooves 21e, the second guide grooves 22e and the third guide grooves 23e divide the combustion gas substantially uniformly to guide the fuel gas in the connection passage 2b
  • the first guide groove 21e, the second guide groove 22e and the third guide groove 23e have the same radius or the same cross sectional area as that of the first guide groove 21e, the second guide groove 22e and the third guide groove 23e, while the majority of the combustion gas is concentrated and ejected to the trench portion 3c.
  • the amount of the combustion gas ejected to the clovers 3b located in the trench portions 3c is increased to such an extent that the amount of the combustion gases ejected to the trench portions 3c can be uniformly guided .
  • the ratio of the combustion gas guided by the first guide groove 21e can be adjusted by adjusting the height of the first guide groove 21e and adjusting the cross-sectional area of the first guide groove 21e, Furthermore, the ratio of the combustion gas introduced in the straight direction in the trench portion 3c and the combustion gas introduced into the trench portion 3c in the direction of the cylinder portion 3b may be appropriately adjusted.
  • connection passage 2b shows the internal structure of the connection passage 2b to explain the connection passage 2b according to an embodiment of the present invention.
  • connection passage 2b is formed in the same shape from the starting point S to the end point E.
  • the cross sections a1, a2 and a3 parallel to the lower surface (the B surface in Fig. 7 (c)) of the sub-combustion chamber assembly 2 all have the same shape.
  • the cross-sections b1, b2 and b3 perpendicular to the traveling direction central axis (DD in Fig. 7 (c)) of the connecting passage 2b are all formed in the same shape .
  • Fig. 8 illustrates the improvement of combustion gas flow in a swirl-type diesel engine having a connecting passage 2b according to an embodiment of the present invention.
  • 8 (a) in the conventional swirl-type diesel engine, when the combustion gas generated in the sub-combustion chamber 2a is ejected into the main combustion chamber 3a (Fig. 7 (a)), The diffusion of the combustion gas into the trench portion 3c is concentrated in the straight direction ((A2) in FIG. 7A) (A1) and (A3) in Fig. 7 (a)) can not be appropriately formed in the portion 3b and the diffusion combustion can be lowered. Further, the emission of harmful components, particularly smog, The problem can be followed.
  • the combustion gas is divided into three parts and guided to the connection passage 2b connecting the sub combustion chamber 2a and the main combustion chamber 3a (B0 in Fig. 7B) by dividing the combustion gas ejected into the main combustion chamber 3a from the sub-combustion chamber 2a into three parts using the guide structure 2e having the guide structure 2e, (B2 in Fig. 7 (b)) and the combustion gas (Fig. 7 (b)) drawn in the direction of the straight line in the portion 3c of the trench 3c and the combustion gas (B1) and (B2) in Fig. 3 (b)).
  • the vortex is formed more strongly in the clover portion 3b located on both sides of the trench portion 3c, thereby promoting diffusion combustion in the diesel engine , And further, generation of harmful gas such as smog can be effectively suppressed.
  • the bottom surface of the clover portion 3b located around the trench portion 3c in the main combustion chamber 3a of the vortex type diesel engine is formed into a spiral three-dimensional structure
  • the oxidizing ability of the diesel engine can be improved and the generation of harmful components such as particulate matter (PM) contained in the exhaust gas can be effectively suppressed.
  • the clover portion 3b of the main combustion chamber 3a in the conventional vortex type diesel engine can be arranged to be connected to both the left and right sides of the trench portion 3c, Particularly, as shown in Figs. 9 (b) and 9 (c), the bottom surface of the clover portion 3b has a planar structure having a constant depth.
  • the vortex can not be effectively formed and does not reach complete combustion, and produces exhaust gas containing harmful components such as particulate matter (PM).
  • the bottom surface of the clover portion 3b is filled with the combustion gas from the trench portion 3c
  • a second region also shown in FIG. 10) in which a predetermined distance from the first region is advanced according to the flow of the combustion gas (arrow (B) in FIG. 10) (C) of FIG. 10)
  • a vortex flow is strongly generated in the clover portion 3b to activate a complicated flow, and the oxidizing ability is enhanced, so that harmful components of the exhaust gas , Particulate matter (PM) can be effectively suppressed.
  • the vortex-type diesel engine includes a vortex induction portion 2d having a curved inner wall surface and a connection passage 2b formed at the lower end of the vortex induction portion 2d,
  • the sub combustion chamber assembly 2 constituting the sub combustion chamber 2a and the trench portion 3c communicating with the connection passage 2b and the closure portion 3c formed on the left and right sides of the trench portion 3c
  • a swirl chamber type diesel engine including a piston (3) constituting a main combustion chamber (3a), the bottom surface of the closure part (3b) including a trench part (3b) 10), which is a predetermined distance from the first region in accordance with the flow of the combustion gas (arrow (B) in Fig. 10) than the bottom surface height of the first region (Fig. 10 (A) (C) is higher than that of the bottom surface.
  • the bottom surface of the clover part 3b in the main combustion chamber 3a of the vortex-type diesel engine according to the embodiment of the present invention is a planar structure But the bottom surface height gradually increases according to the flow of the combustion gas.
  • FIG 11 is a plan view (a), a side sectional view (b), and a perspective view (c) showing the shape of the main combustion chamber 3a formed on the upper surface of the piston 3 in a general vortex type diesel engine.
  • the clover portion 3b of the main combustion chamber 3a has a planar structure having a predetermined depth
  • the combustion gas in the closure portion 3b can not effectively form a vortex, ) And the like, which is a problem in generating exhaust gas containing harmful components.
  • FIG. 12 specifically illustrates the characteristics of the vortex type diesel engine according to an embodiment of the present invention.
  • FIG. 12 is a plan view (a), a side sectional view (b) and a side view (b) showing the shape of the main combustion chamber 3a formed on the upper surface of the piston 3 in the vortex type diesel engine according to the embodiment of the present invention. Is a perspective view (c).
  • the bottom surface of the clover portion 3b of the main combustion chamber 3a wherein a height of a bottom surface in a second region where a predetermined distance from the first region advances in accordance with the flow of the combustion gas is made higher than a bottom surface height of a first region in which combustion gas is introduced from the portion (3c)
  • a vortex is strongly formed in the combustion gas introduced into the clover portion 3b, thereby activating a complicated flow and enhancing the oxidizing ability, thereby effectively suppressing the discharge of harmful components of the exhaust gas, especially particulate matter (PM) Be able to do
  • the bottom surface of the clover portion 3b may have a three-dimensional structure in which the height of the bottom surface gradually increases according to the flow of the combustion gas so that the drawn-in combustion gas gradually flows upward
  • the clover portion 3b has a cylindrical structure that is connected to the trench portion 3c and disposed on both sides of the trench portion 3c, and includes a spiral structure in which the height of the bottom surface gradually increases according to the flow of the combustion gas So that the combustion gas introduced into the clover part 3b flows upward along the bottom surface shape of the clover part 3b to form a stronger vortex.
  • the clover portion 3b may include a structure in which the height of the bottom surface gradually increases toward the outer periphery.
  • the bottom surface of the trench portion 3c has a predetermined inclination, so that the combustion gas can be drawn into the clover portion 3b while rising along the inclination of the bottom surface of the trench portion 3c.
  • FIG. 13 illustrates the improvement of the combustion gas flow according to the three-dimensional structure of the bottom surface of the clover portion 3b in the swirl type diesel engine according to the embodiment of the present invention.
  • 13 (a) when the combustion gas generated in the sub combustion chamber 2a of the conventional vortex type diesel engine is spouted into the main combustion chamber 3a (see FIG. 13 (a) A0), the combustion gas introduced into the clover portion 3b proceeds along the bottom surface of the planar shape having a predetermined depth, and the vortex is not formed properly (A1 and A3 in Fig. 13 (a) ), The complex flow can not be activated and the oxidizing ability is lowered, which may lead to problems of increasing the emission of harmful components of the exhaust gas, especially particulate matter (PM).
  • PM particulate matter
  • the bottom surface of the clover portion 3b of the main combustion chamber 3a is formed so that the introduced combustion gas gradually And the height of the bottom surface gradually increases with the flow of the combustion gas so as to form a rising flow so that the combustion gas drawn into the clover portion 3b flows to the bottom of the clover portion 3b And flows along the surface shape to form a stronger vortex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

본 발명은 와류실식 디젤 엔진에 관한 것으로, 보다 구체적으로는 와류실식 디젤 엔진에서 부연소실과 주연소실을 연결하는 연결통로에 상기 부연소실에서 상기 주연소실로 분출되는 연소 가스를 세 부분으로 나누어 가이드할 수 있는 가이드구조를 구비하여, 디젤 엔진에서의 확산 연소를 촉진하고 스모그 등 유해 가스의 생성을 억제할 수 있는 와류실식 디젤 엔진에 관한 것이다. 본 발명에서는, 내벽면에 곡면 형상을 가지는 와류유도부(2d) 및 상기 와류유도부(2d) 하단에 형성된 연결통로(2b)를 포함하며, 실린더헤드(1)와 결합되어 부연소실(2a)을 구성하는 부연소실조립체(2); 및 상기 연결통로(2b)와 연통되는 트렌치부(3c) 및 상기 트렌치부(3c)의 양측에 형성된 클로버부(3b)를 포함하며, 주연소실(3a)을 구성하는 피스톤(3)을 포함고, 상기 연결통로(2b)에는 상기 부연소실(2b)에서 주연소실(3a)로 분출되는 연소 가스를 세 부분으로 나누어 가이드할 수 있는 가이드구조(2e)가 구비되는 것을 특징으로 하는 와류실식 디젤 엔진을 개시한다.

Description

와류실식 디젤 엔진
본 발명은 와류실식 디젤 엔진에 관한 것으로, 보다 구체적으로는 와류실식 디젤 엔진에서 부연소실과 주연소실을 연결하는 연결통로에 상기 부연소실에서 상기 주연소실로 분출되는 연소 가스를 세 부분으로 나누어 가이드할 수 있는 가이드구조를 구비하여, 디젤 엔진에서의 확산 연소를 촉진하고 스모그 등 유해 가스의 생성을 억제할 수 있는 와류실식 디젤 엔진에 관한 것이다.
디젤 엔진은 열에너지를 기계적인 에너지로 바꾸는 주요부분의 구조(실린더 헤드, 실린더블록, 피스톤커넥팅 어셈블리, 크랭크축, 캠축, 밸브기구)에 있어서는 본질적으로 가솔린 엔진과 큰 차이가 없다.
그러나, 연료의 연소 과정에 있어서 가솔린 엔진은 공기와 연료의 혼합기를 압축한 후 전기적 불꽃으로 점화하는데 반하여, 디젤 엔진은 공기만을 흡입하고 높은 압축비로 그 온도가 500~600°C 이상이 되게 한 후 연료를 분사펌프에서 가압하여 분사노즐로 실린더 내에 분사시켜 자기착화(압축착화)시키는 점에서 차이가 있다.
상기 디젤 엔진의 연소실은 다음과 같은 조건을 갖추어야 한다. 즉, 분사된 연료를 가능한 짧은 시간에 완전 연소시켜야 하고, 평균 유효 압력이 높아야 하며, 연료소비율이 적어야 한다. 또한, 고속회전에서의 연소상태가 좋아야 하며, 기동이 쉬워야 하고, 디젤 노크가 적어야 한다.
상기 연소실의 상방에는 실린더 헤드에 설치되는 분사노즐이 구비된다. 상기 분사노즐은 분사펌프에서 보내준 고압의 연료를 미세한 연기 형태로 연소실 내에 분사하는 장치이다. 이러한 분사노즐로 분사되는 연료분무는 무화(안개화) 특성이 좋아야 하고, 관통력이 커야 하며, 분무가 골고루 이루어져야 하고, 분사도 및 분사율이 적절하여야 하며, 노즐유량계수도 정확하여야 한다.
디젤 엔진의 연소실 형식은 단실식으로 직접분사실식, 복실식으로 예연소실실, 와류실식 등이 있다. 직접분사실식은 연소실이 실린더 헤드와 피스톤 헤드에 설치된 요철에 의하여 형성이 되며, 여기에 연료가 직접 분사되는 구조로서, 주연소실만으로 구성되어 단실식이라고 하며, 하트형, 구형, 반구형 등의 형상을 가진다.
예연소실식은 피스톤과 실린더 헤드 사이에 형성되는 주연소실 위쪽에 연소실을 두게 되며, 분사된 연료의 일부가 예연소실에서 연소되어 고온, 고압의 가스를 발생시키며 이것에 의해 나머지 연료가 주연소실로 분출되어 완전연소하도록 하는 구조를 가진다.
와류실식은 실린더나 실린더 헤드에 와류실을 두어 압축행정 중에 와류실에서 와류가 발생되게 된다. 상기 와류실에서 연료가 분사되면, 분사된 연료는 선회 운동을 하고 있는 공기와 혼합되어 착화연소하면서 주연소실로 분출되고, 다시 상기 주연소실에서 미연소 연료가 새 공기와 만나면서 연소하게 되는 구조를 가진다.
도 1은 종래의 와류실식 디젤 엔진 연소실의 내부 구조를 나타낸 도면이다. 도 1에서는 부연소실(와류실)(2a)의 구조를 중심으로 나타내고 있다.
도 1을 참조하여 살펴보면, 실린더헤드(1)에는 부연소실조립체(2)가 별도로 조립되어 부연소실(2a)이 마련되고, 피스톤(3) 상면 쪽에는 주연소실(3a)이 형성된다. 상기 부연소실(2a)의 중앙 상단 실린더헤드(1)에는 분사노즐(4)이 연료를 부연소실(2a)로 편향되게 분사시킬 수 있도록 설치되고, 상기 부연소실(2a)의 상단에는 예열플러그(5)가 장착된다. 상기 예열플러그(5)는 시동이나 저속 시 연소실의 온도가 낮아지기 때문에 설치되는 것이다. 상기 부연소실(2a)의 하단에는 상기 주연소실(3a)로부터 공기가 유입되는 연결통로(2b)가 경사지게 설치된다. 상기 연결통로(2b)는 주로 상기 부연소실(2a)의 접선 방향으로 설치된다. 그리고, 부연소실(2a) 주변에는 냉각수통로(1a)가 형성된다.
이와 같이 구성되는 와류실식 연소실은 압축 행정 시 주연소실(3a)로부터 유입되는 압축공기가 연결통로(2b)를 통하여 부연소실(2a)로 유동될 때 화살표(도 1의 (A))와 같이 강한 와류가 형성하게 된다. 이때 분사노즐(4)로부터 연료가 분사되어 부연소실(2a)에서 거의 연소가 이루어지게 된다.
종래의 와류실식 연소실은 리카르도(Ricardo)의 코맷 Vb(Commet Vb) 타입으로서, 특히 부연소실조립체(2)의 형상은 도 2에 나타낸 바와 같이, 분사노즐(4)로부터 분사된 연료가 충돌되는 직선 단면 형태의 연료충돌부(2c)와 곡면 형상으로 이루어진 와류유도부(2d)로 구분될 수 있으며, 이때 연결통로(2b)는 상기 와류유도부(2d)와 접선을 이루는 구조로 형성되어 있고, 특히 도 2에서 볼 수 있는 바와 같이 상기 연결통로(2b)의 형상은 2개의 원과 탄젠트한 원호로 구성되는 일체형의 단면 형상을 이루게 된다.
이러한 구조로 이루어진 상기 연결통로(2b)의 형상은 상기 부연소실(2a)에서 연소된 혼합 가스가 상기 주연소실(3a)로 분출되는 경우, 직진 방향으로 확산이 집중되면서 좌우 클로버부에서 와류가 적절하게 형성되지 못하여 확산 연소를 저하시키게 되고, 이에 따라 배출 가스의 유해 성분, 특히 스모그(smog)의 배출을 증가시키는 원인이 된다.
본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 부연소실(2a)에서 주연소실(3a)로 분출되는 혼합 가스를 세 부분으로 나누어 가이드해 분출시켜 직진 방향의 확산 및 좌우 클로버부의 와류를 촉진시킴으로써, 배출 가스에 포함되는 스모그 등 유해 성분의 생성을 효과적으로 억제할 수 있는 와류실식 디젤 엔진을 제공하는 것을 목적으로 한다.
그 외 본 발명의 세부적인 목적은 이하에 기재되는 구체적인 내용을 통하여 이 기술 분야의 전문가나 연구자에게 자명하게 파악되고 이해될 것이다.
상기한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 와류실식 디젤 엔진은, 내벽면에 곡면 형상을 가지는 와류유도부(2d) 및 상기 와류유도부(2d) 하단에 형성된 연결통로(2b)를 포함하며, 실린더헤드(1)와 결합되어 부연소실(2a)을 구성하는 부연소실조립체(2); 및 상기 연결통로(2b)와 연통되는 트렌치부(3c) 및 상기 트렌치부(3c)의 양측에 형성된 클로버부(3b)를 포함하며, 주연소실(3a)을 구성하는 피스톤(3)을 포함하고, 상기 연결통로(2b)에는 상기 부연소실(2b)에서 주연소실(3a)로 분출되는 연소 가스를 세 부분으로 나누어 가이드할 수 있는 가이드구조(2e)가 구비되는 것을 특징으로 한다.
이때, 상기 가이드구조(2e)에 의하여 가이드되어 세 부분으로 나누어진 연소 가스는 각각 상기 트렌치부(3c)에서 직진 방향으로 인입되거나, 상기 트렌치부(3c)의 양측의 클러버부(3b) 방향으로 인입되도록 가이드될 수 있다.
또한, 상기 가이드구조(2e)는, 상기 연결통로(2b)의 상면에 서로 연접하는 3개의 곡면 형상을 구비하여 구성될 수 있다.
이때, 상기 연결통로(2b)의 상면에 구비된 상기 3개의 곡면 형상은 상기 연결통로(2b) 전체에 걸쳐 동일한 형상을 유지할 수 있다.
이때, 상기 연결통로(2b)의 상면에 구비된 상기 3개의 곡면 형상은 동일한 반경을 가지는 곡면 형상일 수 있다.
또한, 상기 가이드구조(2e)는 중앙에 위치하는 제1가이드홈(21e) 및 상기 제1가이드홈(21e)의 양측에 위치하는 제2가이드홈(22e) 및 제3가이드홈(23e)을 포함하며, 상기 제1가이드홈(21e)의 중심은 상기 제2가이드홈(22e)과 제3가이드홈(23e)의 중심을 연결하는 직선보다 높이 위치할 수 있다.
또한, 상기 가이드구조(2e)는 중앙에 위치하는 제1가이드홈(21e) 및 상기 제1가이드홈(21e)의 양측에 위치하는 제2가이드홈(22e) 및 제3가이드홈(23e)을 포함하며, 상기 제2가이드홈(22e)과 제3가이드홈(23e) 사이의 거리(D)는 상기 제1가이드홈(21e)의 반지름(r)의 3배(D = 3r)로 형성될 수 있다.
나아가, 상기 가이드구조(2e)는 중앙에 위치하는 제1가이드홈(21e) 및 상기 제1가이드홈(21e)의 양측에 위치하는 제2가이드홈(22e) 및 제3가이드홈(23e)을 포함하며, 상기 제1가이드홈(21e)은 상기 제2가이드홈(22e) 및 제3가이드홈(23e)보다 높이 위치할 수 있다.
여기서, 상기 제1가이드홈(21e), 제2가이드홈(22e) 및 제3가이드홈(23e)은 상기 연소 가스를 대략 균일하게 나누어 가이드할 수 있다.
이때, 상기 제1가이드홈(21e), 제2가이드홈(22e) 및 제3가이드홈(23e)은 서로 동일한 단면적을 가질 수 있다.
나아가, 상기 클로버부(3b)의 바닥면은, 상기 트렌치부(3c)로부터 연소 가스가 인입되는 제1영역의 바닥면 높이보다, 상기 연소 가스의 흐름에 따라 상기 제1영역으로부터 소정의 거리가 진행된 제2영역에서의 바닥면 높이가 더 높아지는 입체 구조를 구비할 수 있다.
이때, 상기 클로버부(3b)의 바닥면은, 인입된 상기 연소 가스가 점차 상승하는 흐름을 형성할 수 있도록, 상기 연소 가스의 흐름에 따라 상기 바닥면의 높이가 점차 높아지는 입체 구조를 구비할 수 있다.
또한, 상기 클로버부(3b)는, 상기 트렌치부(3c)와 연접하여 양측에 각각 배치되는 원통형 구조를 구비하며, 상기 연소 가스의 흐름에 따라 상기 바닥면의 높이가 점차 높아지는 나선형 구조를 포함할 수 있다.
나아가, 상기 클로버부(3b)는 상기 바닥면의 높이가 외곽으로 갈수록 점차 높아지는 구조를 포함할 수 있다.
또한, 상기 트렌치부(3c)의 바닥면은, 상기 클로버부(3b)로 인입되는 연소 가스가 상승하면서 인입될 수 있도록 소정의 기울기를 가질 수 있다.
본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서는, 와류실식 디젤 엔진에서 부연소실과 주연소실을 연결하는 연결통로에 연소 가스를 세 부분으로 나누어 가이드할 수 있는 가이드구조를 구비하여, 상기 부연소실에서 상기 주연소실로 분출되는 연소 가스를 나누어 가이드해 분출하여 줌으로써, 디젤 엔진에서의 확산 연소를 촉진하고 스모그 등 유해 가스의 생성을 억제할 수 있게 된다.
나아가, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서는, 와류실식 디젤 엔진의 주연소실에서 트렌치부 주변에 위치하는 클로버부의 바닥면을 나선형 입체 구조로 구현함으로써, 디젤 엔진의 산화 능력을 개선하고 배출 가스에 포함되는 입자상 물질(PM) 등 유해 성분의 생성을 효과적으로 억제할 수 있게 된다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 통상의 와류실식 디젤 엔진의 연소실 구조에 대한 예시도이다.
도 2는 통상의 와류실식 디젤 엔진에서 부연소실(2a)을 구성하는 부연소실조립체(2)의 예시도이다.
도 3은 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 연소실 구조를 설명하기 위한 도면이다.
도 4는 일반적인 구조의 연결통로(2b)를 구비하는 와류실식 디젤 엔진을 예시하는 도면이다.
도 5는 본 발명의 일 실시예에 따른 연결통로(2b)를 구비하는 와류실식 디젤 엔진의 특징을 예시하는 도면이다.
도 6 및 도 7은 본 발명의 일 실시예에 따른 연결통로(2b)를 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서 연결통로(2b)에 따른 연소 가스 흐름의 개선을 설명하는 도면이다.
도 9는 일반적인 와류실식 디젤 엔진의 주연소실 구조를 예시하는 도면이다.
도 10은 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 주연소실 구조를 예시하는 도면이다.
도 11은 일반적인 와류실식 디젤 엔진의 주연소실의 특징을 설명하기 위한 도면이다.
도 12는 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 주연소실의 특징을 설명하기 위한 도면이다.
도 13은 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 주연소실 구조에서의 연소 가스 흐름의 개선을 설명하는 도면이다.
이하, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세하게 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 첨가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 실시될 수 있음은 물론이다.
먼저, 도 3을 참조하여 일반적인 와류실식 디젤 엔진의 구성 및 동작을 개략적으로 살핀 후, 본 발명의 기술적 특징을 설명하도록 한다.
보다 구체적으로, 중, 대형의 디젤 엔진에서는 혼합기 형성에 주어지는 시간이 충분하므로 연료 분사 만으로 공기와의 접촉을 충분히 할 수 있으나, 소형 또는 고속의 디젤 엔진에서는 공기 와류의 도움 없이 짧은 시간 내에 완전하게 연소를 마치기 어려워진다. 이러한 문제를 해결하기 위하여 와류실식 등 다양한 종류의 연소실 구조가 사용되고 있으며, 특히 와류실식 디젤 엔진은 압축 행정에 의하여 부연소실(2a)에서 생성된 와류로 연료를 분사시켜 연소시키는 구조를 가진다.
이에 따라, 도 3(a)에서 볼 수 있는 바와 같이, 일반적으로 와류실식 디젤 엔진은 주연소실(3a)와 부연소실(2a)를 포함하여 구성될 수 있다. 이때, 상기 부연소실(2a)은 실린더헤드(1)에 부연소실조립체(2)가 구비되어 형성될 수 있다.
또한, 상기 주연소실(3a)는 상기 피스톤(3)의 상면에 형성될 수 있다.
상기 부연소실(2a)의 중앙 상단에는 분사노즐(4)이 구비되어 연료를 부연소실(2a)의 일측 벽면에 형성된 직선 단면 형태의 연료충돌부(2c)로 편향되게 분사시킬 수 있다. 또한, 상기 부연소실(2a)의 타측 벽면에는 곡면 형상으로 이루어진 와류유도부(2d)가 구비되어 상기 주연소실(3a)로부터 유입되는 압축공기가 연결통로(2b)를 통하여 부연소실(2a)로 유동될 때 와류를 형성하도록 하게 된다.
또한, 상기 부연소실(2a)의 하단에는 상기 부연소실(2a)과 상기 주연소실(3a)을 연결하여, 상기 주연소실(3a)로부터 상기 부연소실(2a)로 공기가 유입되는 통로를 제공하는 연결통로(2b)가 경사지게 설치될 수 있으며, 상기 연결통로(2b)는 주로 부연소실(2a)의 와류유도부(2d)와 접선 방향으로 설치되는 것이 바람직하다.
나아가, 상기 부연소실(2a)에는 예열플러그(5)가 구비되어 시동 시 또는 저속 구동 시 연소실의 온도가 낮아지는 것을 방지하게 된다. 그리고, 부연소실(2a) 주변에는 냉각수통로(1a)가 형성될 수 있다.
위와 같은 일반적인 와류실식 디젤 엔진에서는 상기 부연소실(2a)에서 생성된 연소 가스가 주연소실(3a)로 분출되는 경우, 도 3(b)에서 트렌치부(3c)로 인입되는 연소 가스가 직진 방향으로 확산이 집중되면서, 상기 트렌치부(3c)의 양측에 위치하는 클로버부(3b)에서 와류가 적절하게 형성되지 못하여 확산 연소를 저하시킬 수 있고, 나아가 배출 가스의 유해 성분, 특히 스모그(smog)의 배출을 증가시키는 문제가 따를 수 있다.
보다 구체적으로, 도 3과 도 4를 참조하여 살펴보면, 종래 통상적인 와류실식 디젤 엔진에서 상기 부연소실(2a)은 실린더헤드(1)에 부연소실조립체(2)가 구비되어 형성될 수 있으며, 상기 부연소실(2a)은 연결통로(2b)를 통해 상기 주연소실(3a)과 연결되어 상기 부연소실(2a)에서 생성된 연소 가스를 상기 주연소실(3a)로 분출하게 된다.
도 4(a)에서는 상기 부연소실(2a)을 구성하는 부연소실조립체(2) 및 상기 연결통로(2b)의 형상을 상면(a1), 하면(a2) 및 측면(a3) 방향에서 도시하고 있다. 또한, 도 4(b)에서는 상기 부연소실(2a)을 구성하는 부연소실조립체(2) 및 상기 연결통로(2b)의 형상에 대한 단면도를 도시하고 있으며, 보다 구체적으로 도 4(b)의 (b3)에서는 상기 연결통로(2b)의 단면 형상을 자세하게 도시하고 있다.
특히, 도 4(b)의 (b3)에서 볼 수 있는 바와 같이, 종래 와류실식 디젤 엔진의 주연소실(3a)과 부연소실(2a)을 연결하는 연결통로(2b)는 2개의 원과 탄젠트한 원호로 구성되는 일체형의 단면 형상을 이루게 되면서, 상기 부연소실(2a)에서 연소된 혼합 가스가 주연소실(3a)로 분출되는 경우, 상기 트렌치부(도 3(b)의 3c)로 인입되는 연소 가스가 직진 방향으로 확산이 집중되면서, 상기 트렌치부(3c)의 양측에 위치하는 상기 클로버부(도 3(b)의 3b)에서 와류가 적절하게 형성되지 못하여 확산 연소를 저하시킬 수 있고, 나아가 배출 가스의 유해 성분, 특히 스모그(smog)의 배출을 증가시키는 문제가 따르게 된다.
이에 대하여, 도 5에서는 본 발명의 일 실시예에 따른 연결통로(2b)를 구비하는 와류실식 디젤 엔진의 특징을 구체적으로 예시하고 있다.
도 5(a)에서는 본 발명의 일 실시예에 따른 연결통로(2b)를 구비하는 와류실식 디젤 엔진에서, 부연소실(2a)을 구성하는 부연소실조립체(2) 및 연결통로(2b)의 형상을 상면(a1), 하면(a2) 및 측면(a3) 방향에서 도시하고 있다.
또한, 도 5(b)에서는 본 발명의 일 실시예에 따른 연결통로(2b)를 구비하는 와류실식 디젤 엔진에서, 상기 부연소실(2a)을 구성하는 부연소실조립체(2) 및 상기 연결통로(2b)의 형상에 대한 단면도를 도시하고 있으며, 보다 구체적으로 도 5(b)의 (b3)에서는 상기 연결통로(2b)의 단면 형상을 자세하게 도시하고 있다.
특히, 도 5(a)의 (a2) 및 도 5(b)의 (b3)에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 주연소실(3a)과 부연소실(2a)을 연결하는 연결통로(2b)에는 상기 부연소실(2b)에서 상기 주연소실(3a)로 분출되는 연소 가스를 세 부분으로 나누어 가이드할 수 있는 가이드구조(2e)가 구비될 수 있다.
나아가, 도 6에서는 본 발명의 일 실시예에 따른 연결통로(2b)를 설명하기 위하여 상기 연결통로(2b)에 형성된 가이드구조(2e)의 단면도를 도시하고 있다.
도 6에서 볼 수 있는 바와 같이, 상기 가이드구조(2e)는 상기 연결통로(2b)의 상면에 구비되는 3개의 곡면 형상을 포함하여 구성될 수 있다. 상기 가이드구조(2e)의 형상에 의해 상기 연소 가스는 세 부분으로 나누어 가이드될 수 있다.
이때, 상기 가이드구조(2e)는 상기 연결통로(2b)의 상면에 동일한 반경을 가지는 3개의 곡면 형상을 구비하여 구성될 수 있다.
보다 구체적으로, 상기 가이드구조(2e)에 의하여 세 부분으로 나누어 가이드된 연소 가스는 각각 상기 트렌치부(3c)에서 직진 방향으로 인입되거나, 상기 트렌치부(3c)의 양측에 위치하는 상기 클러버부(3b) 방향으로 인입될 수 있다. 이에 따라, 본 발명에서는 상기 부연소실(2a)과 상기 주연소실(3a)을 연결하는 상기 연결통로(2b)에 연소 가스를 세 부분으로 나누어 가이드할 수 있는 상기 가이드구조(2e)를 이용하여, 상기 부연소실(2a)에서 상기 주연소실(3a)로 분출되는 연소 가스를 세 부분으로 나누어 분출할 수 있으며, 나아가 종래에는 연소 가스가 직진 방향의 트렌치부(3c)로 집중되면서 좌우측의 클로버부(3b)에서의 와류가 적절하게 형성되지 못하던데 반하여, 상기 가이드구조(2e)를 이용하여 상기 트렌치부(3b)와 상기 클로버부(3b)로 분출되는 연소 가스의 비율을 조절하여 줌으로써, 디젤 엔진에서의 확산 연소를 촉진하고 스모그 등 유해 가스의 생성을 효과적으로 억제할 수 있게 된다.
나아가, 상기 연결통로(2b)의 상면에 서로 연접하는 3개의 곡면 형상을 구비하는 상기 가이드구조(2e)는, 중앙에 위치하는 제1가이드홈(21e), 상기 제1가이드홈(21e)의 양측에 위치하는 제2가이드홈(22e) 및 제3가이드홈(23e)을 구비할 수 있다.
이때, 상기 제1가이드홈(21e)의 중심은 상기 제2가이드홈(22e)과 제3가이드홈(23e)의 중심을 연결하는 직선보다 높이 위치할 수 있다. 즉, 도 6에서 볼 수 있는 바와 같이, 상기 제1가이드홈(21e)은 상기 연결통로(2b)의 중심선(도 5(b)의 (C))을 기준으로 상기 제2가이드홈(22e) 및 제3가이드홈(23e)보다 높이 위치할 수 있다. 이에 따라, 도 5(b)의 (b3)를 보면 상기 연결통로(2b)의 중심선(도 5(b)의 (C))을 기준으로 볼 때, 상기 제1가이드홈(21e)이 가장 외부로 돌출되어 높이 위치하는 것을 볼 수 있다.
그리고, 상기 제1가이드홈(21e)은 상기 제2가이드홈(22e)과 상기 제3가이드홈(23e)의 중앙에 위치하면서, 상기 제1가이드홈(21e)이 상기 제2가이드홈(22e) 및 제3가이드홈(23e)과 동일한 단면적을 가지도록 하여, 상기 제1가이드홈(21e), 제2가이드홈(22e) 및 제3가이드홈(23e)이 상기 연소 가스를 나누어 가이드할 수 있게 된다.
나아가, 상기 제1가이드홈(21e), 제2가이드홈(22e) 및 제3가이드홈(23e)은 동일한 반경을 가지거나, 동일한 단면적을 가지는 구조를 통해 상기 연소 가스를 대략 균일하게 나누어 가이드하여 상기 트렌치부(3c)로 집중되는 연소 가스를 상기 트렌치부(3c)와 그 양단에 위치하는 클로버부(3b)로 균일하게 분출하도록 할 수 있다.
즉, 본 발명에서 상기 제1가이드홈(21e), 제2가이드홈(22e) 및 제3가이드홈(23e)이 상기 연소 가스를 대략 균일하게 나누어 가이드한다는 것은, 종래에는 연결 통로(2b)에서 연소 가스의 대부분을 트렌치부(3c)로 집중시켜 분출하였던데 반하여, 상기 제1가이드홈(21e), 제2가이드홈(22e) 및 제3가이드홈(23e)이 동일한 반경을 가지거나 동일한 단면적을 가짐으로써, 상기 트렌치부(3c)의 위치하는 클로버부(3b)로 분출되는 연소 가스의 양이 상기 트렌치부(3c)로 분출되는 연소 가스의 양과 균일해질 수 있을 정도로 증가하여 가이드되는 것을 말한다.
특히, 상기 제2가이드홈(22e)과 제3가이드홈(23e) 사이의 거리(도 6의 D)를 상기 제1가이드홈(21e)의 반지름(도 6의 r)의 3배(D = 3r)로 형성하여 상기 트렌치부(3c) 및 상기 클로버부(3b)로 분출되는 연소 가스의 비율을 최적화하여 줌으로써, 상기 클로버부(3b)에서 와류가 효율적으로 형성되면서 확산 연소를 촉진하고 스모그(smog) 등 배출 가스의 유해 성분 생성을 효과적으로 억제할 수 있게 된다
나아가, 상기 제1가이드홈(21e)의 높이를 조절하여 상기 제1가이드홈(21e)의 단면적을 조절함으로써 상기 제1가이드홈(21e)에 의하여 가이드되는 연소 가스의 비율을 조절할 수 있으며, 더 나아가 트렌치부(3c)에서 직진 방향으로 인입되는 연소 가스 및 상기 트렌치부(3c)의 양측에 위치하는 상기 클러버부(3b) 방향으로 인입되는 연소 가스의 비율을 적절하게 조절할 수도 있다.
그리고, 도 7에서는 본 발명의 일 실시예에 따른 연결통로(2b)를 설명하기 위하여 상기 연결통로(2b)의 내부 구조를 도시하고 있다.
도 7(a)에서 볼 수 있는 바와 같이, 상기 연결통로(2b)는 시작점(S)에서부터 끝점(E)까지 동일한 형상으로 형성된다. 상기 부연소실조립체(2)의 하면(도 7(c)의 B면)에 평행한 단면들(a1, a2, a3)은 모두 동일한 형상을 가진다.
나아가, 도 7(b)에서 볼 수 있는 바와 같이, 상기 연결통로(2b)의 진행 방향 중심축(도 7(c)의 D-D)에 수직한 단면들(b1, b2, b3)도 모두 동일한 형상을 나타낸다.
도 8에서는 본 발명의 일 실시예에 따른 연결통로(2b)를 구비하는 와류실식 디젤 엔진에서의 연소 가스 흐름의 개선을 설명하고 있다. 먼저, 도 8(a)에서 볼 수 있는 바와 같이, 종래 통상적인 와류실식 디젤 엔진에서는 상기 부연소실(2a)에서 생성된 연소 가스가 상기 주연소실(3a)로 분출되는 경우(도 7(a)의 (A0)), 상기 트렌치부(3c)로 인입되는 연소 가스가 직진 방향으로 확산이 집중되면서(도 7(a)의 (A2)), 상기 트렌치부(3c)의 양측에 위치하는 상기 클로버부(3b)에서 와류가 적절하게 형성되지 못하여(도 7(a)의 (A1) 및 (A3)) 확산 연소를 저하시킬 수 있고, 나아가 배출 가스의 유해 성분, 특히 스모그(smog)의 배출을 증가시키는 문제가 따를 수 있다.
이에 대하여, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서는, 상기 부연소실(2a)과 상기 주연소실(3a)을 연결하는 상기 연결통로(2b)에 연소 가스를 세 부분으로 나누어 가이드할 수 있는 가이드구조(2e)를 이용하여, 상기 부연소실(2a)에서 상기 주연소실(3a)로 분출되는 연소 가스를 세 부분으로 나누어 분출하여 줌으로써(도 7(b)의 (B0)), 상기 트렌치부(3c)에서 직진 방향으로 인입되는 연소 가스(도 7(b)의 (B2))와 상기 트렌치부(3c)의 양측에 위치하는 상기 클러버부(3b) 방향으로 인입되는 연소 가스(도 7(b)의 (B1) 및 (B2))로 적절한 비율에 따라 나누어 분출될 수 있게 된다.
이에 따라, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서는, 상기 트렌치부(3c)의 양측에 위치하는 상기 클로버부(3b)에서 와류가 보다 강하게 형성되면서 디젤 엔진에서의 확산 연소를 촉진하고, 나아가 스모그 등 유해 가스의 생성을 효과적으로 억제할 수 있게 된다.
또한, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서는, 와류실식 디젤 엔진의 주연소실(3a)에서 트렌치부(3c) 주변에 위치하는 클로버부(3b)의 바닥면을 나선형 입체 구조로 구현함으로써, 디젤 엔진의 산화 능력을 개선하고 배출 가스에 포함되는 입자상 물질(PM) 등 유해 성분의 생성을 효과적으로 억제할 수도 있다.
즉, 종래 기술에 따른 와류실식 디젤 엔진에서는, 상기 부연소실(2a)에서 생성된 연소 가스가 상기 주연소실(3a)로 분출되는 경우, 상기 클로버부(3b)에서 와류가 적절하게 형성되지 못하고 복잡한 유동을 활성화시키지 못하여 산화 능력이 저하되고, 이에 따라 배출 가스의 유해 성분, 특히 입자상 물질(PM)의 배출을 증가시키는 문제가 따를 수 있었다.
보다 구체적으로, 도 9(a)를 참조하여 살펴보면, 종래 통상적인 와류실식 디젤 엔진에서 주연소실(3a)의 클로버부(3b)는 트렌치부(3c)의 좌우 양측으로 연접하여 배치될 수 있으며, 특히 상기 클로버부(3b)의 바닥면은, 도 9(b) 및 도 9(c)에서 볼 수 있는 바와 같이, 일정한 깊이를 가지는 평면 구조를 이루는 바, 상기 클로버부(3b)에서 연소 가스가 와류가 효과적으로 형성되지 못하면서 완전 연소에 이르지 못하고 입자상 물질(PM) 등 유해 성분을 포함하는 배출 가스를 생성하게 된다.
반면, 도 10에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 주연소실(3a)에서는, 클로버부(3b)의 바닥면이, 트렌치부(3c)로부터 연소 가스가 인입되는 제1영역(도 10의 (A))의 바닥면 높이보다, 상기 연소 가스의 흐름(도 10의 화살표 (B))에 따라 상기 제1영역으로부터 소정의 거리가 진행된 제2영역(도 10의 (C))에서의 바닥면 높이가 더 높아지는 입체 구조를 구비하도록 함으로써, 상기 클로버부(3b)에서 와류가 강하게 형성되도록 하여 복잡한 유동을 활성화시키고, 산화 능력을 높여 주어 배출 가스의 유해 성분, 특히 입자상 물질(PM)의 배출을 효과적으로 억제할 수 있게 된다.
즉, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진은, 내벽면에 곡면 형상을 가지는 와류유도부(2d)와 상기 와류유도부(2d) 하단에 형성된 연결통로(2b)를 포함하며, 실린더헤드(1)와 결합되어 부연소실(2a)을 구성하는 부연소실조립체(2), 및 상기 연결통로(2b)와 연통되는 트렌치부(3c)와 상기 트렌치부(3c)의 좌우 양측에 형성된 클로버부(3b)를 포함하며, 주연소실(3a)을 구성하는 피스톤(3)을 포함하는 와류실식 디젤 엔진으로서, 상기 클로버부(3b)의 바닥면은, 상기 트렌치부(3c)로부터 연소 가스가 인입되는 제1영역(도 10의 (A))의 바닥면 높이보다, 상기 연소 가스의 흐름(도 10의 화살표 (B))에 따라 상기 제1영역으로부터 소정의 거리가 진행된 제2영역(도 10의 (C))에서의 바닥면 높이가 더 높아지는 입체 구조를 구비하게 된다.
나아가, 도 10(b)와 도 10(c)를 참조하여 살펴보면, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 상기 주연소실(3a)에서 상기 클로버부(3b)의 바닥면은 평면 구조가 아니라 상기 연소 가스의 흐름에 따라 바닥면 높이가 점차 높아지는 입체 구조를 구비하게 된다.
이에 따라, 상기 클로버부(3b)로 인입된 연소 가스는 상기 클로버부(3b)의 바닥면 형상을 따라 상승하면서 흐르게 되어 보다 강한 와류를 형성할 수 있게 된다.
보다 구체적으로, 도 11 및 도 12를 참조하여 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 주연소실(3a)의 특징을 일반적인 와류실식 디젤 엔진의 경우와 비교하여 보다 자세하게 설명한다.
먼저, 도 11은 일반적인 와류실식 디젤 엔진에서의 피스톤(3) 상면에 형성되는 주연소실(3a)의 형상을 도시한 평면도(a), 측단면도(b) 및 사시도(c)이다.
특히, 도 11의 (b), (c)에서 볼 수 있는 바와 같이, 일반적인 와류실식 디젤 엔진에서 상기 주연소실(3a)의 상기 클로버부(3b)는 바닥면이 일정한 깊이를 가지는 평면 구조를 가지는 바, 상기 부연소실(2a)에서 연소된 혼합 가스가 상기 주연소실(3a)로 분출되는 경우, 상기 클로버부(3b)에서 연소 가스가 와류가 효과적으로 형성되지 못하면서 완전 연소에 이르지 못하고 입자상 물질(PM) 등 유해 성분을 포함하는 배출 가스를 생성하는 문제가 따르게 된다.
이에 대하여, 도 12에서는 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 특징을 구체적으로 예시하고 있다.
보다 구체적으로, 도 12는 본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서의 피스톤(3) 상면에 형성되는 주연소실(3a)의 형상을 도시한 평면도(a), 측단면도(b) 및 사시도(c)이다.
특히, 도 12의 (b), (c)에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서 상기 주연소실(3a)의 상기 클로버부(3b) 바닥면은, 트렌치부(3c)로부터 연소 가스가 인입되는 제1영역의 바닥면 높이보다, 상기 연소 가스의 흐름에 따라 상기 제1영역으로부터 소정의 거리가 진행된 제2영역에서의 바닥면 높이가 더 높아지는 입체 구조를 구비하는 바, 상기 클로버부(3b)로 인입되는 연소 가스에서 와류가 강하게 형성되도록 하여 복잡한 유동을 활성화시키고, 산화 능력을 높여 주어 배출 가스의 유해 성분, 특히 입자상 물질(PM)의 배출을 효과적으로 억제할 수 있게 된다
나아가, 상기 클로버부(3b)의 바닥면은, 인입된 상기 연소 가스가 점차 상승하는 흐름을 형성할 수 있도록, 상기 연소 가스의 흐름에 따라 상기 바닥면의 높이가 점차 높아지는 입체 구조를 구비할 수 있으며, 특히 상기 클로버부(3b)는 상기 트렌치부(3c)와 연접하여 좌우 양측에 각각 배치되는 원통형 구조를 구비하면서 상기 연소 가스의 흐름에 따라 상기 바닥면의 높이가 점차 높아지는 나선형 구조를 포함하는 입체 구조를 이루게 되며, 이에 따라 상기 클로버부(3b)로 인입된 연소 가스는 상기 클로버부(3b)의 바닥면 형상을 따라 상승하면서 흐르게 되어 보다 강한 와류를 형성할 수 있게 된다.
또한, 도 12의 (c)에서 볼 수 있는 바와 같이, 상기 클로버부(3b)는 상기 바닥면의 높이가 외곽으로 갈수록 점차 높아지는 구조를 포함하여 구성될 수 도 있다. 나아가, 상기 트렌치부(3c)의 바닥면은 소정의 기울기를 구비함으로써, 연소 가스가 상기 트렌치부(3c) 바닥면의 기울기에 따라 상승하면서 상기 클로버부(3b)로 인입되도록 할 수 있다.
도 13에서는 본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서의 클로버부(3b) 바닥면의 입체 구조에 따른 연소 가스 흐름의 개선을 설명하고 있다. 먼저, 도 13(a)에서 볼 수 있는 바와 같이, 종래 통상적인 와류실식 디젤 엔진의 부연소실(2a)에서 생성된 연소 가스가 주연소실(3a)로 분출되는 경우(도 13(a)의 (A0)), 상기 클로버부(3b)로 인입되는 연소 가스가 일정한 깊이를 가지는 평면 형상의 바닥면을 따라 진행하면서 와류가 적절하게 형성되지 못하고(도 13(a)의 (A1) 및 (A3)), 복잡한 유동을 활성화시키지 못하여 산화 능력이 저하되고, 이에 따라 배출 가스의 유해 성분, 특히 입자상 물질(PM)의 배출을 증가시키는 문제가 따를 수 있다.
이에 대하여, 도 13(b)에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진에서 주연소부(3a)의 클로버부(3b) 바닥면은, 인입된 상기 연소 가스가 점차 상승하는 흐름을 형성할 수 있도록, 상기 연소 가스의 흐름에 따라 상기 바닥면의 높이가 점차 높아지는 입체 구조를 구비함으로써, 상기 클로버부(3b)로 인입된 연소 가스가 상기 클로버부(3b)의 바닥면 형상을 따라 상승하면서 흐르게 되어 보다 강한 와류를 형성할 수 있게 된다.
보다 구체적으로, 본 발명의 일 실시예에 따른 와류실식 디젤 엔진의 부연소실(2a)에서 생성된 연소 가스가 주연소실(3a)로 분출되는 경우(도 13(b)의 (B0)), 상기 주연소실(3a) 클로버부(3b) 바닥면의 연소 가스의 흐름에 따라 상기 바닥면의 높이가 점차 높아지는 입체 구조에 의하여, 상기 클로버부(3b)에서 와류가 강하게 형성되면서 복잡한 유동을 활성화시키고, 산화 능력을 높여 주어 배출 가스의 유해 성분, 특히 입자상 물질(PM)의 배출을 효과적으로 억제할 수 있게 된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경, 및 치환이 가능할 것이다. 따라서 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면들에 의해서 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (15)

  1. 내벽면에 곡면 형상을 가지는 와류유도부(2d) 및 상기 와류유도부(2d) 하단에 형성된 연결통로(2b)를 포함하며, 실린더헤드(1)와 결합되어 부연소실(2a)을 구성하는 부연소실조립체(2); 및
    상기 연결통로(2b)와 연통되는 트렌치부(3c) 및 상기 트렌치부(3c)의 양측에 형성된 클로버부(3b)를 포함하며, 주연소실(3a)을 구성하는 피스톤(3)을 포함하고,
    상기 연결통로(2b)에는 상기 부연소실(2b)에서 주연소실(3a)로 분출되는 연소 가스를 세 부분으로 나누어 가이드할 수 있는 가이드구조(2e)가 구비되는 것을 특징으로 하는 와류실식 디젤 엔진.
  2. 제1항에 있어서,
    상기 가이드구조(2e)에 의하여 가이드되어 세 부분으로 나누어진 연소 가스는 각각 상기 트렌치부(3c)에서 직진 방향으로 인입되거나, 상기 트렌치부(3c)의 양측의 클러버부(3b) 방향으로 인입되도록 가이드되는 것을 특징으로 하는 와류실식 디젤 엔진.
  3. 제1항에 있어서,
    상기 가이드구조(2e)는,
    상기 연결통로(2b)의 상면에 서로 연접하는 3개의 곡면 형상을 구비하여 구성되는 것을 특징으로 하는 와류실식 디젤 엔진.
  4. 제3항에 있어서,
    상기 연결통로(2b)의 상면에 구비된 상기 3개의 곡면 형상은 상기 연결통로(2b) 전체에 걸쳐 동일한 형상을 유지하는 것을 특징으로 하는 와류실식 디젤 엔진.
  5. 제3항에 있어서,
    상기 연결통로(2b)의 상면에 구비된 상기 3개의 곡면 형상은 동일한 반경을 가지는 곡면 형상인 것을 특징으로 하는 와류실식 디젤 엔진.
  6. 제5항에 있어서,
    상기 가이드구조(2e)는 중앙에 위치하는 제1가이드홈(21e) 및 상기 제1가이드홈(21e)의 양측에 위치하는 제2가이드홈(22e) 및 제3가이드홈(23e)을 포함하며,
    상기 제1가이드홈(21e)의 중심은 상기 제2가이드홈(22e)과 제3가이드홈(23e)의 중심을 연결하는 직선보다 높이 위치하는 것을 특징으로 하는 와류실식 디젤 엔진.
  7. 제5항에 있어서,
    상기 가이드구조(2e)는 중앙에 위치하는 제1가이드홈(21e) 및 상기 제1가이드홈(21e)의 양측에 위치하는 제2가이드홈(22e) 및 제3가이드홈(23e)을 포함하며,
    상기 제2가이드홈(22e)과 제3가이드홈(23e) 사이의 거리(D)는 상기 제1가이드홈(21e)의 반지름(r)의 3배(D = 3r)로 형성되는 것을 특징으로 하는 와류실식 디젤 엔진.
  8. 제1항에 있어서,
    상기 가이드구조(2e)는 중앙에 위치하는 제1가이드홈(21e) 및 상기 제1가이드홈(21e)의 양측에 위치하는 제2가이드홈(22e) 및 제3가이드홈(23e)을 포함하며,
    상기 제1가이드홈(21e)은 상기 제2가이드홈(22e) 및 제3가이드홈(23e)보다 높이 위치하는 것을 특징으로 하는 와류실식 디젤 엔진.
  9. 제8항에 있어서,
    상기 제1가이드홈(21e), 제2가이드홈(22e) 및 제3가이드홈(23e)은 상기 연소 가스를 대략 균일하게 나누어 가이드하는 것을 특징으로 하는 와류실식 디젤 엔진.
  10. 제9항에 있어서,
    상기 제1가이드홈(21e), 제2가이드홈(22e) 및 제3가이드홈(23e)은 서로 동일한 단면적을 가지는 것을 특징으로 하는 와류실식 디젤 엔진.
  11. 제1항에 있어서,
    상기 클로버부(3b)의 바닥면은, 상기 트렌치부(3c)로부터 연소 가스가 인입되는 제1영역의 바닥면 높이보다, 상기 연소 가스의 흐름에 따라 상기 제1영역으로부터 소정의 거리가 진행된 제2영역에서의 바닥면 높이가 더 높아지는 입체 구조를 구비하는 것을 특징으로 하는 와류실식 디젤 엔진.
  12. 제11항에 있어서,
    상기 클로버부(3b)의 바닥면은, 인입된 상기 연소 가스가 점차 상승하는 흐름을 형성할 수 있도록, 상기 연소 가스의 흐름에 따라 상기 바닥면의 높이가 점차 높아지는 입체 구조를 구비하는 것을 특징으로 하는 와류실식 디젤 엔진.
  13. 제11항에 있어서,
    상기 클로버부(3b)는,
    상기 트렌치부(3c)와 연접하여 양측에 각각 배치되는 원통형 구조를 구비하며,
    상기 연소 가스의 흐름에 따라 상기 바닥면의 높이가 점차 높아지는 나선형 구조를 포함하는 것을 특징으로 하는 와류실식 디젤 엔진.
  14. 제11항에 있어서,
    상기 클로버부(3b)는 상기 바닥면의 높이가 외곽으로 갈수록 점차 높아지는 구조를 포함하는 것을 특징으로 하는 와류실식 디젤 엔진.
  15. 제11항에 있어서,
    상기 트렌치부(3c)의 바닥면은,
    상기 클로버부(3b)로 인입되는 연소 가스가 상승하면서 인입될 수 있도록 소정의 기울기를 가지는 것을 특징으로 하는 와류실식 디젤 엔진.
PCT/KR2018/009235 2017-08-30 2018-08-13 와류실식 디젤 엔진 WO2019045314A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/636,851 US11085359B2 (en) 2017-08-30 2018-08-13 Swirl chamber-type diesel engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0110082 2017-08-30
KR1020170110082A KR102282335B1 (ko) 2017-08-30 2017-08-30 와류실식 디젤 엔진
KR10-2017-0122005 2017-09-21
KR1020170122005A KR102227508B1 (ko) 2017-09-21 2017-09-21 와류실식 디젤 엔진

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/636,851 Continuation US11085359B2 (en) 2017-08-30 2018-08-13 Swirl chamber-type diesel engine

Publications (1)

Publication Number Publication Date
WO2019045314A1 true WO2019045314A1 (ko) 2019-03-07

Family

ID=65527585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009235 WO2019045314A1 (ko) 2017-08-30 2018-08-13 와류실식 디젤 엔진

Country Status (2)

Country Link
US (1) US11085359B2 (ko)
WO (1) WO2019045314A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7491833B2 (ja) 2020-12-25 2024-05-28 株式会社クボタ ディーゼルエンジン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330324A (ja) * 1991-04-26 1992-11-18 Kubota Corp ディーゼルエンジンのうず室式燃焼室
JPH0828271A (ja) * 1994-07-14 1996-01-30 Nissan Motor Co Ltd 渦流室式ディーゼル機関の燃焼室
JP2002174123A (ja) * 2000-12-06 2002-06-21 Iseki & Co Ltd ディーゼルエンジンの燃焼室
JP2002285846A (ja) * 2001-03-27 2002-10-03 Nissan Diesel Motor Co Ltd 副室式ディーゼルエンジン
KR100729293B1 (ko) * 2006-04-11 2007-06-15 국제종합기계 주식회사 와류실식 디젤엔진

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504505B2 (ja) * 1988-02-03 1996-06-05 日産自動車株式会社 渦流室式ディ―ゼル機関の燃焼室
US5024194A (en) * 1989-07-10 1991-06-18 Nissan Motor Company, Ltd. Flame dispersion arrangement for swirl chamber type diesel engine piston crown
KR950011323B1 (ko) * 1991-05-14 1995-09-30 마쯔다 가부시기가이샤 엔진의 연소실 구조
US5305720A (en) * 1992-02-28 1994-04-26 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Internal combustion engine
JP3295267B2 (ja) 1995-03-24 2002-06-24 株式会社クボタ ディーゼルエンジンの副室式燃焼室
SE510904C2 (sv) * 1995-05-15 1999-07-05 Mitsubishi Motors Corp Anordning vid ett insugningssystem samt sätt att framställa en insugningskanal
KR19980044006U (ko) 1996-12-26 1998-09-25 김무 엔진의 주연소실 및 부연소실을 연결하는 연결통로장치
EP1739294A1 (en) * 1997-05-20 2007-01-03 Nissan Motor Co., Ltd. Piston for a direct injection gasoline engine
KR19990004022A (ko) 1997-06-27 1999-01-15 김영귀 자동차용 디젤엔진의 연소실구조
KR100292727B1 (ko) 1997-12-31 2001-07-12 이계안 와류실식디젤엔진
KR20020053242A (ko) 2000-12-27 2002-07-05 이계안 와류실식 디젤 엔진 연소실
JP2005207312A (ja) 2004-01-22 2005-08-04 Iseki & Co Ltd ディーゼルエンジンのピストンヘッド
US9151502B2 (en) * 2012-08-21 2015-10-06 General Electric Company System and method for reducing modal coupling of combustion dynamics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04330324A (ja) * 1991-04-26 1992-11-18 Kubota Corp ディーゼルエンジンのうず室式燃焼室
JPH0828271A (ja) * 1994-07-14 1996-01-30 Nissan Motor Co Ltd 渦流室式ディーゼル機関の燃焼室
JP2002174123A (ja) * 2000-12-06 2002-06-21 Iseki & Co Ltd ディーゼルエンジンの燃焼室
JP2002285846A (ja) * 2001-03-27 2002-10-03 Nissan Diesel Motor Co Ltd 副室式ディーゼルエンジン
KR100729293B1 (ko) * 2006-04-11 2007-06-15 국제종합기계 주식회사 와류실식 디젤엔진

Also Published As

Publication number Publication date
US20200362748A1 (en) 2020-11-19
US11085359B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2014046185A1 (ja) 副室式ガスエンジン
WO2011046364A2 (ko) 내연기관의 점화플러그
US11085361B2 (en) Precombustion chamber gas engine
KR20180105117A (ko) 수동 프리챔버 직접 분사 연소
JPH0218408B2 (ko)
WO2019045314A1 (ko) 와류실식 디젤 엔진
CA1074645A (en) Dual spark plug ignition internal combustion engine
WO2019045315A1 (ko) 와류실식 디젤 엔진
JPS5855327B2 (ja) 副燃焼室付内燃機関の燃焼室
WO2021161552A1 (ja) 副室式エンジン
JPH02153221A (ja) 火花点火ガスエンジン
JP2641551B2 (ja) 内燃機関の燃焼方式及びその燃焼装置
KR20190033342A (ko) 와류실식 디젤 엔진
WO2017150835A1 (ko) 덕트용 오일버너를 위한 착화용 버너
JP7143936B2 (ja) 副室式内燃機関
JPH11182249A (ja) 直噴火花点火式内燃機関
US20240209769A1 (en) Pre-chamber assembly
WO2023181393A1 (ja) エンジン
JPH0630433U (ja) ガスエンジンのトーチ点火装置
WO2020196683A1 (ja) 副室式内燃機関
JP2526324Y2 (ja) トーチ点火式ガスエンジンのトーチ点火装置
JPH06173687A (ja) 副室を有する内燃機関の燃焼室
JP2007002797A (ja) 内燃機関の燃焼室構造
JP2620974B2 (ja) 副燃焼室式断熱ディーゼルエンジン
KR20200119524A (ko) 와류실식 디젤 엔진

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851061

Country of ref document: EP

Kind code of ref document: A1